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Density functional calculations of the formation and migration enthalpies of monovacancies in
Ni: Comparison of local and nonlocal approaches

El Hocine Megchiche,1,2 Simon Pérusin,3 Jean-Claude Barthelat,1 and Claude Mijoule3,*
1Laboratoire de Physique Quantique, IRSAMC (UMR 5626), Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse Cedex

4, France
2Laboratoire de Physique et Chimie Quantique (LPCQ), Université Mouloud Mammeri, Tizi-Ouzou, Algeria

3CIRIMAT UMR CNRS/INP/UPS, Ecole Nationale d’Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), 118 Route de
Narbonne, F-31077 Toulouse Cedex, France

We examine in this work the potential and the functional to be used in a density functional theory approach
in order to describe correctly the formation and migration energies of monovacancies in nickel. As the forma-
tion enthalpy is not well-known experimentally at 0 K, we choose in a first step to determine some structural,
magnetic, and elastic properties of the bulk, which are well-established experimentally. The comparison be-
tween both approaches, i.e., the local spin density approximation �LSDA� and the generalized gradient ap-
proximation �GGA� exchange-correlation functionals is analyzed. We conclude that the contribution of nonlo-
cal GGA terms in order to describe correctly the electronic density is necessary to determine the formation and
migration enthalpies and activation energy of monovacancy. The calculated formation Hv

f and migration Hv
m

enthalpies differ significantly between both approaches. The overestimation of the LSDA approximation is of
0.25 eV for Hv

f and of 0.23 eV for Hv
m with respect to the GGA one, leading to a gap of 0.48 eV between both

methods for the activation energy Q1. We show that the GGA results are comparable with experimental data if
the thermal expansion contribution is taken into account through the lattice parameter variation. Finally, it is
shown that the activation energy is nearly independent of the thermal expansion effects; thus we can expect
that the curvature of the Arrhenius plot of the diffusion factor near the melting point is essentially due to the
contribution of divacancies.

DOI: 10.1103/PhysRevB.74.064111 PACS number�s�: 71.15.Mb, 61.72.Ji, 61.72.Bb, 82.60.Cx

I. INTRODUCTION

Exposure of Ni-base alloys to oxidizing gaseous or aque-
ous environments at high temperatures is frequently associ-
ated to a degradation of the mechanical properties of the
material. In many cases, this drop of mechanical properties
cannot be simply attributed to the reduction of the metallic
bearing section due to the oxidation process, i.e., alloy con-
sumption. When an oxide grows by the outward diffusion of
cations, which is the case for NiO formed on nickel base
alloys, fresh oxide is formed at the gas �or water�–oxide
scale interface. Metallic vacancies are then created at the
metal–oxide scale interface. In a previous paper1 it was dem-
onstrated that a few parts of these defects diffuse far enough
in the substrate to promote deleterious or unexpected effects
on the mechanical properties of nickel base alloys. Thus the
study of the stability of these vacancies as well as the sur-
saturation compared to the thermal equilibrium is necessary
to better understand macroscopic properties of these alloys.

The goal of this paper is to determine the energetic prop-
erties of monovacancies �formation and migration enthalpies
as well as activation energy�. The major difficulty is select-
ing the theoretical approach which is more appropriate to
resolve this problem. Indeed, many experimental and theo-
retical data of the monovacancy formation Hv

f and migration
Hv

m enthalpies are available in the literature and exhibit
strong disagreements. A lot of positron annihilation experi-
ments are available2–13 which give values varying from
1.54 to 1.80 eV. Other measurement techniques based on the
specific heat of metals at high temperature, thermal expan-

sion at high temperature, or electrical resistivity of metals are
also available14–17 with data varying from 1.4 to 1.6 eV.
Theoretically, many various approaches are also available.
They can be partitioned into two groups corresponding to
first-principles local spin density approximation
�LSDA�18–21,26,27 or generalized gradient approximation
�GGA�26,27 approaches and various semi-empirical
methods21–25 as molecular statics and dynamics
calculations,28,29 lattice statics model,30 or embedded atoms
methods �EAM and MEAM�.31,32 LDA or LSDA calculations
lead to values ranging from 1.77 to 1.81 eV. Semiempirical
methods as well as first-principles calculations including
GGA corrections give results which vary between 1.42 and
1.56 eV. The large disagreement between theoretical data lie
in the different techniques �first-principles or semiempirical�
and in different approximations within similar first-principles
approaches �LDA or GGA, inclusion or not of lattice relax-
ations, etc.�. Calculated and experimental data for the migra-
tion enthalpy Hv

