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We examine in this work the potential and the functional to be used in a density functional theory approach in order to describe correctly the formation and migration energies of monovacancies in nickel. As the formation enthalpy is not well-known experimentally at 0 K, we choose in a first step to determine some structural, magnetic, and elastic properties of the bulk, which are well-established experimentally. The comparison between both approaches, i.e., the local spin density approximation ͑LSDA͒ and the generalized gradient approximation ͑GGA͒ exchange-correlation functionals is analyzed. We conclude that the contribution of nonlocal GGA terms in order to describe correctly the electronic density is necessary to determine the formation and migration enthalpies and activation energy of monovacancy. The calculated formation H v f and migration H v m enthalpies differ significantly between both approaches. The overestimation of the LSDA approximation is of 0.25 eV for H v f and of 0.23 eV for H v m with respect to the GGA one, leading to a gap of 0.48 eV between both methods for the activation energy Q 1 . We show that the GGA results are comparable with experimental data if the thermal expansion contribution is taken into account through the lattice parameter variation. Finally, it is shown that the activation energy is nearly independent of the thermal expansion effects; thus we can expect that the curvature of the Arrhenius plot of the diffusion factor near the melting point is essentially due to the contribution of divacancies.

I. INTRODUCTION

Exposure of Ni-base alloys to oxidizing gaseous or aqueous environments at high temperatures is frequently associated to a degradation of the mechanical properties of the material. In many cases, this drop of mechanical properties cannot be simply attributed to the reduction of the metallic bearing section due to the oxidation process, i.e., alloy consumption. When an oxide grows by the outward diffusion of cations, which is the case for NiO formed on nickel base alloys, fresh oxide is formed at the gas ͑or water͒-oxide scale interface. Metallic vacancies are then created at the metal-oxide scale interface. In a previous paper 1 it was demonstrated that a few parts of these defects diffuse far enough in the substrate to promote deleterious or unexpected effects on the mechanical properties of nickel base alloys. Thus the study of the stability of these vacancies as well as the sursaturation compared to the thermal equilibrium is necessary to better understand macroscopic properties of these alloys.

