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A GENERAL PURPOSE ALGORITHM FOR COUNTING SIMPLE1

CYCLES AND SIMPLE PATHS OF ANY LENGTH∗2

PIERRE-LOUIS GISCARD† , NILS KRIEGE‡ , AND RICHARD C. WILSON†3

Abstract. We describe a general purpose algorithm for counting simple cycles and simple paths4
of any length ` on a (weighted di)graph on N vertices and M edges, achieving a time complexity of5
O

(
N + M +

(
`ω + `∆

)
|S`|

)
. In this expression, |S`| is the number of (weakly) connected induced6

subgraphs of G on at most ` vertices, ∆ is the maximum degree of any vertex and ω is the exponent of7
matrix multiplication. We compare the algorithm complexity both theoretically and experimentally8
with most of the existing algorithms for the same task. These comparisons show that the algorithm9
described here is the best general purpose algorithm for the class of graphs where (`ω−1∆−1+1)|S`| ≤10
|Cycle`|, with |Cycle`| the total number of simple cycles of length at most `, including backtracks11
and self-loops. On Erdős-Rényi random graphs, we find empirically that this happens when the12
edge probability is larger than circa 4/N . In addition, we show that some real-world networks also13
belong to this class. Finally, the algorithm permits the enumeration of simple cycles and simple14
paths on networks where vertices are labeled from an alphabet on n letters with a time complexity of15
O

(
N + M +

(
n``ω + `∆

)
|S`|

)
. A Matlab implementation of the algorithm proposed here is available16

for download.17

Key words. Simple cycles; simple paths; self-avoiding walks; self-avoiding polygons; elementary18
circuits; connected induced subgraphs; networks; graphs; digraphs; labeled graphs19
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1. Introduction. Counting Hamiltonian cycles and, more generally, all simple21

cycles passing through a given vertex is a #P-complete problem [41, 8]. The same22

classification holds for the problem of counting simple paths with fixed endpoints.23

Unsurprisingly, the best existing algorithms for counting such cycles have time com-24

plexities O
(
2Npoly(N)

)
, which scales exponentially with the number N of vertices on25

the graph. Under the exponential time hypothesis [23], this exponential scaling is, in26

principle, the best possible.27
28

Although evaluating the time complexity of an algorithm in the worst case sce-29

nario is of paramount importance for the classification of algorithmic performance, it30

is of little relevance to applications which differ significantly from this scenario. This is31

precisely the case when counting or enumerating simple cycles or simple paths. Real-32

world networks, be they from sociology, biology or chemistry, are typically very sparse.33

At the opposite, the worst case scenarios for this task—the complete graphs—are34

dense and counting or finding cycles and paths of any kind on them presents no inter-35

est, in particular since everything is already known analytically. An algorithm count-36

ing simple cycles and paths that is especially tailored for sparse graphs is therefore37

highly desirable. In particular, we expect the graph sparsity, or some quantity related38

to it, to be a relevant parameter when qualifying the complexity of such an algorithm.39
40

In addition to these considerations, we observe that one rarely needs to count41

all simple cycles or paths. Rather it is typically sufficient to count only those whose42
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length does not exceed some maximum value `, usually much smaller than the graph43

size N . Yet, even with these restrictions, the problem of counting simple cycles or44

simple paths is known to be difficult:45

Theorem 21 in Flum and Grohe [16]. Counting simple cycles and simple paths46

of length ` on both directed and undirected graphs, parameterized by `, is #W[1]-47

complete.48

The complexity classes #W[t], t ≥ 1, introduced by Flum and Grohe, are relevant for49

parameterized counting problems corresponding to the classes of the W-hierarchy [13]50

which, in turn, qualify the difficulty of parametrized decision problems according51

to the type of circuits needed to determine them. Importantly, the class #W[1] is52

believed to strictly contain the class #W[0] of all fixed-parameter tractable (FPT)53

counting problems. We recall that a counting problem P with input x is said to be54

fixed-parameter tractable if there is a computable function f of the parameter k, a55

constant c and an algorithm solving P in f(k) poly(|x|) steps. In this expression,56

|x| designates the size of the input [16, 20]. For the sake of simplicity, an algorithm57

achieving a f(k) poly(|x|) time complexity will be said to be FPT.58

59

In this work, we describe a novel general purpose algorithm for the task of counting60

simple cycles and simple paths of fixed length ` and determine its time complexity:61

Theorem 1 (Algorithm for cycle and path counting). Let G = (V,E) be a graph,62

possibly directed, on N vertices and M edges. Let |S`| be the number of connected63

induced subgraphs of G on at most ` vertices. Let ∆ be the maximum degree of any64

vertex on G or, if G is directed, let ∆ be the maximum degree of any vertex on the65

undirected version of G. Then all the simple cycles of length up to ` on G can be66

counted in time67

O
(
N +M +

(
`ω + `∆

)
|S`|
)
,68

and O
(
N + M

)
space. The same complexity is achieved when counting the simple69

paths of length up to ` or the simple cycles/paths with fixed endpoints of length up to70

`.71

The important result of Theorem 1 is that the time complexity of the general72

purpose algorithm presented here scales as poly(`)|S`|. In comparison, we show in73

Section 4 that the time complexities of all other general purpose algorithms scale74

either with N `, which is always larger than |S`| unless the graph is complete, or with75

the number |Cycle`| of simple cycles of length at most ` on the graph.1 From these76

observations, we expect that the algorithm presented here be the best available for77

graphs with less connected induced subgraphs than simple cycles,2 something we both78

confirm and precise in Section 4. While deciding a-priori if a graph obeys this condi-79

tion is difficult, we will see in Section 5 that it is true for several real-world networks80

and most Erdős-Rényi random graphs.81
82

1There is one exception to this observation: by extending an approach of Merris to count Hamil-
tonian cycles [32], we show in Section 4 that all simple cycles can be counted with a time complexity
scaling as ` timm(`)|S`|, where timm(`) is exponential in `. Hence, this extension is still not compet-
itive with the algorithm presented here.

