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Abstract

MLLPA is a new Python 3 module developed to analyse phase domains in a lipid
membrane based on lipid molecular states. Reading standard simulation coordinate
and trajectory files, the software first analyse the phase composition of the lipid mem-
brane by using Machine Learning tools to label each individual molecules with respect
to their state, and then decompose the simulation box using Voronoi tessellations to
analyse the local environment of all the molecules of interest. MLLPA is versatile as it
can read from multiple format (e.g. GROMACS, LAMMPS) and from either all-atom
(e.g. CHARMM36) or coarse-grain models (e.g. Martini). It can also analyse multi-
ple geometries of membranes (e.g. bilayers, vesicles). Finally, the software allows for
training with more than two phases, allowing for multiple phase coexistence analysis.
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Phases

A new python software uses machine learning to characterise efficiently the individual ther-
modynamic states of lipids in membranes. It offers new routes for microscopic exploration
of lipids mixtures and for the investigation of the interaction between lipids and external
molecules or macromolecules.
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INTRODUCTION

Lipid membranes play a key role in the existence and organisation of the cells, and their

study is critical to fully understand the mechanisms of life1,2. As lyotropic liquid crystals,

phospholipid molecules composing about 50% of the membrane weight display fascinating

thermodynamic properties, notably phase transitions1,3–5. These transitions, either driven

by temperature or molecular composition, separate the system free-energy landscape into

different phases where lipid molecules adopt a subset of typical conformations, depending

on the amount of order inside the membrane (cf. Fig. 1)6–9.

In all but the simplest situations lipid membranes display heterogeneities, related to

thermodynamic coexistence, dynamic domain coarsening or non-lipid inclusions. Assigning

individual lipids to a state, or a phase, is therefore highly desirable. However, the usual tools

used in molecular dynamics (MD) simulations, such as the measurement of the area per lipid

or of the tail order parameter, are limited in that they can only determine the average phase

of the whole membrane or lipid group10,11. MLLPA, short for Machine Learning-assisted

Lipid Phase Analysis, is a free, open source module for Python 3 that has been developed to

extract the membrane molecules atomic positions from standard simulation files, and analyse

their conformation via Machine Learning (ML) with the purpose of determining the most

likely thermodynamic phase these molecules belong, at every single frame of the simulation.

Once the lipids have been properly identified and given a state or phase label, MLLPA is then

able to analyse the average environment of each molecule in the membrane using Voronoi

tessellations.

The interest for ML-based analysis tool is growing exponentially in all science fields, as

it has been widely proven to be a versatile and robust tool that drastically reduce the bias

brought by the user in the selection of the parameters to consider12,13. ML has been already

applied to lipid molecules and membranes to predict nanostructures or predict and locate

thermodynamic phases interfaces14–17. Other non-ML-based approaches to detect phase

transition are still being developed18, but they remain scarce. However, all these methods

either lack specific phase labelling or lack capacities to identify the state of individual lipid

molecules in the membrane. To our knowledge, the first attempt at identifying via ML the
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nature of the phase by analysing the configuration of the lipids was published by some of

us19.

Tessellations are powerful and useful representations of the geometrical organisation of

complex biological systems, such as tissues20. MLLPA uses the Voronoi tiling21,22 to define

unambiguously the neighbour list of each lipid molecule in the membrane. The applications

of tessellations to analyze MD simulations of lipid membranes are also relatively common,

especially to calculate the area per lipid23,24.

In order to operate, the different functions of MLLPA rely on two main scientific libraries.

First (1) the library scikit-learn for Python25 implements the different ML algorithms re-

quired to analyse the lipid molecular conformations: Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), Gaussian Naive-Bayes (NB) and Classification and Regression

Tree (CART) algorithns, and second (2) the library voro++ for C++ that we use through

the Python wrapper Tess26,27 performs the Voronoi tessellations of the membrane and maps

the neighbours of each membrane molecule. To optimise its versatility in working with differ-

ent MD simulations softwares, MLLPA is based on the libraryMDAnalysis for Python28,29 to

open the coordinate and trajectory files, and extract the atom positions and properties (i.e.

ID, names, types and masses). While the modules for reading simulations files (MDAnaly-

sis), performing a Machine Learning analysis (scikit-learn) and tessellating the simulation

box (voro++) are already freely available, none of them were designed to specifically analyse

lipid membrane, and coming from very different application domains were not designed to

be used together as well. MLLPA aims at bridging the Molecular Dynamics and Machine

Learning toolkits by offering a smooth and ergonomic user interface. As shown in this paper,

the preparation steps and computations required for these analysis are far from trivial, mak-

ing MLLPA a superior and essential tool for lipid phase transition applications in molecular

dynamics simulations. MLLPA has been specifically programmed to handle all types of lipid

membranes and molecules interacting with it, and provides a fast and reliable analysis of

the phase composition and the interactions with phase domains. MLLPA is free to use and

modify under the terms of the GNU General Public License (version 3.0), and the whole code

is available on GitHub30. MLLPA is easy to install, by automatically handling and installing

all the required packages. A speed test ran in the simulation section also demonstrates that
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analysis with MLLPA are fast even on a non-parallel desktop computers.