m are less prolific. Experimental data are ob-
tained indirectly from activation energy Q1 measurements
leading to Hv

m values ranging from 1.01 to 1.48 eV.8,11,16,33,34

To our knowledge, only one theoretical calculation is avail-
able with a value of 0.97 eV.28 Self-diffusion energies are
comprised between 2.77 and 2.95 eV experimentally8,16,33–37

and between 2.53 and 2.98 eV, theoretically.28,32,38,39 Numer-
ous experimental data for Hv

f , Hv
m, and Q1 obtained with vari-

ous techniques may be found in the report of Kraftmakher.40

Concerning Hv
f , the comparison between experimental and

theoretical results are very meaningful; Table I summarizes
some experimental �positron annihilation and others� and
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theoretical �LDA and others� values of Hv
f . It shows that the

LDA approaches are very close to the positron annihilation
data, while GGA and other methods are close to the other
experiments results. Such a result may be surprising because
it is well-established now that annihilation positron experi-
ments are the more reliable, while LDA calculations are
known to overestimate significantly energetic values. In or-
der to decide between the theoretical LDA or GGA which is
the most reliable method to describe energetic properties of
monovacancies, we have compared the capability of both
methods to describe the experimentally well-known geomet-
ric, elastic, energetic, and magnetic properties of the
bulk nickel. A lot of experimental data are available for the
lattice parameter a0 �6.65 au�,42,43 the bulk modulus B
�186 Gpa�,41,42,44–46 the cohesion energy Ecoh,

41,42 and the
magnetic moment � �0.60 �B�.41,43,47 Furthermore, many
theoretical results exist in the literature at the LDA
�a0,27,48–58 B,20,48–55,57,58 Ecoh,

48,57 �48–54,56–58� and GGA
�a0,27,48,49,51,53–55,57–59 B,48,49,51,53–55,57–59 Ecoh,

48,57,59 and
�49–51,57� levels. The layout of this paper is as follows; in
Sec. II, the computational details are described; results are
presented in Sec. III; finally, we propose our conclusions in
Sec. IV.

II. METHODS OF CALCULATION

The present calculations are done within the DFT formal-
ism and the pseudopotential approximation. They are per-
formed by means of the Vienna ab initio simulation program
�VASP� developed at the Institut für Materialphysik of the
Universität Wien.60,61 The spin-polarized self-consistent
Kohn-Sham equations are solved within the projected-
augmented wave �PAW� method.62,63 This leads to a power-
ful efficiency concerning the computation time. Two kinds of
pseudopotentials have been tested at the LDA and GGA lev-
els. They use the functional of Ceperley and Alder64 param-

etrized by Perdew and Zunger.65 For the second one the
Perdew-Wang 91 functional �PW91�66 is used to describe the
exchange correlation effects. Concerning the computational
parameters, the plane-wave energy cutoff is fixed to 14.7 Ry
�400 eV� for all calculations independently of the size of the
unit cell. On the other side, 4�4�4 and 6�6�6
Monkhorst-Pack67 meshes are used to sample the Brillouin
zone in the reciprocal space, depending on the size of the
studied unit cell. The determination of the cohesive energy is
obtained as being the difference between the energy of the
isolated nickel and that of the bulk per unit atom. Thus we
had to determine the energy of the nickel atom and more
particularly the polarization and broken symmetry contribu-
tion, since the reference energy used in VASP concerns the
nonpolarized case. These contributions allow one to describe
the triplet nature of the ground state. Nevertheless this im-
provement is not sufficient because the DFT approach is in-
efficient to describe the “true” ground triplet state corre-
sponding to the 4s23d8 configuration; indeed, this latter must
have a multireferential character in order to be an eigenstate
of the total kinetic moment J=L+S; DFT only works with a
single determinant.68 In fact the monoreferential 4s23d8�3F�
triplet corresponds to three eigenstates states corresponding
to J=2, 3, and 4 whose energies are 0, 0.165, and 0.275 eV,
respectively.69 Thus we can expect that the DFT calculated
cohesive energy will be overestimated by 0.1–0.3 eV. To
determine the formation and migration enthalpies of mono-
vacancy, several sizes of fcc primitive cells were tested, i.e.,
8, 32, 72, and 108 lattice sites per unit cell, in order to mini-
mize the nearest-neighbor vacancy interactions. We decided
that the size dependency is converged when both Hv