2Note in this context, backtracks, that is bidirected edges, count as simple cycles. Furthermore
the orientation of the cycles counts as well. Thus, for exemple, the complete graph on three vertices
with no self-loops, K3, has two simple cycles of length 3 and three of length 2.

This manuscript is for review purposes only.



COUNTING SIMPLE CYCLES AND SIMPLE PATHS 3

Remark 1.1. The algorithm presented here is FPT for the problem of counting83

simple cycles or simple paths of length `, parameterized by `, for the class of graphs84

where the number of connected induced subgraphs on at most ` vertices fulfils |S`| =85

O
(
f(`) poly(N)

)
, with f a computable function. This class is the class of bounded86

degree graphs, for which the existence of an FPT algorithm is not surprising. Indeed,87

the number of simple cycles / paths of length ` is upper bounded by the number of88

walks of this length, which is at most ∆`N = f(`) poly(N). In fact, on bounded degree89

graphs, even a direct search of the simple cycles achieves the same complexity and90

constitutes a FPT algorithm.91

92

We prove Theorem 1 in Section 3 using the analytical framework outlined in93

Section 2 below. Following the proof of Theorem 1, we compare in Section 4 the94

performance of the algorithm presented here with the time complexities achieved by95

existing algorithms for the same task. These fall in five families: i) combinatorial96

sieves; ii) cycle counts by zeon-algebras; iii) cycle counts from combinations of im-97

manants; iv) special identities for short length cycles on undirected graphs; and v)98

counting via enumeration. In Section 5, we present numerical experiments validating99

the results of Theorem 1 and the comparisons of Section 4. We then demonstrate the100

performance of the algorithm on real-world networks. The Matlab implementation101

and data sets used for these experiments is available for download at https://www-102

users.cs.york.ac.uk/∼plg508/. We conclude in Section 6 with an extension of the103

algorithm for the enumeration of simple cycles on graphs with few labels.104

105

2. Analytical framework.106

2.1. Counting simple cycles. Our algorithm is based on a recent result from107

algebraic combinatorics relating the numbers of walks and of simple cycles on any108

(directed) graph. This result provides an explicit formula for the ordinary generating109

function of the number γ(`) of simple cycles of length ` multiplied ` [17]110

(1)
∑
`

`γ(`)z` =
∑

H≺connG

Tr
(

(zAH)|H|(I− zAH)|N(H)|
)
,111

where the sum runs over all weakly connected induced subgraphs H of G. Recall112

that a directed graph is said to be weakly connected if and only if its undirected113

version is connected. Thus such subgraphs can be found by an algorithm for finding114

connected induced subgraphs running over the undirected version Gundir. of G. In115

this expression, |H| designates the number of vertices of the subgraph H and |N(H)|116

is the number of neighbours of H in G. A neighbour of H in G is a vertex v of G117

which is not in H and such that there exists at least one edge, possibly directed, from118

v to a vertex of H or from a vertex of H to v. Finally, AH is the adjacency matrix of119

H. From the formula of Eq. (1) for the generating function of `γ(`), we obtain γ(`)120

analytically as121

(2) γ(`) =
(−1)`

`

∑
H≺connG

(
|N(H)|
`− |H|

)
(−1)|H| Tr

(
A`H
)
.122

This explicit result forms the basis of the algorithm proposed here: counting the sim-123

ple cycles can be achieved by evaluating Eq. (2).124

This manuscript is for review purposes only.



4 P.-L. GISCARD, N. KRIEGE, AND R. C. WILSON

125

Any algorithmic implementation of Eq. (2) can be easily compared with the best126

existing combinatorial sieve for counting simple cycles, that of Bax and Franklin [5, 6],127

by observing that Eq. (2) involves a sum over the weakly connected induced subgraphs128

of the graph. In contrast, Bax and Franklin’s algorithm evaluates a formula involving129

a sum over all the induced subgraphs, including the non-connected ones. Remarkably,130

in the worst case scenario—the complete graph—every induced subgraph is connected,131

making it look like both algorithms should have a comparable complexity. On any132

other graph however, there are far more induced subgraphs than connected induced133

subgraphs. This crucial difference means that evaluating Eq. (2) must yield a sig-134

nificant speed-up as compared to Bax and Franklin’s algorithm. This argument is135

made rigorous by the proof of Theorem 1, which we present in Section 3, and see also136

Section 4.1. Before we proceed to this proof however, we present extensions of Eq. (2)137

for counting simple paths and simple cycles with fixed end points.138

139

2.2. Counting simple paths and simple cycles visiting a fixed vertex.140

To find all the simple paths, we rely once more on a recent result from algebraic141

combinatorics according to which the ordinary generating function of the number142

πi→j(`) of simple paths of length ` from vertex i to j is the ij-entry of [17]143

(3)
∑
`

πi→j(`) z
` =

( ∑
H≺connG

(zA|H)|H|−1(I− zA|H)|N(H)|
)
ij
.144

This expression employs the same notation as that presented in Section 2.1 with
the exception of A|H , which represents the adjacency matrix of G restricted to the
connected induced subgraph H. That is,

(
A|H

)
ij

=

{
Aij , if i, j ∈ H,
0, otherwise,

i, j ∈ G.

