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Cycle-centrality in economic and biological networks

Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download.

Introduction

Networks, that is collections of nodes together with sets of edges linking some of these nodes, naturally encode relations (the edges) between entities (the nodes). The trajectories on a network, called walks, represent the dynamical processes of the system of entities. Networks and walks play a ubiquitous role across many domains, from economy to defence through biology and physics, where graphical models are essential tools to master the interactions and dynamics of complex systems.

Recent research on networks has slowly progressed from questions directly concerning individual entities, to questions regarding the dynamics of the system, from the local to the global scale. Already over the course of the development of vertexcentralities, i.e. measures of the importance of individual nodes, it became clear that vertex-neighborhoods, subgraphs and motifs were of paramount importance to understand the evolution of real networks [START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF][START_REF] Yeger-Lotem | Network motifs in integrated cellular networks of transcriptionregulation and protein-protein interaction[END_REF]. For example, in a recent study of the propagation of economic shocks in input-output networks, Alatriste Contreras and Fagiolo concluded that "the systemic importance of industrial sectors should not be evaluated only by looking at their economic size [i.e. properties of individual vertices], but also at their position and embeddedness in the complex fabric of inputoutput relations" [START_REF] Contreras | Propagation of economic shocks in input-output networks: A cross-country analysis[END_REF]. In a biological context, Estrada and Rodríguez-Velázquez showed that protein-lethality in Saccharomyces cerevisiae was better accounted for by an analysis of the subgraphs to which a protein belongs in the protein-protein interaction network (PPI) rather than by its degree [START_REF] Estrada | Subgraph centrality in complex networks[END_REF]. In another study, Mukthar et al. showed that while a number of the proteins of the plant Arabidopsis thaliana under attack by pathogens were high degree nodes (hubs) in the plant PPI, dozens of these proteins were "targeted significantly more often [...] than expected given their respective degrees". Following a thorough statistical analysis of these results, they concluded that protein-targeting by pathogens "cannot be explained merely by the high connectivity of those target [proteins]" [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF], hence calling for further studies on the network environment of these proteins. In addition, it is also well known that in PPIs, certain small subgraphs of protein interactions, called motifs, are overrepresented as compared to what one might expect from random networks [START_REF] Oltvai | Life's complexity pyramid[END_REF]. These motifs are believed to perform crucial roles in emergent biological functions [START_REF] Wuchty | Evolutionary conservation of motif constituents in the yeast protein interaction network[END_REF], such as the formation of protein complexes, functions which are not readily apparent at the level of single proteins [START_REF] Hartwell | From molecular to modular cell biology[END_REF][START_REF] Oltvai | Life's complexity pyramid[END_REF].

In spite of all of these observations, much attention is still devoted to individual nodes when exploring the dynamics and properties of complex networks. This is possibly because the versatility, ease of implementation and easy to grasp definition of many vertex centralities is lacking an equivalent at the cycle or subgraph level. It is a central objective of this work to remediate to this situation.

We introduce a centrality measure for individual cycles based on the premise that a cycle is central if it intersects an important proportion of all the information flows on the network. In concrete applications, these flows represent actual dynamical processes, that is sequences of interactions between discrete entities, such as wealth exchanges between economic actors or successions of protein reactions in a living organism. This premise provides a clear meaning for the centrality as well as a contextual framework within which to appraise its results. Mathematically, the flowbased formulation leads to a rigorous and unique definition for the cycle-centrality. Computationally, it costs no more to calculate than existing centrality measures on vertices. Numerically, it is well conditioned, always providing a result between 0 and 1. Finally, the measure is versatile for it induces a centrality measures on subgraphs and reduces to the eigenvector-centrality on vertices. Algorithms to compute the centralities of cycles and subgraphs are available on the MATLAB FileExchange [START_REF] Giscard | Algorithm to calculate the cycle-centrality of selected cycles or subgraphs[END_REF].

Centrality measure: theory & motivations

The measure of cycle-centrality we propose is rooted in recent advances in the algebraic combinatorics of walks on graphs. In this work we only define the few concepts from this background that are necessary to comprehend the centrality measure.