f and Hv
m

do not vary more than 0.01 eV. In each case we take into
account the lattice relaxation for both formation and migra-
tion enthalpy calculations. The relaxation is introduced by
using a conjugate-gradient algorithm for formation enthalp-
ies and all ions were allowed to relax. At the saddle point

TABLE I. Some experimental and theoretical data values of the vacancy formation enthalpy in nickel. All values are in eV.

Experimental Theoretical

Positron annihilation 1.72±0.1 �Ref. 2�, 1.74±0.06 �Ref. 3�, 1.45±0.07
�Ref. 4�,

LDA 1.76 �Ref. 19�, 1.77 �Ref. 20�,

1.55±0.05 �Ref. 5�, 1.72 �Ref. 6�, 1.54±0.15 �Ref. 7�, 1.78 �Ref. 21�, 1.81 �Refs. 27�
1.7 �Ref. 8�, 1.80 �Ref. 9�, 1.78 �Ref. 10�,

1.79 �Ref. 11�, 1.73 �Ref. 13�
Other measurements 1.6±0.1 �Ref. 14�,a 1.58−1.63±0.05 �Ref. 15�,a Other calculations 1.54 �Ref. 27�,c 1.56

�Refs. 23 and 29c,d�,
1.46–1.55 �Ref. 16�,b 1.4±0.2 �Ref. 17�b 1.57 �Ref. 24�,d 1.46 �Ref. 25�,d

1.31 �Ref. 26�,d 1.58 �Ref. 28�,e

1.28 �Ref. 30�,d 1.42 �Ref. 31�,d

1.51 �Ref. 32�,d 1.35 �Ref. 33�,d

1.33 �Ref. 34�d

aQuenching.
bElectrical resistivity.
cGGA.
dSemiempirical.
eMolecular dynamics.



corresponding to the migration enthalpy, first and second
nearest neighbors of the migrating atom were allowed to
move. The thermal expansion contribution to Hv

f , Hv
m and

thus to Q1 is estimated by studying their dependency with
respect to the lattice parameter a. Hv

f , Hv
m, and Q1 were cal-

culated for five values of the lattice parameter a and fitted to
a polynomial of degree two.

III. RESULTS

A. Structural, elastic, and magnetic properties of the bulk
nickel

In Table II computational results concerning the bulk pa-
rameter a0, the cohesive energy Ecoh, the magnetic moment
�, the maximum stress �max, and the bulk modulus B are
given. The GGA calculated bulk parameter is closed to the
experimental data �less than 0.1%� while the local approach
underestimates a0 by 2.5%. Our calculated parameters are in
complete agreement with previous calculations53,58 at the
LSDA and GGA levels, respectively.

The cohesive energies in each theoretical approach are
overestimated, more particularly at the local level. The con-
tributions of both the spin polarization and broken symmetry
enhance by 0.58 and 0.63 eV the local and GGA approxima-
tions, respectively. Finally, the difference with experiment is
significant in GGA �8%� and dramatic in LSDA �33%�. As
explained above, the monoreferential description of the wave
function of the isolated nickel atom overestimates the energy
by nearly 0.2 to 0.3 eV. Taking into account this correction,
the GGA approach leads to a cohesive energy of nearly
4.50–4.60 eV which is not bad compared to the experimen-
tal value while the local approach remains unsatisfactory.
The maximum stress is calculated from the dependence of
the total energy per atom Etot on the atomic volume V. The

applied stress � at any V can be determined according to the
relation70

� =
dEtot

dV
. �1�

It takes its maximum �max at the point inflection of the curve
Etot�V�. No experimental data are available for �max, but our
results are comparable to other theoretical estimations done
at the LSDA and GGA levels.58