This construction allows one to formally write the sum of the various terms on the145

right hand side of Eq. (3). Most importantly, from a computational point of view,146

multiplying by AH or A|H has the same time complexity O(|H|ω). The number147

πi→j(`) then follows analytically as148

(4) πi→j(`) = (−1)`+1
∑

H≺connG
i,j∈H

(
|N(H)|

`+ 1− |H|

)
(−1)|H|

(
A|`H

)
ij
,149

where the sum now runs over all weakly connected induced subgraphs of G containing150

both i and j. With the notation introduced here, we may also extend the result of151

Eq. (2) to count only those simple cycles passing through any specified vertex i with152

(5) γi(`) = (−1)`
∑

H≺connG
i∈H

(
|N(H)|
`− |H|

)
(−1)|H|

(
A|`H

)
ii
.153

In particular, we verify immediately that154

(6) γ(`) =
1

`

N∑
i=1

γi(`),155

as expected.156
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COUNTING SIMPLE CYCLES AND SIMPLE PATHS 5

3. Proof of Theorem 1.157

3.1. The Algorithm: Evaluating Equation (2). The algorithm consists sim-158

ply in evaluating Eq. (2), (4) or (5), depending on what one wants to count. Given159

the similar structures of these equations it is readily apparent that of Eqs. (2), (4)160

and (5), it is Eq. (2) that necessitates the greatest computational effort to be evalu-161

ated. This observation is best encapsulated by Eq. (6). For the sake of simplicity and162

to concretely illustrate our arguments, we will thus determine the time complexity163

explicitly only in the costliest situation: evaluating Eq. (2).164

165

We first remark that the binomial coefficient appearing in Eq. (2) is non-zero if166

and only if |H| ≤ ` ≤ |N(H)| + |H|. Thus, only those weakly connected induced167

subgraphs H of G on |H| ≤ ` vertices contribute a term of Eq. (2) when calculating168

γ(`). Equivalently, all the weakly connected induced subgraphs of G such that |H| ≤ `169

provide all the terms needed to calculate all γ(k), k ≤ `. Therefore, for an algorithm170

based on Eq. (2) to count the simple cycles, it is sufficient for it to find weakly171

connected induced subgraphs of bounded size. This observation leads to the following172

result:173

Lemma 2. Let t
(
|S`|
)

be the time complexity of finding all the weakly connected
induced subgraphs of G on at most ` vertices. Then the time complexity of determining
the number γ(k) of simple cycles of length k for all k ≤ ` is

O
(
t
(
|S`|
)

+ (`ω + `∆)|S`|
)
.

Proof. This is straightforward from Eq. (2). First, all the weakly connected in-174

duced subgraphs on k ≤ ` vertices must be found, costing O
(
t
(
|S`|
))

time, by defini-175

tion. Second, the terms of Eq. (2) must be evaluated, of which there are |S`| in total.176

Each term involves counting: i) the number of neighbours |N(H)| of a subgraph H177

on the graph; and ii) the walks of length ` on this subgraph, its size being |H| ≤ `.178

The first step thus costs at most |H|∆ = O(`∆) time and the second step requires179

|H|ω = O(`ω) time.180

181182

3.2. Time complexity of finding the connected induced subgraphs. As183

we have seen it is necessary and sufficient to find all the weakly connected induced184

subgraphs of size at most ` to count simple cycles of length up to `. This can be done185

using the standard reverse search algorithm for finding connected induced subgraphs186

introduced by Avis and Fukuda [3], running on Gundir. the undirected version of the187

graph G. The total running time of this algorithm in our case is [39, 14]188

(7) t
(
|S`|
)

= O

(
N +M +

`−1∑
k=1

|S=k|+ `2|S=`|

)
= O

(
N +M + `2|S`|

)
,189

where M = |E| is the number of edges in Gundir. and |S=k| designates the number190

of connected induced subgraphs on exactly k vertices in Gundir.. Furthermore this191

algorithm uses O(N + M) space. We also remark that thanks to reverse search, the192

algorithm for counting simple cycles can be parallelised: indeed, the contribution of193

each connected induced subgraph to Eq. (2) can be calculated independently of the194

other subgraphs. Now combining Eq. (7) with Lemma 2 and noting that ω ≥ 2 con-195

cludes the proof of Theorem 1.196
197

This manuscript is for review purposes only.



6 P.-L. GISCARD, N. KRIEGE, AND R. C. WILSON

Remark 3.1. The time complexity of the reverse search algorithm for finding the198

connected induced subgraphs was recently improved upon by Karakashian et al. [26] and199

then further by K. Elbassioni [14]. Elbassioni describes a polynomial delay algorithm200

for this task yielding the following time complexity:201

Corollary 1 in Elbassioni [14]. Finding all the connected induced subgraphs
of size k ≤ ` in a graph with maximum degree ∆ can be done in

O
(
`2 min{(N − `), `∆}(logN + ∆ + log `) |S`|

)
,

total time.202

Elbassioni also presents an algorithm with a slightly worse time complexity, but en-203

suring a O(N + M) space complexity, see Theorem 1 in [14]. Unfortunately, imple-204

mentations of these recent algorithms have not yet been produced.205

206

3.3. Understanding the time complexity. In the worst case scenario, that207

is the complete graphs KN , Theorem 1 implies that the time complexity for counting208

all the simple cycles using the algorithm proposed here is O(2NNω) since all induced209

subgraphs are connected, i.e. |SN | = 2N . This is marginally better than the com-210

plexities reported in [27, 5, 6, 38]. However, it is the performance of our algorithm211

on non-complete graphs that we want to highlight. To this end, it is helpful to recast212

the time complexity of the algorithm in terms of simple graph parameters.213
214

We can do so by using an upper bound on the number |Sk| of connected induced215

subgraphs on k vertices that involves the maximum degree of any vertex. This result216

is due to Uehara:217

Lemma 3 (Uehara [39]). Let ∆ be the maximum degree of the undirected version
Gundir. of G. Then the number of connected induced subgraphs on exactly k vertices
in Gundir. is bounded by

|S=k| ≤ N
(e∆)k

(∆− 1)k2
,

with e the base of the natural logarithm. It follows that

|S`| =
∑
k≤`

|S=k| = O

(
N

∆`

(∆− 1)`2

)
.

Furthermore, on a graph with maximum degree ∆, there are at most M ≤ N∆ edges,218

so that, by Theorem 1, the time-complexity of counting all the simple cycles of length219

k ≤ ` is upper bounded by220

O

(
N(∆ + 1) + (`ω + `∆)N

∆`

(∆− 1)`2

)
= O

(
N∆ +N(`−1∆ + `ω−2)∆`−1

)
,(8a)221

∼ O
(
N`−1∆`

)
,(8b)222223

where we used that ∆/(∆− 1) ≤ 2 as soon as the graph has a connected component224

with at least 3 vertices.225
226

The bound on |S`| obtained from Uehara’s work is typically very far from tight,227

especially on graphs that are far from regular, such as scale-free networks. Conse-228

quently, the time complexity predicted by Eq. (8b) is typically much larger than that229

observed in numerical experiments. However, Eq. (8b) simplifies the analysis of the230

This manuscript is for review purposes only.