The goal of this paper is to determine the energetic properties of monovacancies ͑formation and migration enthalpies as well as activation energy͒. The major difficulty is selecting the theoretical approach which is more appropriate to resolve this problem. Indeed, many experimental and theoretical data of the monovacancy formation H v f and migration H v m enthalpies are available in the literature and exhibit strong disagreements. A lot of positron annihilation experiments are available [2][3][4][5][6][7][START_REF] Smedskjaer | Positron Annihilation[END_REF][START_REF] Schaefer | [END_REF][START_REF] Schultz | 11 Atomic Point Defects in Metals: Crystal and Solid State Physics[END_REF][11][START_REF] Wolff | [END_REF][13] which give values varying from 1.54 to 1.80 eV. Other measurement techniques based on the specific heat of metals at high temperature, thermal expan-sion at high temperature, or electrical resistivity of metals are also available [14][15][START_REF] Schüle | Point Defects and Defect Interactions in Metals[END_REF][START_REF] Glazkov | [END_REF] with data varying from 1.4 to 1.6 eV. Theoretically, many various approaches are also available. They can be partitioned into two groups corresponding to first-principles local spin density approximation ͑LSDA͒ [18][19][20][21]26,27 or generalized gradient approximation ͑GGA͒ 26,27 approaches and various semi-empirical methods [21][22][23][24][25] as molecular statics and dynamics calculations, 28,29 lattice statics model, 30 or embedded atoms methods ͑EAM and MEAM͒. 31,32 LDA or LSDA calculations lead to values ranging from 1.77 to 1.81 eV. Semiempirical methods as well as first-principles calculations including GGA corrections give results which vary between 1.42 and 1.56 eV. The large disagreement between theoretical data lie in the different techniques ͑first-principles or semiempirical͒ and in different approximations within similar first-principles approaches ͑LDA or GGA, inclusion or not of lattice relaxations, etc.͒. Calculated and experimental data for the migration enthalpy H v m are less prolific. Experimental data are obtained indirectly from activation energy Q 1 measurements leading to H v m values ranging from 1.01 to 1.48 eV. [START_REF] Smedskjaer | Positron Annihilation[END_REF]11,[START_REF] Schüle | Point Defects and Defect Interactions in Metals[END_REF][START_REF] Seeger | Vacancies and Interstitial in Metals[END_REF][START_REF] Bakker | [END_REF] To our knowledge, only one theoretical calculation is available with a value of 0.97 eV. 28 Self-diffusion energies are comprised between 2.77 and 2.95 eV experimentally [START_REF] Smedskjaer | Positron Annihilation[END_REF][START_REF] Schüle | Point Defects and Defect Interactions in Metals[END_REF][START_REF] Seeger | Vacancies and Interstitial in Metals[END_REF][START_REF] Bakker | [END_REF][35][36][START_REF] Smithells | Metals Reference Book[END_REF] and between 2.53 and 2.98 eV, theoretically. 28,32,[START_REF] Neumann | [END_REF]39 Numerous experimental data for H v f , H v m , and Q 1 obtained with various techniques may be found in the report of Kraftmakher. 40 Concerning H v f , the comparison between experimental and theoretical results are very meaningful; Table I summarizes some experimental ͑positron annihilation and others͒ and theoretical ͑LDA and others͒ values of H v f . It shows that the LDA approaches are very close to the positron annihilation data, while GGA and other methods are close to the other experiments results. Such a result may be surprising because it is well-established now that annihilation positron experiments are the more reliable, while LDA calculations are known to overestimate significantly energetic values. In order to decide between the theoretical LDA or GGA which is the most reliable method to describe energetic properties of monovacancies, we have compared the capability of both methods to describe the experimentally well-known geometric, elastic, energetic, and magnetic properties of the bulk nickel. A lot of experimental data are available for the lattice parameter a 0 ͑6.65 au͒, [START_REF] Smithells | Metals Reference Book[END_REF][START_REF]Handbook of Chemistry and Physics[END_REF] the bulk modulus B ͑186 Gpa͒, [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Smithells | Metals Reference Book[END_REF][START_REF] Guillermet | [END_REF][45][46] the cohesion energy E coh , [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Smithells | Metals Reference Book[END_REF] and the magnetic moment ͑0.60 B ͒. [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF]Handbook of Chemistry and Physics[END_REF][START_REF] Stearns | New Series[END_REF] Furthermore, many theoretical results exist in the literature at the LDA ͑a 0 , 27,48-58 B, 20,48-55,57,58 E coh , 48,57 [START_REF] Leung | [END_REF][49][50][51][52][53][54][56][57][58] ͒ and GGA ͑a 0 , 27,[START_REF] Leung | [END_REF]49,51,[53][54][55][57][58][59] B, [START_REF] Leung | [END_REF]49,51,[53][54][55][57][58][59] E coh , [START_REF] Leung | [END_REF]57,59 and [49][50][51]57 ͒ levels. The layout of this paper is as follows; in Sec. II, the computational details are described; results are presented in Sec. III; finally, we propose our conclusions in Sec. IV.