The bulk modulus B is obtained from

B = V
d2Etot

dV2 V=V0
, �2�

where V0 is the atomic volume at the equilibrium state. Our
nonlocal GGA results differ from experimental data by only
5% while the local LSDA approach overestimates B by
nearly 50%. One more time, our values are comparable to
previous recent calculations.54,58 Finally, the calculated �
values are comparable to previous theoretical works,54,58 and
both LSD and GGA approaches reproduce experimental val-
ues. To summarize, various properties of the bulk nickel are
well-described at the GGA level of calculation; on the con-
trary, the LSDA approximation systematically �i� underesti-
mates the a0 lattice parameter and �ii� overestimates strongly
the cohesion energy as well as the bulk modulus. Further-
more, all our estimations at both the LSDA and GGA levels
are closed to previous calculations showing that the PAW
pseudopotentials are well-adapted to our study. Thus we
shall rely preferably on the GGA results for the determina-
tion of monovacancy properties.

B. Formation and migration energies of a monovacancy at
0 K

1. Variation of Hv
f , Hv

m, and Q1 with the size of the unit cell

The formation enthalpy of a vacancy Hv
f is given by

Hv
f = Ev

f − pVv
f , �3�

where Ev
f is the formation energy of the monovacancy; p is

the external pressure applied to the solid, and Vv
f the forma-

tion volume of the monovacancy. This latter term is signifi-
cant only for pressure of several kBar; thus in the following
Hv

f will be equivalent to Ev
f because all the calculations are

done at zero pressure. If N is the number of lattice sites of
the supercell containing N−1 atoms when a monovacancy is
incorporated, Hv

f can be calculated as

Hv
f = Ef�1,�1� −

N − 1

N
E�0,�0� , �4�

where Ef�1,�1� is the total energy of the supercell with N
−1 atoms and one monovacancy located on a stable site at a
relaxed unit cell volume �1 and E�0,�0� the total energy of
the supercell with N atoms at a relaxed unit cell volume �0.
The migration enthalpy of the vacancy can be expressed as

Hv
m = Em�1,�2� − Ef�1,�1� , �5�

where Em�1,�2� is the total energy of the supercell with N
−1 nickel atoms and one monovacancy located on a saddle

TABLE II. Ground state structure characteristics and theoretical
strengths calculated within the GGA and LSDA approaches. Here,
a0 is the equilibrium lattice parameter, B is the bulk modulus, � is
the magnetic moment per atom, �max is the strength �maximum
stress�, and Ecoh the cohesion energy per atom.

Property LDSA GGA Other Experimentc

a0 �a.u.� 6.474 6.656 6.50/6.67a

6.47/6.74b 6.65

B �Gpa� 280.6 195.1 255/195a

269/186b 186

���B� 0.598 0.607 0.59/0.51a

0.56/0.61b 0.61

�max �Gpa� 37.5 29.0 39.5/27.4b

Ecoh �eV� 5.92 4.82 �4.67�d 6.09/4.93a 4.44

aReference 53. Both numbers correspond to spin polarized LSDA
and GGA results, respectively.
bReference 58. Both numbers correspond to spin polarized LSDA
and GGA results, respectively.
cReference 43.
dIncludes the qualitative correction due to the multireferential char-
acter of the Ni atom �see text�.



site between two stable sites at a relaxed unit cell volume �2.
Finally, the activation energy Q1 is calculated as

Q1 = Hv
f + Hv

m �6�

or from Eqs. �4� and �5�:

Q1 = Em�1,�2� −
N − 1

N
E�0,�0� , �7�

which shows that Q1 depends only of the migration energy of
the vacancy; more particularly, as shown below, the relax-
ation contribution of the lattice to Q1 is equal to that of Hv

m.
In Table III the vacancy parameters �formation, migration,
self-diffusion enthalpies� from our first principles calcula-
tions are given at both the LSDA and GGA levels, together
with the effect of the variation of the supercell size. The
nonrelaxed results are obtained with the optimized lattice
parameters of the bulk for both approaches. Furthermore, the
effects of the lattice relaxation due to the presence of the
monovacancy are given. Various unit cells including a mono-

vacancy are represented in Fig. 1. First, the convergence of
Hv

f is nearly reached for 32 lattice sites, the change when
growing to 72 lattice sites being less than 0.01 eV at the
relaxed and nonrelaxed levels. On the other side, the conver-
gence of Hv

m is slower and needs a 72 site unit cell to be
well-described. This is true independently of the chosen
method �LSDA or GGA�; the change between 32 and 72
sites �0.03 eV� is essentially included in the relaxation con-
tribution to Hv

m. There is no significant changes between 72
and 108 sizes. The size of 32 lattice sites corresponds to a
vacancy-vacancy distance of 13.3 a.u., showing that the long
range vacancy-vacancy interaction is small, but that the re-
laxation effects related to the saddle point during the vacancy
migration are still constricted. At the converged values �72 or
108 unit cell sites� we show that the relaxation effects on the
formation enthalpy are small and comparable at the LSDA
and GGA levels �less than 0.1 eV�. However, the effect is
more significant for the migration enthalpy �nearly 0.35 eV�
due essentially to a stronger repulsion energy between the
migrating nickel atom and its first nearest neighbors at the
saddle point; on the other side, the relaxation contribution of
the second nearest neighbors is very small �less than
0.03 eV�.

2. Comparison between LSDA and GGA results

Table IV shows Hv
f , Hv

m, and Q1 calculated at the LSDA
and GGA levels, together with experimental positron annihi-
lation data. Fig. 2 visualizes the GGA results. Comparisons
for both Hv

f and Hv
m show discrepancies approaching 0.3 eV

between both types of calculations. This leads to an overes-
timation of the LSDA Q1 value of nearly 0.5 eV with respect
to the GGA ones. Concerning Hv

f , comparison with experi-
ment shows that the annihilation positron data are best repro-
duced by the LDA calculations, while GGA results are more
close to other experimental measurements �see Table I�. The
annihilation positron data are known as more reliable; it is
thus tempting to consider the LSDA as a better approach to
study energetic properties of monovacancies. This appears in

TABLE III. Formation and migration enthalpies �in eV� and activation energy of the vacancy defect for
various sizes of the initial supercell at the local LSDA and nonlocal GGA levels. Nonrelaxed and relaxed
values are presented.

Size

Hv
f Hv

m Q1

LSDA GGA LSDA GGA LSDA GGA

Nonrelaxed

8 1.663 1.367 1.531 1.318 3.194 2.685

32 1.744 1.443 1.814 1.580 3.558 3.023

72 1.725 1.432 1.808 1.578 3.533 3.010

108 1.717 1.428 1.798 1.571 3.516 2.999

Relaxed

8 1.575 1.285 1.312 1.146 2.887 2.431

32 1.656 1.378 1.479 1.263 3.135 2.641

72 1.636 1.363 1.504 1.296 3.140 2.659

108 1.621 1.370 1.513 1.285 3.134 2.655

FIG. 1. Unit supercells including 8, 32, and 108 nickel atoms.
Vacancy positions are represented by closed circles and nickel at-
oms by open circles.



the literature where numerous LSDA approaches are avail-
able contrary to the GGA ones. Nevertheless, the calculated
Q1 activation energy is overestimated by the LSDA result
compared to experimental values �see Table IV�. The GGA
approach in this case seems much better. At this instant of
our discussion we must mention the work of Carling et al.71