COUNTING SIMPLE CYCLES AND SIMPLE PATHS 7

time complexity of the algorithm, which will help us compare it with other algorithms231

for the same task. Observe also that we now easily verify the claim of Remark 1.1 that232

the algorithm is FPT on bounded degree graphs. In fact, on such graphs ∆ = O(1),233

consequently the time complexity scales as N , that is the algorithm is fixed parameter234

linear.235

236

4. Detailed comparisons with existing algorithms.237

4.1. Sieve methods. Bax and Bax and Franklin authored two articles detailing238

the use of combinatorial sieves to count simple cycles [5, 6], which extend previous re-239

sults by Karp [27] for counting Hamiltonian cycles. Similar techniques had previously240

been expounded by Khomenko and Golovko [28, 29] and more recently by Perepechko241

and Voropaev [36, 37].242
243

All these combinatorial sieves produce the simple cycles via sums over all the244

induced subgraphs of a graph, i.e. including the non-connected ones. There are
(
N
`

)
245

such subgraphs of size ` on a graph on N vertices. Assuming ` is fixed and much246

smaller than N , the number of subgraphs is Ω(N `/`!). Consequently, counting all247

simple cycles of length up to ` using these sieves takes at least Ω(N `/`!) time. If ∆ is248

sub-linear in N , this time complexity is much larger than that achieved by the algo-249

rithm presented here, which takes at most O(N∆`/`) time. In other terms, Eq. (2),250

which only involves the connected induced subgraphs, yields a significant speed-up.251

If instead ∆ = αN , 0 < α ≤ 1, the algorithm presented here is still 1/α` faster than252

other combinatorial sieves.3253

254

4.2. Zeons algebras. An algorithm for counting simple cycles based on zeon255

algebras has been proposed by Schott and Staples in [38]. The algorithm relies on the256

observation that if one attaches a formal variable ξe to each edge e of the graph, such257

that any two such variable commute and ξ2
e = 0, then the corresponding labeled ad-258

jacency matrix (Aξ)ij := ξijAij generates only simple cycles. In other terms, Tr(A`ξ)259

is the number of simple cycles of length ` on G. Unfortunately, this method requires260

formal matrix multiplications and cannot be implemented fully numerically.261
262

Schott and Staples proved that the average time taken by this algorithm to count263

simple cycles of length ` is O
(
N4(1 + q)N

)
where q ≥ `N∆/(N2 − `) [38]. In the264

typical situation where ∆, ` � N , this cost is therefore at least O
(
N4e`∆). This is265

exponential in both ` and ∆ and scales as the fourth power of N , hence always much266

larger than the O(N∆`/`) bound obtained earlier.267

268

4.3. Counting using immanants. In 1983, R. Merris discovered an exact for-269

mula for counting the Hamiltonian cycles of a graph from a sum over at most N270

of its immanants [32, 33]. On noting that any simple cycle is Hamiltonian on an271

unique connected induced subgraph of the graph, Merris’ formula is easily extended272

to count all simple cycles of length up to ` via a sum over the |S`| connected induced273

subgraphs of size at most `. In this sum, each term is itself a sum over at most `274

immanants. Therefore, evaluating the formula takes O
(
t(|S`|) + timm(`)`|S`|

)
time,275

3In addition, we have empirically observed that the time complexity of the algorithm proposed
here scales with an effective parameter ∆eff � ∆. What determines ∆eff remains unclear.

This manuscript is for review purposes only.



8 P.-L. GISCARD, N. KRIEGE, AND R. C. WILSON

with t(|S`|) and timm(`) the times taken to find the connected induced subgraphs on at276

most ` vertices and to calculate the required immanants of `×` matrices, respectively.277
278

In the same spirit, G. Cash described in 2007 an approach for counting simple279

cycles by solving a system of equations involving selected immanantal polynomials of280

the graph [9]. For length ` simple cycles, Cash’s approach stems from the solution281

of a system involving p(`) − p(` − 1) equations, where p(`) is the number of integer282

partitions of `. This number grows as O(ex
√
``−3/2) with x = π

√
2/3 ∼ 2.6 and283

consequently solving the system takes O(e7.7
√
``−9/2) time. Since the immanantal284

polynomials of the graph take O
(
timm(N)

)
time to calculate, the cost of Cash’s ap-285

proach is O
(
timm(N)e7.7

√
``−9/2

)
.286

287

Most importantly, we see that the time complexities of both methods are primar-288

ily influenced by the time taken to calculate the required immanants. Unfortunately,289

these are difficult to obtain. First, as recognized by Cash, they require computing the290

matrix of irreducible representations of the symmetric group Sx, a very costly task291

for large x. Second, while the determinant of an x × x matrix requires only O(x3)292

time, the second immanant d2 already costs O(xc) with 3 < c ≤ 4 and computing293

the last immanant, the permanent, is itself a #P-complete problem [40]. The perma-294

nent is required by both Merris’ and Cash’s approaches, meaning that, assuming the295

exponential time hypothesis, timm(x) grows exponentially in x. Comparing with The-296

orem 1, we observe that neither approach can compete with the algorithm proposed297

here.298
299

In the same vein, Giscard, Rochet and Wilson showed that simple cycles can300

be counted via a combination of permanents and determinants summed over the set301

of induced subgraphs of a graph [18], of which there are Θ(N `). This particular302

approach only requires the computation of two immanants per subgraph thereby by-303

passing the need for computing the matrices of irreducible representations of large304

symmetric groups, yet requires all induced subgraphs to be considered and thus takes305

a prohibitive O
(
N `timm(`)