Notation

Throughout this article, we consider a finite network G = (V ; E ), N = |V |, M = |E |, which may be weighted and directed. The adjacency matrix of G is denoted A G or simply A. If G is weighted then the entry A i j is the weight of the edge e i j from i to j if this edge exists, and 0 otherwise.

A walk w of length (w) from v i to v j on G is a sequence w = e ii 1 e i 1 i 2 • • • e i -1 j of contiguous edges. The walk w is open if i = j and closed (that is a cycle) otherwise. A cycle, also known in the literature under the names loop, simple cycle, elementary circuit and self-avoiding polygon, is a closed walk w = e ii 1 e i 1 i 2 • • • e i -1 i which does not cross the same vertex twice, that is, the indices i, i 1 , . . . , i -1 are all different.

Definition of the centrality measure

The basic observation underlying our proposed centrality measure for cycles is that structurally, a cycle should be important if it is visited by many walks on the network. Combinatorially, the problem of counting all the walks visiting at least one vertex of a cycle is the graph-theoretic equivalent of counting the integer multiples of a prime number. Indeed, walks, it turns out, obey a semi-commutative extension of number theory in which cycles play the role of the primes. This framework, which is presented elsewhere [START_REF] Giscard | Algebraic combinatorics on trace monoids: Extending number theory to walks on graphs[END_REF], notably provides an exact formula for the total number of closed walks on the graph which intersect the cycle γ. Asymptotically, this formula produces a single real number between 0 and 1, a fraction, representing the proportion of cycles intersecting the cycle γ. It is this number that we propose to use as a marker of structural cycle-importance in networks.

Definition 1 (cycle centrality).

Let G be a possibly weighted (di)graph, and let λ be its maximum eigenvalue. Let A be the adjacency matrix of G, including weights if any. For any cycle γ, let A G\γ be the adjacency matrix of the graph G where all vertices visited by γ and the edges adjacent to them have been removed. Then we define the centrality c(γ) of the cycle γ as c(γ) := det I -1

λ A G\γ .
As outlined in the introduction to this section, the centrality c(γ) has a precise combinatorial meaning underpinning its role as a measure of cycle importance. Rigorously we have:

Proposition 1.
Let G be a (di)graph with adjacency matrix A and let γ be a cycle on G. Then the total number n γ (k) of cycles of length k on G intersecting the cycle γ is asymptotically equal to

n γ (k) ∼ c(γ) 1 det(I -zA) [k], as k → ∞,
where 1/ det(I -zA) [k] stands for the coefficient of order k in the series 1/ det(I -zA).

Remark 1. If G is weighted then the above Proposition remains true but n γ (k) now designates the total weight of all the cycles of length k on G intersecting γ. Recall that the weight of a cycle is the product of the weights of the edges it traverses. The weights of different cycles are simply added together in n γ (k).

Proof (Qualitative proof of Proposition 1). The full rigorous proof of Proposition 1 is very long and will be provided in an extended version of this work. It relies on a semi-commutative extension of the Brun sieve from number theory, which provides the asymptotic result used here as well as an exact expansion for n γ (k), of which c(γ) is only the first term. Here we present a simple qualitative argument explaining the form of c(γ) based on a result by X. G. Viennot concerning the combinatorics of heaps of pieces [START_REF] Viennot | Heaps of pieces, i: Basic definitions and combinatorial lemmas[END_REF]. In the context of walks on graphs, Viennot's result indicates the following:

Lemma 1 (Viennot (1986)). Let γ be a cycle on a finite graph G and let W γ be the set of closed walks intersecting γ. Then the ordinary generating series of all walks w ∈ W γ is

∑ w∈W p z (w) = det(I -zA G\γ ) det(I -zA) z (γ) . Now let 1/ det(I -zA) = ∑ ∞ n=0 a n z n and det(I -zA G\γ ) = ∑ N-(γ) n=0
x n z n . If we expand the ratio of determinants from Viennot's lemma, the coefficient of order k in the expansion then reads

a k x 0 + a k-1 x 1 + a k-2 x 2 + • • • + a 0 x k = k ∑ i=0 a k-i x i .
We remark that since the determinant det(I -zA) is a polynomial in the eigenvalues of the graph G, asymptotically, the coefficient of order k of its inverse 1/ det(I -zA) should grow as λ k . Taking

a k = λ k for all k, it would follow that a k-i = a k λ -i and k ∑ i=0 a k-i x i = a k k ∑ i=0 x i λ i .
In the situation where k ≥ N -(γ), no term is missing from the sum on the right hand side, i.e. ∑ k i=0

x i λ i = det(I -1 λ A G\γ ), qualitatively explaining the form of c(γ). It is remarkable that this form is unchanged by fully rigorous arguments in which the (incorrect) assumption that a k = λ k is relaxed.