He showed that the GGA fails to reproduce formation enthal-
pies in aluminum, due to correlation effects near electronic
edges. An empirical correction was introduced for this defi-
ciency. Such an effect has been taken into account by Ander-
sson et al.72 in copper. If we consider that the contribution in
nickel is of the same order as that in copper �0.05 eV� �3d
valence electrons in both atoms� we can consider that the Hv

f

and Q1 calculated at the GGA level are 1.42 and 2.70 eV. At
the LSDA level, we may expect that the correction is slightly
lower as found by Carling et al.71 in aluminum. As seen in
Table I, the various estimations of the formation enthalpy Hv

f

are comprised between nearly 1.4 and 1.8 eV and thus seem
to be significantly dependent of the temperature �the experi-
mental measurement conditions vary strongly depending on
the nature of the experience�. Our calculated values at 0 K of
Hv

f are thus difficult to compare with high temperature ex-

perimental data. On the other hand the comparison of calcu-
lated Q1 at the LSDA �3.15 eV� and GGA �2.70 eV� with
experimental data �2.8 eV� shows that the GGA approach
seems more efficient to determine the activation energy. So
the good agreement of the LSDA result with experimental
data concerning the formation enthalpy may be fortuitous. In
order to introduce the temperature effects, we decided to
analyze the influence of the lattice parameter changes on Hv

f ,
Hv

m, and Q1 in order to improve our study which until now
does not take into account the thermal expansion due to the
temperature. As mentioned above, experimental results ob-
tained from positron annihilation techniques are performed
in temperature ranges for which fcc Ni is found to be para-
magnetic ��1600 K while the Curie temperature
Tc=627 K�. Therefore for temperatures higher than Tc we
completed our study by spin-nonpolarized calculations �non-
magnetic �NM� phase�. The problem with this choice to de-
scribe a paramagnetic �PM� phase is that the PM state con-
sists of randomly disordered local magnetic moments, but
not in the sense of locally compensated spins as in the NM
phase. In fact we cannot model the PM phase with conven-
tional periodic DFT and colinear spins. The choice of the
NM description leads one to describe each Ni atom in a new
configuration state �3d94s� corresponding to the 1D excited
atomic level and thus with a different electronic density.
Thus we think that the FM state is better to describe the PM
one in the sense that the individual electronic densities are
the same in both phases, the energetic difference between
them being essentially due to magnetic interactions, i.e., the

exchange energy between the two spins S� i and S� j �Heisen-
berg model�:41

U = − 2JS� iS� j , �8�

where J is the exchange integral related to the overlap be-
tween the charge distributions of atoms i and j. We can es-
tablish an approximate relation for J related to an atom by
taking into account only its nearest neighbors:41

J =
3kBTc

2zS�S + 1�
�9�

where kB is the Boltzmann constant, Tc the Curie tempera-
ture, z the number of nearest neighbors, and S the spin of the

TABLE IV. Comparison of our results with the most recent experimental and theoretical energetic prop-
erties of a monovacancy in nickel. Absolute lattice relaxation contributions are given in parentheses

This work Other works

LSDA GGA Theoretical Experimental

Hv
f 1.621 �0.097� 1.370 �0.058� 1.54,a, 1.42b 1.73,c, 1.79d

Hv
m 1.513 �0.382� 1.285 �0.344� 0.97e 1.04c

Q1 3.134 �0.382� 2.655 �0.344� 2.53e 2.78c

aGGA, Ref. 27.
bEmbedded atom method, Ref. 31.
cPositron annihilation, Ref. 12.
dPositron annihilation, Ref. 11.
eMolecular statics, Ref. 28.

FIG. 2. Energetic scheme of the formation Hv
f and migration Hv

m

enthalpies and activation energy Q1, with �r� and without �nr� lattice
relaxation. The reference energy is �N−1� /NE�0,�0�.



atom. Applying the Heisenberg model to the Ni atom, J
=0.003 eV with S=1, Tc=627 K, and z=12, which shows
that the magnetic contribution to the total atomic energy is
very small.