II. METHODS OF CALCULATION

The present calculations are done within the DFT formalism and the pseudopotential approximation. They are performed by means of the Vienna ab initio simulation program ͑VASP͒ developed at the Institut für Materialphysik of the Universität Wien. 60,61 The spin-polarized self-consistent Kohn-Sham equations are solved within the projectedaugmented wave ͑PAW͒ method. 62,63 This leads to a powerful efficiency concerning the computation time. Two kinds of pseudopotentials have been tested at the LDA and GGA levels. They use the functional of Ceperley and Alder 64 param-etrized by Perdew and Zunger. 65 For the second one the Perdew-Wang 91 functional ͑PW91͒ 66 is used to describe the exchange correlation effects. Concerning the computational parameters, the plane-wave energy cutoff is fixed to 14.7 Ry ͑400 eV͒ for all calculations independently of the size of the unit cell. On the other side, 4 ϫ 4 ϫ 4 and 6 ϫ 6 ϫ 6 Monkhorst-Pack 67 meshes are used to sample the Brillouin zone in the reciprocal space, depending on the size of the studied unit cell. The determination of the cohesive energy is obtained as being the difference between the energy of the isolated nickel and that of the bulk per unit atom. Thus we had to determine the energy of the nickel atom and more particularly the polarization and broken symmetry contribution, since the reference energy used in VASP concerns the nonpolarized case. These contributions allow one to describe the triplet nature of the ground state. Nevertheless this improvement is not sufficient because the DFT approach is inefficient to describe the "true" ground triplet state corresponding to the 4s 2 3d 8 configuration; indeed, this latter must have a multireferential character in order to be an eigenstate of the total kinetic moment J = L + S; DFT only works with a single determinant. [START_REF] Daul | Recent Advances in Density Functional Theory, Part II ͑World Scientific[END_REF] In fact the monoreferential 4s 2 3d 8 ͑ 3 F͒ triplet corresponds to three eigenstates states corresponding to J = 2, 3, and 4 whose energies are 0, 0.165, and 0.275 eV, respectively. 69 Thus we can expect that the DFT calculated cohesive energy will be overestimated by 0.1-0.3 eV. To determine the formation and migration enthalpies of monovacancy, several sizes of fcc primitive cells were tested, i.e., 8, 32, 72, and 108 lattice sites per unit cell, in order to minimize the nearest-neighbor vacancy interactions. We decided that the size dependency is converged when both H v f and H v m do not vary more than 0.01 eV. In each case we take into account the lattice relaxation for both formation and migration enthalpy calculations. The relaxation is introduced by using a conjugate-gradient algorithm for formation enthalpies and all ions were allowed to relax. At the saddle point corresponding to the migration enthalpy, first and second nearest neighbors of the migrating atom were allowed to move. The thermal expansion contribution to H v f , H v m and thus to Q 1 is estimated by studying their dependency with respect to the lattice parameter a. H v f , H v m , and Q 1 were calculated for five values of the lattice parameter a and fitted to a polynomial of degree two.

III. RESULTS

A. Structural, elastic, and magnetic properties of the bulk nickel

In Table II computational results concerning the bulk parameter a 0 , the cohesive energy E coh , the magnetic moment , the maximum stress max , and the bulk modulus B are given. The GGA calculated bulk parameter is closed to the experimental data ͑less than 0.1%͒ while the local approach underestimates a 0 by 2.5%. Our calculated parameters are in complete agreement with previous calculations 53,58 at the LSDA and GGA levels, respectively.

The cohesive energies in each theoretical approach are overestimated, more particularly at the local level. The contributions of both the spin polarization and broken symmetry enhance by 0.58 and 0.63 eV the local and GGA approximations, respectively. Finally, the difference with experiment is significant in GGA ͑8%͒ and dramatic in LSDA ͑33%͒. As explained above, the monoreferential description of the wave function of the isolated nickel atom overestimates the energy by nearly 0.2 to 0.3 eV. Taking into account this correction, the GGA approach leads to a cohesive energy of nearly 4.50-4.60 eV which is not bad compared to the experimental value while the local approach remains unsatisfactory. The maximum stress is calculated from the dependence of the total energy per atom E tot on the atomic volume V. The applied stress at any V can be determined according to the relation [START_REF] Šandera | [END_REF] = dE tot dV . ͑1͒

It takes its maximum max at the point inflection of the curve E tot ͑V͒. No experimental data are available for max , but our results are comparable to other theoretical estimations done at the LSDA and GGA levels. 58 The bulk modulus B is obtained from

B = V d 2 E tot dV 2 V=V 0 , ͑2͒
where V 0 is the atomic volume at the equilibrium state. Our nonlocal GGA results differ from experimental data by only 5% while the local LSDA approach overestimates B by nearly 50%. One more time, our values are comparable to previous recent calculations. 54,58 Finally, the calculated values are comparable to previous theoretical works, 54,58 and both LSD and GGA approaches reproduce experimental values. To summarize, various properties of the bulk nickel are well-described at the GGA level of calculation; on the contrary, the LSDA approximation systematically ͑i͒ underestimates the a 0 lattice parameter and ͑ii͒ overestimates strongly the cohesion energy as well as the bulk modulus. Furthermore, all our estimations at both the LSDA and GGA levels are closed to previous calculations showing that the PAW pseudopotentials are well-adapted to our study. Thus we shall rely preferably on the GGA results for the determination of monovacancy properties.