We can further confirm the meaning of c(γ) by noting that the series 1/ det(I -zA) itself has a combinatorial meaning: it counts multi-ensemble of walks, known as hikes [START_REF] Giscard | Algebraic combinatorics on trace monoids: Extending number theory to walks on graphs[END_REF]. Then c(γ) is the (weighted) fraction of such multi-ensembles which are closed walks intersecting γ. In other words, c(γ) is the proportion of the total information flow of the network that passes through γ. A corollary of these observations is that the cycle-centrality satisfies a highly desirable property for such measures: Proposition 2. Let G be a (weighted di)graph with non-negative edge weights and let γ be a cycle on G. Then

0 ≤ c(γ) ≤ 1.
Proof. The result c(γ) ≤ 1 follows immediately from Proposition 1, by observing that there are necessarily less walks than multi-ensembles of walks (hikes

), i.e. n γ (k) ≤ 1/ det(I -zA) [k].
This continues to hold true on positively weighted graphs, where the total weight carried by walks is necessarily less than that carried by hikes. Positivity of c(γ) follows from the positivity of both n γ (k) and 1/ det(I -zA) [k], itself guaranteed by the positivity of the edge weights.

Extension to arbitrary subgraphs

The cycle-centrality measure c(γ), although rooted in the combinatorics of cycles, naturally extends to a centrality measure c(H) for induced subgraphs H ≺ G, which quantifies the (weighted) proportion of closed walks, i.e. dynamical processes, intersecting the subgraph H.

Definition 2 (Induced subgraph centrality). Let G be a (weighted di)graph, and let λ be its maximum eigenvalue. Let A be the adjacency matrix of G, including weights if any. Let H ≺ G be an induced subgraph of G and let A G\H be the adjacency matrix of the graph G where all vertices of H and the edges adjacent to them have been removed. Then we define the induced subgraph centrality as

c(H) := det I - 1 λ A G\H .
Proposition 3. Let G be a (weighted di)graph with adjacency matrix A and let H ≺ G be an induced subgraph of G. Then the total number (weight

) n H (k) of cycles of length k on G intercepting the subgraph H is n H (k) ∼ c(H) 1 det(I -zA) [k], as k → ∞.
The proof of this result is similar to that of Proposition 1. Furthermore it holds that if all weights are non-negative, then for any induced subgraph H of G, 0 ≤ c(H) ≤ 1.

Recovering the eigenvector vertex centrality

The problem of quantifying the importance of individual nodes in networks has a long history of research, which has led to well established measures such as the degree [START_REF] Albert | Internet: Diameter of the World-Wide Web[END_REF], exponential [START_REF] Estrada | Subgraph centrality in complex networks[END_REF], resolvent [START_REF] Katz | A new status index derived from sociometric data analysis[END_REF] and eigenvector centralities [START_REF] Bonacich | Factoring and weighting approaches to status scores and clique identification[END_REF], the latter playing plays a central role in network analysis, notably through the PageRank algorithm [START_REF] Bryan | The $25, 000, 000, 000 Eigenvector: The Linear Algebra behind Google[END_REF]. Recall that the centrality of vertex i in the first three measures is the (weighted) degree of vertex i; and the ith entries of e A 1 and (I -αA) -1 1, respectively. In these expressions 1 is the column vector full of ones and 0 ≤ α < 1/λ is the Katz parameter. The last measure, the eigenvector centrality, here denoted eig(i), is the value of the ith entry of the eigenvector corresponding to the largest eigenvalue of the graph. These measures stem from the idea that a vertex is important if it is the starting point of many closed walks. Naively summing over all such walks to define a centrality leads to a divergent sum however. This problem was resolved through two strategies: i) giving walks of length an additional weight of α , with α < 1/λ to guarantee convergence of the sum. This yields the resolvent centrality. Or ii) giving such walks a weight of 1/ !, once again to guarantee convergence, an approach which yields the exponential centrality. Both approaches lend smaller weights to longer walks and are thus mostly sensitive to the close neighbourhoods of vertices. A third point of view is based on the observation that, on Markov chains, the ith entry of the dominant eigenvector is the probability of walking from i to itself in the stationary distribution. The eigenvector centrality is based on an extension of this observation.