)
time.4306

307

4.4. Counting short simple cycles on undirected graphs. When only short308

simple cycles on undirected graphs are of interest, these may be counted via a set of309

special identities involving the adjacency matrix. This approach was pioneered by310

Harary and Manvel in the 1970s and has remained popular ever since [21, 1, 10, 34].311

In particular, Alon, Yuster and Zwick presented an algorithm for evaluating these312

identities up to ` = 7 in O(Nω) time and O(N2) space [1]. This cost grows for longer313

cycles, being O(Nω+1) when ` = 8, and then O(Nb`/2c logN) when ` = 9, 10. To the314

best of our knowledge, no special identity for counting ` > 10 cycles has been found.315

There is little doubt that these exist however. Yet, given that the formula for ` = 10316

already involves 160 terms [36], any such identity would be extremely cumbersome.317
318

From this discussion, we conclude that if the graph is undirected, only short sim-319

ple cycles of length ` ≤ 7 are desired and N ≤ ∆
`

ω−1 , then we expect Alon, Yuster and320

Zwick’s approach (AYZ) to be faster than the algorithm presented here. In practice,321

we find AYZ to be faster in many cases where this condition is not met, presumably322

4Even if a reduction to connected induced subgraphs can be devised for this method, which
would yield a O(t(S`)+ timm(`)|S`|) time complexity, it would only marginally improve upon Merris’
approach and would still be worse than that of the algorithm presented here.
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because of differing constant factors hidden by the O(.) notation. These, in turn,323

might stem from the fact that AYZ is not a general purpose algorithm which relies324

on specific, optimised, ways of counting the simple cycles. Since the time complexity325

of AYZ scales with Nω however, for any family of graphs where ∆ = o(N), there is a326

graph size above which the algorithm presented here is faster than AYZ.327
328

Finally, we note that the space required for running AYZ scales as O(N2) rather329

than O(N +M), the former being much larger than the latter on sparse graphs. We330

found this to be AYZ main limitation in practice,5 barring us from making compu-331

tations on networks with over 12,000 nodes. This memory cost is unavoidable since332

AYZ necessitates the computation of powers of the adjacency matrix A of the graph,333

which quickly become dense even on large sparse graphs. Recall in particular, that334

Ax is full for x larger than the graph diameter.335

336

4.5. Counting simple cycles via enumeration. Enumerating the simple cy-337

cles or simple paths of a graph, that is producing their vertex sequences, is much more338

time consuming than simply counting them. The best general purpose algorithm for339

this task is still Johnson’s 1975 landmark algorithm [25, 31], which achieves a time340

complexity of O ((N +M) (|CycleN |+ 1)) ∼ O (N∆|CycleN |). In this expression,341

|CycleN | is the total number of simple cycles (or of simple paths) on G, including342

backtracks, that is simple cycles of length 2. This result was recently improved on343

undirected graphs to O(N (|CycleN | + 1) + M), a scaling which is optimal for this344

task [7].345
346

In the worst case scenario, i.e. on the complete graph KN , |CycleN | = O(N !),347

that is enumerating all simple cycles takes factorial time. For this reason, counting348

simple cycles via enumeration has often been deemed greatly inefficient, in particular349

in comparison with the “only” exponential cost O
(
2Npoly(N)

)
achieved by the algo-350

rithm presented here as well as other approaches [6]. This conclusion follows from a351

peculiarity of dense graphs however and for sparse graphs it is not so.352
353

Indeed, evaluating Eq. (2) to count all the simple cycles on a graph costsO(Nω|SN |).
It follows that if Nω|SN | ≥ N∆|CycleN |, then Johnson’s algorithm and its variants
can count all the simple cycles of a graph via enumeration faster than any combina-
torial sieve, including the one presented here. When counting simple cycles of fixed
maximum length `, Johnson’s algorithm takes O(N + M + (` + `∆)|Cycle`|) time,
|Cycle`| being the total number of simple cycles of length up to `. This means in
order for the algorithm presented here to be faster than Johnson’s the following must
hold (

`ω−1

∆
+ 1

)
|S`| ≤ |Cycle`|.

Unfortunately, it is very difficult to estimate the ratio |S`|/|Cycle`| in a preprocessing354

stage so as to decide which algorithm to use. Furthermore, the problem of charac-355

terising graphs for which the number of connected induced subgraphs is larger than356

the number of simple cycles is, to the best of our knowledge, an open mathematical357

question beyond the scope of this work. Rigorously, we may only conclude that for358

any number N of vertices, there must be a critical density above which the algorithm359

presented here will be faster than Johnson’s. We undertake an empirical study of360

this density in Section 5 on Erdős-Rényi random graphs and show it to be so small361

5That is, beyond the fact that AYZ is limited to ` = 7 on undirected graphs.
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that the resulting graphs are disconnected with very high probability. In addition,362

we also study two families of real-world networks exemplifying the interplay between363

connected induced subgraphs and simple cycles.364

365

4.6. Relation to subgraph counting algorithms. Given a pattern graph H366

and a graph G, the subgraph counting problem is to determine the number of (induced)367

subgraphs of G that are isomorphic to H. This problem is well studied in undirected368

graphs and generalizes the problem of counting cycles. Therefore, we briefly summa-369

rize results on the subgraph counting problem, in particular, when parameterized by370

the size of the pattern graph k = |V (H)|.371
372

When G is a planar graph on N vertices the problem can be solved in time373

N2O(k) [12] improving the seminal FPT algorithm by Eppstein, which achievesNkO(k)374

time [15]. Nešetřil and Ossona de Mendez introduced classes of graphs with bounded375

expansion, which include the planar graphs as well as the graphs of bounded degree.376

For these classes they have shown that the number of satisfying assignments of a377

Boolean query with a fixed number of free variables can be counted in time linear in378