B. Formation and migration energies of a monovacancy at 0 K

Variation of H v f , H v m , and Q 1 with the size of the unit cell

The formation enthalpy of a vacancy H v f is given by

H v f = E v f -pV v f , ͑3͒
where E v f is the formation energy of the monovacancy; p is the external pressure applied to the solid, and V v f the formation volume of the monovacancy. This latter term is significant only for pressure of several kBar; thus in the following H v f will be equivalent to E v f because all the calculations are done at zero pressure. If N is the number of lattice sites of the supercell containing N -1 atoms when a monovacancy is incorporated, H v f can be calculated as

H v f = E f ͑1,⍀ 1 ͒ - N -1 N E͑0,⍀ 0 ͒, ͑4͒
where E f ͑1,⍀ 1 ͒ is the total energy of the supercell with N -1 atoms and one monovacancy located on a stable site at a relaxed unit cell volume ⍀ 1 and E͑0,⍀ 0 ͒ the total energy of the supercell with N atoms at a relaxed unit cell volume ⍀ 0 . The migration enthalpy of the vacancy can be expressed as

H v m = E m ͑1,⍀ 2 ͒ -E f ͑1,⍀ 1 ͒, ͑5͒
where E m ͑1,⍀ 2 ͒ is the total energy of the supercell with N -1 nickel atoms and one monovacancy located on a saddle site between two stable sites at a relaxed unit cell volume ⍀ 2 .

Finally, the activation energy Q 1 is calculated as

Q 1 = H v f + H v m ͑6͒
or from Eqs. ͑4͒ and ͑5͒:

Q 1 = E m ͑1,⍀ 2 ͒ - N -1 N E͑0,⍀ 0 ͒, ͑7͒
which shows that Q 1 depends only of the migration energy of the vacancy; more particularly, as shown below, the relaxation contribution of the lattice to Q 1 is equal to that of H v m . In Table III the vacancy parameters ͑formation, migration, self-diffusion enthalpies͒ from our first principles calculations are given at both the LSDA and GGA levels, together with the effect of the variation of the supercell size. The nonrelaxed results are obtained with the optimized lattice parameters of the bulk for both approaches. Furthermore, the effects of the lattice relaxation due to the presence of the monovacancy are given. Various unit cells including a mono-vacancy are represented in Fig. 1. First, the convergence of H v f is nearly reached for 32 lattice sites, the change when growing to 72 lattice sites being less than 0.01 eV at the relaxed and nonrelaxed levels. On the other side, the convergence of H v m is slower and needs a 72 site unit cell to be well-described. This is true independently of the chosen method ͑LSDA or GGA͒; the change between 32 and 72 sites ͑0.03 eV͒ is essentially included in the relaxation contribution to H v m . There is no significant changes between 72 and 108 sizes. The size of 32 lattice sites corresponds to a vacancy-vacancy distance of 13.3 a.u., showing that the long range vacancy-vacancy interaction is small, but that the relaxation effects related to the saddle point during the vacancy migration are still constricted. At the converged values ͑72 or 108 unit cell sites͒ we show that the relaxation effects on the formation enthalpy are small and comparable at the LSDA and GGA levels ͑less than 0.1 eV͒. However, the effect is more significant for the migration enthalpy ͑nearly 0.35 eV͒ due essentially to a stronger repulsion energy between the migrating nickel atom and its first nearest neighbors at the saddle point; on the other side, the relaxation contribution of the second nearest neighbors is very small ͑less than 0.03 eV͒.