In the context of cycles and induced subgraphs, a natural way to define a consistent vertex centrality measure is to set it to be the centrality c(i) of the singleton subgraph containing only the vertex i. 1 Immediately then c(i) is the asymptotic proportion of closed walks passing through i on G and a measure of the importance of this vertex. This centrality is essentially the same as the eigenvector centrality: Proposition 4. Let G be a (weighted) graph with adjacency matrix A and largest eigenvalue λ . Let η := lim z→1/λ (1λ z) -1 det(I -zA). Then

c(i) = η eig(i) 2 .
Proof. Let R(z) := (I -zA) -1 be the resolvent of the graph. The adjugate formula indicates that Adj(I -zA) ii = det(I -zA)R(z) ii = det(I -zA G\i ).

Hence lim z→1/λ Adj(I -zA) ii = c(i). But since λ is the largest eigenvalue of G, the adjugate in this formula tends to the projector P λ onto the corresponding (dominant) eigenvector. More precisely and assuming that the conditions for the Perron-Frobenius Theorem hold then lim z→1/λ Adj(I -zA) ii = η P λ ii , from which the result follows.

Remark 2. The idea of using network flows to measure the importance of vertices was first proposed by Freeman and coworkers [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF][START_REF] Freeman | Centrality in valued graphs: A measure of betweenness based on network flow[END_REF]. In spite of conceptual similarities with the cycle-centrality introduced here, these measures are genuinely different. The flow-betweenness centrality of a vertex is defined either as the number of shortest simple paths [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF] or of all simple paths [START_REF] Freeman | Centrality in valued graphs: A measure of betweenness based on network flow[END_REF] passing through a given vertex.

In this context, a simple path is a walk which is not allowed to visit any vertex more than once. As a consequence, the flow-betweenness is computationally difficult to obtain, the problem of counting simple paths being #P-complete [START_REF] Valiant | The Complexity of Enumeration and Reliability Problems[END_REF].

Further mathematical properties of the cycle-centrality will be presented in an extended version of this work.

Computational cost

Computationally speaking, since c(γ) involves a determinant, it costs O (N -|γ|) 3 operations to calculate, where N -|γ| is the number of vertices of the graph G\γ. In practice however, c(γ) can be approximated, even on very large networks, by retaining only a set

{µ 1 , • • • , µ q } of dominant eigenvalues of A G\γ (or A G\H ), yield- ing c(γ) ∏ q i=1 (1 -µ i /λ ).
Convergence of this approximation can be tested by increasing the number q of retained eigenvalues. Algorithms for the calculation of c(γ) are available for download, see [START_REF] Giscard | Algorithm to calculate the cycle-centrality of selected cycles or subgraphs[END_REF].

In addition, a problem encountered by any cycle-or subgraph-based centrality is that it requires some knowledge of the cycles or subgraphs whose importance is to be measured. For exemple, to rank all connected induced subgraphs on vertices by centrality value, regardless of what this centrality is defined to be, one must first find them. This step costs O(N∆ ) operations, ∆ being the maximum degree of the graph. There is therefore no doubt that cycle-and subgraph-centralities will, overall, be computationally more expensive to calculate than vertex-centralities. What we argue here, is that the performances of the resulting models justify the additional costs of the analysis.

• • • • • • • • • • • • • • •

Crisis hits

Economic networks

In order to test the viability of the cycle-centrality defined in the preceding section, we studied the economy of the United-States, United-Kingdom, Germany and France over the period 2000-2014 using the World Input-Output Database (2016 release) [START_REF] Timmer | An Illustrated User Guide to the World Input-Output Database[END_REF][START_REF] Timmer | An Anatomy of the Global Trade Slowdown based on the WIOD 2016 Release[END_REF][START_REF]World Input Output Database[END_REF]. The data provides the flow of capital on a yearly basis between 55 sectors of the economy, yielding a weighted directed macro-economic graphical model of the evolution of each country during 15 full years.