C. Effects of the anharmonic contribution of the temperature:
Thermal expansion

Dilatation of metals is due to the contribution of anhar-
monic terms contained in the interaction potential. Thermal
expansion is used in order to determine the formation enthal-
pies of vacancies, like, for example, in dilatometry methods
�linear extrapolation, modulation, or differential dilatometry
experiments�. The principle is that the vacancy formation
leads to an increase in the volume of the solid and in the
thermal expansivity at high temperatures. The problem now
is to know if formation and migration enthalpies as well as
the self-diffusion process depend or not on the temperature
and thus on the thermal expansion. Starting from the thermo-
dynamic relation:

� �Hv
f

�T
�

P
= T� �Sv

f

�T
�

P
, �10�

where Sv
f is the entropy formation; we can expect that the

relaxation of the atoms around vacancy increases with the
lattice parameter a0 and thus with the thermal expansion; the
formation entropy Sv

f must thus increase with temperature, as
well as the formation enthalpy. On the contrary, we may
expect that migration energy decreases with thermal expan-
sion; indeed, Hv

m depends of both Ef�1,�1� and Em�1,�2�
�see Eq. �5��; both energies increase with the lattice param-
eter; on the other hand we can expect that the increasing of
Em�1,�2� is less important due to a larger weakening of the
nickel-nickel ion repulsion energy at the saddle point posi-
tion. The dependency of the self-diffusion with thermal ex-
pansion is less clear. It is known that nickel exhibits a slight
upward curvature in the Arrhenius plot of the tracer self-
diffusion coefficient. Principally two mechanisms can be in-
volved in that case. First, the self-diffusion process involves
only a monovacancy mechanism. In that case, the coefficient
of self-diffusion is given by

D = D0 exp −
Q1

kBT
, �11�

where

D0 = a0
2f�g exp −

Sv
f + Sv

m

kB
�12�

is the preexponential factor. Here a0 is the lattice parameter,
f is the correlation factor of monovacancies, � is the fre-
quency associated to the jump of atoms into adjacent vacan-
cies, g is a geometrical factor, and Sv

f and Sv
m are the entropy

of vacancy formation and migration. Q1 is the activation en-
ergy for monovacancy defined in Eqs. �6� and �7�. In that
case, the curvature in the tracer Arrhenius plot is explained
by an activation energy Q1 and entropy S1=Sv

f +Sv
m depen-

dencies on temperature.33,73,74 Second, the contribution of
more than one diffusion mechanism �essentially divacancy

diffusion� has been involved.28,33,34,75 With this approach, the
coefficient of self-diffusion obeys the equation

D = D0 exp −
Q1

kBT
+ D02 exp −

Q2

kBT
, �13�

where the activation energies Q1 and Q2 are independent of
the temperature as well as the preexponential factors D0 and
D02. This second mechanism may be available if divacancies
are present in the lattice crystal at high temperature. In that
case, their contribution to self-diffusion is likely since their
diffusion is easier than the diffusion of monovacancies. Fi-
nally, we must mention that the contribution of multiple va-
cancy jumps76,77 has also been involved. As our work is con-
cerned with monovacancies properties, we will focus on the
possible validity of the first proposed mechanism, i.e., is
their a dependency or not of Q1 �and thus S1� with the tem-
perature? For this purpose, we present in Fig. 3 the variations
of Hv

f and Hv
m with the linear expansion �in percent� of the

bulk lattice parameter a0. Hv
f and Hv

m have been fitted by a
polynomial of degree two from the calculated points shown
in Fig. 3. As suggested above, Hv

f is increasing with �a /a0
while Hv

m decreases. Their analytical expression is

Hv
f = − 0.0117��a

a0
�2

+ 0.1463��a

a0
� + 1.369, �14�

Hv
m = 0.0072��a

a0
�2

− 0.1135��a

a0
� + 1.286, �15�

which leads to a very small increasing of Q1 with respect to
�a /a0:

Q1 = − 0.0045��a

a0
�2

+ 0.0328��a

a0
� + 2.655. �16�

We may expect that the behavior of Hv
f , Hv

m, and Q1 with
respect to the temperature is similar.

FIG. 3. Relative linear expansion dependence of formation Hv
f

��� and migration Hv
m ��� enthalpies.