Comparison between LSDA and GGA results

Table IV shows H v

f , H v m , and Q 1 calculated at the LSDA and GGA levels, together with experimental positron annihilation data. Fig. 2 visualizes the GGA results. Comparisons for both H v f and H v m show discrepancies approaching 0.3 eV between both types of calculations. This leads to an overestimation of the LSDA Q 1 value of nearly 0.5 eV with respect to the GGA ones. Concerning H v f , comparison with experiment shows that the annihilation positron data are best reproduced by the LDA calculations, while GGA results are more close to other experimental measurements ͑see Table I͒. The annihilation positron data are known as more reliable; it is thus tempting to consider the LSDA as a better approach to study energetic properties of monovacancies. This appears in the literature where numerous LSDA approaches are available contrary to the GGA ones. Nevertheless, the calculated Q 1 activation energy is overestimated by the LSDA result compared to experimental values ͑see Table IV͒. The GGA approach in this case seems much better. At this instant of our discussion we must mention the work of Carling et al. 71 He showed that the GGA fails to reproduce formation enthalpies in aluminum, due to correlation effects near electronic edges. An empirical correction was introduced for this deficiency. Such an effect has been taken into account by Andersson et al. 72 in copper. If we consider that the contribution in nickel is of the same order as that in copper ͑0.05 eV͒ ͑3d valence electrons in both atoms͒ we can consider that the H v f and Q 1 calculated at the GGA level are 1.42 and 2.70 eV. At the LSDA level, we may expect that the correction is slightly lower as found by Carling et al. 71 in aluminum. As seen in Table I, the various estimations of the formation enthalpy H v f are comprised between nearly 1.4 and 1.8 eV and thus seem to be significantly dependent of the temperature ͑the experimental measurement conditions vary strongly depending on the nature of the experience͒. Our calculated values at 0 K of H v f are thus difficult to compare with high temperature ex-perimental data. On the other hand the comparison of calculated Q 1 at the LSDA ͑3.15 eV͒ and GGA ͑2.70 eV͒ with experimental data ͑2.8 eV͒ shows that the GGA approach seems more efficient to determine the activation energy. So the good agreement of the LSDA result with experimental data concerning the formation enthalpy may be fortuitous. In order to introduce the temperature effects, we decided to analyze the influence of the lattice parameter changes on H v f , H v m , and Q 1 in order to improve our study which until now does not take into account the thermal expansion due to the temperature. As mentioned above, experimental results obtained from positron annihilation techniques are performed in temperature ranges for which fcc Ni is found to be paramagnetic ͑ϳ1600 K while the Curie temperature T c = 627 K͒. Therefore for temperatures higher than T c we completed our study by spin-nonpolarized calculations ͓nonmagnetic ͑NM͒ phase͔. The problem with this choice to describe a paramagnetic ͑PM͒ phase is that the PM state consists of randomly disordered local magnetic moments, but not in the sense of locally compensated spins as in the NM phase. In fact we cannot model the PM phase with conventional periodic DFT and colinear spins. The choice of the NM description leads one to describe each Ni atom in a new configuration state ͑3d 9 4s͒ corresponding to the 1 D excited atomic level and thus with a different electronic density. Thus we think that the FM state is better to describe the PM one in the sense that the individual electronic densities are the same in both phases, the energetic difference between them being essentially due to magnetic interactions, i.e., the exchange energy between the two spins S ជ i and S ជ j ͑Heisenberg model͒: 41

U = -2JS ជ i S ជ j , ͑8͒ 
where J is the exchange integral related to the overlap between the charge distributions of atoms i and j. We can establish an approximate relation for J related to an atom by taking into account only its nearest neighbors: 41

J = 3k B T c 2zS͑S + 1͒ ͑9͒
where k B is the Boltzmann constant, T c the Curie temperature, z the number of nearest neighbors, and S the spin of the atom. Applying the Heisenberg model to the Ni atom, J = 0.003 eV with S =1, T c = 627 K, and z = 12, which shows that the magnetic contribution to the total atomic energy is very small.

C. Effects of the anharmonic contribution of the temperature: Thermal expansion

Dilatation of metals is due to the contribution of anharmonic terms contained in the interaction potential. Thermal expansion is used in order to determine the formation enthalpies of vacancies, like, for example, in dilatometry methods ͑linear extrapolation, modulation, or differential dilatometry experiments͒. The principle is that the vacancy formation leads to an increase in the volume of the solid and in the thermal expansivity at high temperatures. The problem now is to know if formation and migration enthalpies as well as the self-diffusion process depend or not on the temperature and thus on the thermal expansion. Starting from the thermodynamic relation:

ͩ ץH v f ץT ͪ P = Tͩ ץS v f ץT ͪ P , ͑10͒
where S v f is the entropy formation; we can expect that the relaxation of the atoms around vacancy increases with the lattice parameter a 0 and thus with the thermal expansion; the formation entropy S v f must thus increase with temperature, as well as the formation enthalpy. On the contrary, we may expect that migration energy decreases with thermal expansion; indeed, H v m depends of both E f ͑1,⍀ 1 ͒ and E m ͑1,⍀ 2 ͒ ͓see Eq. ͑5͔͒; both energies increase with the lattice parameter; on the other hand we can expect that the increasing of E m ͑1,⍀ 2 ͒ is less important due to a larger weakening of the nickel-nickel ion repulsion energy at the saddle point position. The dependency of the self-diffusion with thermal expansion is less clear. It is known that nickel exhibits a slight upward curvature in the Arrhenius plot of the tracer selfdiffusion coefficient. Principally two mechanisms can be involved in that case. First, the self-diffusion process involves only a monovacancy mechanism. In that case, the coefficient of self-diffusion is given by