We calculated the cycle-centrality of all 1,485 edges, 26,235 triangles, 341,055 squares and 3,478,761 pentagons on each network for each year of the interval 2000-2014 [START_REF] Giscard | Algorithm to calculate the cycle-centrality of selected cycles or subgraphs[END_REF]. This task took a total of circa 1hour per country on a 3.1 GHz Intel Core i7 MacBook Pro.

Preliminary results

In the case of the US, the most important edge on average over the period 2000-2014 was found to involve the real-estate and insurance sectors, whilst all triangles and squares whose centrality was within 40% of the maximum observed centrality involved these two sectors and/or the financial industry. This is different for other countries, e.g. the dominant set of actors of the German economy was composed of the "Manufacture of motor vehicles and trailers", "Real estate activities" and "Administrative and support service activities". The French economy saw the most capital flowing through the "Electricity, gas, steam and air conditioning supply", "Construction" and "Legal and accounting activities; activities of head offices and management consultancy" sectors, with cycles involving the "Manufacture of food, beverages and tobacco products" following closely behind. This sector was also important in the US economy, being present in most of the dominant squares and pentagons. Overall, these results confirm that the cycle-centrality functions well as an indicator of the importance of groups of agents in dynamical processes on complex networks, in this case dominant sets of sectors ranked in terms of capital flows.

3.2 Case study: finance-insurance-real estate in the US economy

Evolution of intercepted capital flow

Of great interest to the study of the recent economic history of the United-States is the role played by the finance, insurance and real estate sectors. We thus selected the following four sectors for further study:

• "Financial service activities, except insurance and pension funding";

• "Insurance, reinsurance and pension funding, except compulsory social security"; • "Activities auxiliary to financial services and insurance activities"; • "Real estate activities". These four sectors form a clique, here called "FIAR". The cycle-centrality c(FIAR) evaluates the weight and frequency with which wealth exchange within the US economy passed through the FIAR clique over the 15 years period from 2000 to 2014. The results are shown on Fig. [START_REF] Albert | Internet: Diameter of the World-Wide Web[END_REF] and correlate with the main events surrounding the 2007-2009 crisis, showing the effects of bank bail-outs and the introduction of the Dodds-Frank act. This legislation is seen to have contained and stabilised the importance of the FIAR clique in the US economy. To these observations, we can perhaps add the Financial Services Modernization Act of 1999 which repealed parts of the Glass-Steagall Act and which explains the subsequent exponential increase of c(FIAR) over the period 2000-2006 [START_REF] Greenwood | The Growth of Finance[END_REF].

The central role played the FIAR sectors is perhaps best summarised by a single number: the time-average c(FIAR) τ is nearly 15 times higher than the cycle and time average c(γ) γ τ , where the cycle averaging . γ is effected over all fourvertices cycles of the graph. This means the FIAR clique intersected on average 15 times more capital flow every year of the 2000-2014 period than the average ensemble of four economic sectors.

Comparison with alternative centralities

In order to contrast the performance of c(γ) with those of existing measures, a simple approach consists in defining cycle-centralities from the sum of the vertex centralities of the individual vertices visited by the cycles. Although this strategy has been criticised [START_REF] Everett | The centrality of groups and classes[END_REF], it provides insights into the information content of the various measures. We thus define Σ CS (γ), Σ R (γ) and Σ eig (γ), the sums of the exponential, resolvent and eigenvector centralities of the vertices visited by γ, respectively. 2) and indicate the comparative failure of these approaches. For example, according to Σ R (FIAR), and regardless of the Katz parameter employed, the FIAR clique underwent a massive downturn between 2003 and 2007, when all economic indicators show that this period was one of unprecedented growth for the FIAR sectors [START_REF] Greenwood | The Growth of Finance[END_REF][START_REF]Annual Report on the Insurance Industry[END_REF][START_REF]American house prices: realty check[END_REF].