N [35, Theorem 18.9], which solves the subgraph counting problem for patterns of a379

fixed size as a special case. An improved algorithm tailored to counting subgraphs380

was proposed by Demaine et al. [11] and achieves a time complexity of O(6ktkk2N),381

where t is the height of a tree-depth decomposition of G. Again the approach yields a382

linear time FPT algorithm in graph classes of bounded expansion when parametrised383

by k. The running times of the above mentioned algorithms typically hide enormous384

constants and, to the best of our knowledge, have for this reason not been applied in385

practice.386
387

Technically related to our work is the method introduced by Amini et al. [2] to388

count subgraphs by homomorphisms using a combinatorial sieve. Their approach can389

be seen as a generalisation of the standard sieve methods for counting cycles to arbi-390

trary graphs, but does not overcome the drawbacks regarding running time discussed391

in Section 4.1.392

393

5. Experiments. In this section we present numerical evidence for the perfor-394

mance of a Matlab implementation of the algorithm presented in this work. Note that395

this implementation incorporates a preprocessing stage which removes all sources,396

sinks and isolated vertices of the graph. We compare it with both Johnson’s and AYZ397

algorithms since, following Section 4, these are the only competitive algorithms for398

counting simple cycles. For the former we use Howbert’s freely available Matlab im-399

plementation [22], while for the latter we wrote a Matlab code, available for download.400

All the calculations reported here have been made on a MacBook Pro laptop with 3.1401

GHz Intel Core i7 processor and 8 GB of RAM running Matlab R2016a.402
403

5.1. Erdős-Rényi random graphs. We begin by considering undirected Erdős-404

Rényi random graphs ER(N, p). These random graphs are determined by two param-405

eters: the number N of vertices and the probability p that any one undirected edge406

in the graph exists (with the exception of self-loops). The expected number of edges407

in ER(N, p) is pN(N − 1)/2 so that the expected graph sparsity equals p.408
409
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Figure 1. Experimental comparison of Johnson’s algorithm with the algorithm presented here.
The blue dots are the observed values of the critical edge probability below which Johnson’s algorithm
is the fastest. The red line shows the best fit of the blue data points of the form pcritical(N) =
a + b log(N)/N , which is pcritical(N) = −0.27 + 3.17 log(N)/N . The blue line shows the best fit of
the blue data points of the form pcritical(N) = a + b/N , which is pcritical(N) = 8.5× 10−4 + 4.28/N .
Since the latter fit is clearly better than the former, we retain pcritical(N) ' 4.3/N as model when
discussing pcritical in the text.

5.1.1. Comparison with Johnson’s algorithm. We undertook the compari-410

son on two ranges of parameters: small graphs 5 ≤ N ≤ 30, on which we compared411

the times taken by both algorithms to count all the simple cycles; and on large graphs412

N ≥ 1, 000, for which we counted simple cycles of length up to 5 only.413
414

On small graphs, for each value of N from 5 to 22 as well as for N = 25 and 30,415

we determined the critical value pcritical(N) of p below which Johnson’s algorithm is416

the fastest by incrementing p from 0 to 1 by steps of 10−2 at N fixed. For each value417

of p, we ran both algorithms 20 times and compared the averaged time taken, except418

for N = 25 and 30 where we ran the algorithms only twice per value of p. The results419

are shown on Figure 1. Empirically we observe that for small graphs, N ≤ 30, John-420

son’s algorithm is faster to count all simple cycles whenever p ≤ pcritical(N) ' 4.3/N .421

Equivalently, this means that Johnson’s algorithm can be expected to be faster than422

the algorithm presented here whenever the average degree is close to 4 or smaller.423
424

On large graphs pcritical(N) falls further, being seemingly less than 1/N when425

counting simple cycles of length up to 5 on Erdős-Rényi graphs with 20,000 vertices.426

In any case, we remark that for N � 1 and p < log(N)/N , ER(N, p) is known to be427

almost surely disconnected. Given that we observed that pcritical(N) = O(1/N), it428

seems that for Johnson’s algorithm to be the fastest, an Erdős-Rényi random graph429

must be so sparse as to be disconnected in many small components.430

431

5.1.2. Comparison with AYZ. The algorithm of Alon, Yuster and Zwick is432

almost always the fastest to count simple cycles of length only up to 7 on undirected433

Erdős-Rényi random graphs. Indeed, we find that as soon as the graph is denser than434

pcritical ≈ 1.23/N , for N . 10, 000, then AYZ is faster than the algorithm presented435

here. The value of pcritical slowly increases with larger values of N and is around436
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pcritical ' 1.3/N for N ∼ 12, 000. Unfortunately, the memory consumption of AYZ437

barres us from directly studying the performances of both algorithms on larger graphs.438

Rather, an extrapolation of the increase of pcritical suggests that it crosses log(N)/N439

when N is well over 106. This is widely beyond what can be reached by AYZ, and440

so large as to render the algorithm presented here prohibitively slow. We must thus441

conclude that AYZ remains the fastest algorithm on Erdős-Rényi random graphs for442

counting simple cycles of length 7 or less.443

444

5.2. Real-world networks. We applied the algorithm presented in this work as445

well as those of AYZ and Johnson to compare their performances on three real-world446

networks, two of which are undirected and one is both weighted and directed:447
448

ACTORS: This network represents collaborations between movie actors and was gen-449

erated and analysed by Barabási and Albert [4]. Each actor constitutes a450

vertex and an edge represents that the two actors were cast together in the451

same movie.452453

INFECTIOUS: A network representation of the face-to-face contacts between visitors454

of the exhibition Infectious: Stay Away held in Dublin in 2009 [24]. Each edge455

corresponds to face-to-face interaction lasting for at least 20 seconds.456
457

All data sets were obtained from the Konect website [30], where further information458

on the data sets is available. The networks are undirected and have parallel edges. In459

order to systematically study the effect of sparsity, we generated several instances of460

each network by deleting edges with multiplicity below a given threshold as follows.461

Starting with the graph with all edges present, we successively removed all edges462

with multiplicity 1, 2, . . . . A new instance is created whenever at least 80 edge were463

removed from the previous instance. This results in a sequence of graphs with de-464

creasing density progressively retaining only the most important edges. The sequence465

based on the Actors network comprises 31 graphs, while the sequence based on the466