D = D 0 exp - Q 1 k B T , ͑11͒
where

D 0 = a 0 2 fg exp - S v f + S v m k B ͑12͒
is the preexponential factor. Here a 0 is the lattice parameter, f is the correlation factor of monovacancies, is the frequency associated to the jump of atoms into adjacent vacancies, g is a geometrical factor, and S v f and S v m are the entropy of vacancy formation and migration. Q 1 is the activation energy for monovacancy defined in Eqs. ͑6͒ and ͑7͒. In that case, the curvature in the tracer Arrhenius plot is explained by an activation energy Q 1 and entropy S 1 = S v f + S v m dependencies on temperature. [START_REF] Seeger | Vacancies and Interstitial in Metals[END_REF]73,74 Second, the contribution of more than one diffusion mechanism ͑essentially divacancy diffusion͒ has been involved. 28,[START_REF] Seeger | Vacancies and Interstitial in Metals[END_REF][START_REF] Bakker | [END_REF]75 With this approach, the coefficient of self-diffusion obeys the equation

D = D 0 exp - Q 1 k B T + D 02 exp - Q 2 k B T , ͑13͒
where the activation energies Q 1 and Q 2 are independent of the temperature as well as the preexponential factors D 0 and D 02 . This second mechanism may be available if divacancies are present in the lattice crystal at high temperature. In that case, their contribution to self-diffusion is likely since their diffusion is easier than the diffusion of monovacancies. Finally, we must mention that the contribution of multiple vacancy jumps 76,77 has also been involved. As our work is concerned with monovacancies properties, we will focus on the possible validity of the first proposed mechanism, i.e., is their a dependency or not of Q 1 ͑and thus S 1 ͒ with the temperature? For this purpose, we present in Fig. 3 the variations of H v f and H v m with the linear expansion ͑in percent͒ of the bulk lattice parameter a 0 . H v f and H v m have been fitted by a polynomial of degree two from the calculated points shown in Fig. 3. As suggested above, H v f is increasing with ⌬a / a 0 while H v m decreases. Their analytical expression is

H v f = -0.0117ͩ ⌬a 
a 0 ͪ 2 + 0.1463ͩ ⌬a a 0 ͪ+1. 369, ͑14͒ H v m = 0.0072ͩ ⌬a a 0 ͪ 2 -0.1135ͩ ⌬a a 0 ͪ+1. 286, ͑15͒
which leads to a very small increasing of Q 1 with respect to ⌬a / a 0 :

Q 1 = -0.0045ͩ ⌬a 
a 0 ͪ 2 + 0.0328ͩ ⌬a a 0 ͪ+2. 655. ͑16͒
We may expect that the behavior of H v f , H v m , and Q 1 with respect to the temperature is similar. The problem is now to give correspondence between the lattice parameter and the temperature. Recently, Lu et al. 78 determined thermal expansion of nickel by means of the Calphad approach in order to obtain a reasonable description of experimental data. 79,80 All data are very similar. The dependency of the linear coefficient energy ␣ with T is also proposed in an analytical form by Glazkov. [START_REF] Glazkov | [END_REF] In order to estimate the temperature corresponding to ⌬a / a 0 , we used the analytical form proposed by Suh et al. 80 where the thermal expansion was measured by the dilatation method as well as by x-ray diffraction. We obtain H v f , H v m , and Q 1 from Eqs. ͑14͒-͑16͒ for some characteristic values of T: T = 293 K corresponding to the room temperature, T = 1600 K which is the mean value used in the positron annihilation experiments, and T = 1728 K which corresponds to the melting point of nickel. For each temperature, the linear coefficient of thermal expansion ␣ is determined. All results are summarized in Table V. First, the estimated value of H v f becomes closed to the positron annihilation experimental data at T = 1600 K. Taking into account the empirical corrections proposed by Carling 71 we obtain at this temperature H v f ϳ 1.71 eV and Q 1 ϳ 2.81 eV. Hence the contribution of temperature through thermal expansion to various energetic properties of monovacancies at the GGA level reproduce reasonably experimental data. The more significant result is that Q 1 increases very slightly with T ͑ϳ + 0.05 eV from 0 to 1600 K͒. Thus we may expect that the deviation of the Arrhenius plot at high temperature cannot be attributed to the temperature dependency of Q 1 . Indeed from Eq. ͑10͒ we deduce that D 0 given in Eq. ͑12͒ is constant and that the expression of D in Eq. ͑11͒ leads to a linear relation between ln͑D͒ and ͑1/T͒ giving a linear Arrhenius plot. As it is not the case experimentally, we can suggest that more than one diffusion mechanism is involved in the self-diffusion process; the simplest expression of D is given by Eq. ͑13͒ which takes into account the contribution of divacancies to the selfdiffusion process; indeed Eq. ͑13͒ shows that in this case, ln͑D͒ is no longer a linear function of 1 / T. Finally, we give in Table V the enthalpies and energies calculated with the spin-nonpolarized ͑NM͒ approach for temperatures higher than T c . Although the electronic distribution of the individual atoms in that case are not those corresponding to the FM or PM phases ͑see Sec. III C͒, we see that H v f remains nearly unchanged while H v m and thus Q 1 decreases slightly at 0.11 eV, due to a larger overlap of the electronic density of the migrating atom with its nearest neighbors.