ΣR(FIAR)

• • • • • • • • • • • • • • • 2000 
The eigenvector-centrality-based measure Σ eig (FIAR) does not fare much better. According to it, one should believe that: 1) the importance of the FIAR sectors in 2014 was slightly lower than in 2000; and 2) the centrality of the FIAR sectors inexplicably peaked in the year 2003 only to reach the same level over the year 2007. Both conclusions 1) and 2) are in contradiction with economic studies on the subject, especially concerning the year 2007 when the crisis saw the collapse of much of the FIAR sectors [START_REF] Greenwood | The Growth of Finance[END_REF][START_REF]American house prices: realty check[END_REF].

Finally, from the Σ CS (FIAR) centrality, one should believe that by 2014, the combined importance of the finance, insurance and real estate sectors was much higher3 than its maximum pre-crisis level in late 2006early 2007. Yet, it is known that the housing market was more than 20% lower in real terms in 2014 than at its peak in late 2006 [START_REF]American house prices: realty check[END_REF]; and that the net-income of the insurance industry, in particular the Property and Casualty subsector most connected to the real-estate industry, was comparable in 2014 to its 2006 level after record losses in 2011, see [START_REF]Annual Report on the Insurance Industry[END_REF] p. 32.

In addition, the particular values taken by the resolvent-, eigenvector-and exponentialbased centrality measures are rather difficult to interpret since they are not immediately related to quantities of real-world significance. At the opposite, the cyclecentrality c(γ) is the proportion of the total capital flow of the economy that passes through the cycle γ. As a consequence, the results of an analysis using this cyclecentrality are easy to grasp and interpret, facilitating their appraisal with respect to external sources of information. We must conclude from these observations and those of the preceding paragraphs that the insights gained from this analysis are not easily replicated by other centrality measures.

Protein targeting in plant-pathogen interactions

We now turn to a biological context and consider the protein-protein interaction network (PPI) obtained by Mukhtar et al. in a landmark study of plant-pathogens interactions between the plant Arabidopsis thaliana, the bacterium Pseudomonas syringae and the oomycete Hyaloperonospora arabidopsidis. The network, comprises 3,148 interactions between 926 proteins, of which 170 are known to participate in plant immunity and 137 are targeted by effectors from one or both pathogens [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF].

Before the original study of [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF] it was already expected that the pathogens would target those proteins which are the most important to the plant [START_REF] Landry | A Cellular Roadmap for the Plant Kingdom[END_REF], i.e. that most of the pathogen targets should be high-degree nodes (hubs) in the plant PPI. Here we call this hypothesis the degree-based model of protein-targeting. The model posits a positive correlation between protein-targeting and the degree-centrality of the proteins. Mukhtar et al. confirmed such a correlation, showing it to be statistically significant, yet also observed shortfalls of the model, such as numerous low-degree targets and hubs targeted by few pathogen-effectors, if at all. Nonetheless, the degreebased model is the best available vertex-based model as replacing the degree by another vertex-centrality degrades model-performances, see Table [START_REF] Albert | Internet: Diameter of the World-Wide Web[END_REF].

In their seminal study, Mukhtar et al. also showed that highly connected proteins tend to be involved in immune interactions [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF][START_REF] Landry | A Cellular Roadmap for the Plant Kingdom[END_REF]. Furthermore, subsequent biological studies, notably into oomycetes, have shown that pathogen effectors are potent stimulants of immune activity in Arabidopsis thaliana [START_REF] Oome | Nep1-like proteins from three kingdoms of life act as a microbeassociated molecular pattern in Arabidopsis[END_REF][START_REF] Fawke | Oomycete Interactions with Plants: Infection Strategies and Resistance Principles[END_REF]. Consequently, we might expect the PPI to comprise small protein motifs involving not only a pathogen target, but also one or more interactions with an immune protein, interactions which may be stimulated by the activity of the pathogen on the target, and an accompanying central protein. 4 If we now hypothesise that pathogens primarily aim at disrupting a sizeable proportion of sequences of protein reactions in the host, then the motifs mentioned above should have high cycle-centrality. This is because in the context of PPIs the cycle-centrality of a motif measures the fraction of sequences of protein interactions intercepted by the motif. In other words, pathogen-targets should primarily be found in triads with dominant cycle-centrality involving at least one target, one or more central proteins, and one or more immune interactions.