Infectious network comprises 8 graphs.467
468

WIKIELECTIONS: A weighted directed network representing the votes of Wikipedia469

users during elections to adminship [42]. Each user corresponds to a vertex,470

and a directed edge from user u1 to user u2 exists if and only if u1 voted471

during the election of u2. This edge is given a +1 weight if user u1 supported472

u2 candidacy and −1 otherwise. No pruning of the edges was operated on473

this network.474
475

The Wikielections network has 8289 vertices and 12915 directed edges. It is a scale-476

free graph with maximum out-degree ∆out = 266 and maximum in-degree ∆in = 191.477

Being directed, the Wikielections network cannot be studied with AYZ, which is lim-478

ited to undirected graphs, nor can it be studied with Howbert’s implementation of479

Johnson’s algorithm.480
481

In all cases, in order to accurately describe the performances of the algorithm482

presented here, we provide, for each graph, the time τ` it takes for counting all simple483

cycles of length up to `, as well as the parameter governing the scaling of this time484

with `. Indeed, while τ` is upper bounded by N∆`/` as per Eq. (8b), empirically,485

we find it to scale as τ` ∝ ∆`
eff with ∆eff < ∆. This effective scaling parameter486

is determined numerically by fitting τ` with a × ∆`
eff + b, where a and b are fitted487
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constants. Surprisingly, we did not find any relation between ∆eff and the maximum,488

mean, or median of the vertex degrees. What determines its value in practice remains489

unclear.490
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Instance # N M ∆ ∆eff
Time
(sec.)

Simple cycles

31 45 96 7 1.4
A: 4× 10−2

J: 3× 10−2
` = 10 : 0, 48, 32, 48, 48,
44, 16, 0, 0, 0

30 90 260 12 1.6
A: 1.34
J: 4.06

` = 10 : 0, 130, 202, 652,
2044, 5876, 14046, 25700,
33148, 29820

29 143 428 17 3.3
A: 19
J: 76

` = 10 : 0, 214, 356, 1328,
4946, 18608, 62038,
175710, 398864, 705874

28 179 588 24 4.6
A: 248
J: 667

` = 10 : 0, 294, 566, 2564,
11830, 56066, 246604,
970674, 3284880, 9284612

27 125 748 26 5.4
A: 970
J: 2660

` = 10 : 0, 374, 798, 4110,
22332, 125084, 665030,
3246496, 14068582,
52877616

26 257 914 30 5.8
A: 2829
J: 8349

` = 10 : 0, 457, 1018,
5726, 34724, 218028,
1310046, 7326752,
37074200, 166360444

25 310 1118 36 7.3
A: 12301
J: 40124

` = 10 : 0, 559, 1294,
7986, 53828, 377298,
2538470, 16045588,
92969672, 485843893

24 376 1414 47 9
A: 20992
J: > 105

` = 9 : 0, 707, 1728,
11686, 85300, 650344,
4744026, 32672232,
207557400

23 423 1610 49 9.6
A: 5766

J: > 3× 104

` = 8 : 0, 805, 2058,
15008, 118748, 980604,
7827540, 59395940

22 470 1854 51 11.8
A: 1.02×104

J: > 5× 104

` = 8 : 0, 927, 2476,
18674, 154346, 1333982,
11215982, 90027620

17 863 3894 75 11.8
A: 2.8× 104

J: −
AYZ: 0.45

` = 7 : 0, 1947, 6178,
61640, 688510, 8187720,
96547224

12 1911 10428 119 22
A: 5.7× 104

J: −
AYZ: 0.91

` = 6 : 0, 5214, 22060,
330498, 5625464,
105644852

7 6085 48916 238 24
A: 7.3× 104

J: −
AYZ: 4.8

` = 5 : 0, 24458, 181724,
5127548, 169365078

4 19199 235964 609 ∼ 70
A: 4× 105

J: −
AYZ: OOM

` = 4 : 0, 117982,
1608856, 103794848

1: Full graph 382219 30076166 3956 −
A: −
J: −

AYZ: OOM
` = 4 : −

Table 1
Counting simple cycles on some graphs of the Actors data set. The time taken by the algorithm

presented in this work is labelled by ”A”, while ”J” refers to the time taken by Johnson’s algorithm.
We report the time taken by AYZ only when simple cycles of length 7 or less are counted. Because
of memory limitations, we could not run AYZ on graphs 1 to 4, which we designated by ”OOM” for
”out of memory”.
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We now turn to the Infectious family of graphs. Contrary to the Actors set of491

graphs, we found Johnson’s algorithm to run faster on this data set than the algorithm492

presented here.493

Instance # N M ∆ ∆eff Time (sec.) Simple cycles

8 14 7 1 1
A: 1.7×10−3

J: 1.2× 10−3 ` = 10 : 0, 7, 0, 0, 0, 0, 0, 0, 0, 0

7 29 30 2 1
A: 4.7×10−3

J: 4.3× 10−3
` = 10 : 0, 15, 0, 0, 0, 0, 0, 0, 0,
0

6 42 50 2 1
A: 8.3×10−3

J: 1.3× 10−2
` = 10 : 0, 25, 4, 0, 0, 0, 0, 0, 0,
0

5 91 116 4 1
A: 2.1×10−2

J: 2.2× 10−2
` = 10 : 0, 58, 12, 2, 0, 0, 0, 0, 0,
0

4 236 394 4 1.01
A: 3.3×10−2

J: 1.7× 10−1
` = 10 : 0, 197, 94, 60, 16, 0, 0,
0, 2, 2

3 337 964 15 3.8
A: 220
J: 33.8

` = 10 : 0, 482, 572, 1340, 3552,
9490, 23504, 50900, 92630,
143620

2 368 1760 24 6.4
A: 2.3× 104

J: 2.2× 104

` = 10 : 0, 880, 2322, 11506,
65356, 391646, 2391434,
14585954, 87432978, 509475403

1: Full graph 410 5530 50 16.8
A: 4.39× 104

J: 1.8× 104

AYZ: 0.4

` = 7 : 0, 2765, 14228, 162574,
2142470, 30356160, 446411676

Table 2
Counting simple cycles on the graphs of the Infectious data set. The time taken by the

algorithm presented in this work labelled by ”A”, while ”J” refers to the time taken by Johnson’s
algorithm. We report the time taken by AYZ only when simple cycles of length 7 or less are counted.