IV. CONCLUSION

Some geometric, elastic, and magnetic properties of the bulk and 0 K temperature estimation of H v f , H v m , and Q 1 have been calculated directly from first-principles at the LSDA and GGA levels. The bulk properties are well-reproduced with the PAW pseudopotentials when the GGA approach is used, while LSDA leads to a strong overestimation of bulk modulus, cohesion energy and to an underestimation of the bulk lattice parameter. From this, the calculated formation and migration enthalpies and activation energy of the selfdiffusion at the GGA level were those compared with experimental data. Our results show a strong underestimation of H v f of nearly 0.4 to 0.5 eV compared with most reliable experiments using positron annihilation techniques. The discrepancy is not surprising since our 0 K temperature results cannot be directly compared with experimental values generally obtained by techniques which arise at temperatures close to the melting point. In order to take into account the temperature effects, we studied the dependency of H v f , H v m , and Q 1 with respect to the lattice parameter. This is an approach which allows one to take into account the thermal expansion of the bulk due to the anharmonicity of the lattice vibrations. Our results show that the formation and migration enthalpies are strongly correlated to the a value. More particularly H v f increases until values comparable with experimental data, when a corresponds nearly to temperatures closed to the melting point. Furthermore, it is shown that the activation energy is nearly independent of a and has a value comparable with various theoretical and experimental determinations. We can conclude that the deviation to the Arrhenius plot of the diffusion coefficient in nickel in the range of high temperature is rather due to the formation and diffusion of divacancies. The study of formation, diffusion, and stability of divacancies in nickel is the next goal of our work.
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 2 FIG. 2. Energetic scheme of the formation H v f and migration H v m enthalpies and activation energy Q 1 , with ͑r͒ and without ͑nr͒ lattice relaxation. The reference energy is ͑N -1͒ / NE͑0,⍀ 0 ͒.
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	Positron annihilation	1.72± 0.1 ͑Ref. 2͒, 1.74± 0.06 ͑Ref. 3͒, 1.45± 0.07	LDA	1.76 ͑Ref. 19͒, 1.77 ͑Ref. 20͒,
		͑Ref. 4͒,		
		1.55± 0.05 ͑Ref. 5͒, 1.72 ͑Ref. 6͒, 1.54± 0.15 ͑Ref. 7͒,		1.78 ͑Ref. 21͒, 1.81 ͑Refs. 27͒
		1.7 ͑Ref. 8͒, 1.80 ͑Ref. 9͒, 1.78 ͑Ref. 10͒,		
		1.79 ͑Ref. 11͒, 1.73 ͑Ref. 13͒		
	Other measurements	1.6± 0.1 ͑Ref. 14͒, a 1.58-1.63± 0.05 ͑Ref. 15͒, a	Other calculations	1.54 ͑Ref. 27͒, c 1.56
				͑Refs. 23 and 29 c,d ͒,
		1.46-1.55 ͑Ref.		

a Quenching. b Electrical resistivity. c GGA. d Semiempirical. e Molecular dynamics.