To test this model, which we call the dominant-triad model, we calculated the cycle-centrality of all 113,398 triads of proteins in the PPI using [START_REF] Giscard | Algorithm to calculate the cycle-centrality of selected cycles or subgraphs[END_REF], which took 27 min on the aforementioned computer, most of which was spent finding the triads. We then selected those triads involving at least one of the top two 2 proteins in terms of eigenvector centrality 4 (circa 2% of all triads). These are AT5G08080 and AT5G22290 (in that order of centrality). The former likely belongs to a set of proteins involved in plant resistance against bacteria [START_REF] Kalde | The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1[END_REF][START_REF][END_REF], while the latter belongs to a family of a transcription factors with a role in stress responses. More precisely, AT5G22290 negatively regulates flowering in response to stresses [START_REF] Li | A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana[END_REF][START_REF]Protein AT5G22290[END_REF]. Remarkably AT5G08080 is not targeted at all by the pathogens, while AT5G22290 is targeted by a single effector in spite of being the most important hub of the plant PPI, with a degree of 222. 5 Among the triads comprising AT5G08080 and/or AT5G22290, we classified as true positive those which involve at least one more target and at least one immune reaction. Finally, in order to compare the performances of the dominant-triad and degree-based models, we obtained the ROC curves for both. The results, presented on Fig. [START_REF] Bryan | The $25, 000, 000, 000 Eigenvector: The Linear Algebra behind Google[END_REF], clearly show the dominant-triad model out-performing the degree-based one of [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF]. The performances of models based on the centralities Σ CS , Σ R and Σ eig are reported in Table [START_REF] Albert | Internet: Diameter of the World-Wide Web[END_REF] for comparison. 6These results suggest that the hypothesis where pathogens select their targets to maximise the fraction of disrupted sequences of protein reactions better fits the observations than the hypothesis where they target high-degree nodes of the PPI. In particular, the model explains why hubs are not the only targets nor necessarily the most targeted proteins, as interactions with peripheral proteins in the immediate vicinity of a central protein are seemingly equally disruptive to the ensemble of sequences of reactions on the PPI. The performance of the dominant-triad model also underscores the remarkable efficiency of the plant immune response: as the ROC curve shows, nearly all triads with the highest cycle-centrality involving a pathogen target also involve an immune interaction. Taken together, these observations paint the picture of a PPI where two central proteins are immediately surrounded by numerous pathogen targets and a flurry of immune interactions. 1 The ROC AUC is the area under the ROC curve. A perfect model making only correct predictions would have ROC AUC=1, while the null-hypothesis yields ROC AUC=0.5. The discrimination is the (absolute) area between the ROC curve and the null-hypothesis line. The crucial difference between vertex-based and cycle-based models is that the former attempt at directly identifying individual protein-targets, while the latter aim at identifying targeted triads.

Conclusion

We have introduced a centrality measure for cycles on networks that quantifies the (weighted) fraction of information flow intersecting the cycle. This measure is computationally cheap to calculate, numerically well-conditioned, and extends both to arbitrary subgraphs and vertices, where it reduces to the eigenvector centrality. By 
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Fig. 3 Solid black line: ROC curve of the dominant-triad model in the plant-pathogen PPI of A. thaliana, P. syringae and H. arabidopsidis. In this model, all triads involving AT5G08080 and/or AT5G22290 are ranked in descending order according to cycle-centrality. A true positive is a triad involving at least one more target and at least one immune reaction, while a false positive is a triad which does not meet both of these criteria. Red dashed line: ROC curve of the degree-based model proposed in [START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF], where proteins are ranked in descending order according to their degree in the PPI. A true positive is a protein targeted by at least one pathogen effector. Dotted line: null-hypothesis model with random protein-targeting.

studying the evolution of the US economy over the period 2000-2014, we have shown that the cycle-centrality correlates with major events impacting this economy and could potentially serve as an objective quantifier of the effect of crashes and novel legislations. In the biological context of plant-pathogens interactions, we have shown that a model where pathogens select their targets to maximise the number of sequences of protein reactions that they intercept better fits for the observations than a model where pathogens target high-degree proteins.