494

495

Finally, we turn to the Wikielections network which, as indicated earlier, is496

both directed and signed. The sign of a simple cycle being the product of the signs497

of its edges, we propose to demonstrate the algorithm capabilities by finding the498

numbers p` and n` of positive and negative simple cycles of length ` ≤ 6, respectively.499

Indeed, since it is sufficient to run the algorithm twice to obtain both p` and n`.500

More precisely, running the algorithm once on the signed network yields p` − n`,501

while running it on its unsigned version provides p` + n`.502
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Length 1 2 3 4 5 6

Time taken
(sec.)

6× 10−3 9× 10−2 2.2 84 2981 1.04× 105

Positive
simple cycles

6 337 1683 16369 182657 2170663

Negative
simple cycles

5 12 253 3323 46792 663136

Total 11 349 1936 19692 229449 2833799

Table 3
Number of positive and negative simple cycles of length ` up to 6 on the Wikielections directed

network and the time taken to count them. Here ∆eff ' 35.

6. Finding labelled simple cycles and simple paths. In some applications,503

such as chemoinformatics, counting the simple cycles or simple paths of a network504

is not sufficient. Rather, the vertices of the network may be labelled and it is then505

necessary to find all sequences of labels corresponding to simple cycles/paths on the506

network. If there are as many different labels as vertices, that is each vertex has its507

own label, then this task is best addressed by Johnson’s algorithm discussed earlier508

[25].509

510

In typical applications however, the number of labels is much smaller than the511

number of vertices. For example, on a network representing a molecule where vertices512

are atoms and edges are bonds, vertex labels represent the various atomic species,513

e.g. carbon, hydrogen, nitrogen etc. There is less than 10 such species in the vast514

majority of organic molecules in available data sets. In addition, in the standard515

representation of molecules, hydrogen vertices are omitted altogether and the label516

of carbon atoms is put to the default value 1 (that is no label), further reducing the517

number of different labels.518

519

Finding all simple cycles/paths label sequences in such situations can be done520

with Eq. (2), (4) or (5) with the following time complexity:521

Theorem 4. Let G = (V,E) be a graph, possibly directed, on N vertices. Let ∆522

be the maximum degree of any vertex on G or, if G is directed, let ∆ be the maximum523

degree of any vertex on the undirected version of G. Finally, let n be the number of524

different labels attached to graph vertices. Then all the label sequences of simple cycles525

of length up to ` on G can be found in time526

(9) O
(
N +M + (n``ω + `∆)|S`|

)
527

and O
(
N(∆+1)

)
space. The same complexities are achieved to find the label sequences528

of all simple paths up to length ` or of simple cycles/paths with fixed endpoints up to529

length `.530

Proof. In the presence of labels, Eqs. (2), (4) and (5) continue to be valid and
provide the label sequences of the simple cycles/paths upon replacing the adjacency
matrix A by the labeled adjacency matrix W, defined by

Wij := Aij wL(i)L(j),
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where L(i) is the label of vertex i and w is a formal variable. For example, a nitrogen-531

oxygen bond in a molecular graph would appear as wNO in W. The time complexity532

of evaluating Eq. (2), (4) or (5) remains unchanged except for the cost of calculating533

the traces Tr(W`
H). These can be obtained through matrix multiplications. Since the534

entries of W`−1
H are sums of label sequences of walks of length `− 1 on the subgraph535

H and since there are at most n`−1 such sequences, evaluating the trace costs at536

most |H|ωn`−1 = O(`ωn`) time. Replacing `ω with this cost in Theorem 1 yields the537

result.538

539

540

7. Conclusion. We have presented a novel general purpose algorithm for count-541

ing simple cycles and simple paths of any length ` on any graph, including directed542

and weighted ones. The time complexity of this algorithm scales with the number543

|S`| of weakly connected induced subgraphs on at most ` vertices, making it the best544

general purpose algorithm whenever (`ω−1∆−1 + 1)|S`| ≤ |Cycle`|. In this expression545

|Cycle`| is the total number of simple cycles of length up to `, including self-loops and546

backtracks. Empirically, we found that this happens on Erdős-Rényi random graphs547

when the edge-probability exceeds circa 4/N , as well as on some real-world networks,548

such as those in the Actors family of graphs.549
550

If the network under study is undirected and if counting simple cycles of length up551

to 7 is sufficient, then the algorithm of Alon, Yuster and Zwick is still by far the fastest.552

Furthermore, while we can predict that there must a graph size such that AYZ be-553

comes slower than the algorithm presented here, on Erdős-Rényi random graphs this554

size seems to be much beyond what we can reach. Indeed, we could not run AYZ on555

graphs with more than N & 12, 000 vertices owing to its important memory consump-556

tion. While this number can likely be increased with an optimised implementation557

of AYZ in conjunction with more memory, it is unlikely to get substantially larger as558

the memory usage of AYZ scales with N2. In contrast, we could run the algorithm559

presented here on networks with over 300,000 vertices without running out of memory.560
561

Finally, even though the algorithm presented here is the best general purpose al-562

gorithm on the class of graphs with (`ω−1∆−1 + 1)|S`| ≤ |Cycle`|, the time necessary563

to count simple cycles of length e.g. up to 10 can be prohibitively large on large net-564

works. Instead, the algorithm is best used in conjunction with Monte Carlo methods.565

We demonstrate this procedure in a separate publication [19], where we use it in a566

sociological context to obtain the ratios of negative to positive simple cycles of length567

up to 20 on several real-world directed signed networks with up to 130,000+ vertices.568
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