TABLE II .

 II Ground state structure characteristics and theoretical strengths calculated within the GGA and LSDA approaches. Here, a 0 is the equilibrium lattice parameter, B is the bulk modulus, is the magnetic moment per atom, max is the strength ͑maximum stress͒, and E coh the cohesion energy per atom.

	Property	LDSA GGA	Other	Experiment c
	a 0 ͑a.u.͒	6.474	6.656	6.50/ 6.67 a
				6.47/ 6.74 b	6.65
	B ͑Gpa͒	280.6	195.1	255/ 195 a
				269/ 186 b	186
	͑ B ͒	0.598	0.607	0.59/ 0.51 a
				0.56/ 0.61 b	0.61
	max ͑Gpa͒	37.5	29.0	39.5/ 27.4 b
	E coh ͑eV͒	5.92	4.82 ͑4.67͒ d 6.09/ 4.93 a	4.44
	a Reference 53. Both numbers correspond to spin polarized LSDA
	and GGA results, respectively.	

b Reference 58. Both numbers correspond to spin polarized LSDA and GGA results, respectively. c Reference 43. d Includes the qualitative correction due to the multireferential character of the Ni atom ͑see text͒.

TABLE III .

 III Formation and migration enthalpies ͑in eV͒ and activation energy of the vacancy defect for various sizes of the initial supercell at the local LSDA and nonlocal GGA levels. Nonrelaxed and relaxed values are presented.

		H v f		H v m		Q 1	
	Size	LSDA	GGA	LSDA	GGA	LSDA	GGA
				Nonrelaxed			
	8	1.663	1.367	1.531	1.318	3.194	2.685
	32	1.744	1.443	1.814	1.580	3.558	3.023
	72	1.725	1.432	1.808	1.578	3.533	3.010
	108	1.717	1.428	1.798	1.571	3.516	2.999
				Relaxed			
	8	1.575	1.285	1.312	1.146	2.887	2.431
	32	1.656	1.378	1.479	1.263	3.135	2.641
	72	1.636	1.363	1.504	1.296	3.140	2.659
	108	1.621	1.370	1.513	1.285	3.134	2.655

FIG. 1. Unit supercells including 8, 32, and 108 nickel atoms. Vacancy positions are represented by closed circles and nickel atoms by open circles.

TABLE IV .

 IV Comparison of our results with the most recent experimental and theoretical energetic properties of a monovacancy in nickel. Absolute lattice relaxation contributions are given in parentheses

			This work		Other works
			LSDA	GGA	Theoretical	Experimental
	H v f	1.621 ͑0.097͒	1.370 ͑0.058͒	1.54, a , 1.42 b	1.73, c , 1.79 d
	H v m	1.513 ͑0.382͒	1.285 ͑0.344͒	0.97 e	1.04 c
	Q 1	3.134 ͑0.382͒	2.655 ͑0.344͒	2.53 e	2.78 c
	a	GGA, Ref. 27.			

b Embedded atom method, Ref. 31. c Positron annihilation, Ref. 12. d Positron annihilation, Ref. 11. e Molecular statics, Ref. 28.

TABLE V .

 V Thermal expansion effects on the vacancy formation, migration, and activation energies ͑in eV͒ at the spin-polarized ͑FM͒ and spin-nonpolarized ͑NM͒ levels. ␣ is the linear coefficient of thermal expansion. Results obtained in GGA with a 108 sites unit cell size. France͒ and the computer center GRID'5000 Nation-Wide Grid Experimental platform funded by the French Ministery of Research through the ACI GRID Program. We are grateful to Irea Touche ͑supported by INPT͒ for gridifying our codes. The calculations have been performed using the ab initio total-energy program VASP developed at the Institut für Materialphysik of the Universität Wien, Austria.

	CALMIP ͑Toulouse,						
	⌬a / a 0 ͑%͒	␣͑10 -6 K -1 ͒	T ͑K͒	Spin	H v f	H v m	Q 1
	0	0	0	FM	1.370	1.285	2.655
	0.114	13.1	293	FM	1.386	1.273	2.659
	2.370	23.22	1600	FM	1.660	1.049	2.709
				NM	1.666	0.936	2.602
	2.674	24.22	1728	FM	1.687	1.026	2.713
				NM	1.694	0.913	2.607