The problem is now to give correspondence between the
lattice parameter and the temperature. Recently, Lu et al.78

determined thermal expansion of nickel by means of the
Calphad approach in order to obtain a reasonable description
of experimental data.79,80 All data are very similar. The de-
pendency of the linear coefficient energy � with T is also
proposed in an analytical form by Glazkov.17 In order to
estimate the temperature corresponding to �a /a0, we used
the analytical form proposed by Suh et al.80 where the ther-
mal expansion was measured by the dilatation method as
well as by x-ray diffraction. We obtain Hv

f , Hv
m, and Q1 from

Eqs. �14�–�16� for some characteristic values of T: T
=293 K corresponding to the room temperature, T=1600 K
which is the mean value used in the positron annihilation
experiments, and T=1728 K which corresponds to the melt-
ing point of nickel. For each temperature, the linear coeffi-
cient of thermal expansion � is determined. All results are
summarized in Table V. First, the estimated value of Hv

f be-
comes closed to the positron annihilation experimental data
at T=1600 K. Taking into account the empirical corrections
proposed by Carling71 we obtain at this temperature Hv

f

�1.71 eV and Q1�2.81 eV. Hence the contribution of tem-
perature through thermal expansion to various energetic
properties of monovacancies at the GGA level reproduce rea-
sonably experimental data. The more significant result is that
Q1 increases very slightly with T ��+0.05 eV from
0 to 1600 K�. Thus we may expect that the deviation of the
Arrhenius plot at high temperature cannot be attributed to the
temperature dependency of Q1. Indeed from Eq. �10� we de-
duce that D0 given in Eq. �12� is constant and that the ex-
pression of D in Eq. �11� leads to a linear relation between
ln�D� and �1/T� giving a linear Arrhenius plot. As it is not
the case experimentally, we can suggest that more than one
diffusion mechanism is involved in the self-diffusion pro-
cess; the simplest expression of D is given by Eq. �13� which
takes into account the contribution of divacancies to the self-
diffusion process; indeed Eq. �13� shows that in this case,
ln�D� is no longer a linear function of 1 /T. Finally, we give
in Table V the enthalpies and energies calculated with the
spin-nonpolarized �NM� approach for temperatures higher
than Tc. Although the electronic distribution of the individual
atoms in that case are not those corresponding to the FM or
PM phases �see Sec. III C�, we see that Hv

f remains nearly
unchanged while Hv

m and thus Q1 decreases slightly at

0.11 eV, due to a larger overlap of the electronic density of
the migrating atom with its nearest neighbors.

IV. CONCLUSION

Some geometric, elastic, and magnetic properties of the
bulk and 0 K temperature estimation of Hv

f , Hv
m, and Q1 have

been calculated directly from first-principles at the LSDA
and GGA levels. The bulk properties are well-reproduced
with the PAW pseudopotentials when the GGA approach is
used, while LSDA leads to a strong overestimation of bulk
modulus, cohesion energy and to an underestimation of the
bulk lattice parameter. From this, the calculated formation
and migration enthalpies and activation energy of the self-
diffusion at the GGA level were those compared with experi-
mental data. Our results show a strong underestimation of Hv

f

of nearly 0.4 to 0.5 eV compared with most reliable experi-
ments using positron annihilation techniques. The discrep-
ancy is not surprising since our 0 K temperature results can-
not be directly compared with experimental values generally
obtained by techniques which arise at temperatures close to
the melting point. In order to take into account the tempera-
ture effects, we studied the dependency of Hv

f , Hv
m, and Q1

with respect to the lattice parameter. This is an approach
which allows one to take into account the thermal expansion
of the bulk due to the anharmonicity of the lattice vibrations.
Our results show that the formation and migration enthalpies
are strongly correlated to the a value. More particularly Hv

f

increases until values comparable with experimental data,
when a corresponds nearly to temperatures closed to the
melting point. Furthermore, it is shown that the activation
energy is nearly independent of a and has a value compa-
rable with various theoretical and experimental determina-
tions. We can conclude that the deviation to the Arrhenius
plot of the diffusion coefficient in nickel in the range of high
temperature is rather due to the formation and diffusion of
divacancies. The study of formation, diffusion, and stability
of divacancies in nickel is the next goal of our work.
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