2 ⨯cFig. 1

 21 Fig. 1 Temporal evolution of the cycle-centrality of the FIAR clique (red circles) during the 2000-2014 period compared to the average cycle-centrality of all four-vertices cycles c(γ) (blue) with error-bars indicating the standard deviation around the average. Important events over the period are indicated.

Fig. 2

 2 Fig. 2 Left column: evolution of the resolvent-based centrality measure for the FIAR clique with two of the most commonly-used values for the Katz parameter: top α = 0.5/λ ; bottom α = 0.85/λ . Top right: temporal evolution of the exponential-based centrality measure for the FIAR clique with a regularisation parameter of 10 5 . Bottom right: evolution of the eigenvectorbased centrality measure for the FIAR clique.The results for the FIAR clique are shown on Fig.[START_REF] Bonacich | Factoring and weighting approaches to status scores and clique identification[END_REF] and indicate the comparative failure of these approaches. For example, according to Σ R (FIAR), and regardless of the Katz parameter employed, the FIAR clique underwent a massive downturn between 2003 and 2007, when all economic indicators show that this period was one of unprecedented growth for the FIAR sectors[START_REF] Greenwood | The Growth of Finance[END_REF][START_REF]Annual Report on the Insurance Industry[END_REF][START_REF]American house prices: realty check[END_REF].The eigenvector-centrality-based measure Σ eig (FIAR) does not fare much better. According to it, one should believe that: 1) the importance of the FIAR sectors in 2014 was slightly lower than in 2000; and 2) the centrality of the FIAR sectors inexplicably peaked in the year 2003 only to reach the same level over the year 2007. Both conclusions 1) and 2) are in contradiction with economic studies on the subject, especially concerning the year 2007 when the crisis saw the collapse of much of the FIAR sectors[START_REF] Greenwood | The Growth of Finance[END_REF][START_REF]American house prices: realty check[END_REF].Finally, from the Σ CS (FIAR) centrality, one should believe that by 2014, the combined importance of the finance, insurance and real estate sectors was much higher 3 than its maximum pre-crisis level in late 2006early 2007. Yet, it is known that the housing market was more than 20% lower in real terms in 2014 than at its peak in late 2006[START_REF]American house prices: realty check[END_REF]; and that the net-income of the insurance industry, in particular the Property and Casualty subsector most connected to the real-estate industry, was comparable in 2014 to its 2006 level after record losses in 2011, see[START_REF]Annual Report on the Insurance Industry[END_REF] p. 32.In addition, the particular values taken by the resolvent-, eigenvector-and exponentialbased centrality measures are rather difficult to interpret since they are not immediately related to quantities of real-world significance. At the opposite, the cyclecentrality c(γ) is the proportion of the total capital flow of the economy that passes through the cycle γ. As a consequence, the results of an analysis using this cyclecentrality are easy to grasp and interpret, facilitating their appraisal with respect to external sources of information. We must conclude from these observations and those of the preceding paragraphs that the insights gained from this analysis are not easily replicated by other centrality measures.

Since the cycle centrality and its extension to subgraphs are consistent, c(i) is also equal to the cycle centrality of a self-loop i → i from vertex i to itself.

In the case of Σ CS (γ), we had to introduce a regularisation parameter r such that e A/r converges in Matlab and Σ CS (γ) could be computed. We then verified that the relative variations of Σ CS (γ) were qualitatively independent from r.

How much higher exactly depends on the regularisation parameter. The smaller r, the higher the ratio of the centralities between the years 2014 and 2006. For its smallest value guaranteeing convergence r ∼ 10 3 , the ratio is a totally improbable

× 10 23 .

Here the centrality of a protein is understood to be its eigenvector centrality since, by Proposition 4, this is the measure induced by the cycle-centrality on vertices.

By contrast another protein, AT3G47620, is targeted by 29 effectors from both the bacterium and the oomycete yet has "only" degree 104[START_REF] Mukhtar | Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network[END_REF].

Running the computations separately, each of these models would take the c. 30 min time to evaluate since the majority of this time is spent finding the triads.
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