In the next section, we describe the algorithms and architecture of the MLLPA software.

Cases studies using MLLPA are then presented in the second section, Validation Simulations.

The lipids that were considered in the present work are 1,2-dipalmitoylphosphatidylcholine

(DPPC), 1,2-dioleoylphosphatidylcholine (DOPC) and cholesterol. Pure DPPC bilayers dis-

play a main gel/fluid melting transition at 41◦C while DOPC bilayers remain in a fluid state

down to ca -20◦C. Cholesterol alone does not form bilayers but interact very specifically

with saturated lipids such as DPPC. The organisation of phospholipid-cholesterol mixtures

is specific and very relevant in the field of membrane biophysics. DOPC-DPPC-cholesterol

mixtures are also known to display a rich phase domain behaviour depending on tempera-

ture and composition. We also briefly considered 1,2-DimyristoylPhosphatidylEthanolamine

(DMPE) which melts at 50◦C and 1,2-dipalmitoylphosphatidylethanolamine (DPPE) which

melts at 74◦C. In the case of pure phospholipid the main melting transition often separates

a low temperature gel phase (Lβ or tilted Lβ′) from a fluid phase Lα. In the context of

cholesterol-phospholipid mixture, one distinguishes two ”fluid phases”: a disordered phase

Ld very similar in structure and order to the fluid phase Lα, and a specific liquid ordered

phase Lo similar to the gel phase in terms of chain order, but to the fluid phase in terms

of fluidity. Readers unfamiliar with lipid molecules and lipid biophysics can refer e.g. to

references1,2,4,5 for an introduction.

DESCRIPTION

When used directly with MD simulation softwares outputs, the program requires for each

simulation analysed at least two files as input: (i) a coordinate file, and (ii) a structure file.

The program can also analyse full trajectories, in which case a (iii) trajectory file is required.

For instance, in the GROMACS format, these files correspond respectively to a *.gro (or

*.pdb), a *.tpr and a *.trr (or *.xtc) files. It is also possible to directly load position arrays

in MLLPA. For the machine learning prediction of the states of the lipids, MLLPA does

not require any specific orientation of the membrane. For the neighbour analysis in a lipid

bilayer, this one should be oriented normal to the z-axis. It is essential to note here that all
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periodic boundary conditions (PBC) abnormalities, e.g. molecules cut in several groups of

atoms through the simulation box, should be corrected before being processed by MLLPA.

Besides that, MLLPA supports natively the presence of PBC for mapping the neighbours.

To analyse a system, the typical sequence of processes to call in MLLPA is as follow: (1)

train the Machine Learning model, by (1a) extracting the molecules representing each phase

from the simulation file and then (1b) training the models on them; (2) analyse the states of

the molecules in the simulation, by (2a) extracting the molecules from the file of unknown

composition and then (2b) using the previously trained models to predict the phases. Once

these steps are done, the systems are ready and can (3) be tessellated to (3a) extract the list

of neighbours for every molecule and (3b) analyse the phase composition of these neighbours.

Finally, (4) the results can be saved in files.

A user’s guide providing tutorials and clear descriptions of all the functions and classes

found in MLLPA is distributed with the program. The tutorials and the descriptions of the

functions and classes are available on the GitHub of the project and its website30. Some

simulation files of a 256 DPPC bilayer, used in the Validation Simulations part of this

document to train the models, have been uploaded on Zenodo in order to test MLLPA31. In

this section, the algorithms of each functionality of the program is discussed thoroughly.

Generation of the systems

The collection of positions, information and eventually frames in the case of a trajectory

extracted from simulation files is referred as a system in MLLPA. The function used to

process simulation files is named openSystem and takes as argument the coordinate and

structure files path. It is essential to note that, in order to increase the processing speed

and to conform with the requirements of Machine Learning inputs, a system in MLLPA is

specific to only one type of residue/lipid. The name of the residue to extract is therefore a

mandatory input of the openSystem function. Another required input is the neighbour rank

for ranked intra-molecular distances calculations (see below). A flowchart of the processes

involved in the openSystem function can be found in the Supplementary Materials.
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Processing the simulation files

The function openSystem calls MDAnalysis to open the simulation files and extract the

following properties:

• The 3-D positions of all the atoms of the given molecule type. If a trajectory file is

provided, the positions are read for each selected frame.

• The list of all atomic bonds in the given molecule type.

• The mass of every atom in the given molecule type.

• The name and ID of the molecules and their atoms for proper identification.

Since the file input functions of MLLPA are based on the library MDAnalysis, MLLPA

shares with this library its list of compatible file formats, and the formats handled by the

function openSystem are restricted to this list. The exhaustive list of file formats compatible

with MDAnalysis can be found in its official documentation32. Regardless of the format,

the coordinate and trajectory files should include the positions of all atoms on all frames,

and the structure file should include the list of bonds, masses, names and IDs of all atoms.

In the case where the coordinate file would also include the information extracted from the

structure file, the coordinate file can be re-used.

To maximize its versatility and compatibility, MLLPA is capable to directly work with

position arrays. This can be useful when the simulation file format to be analysed cannot

be opened by MDAnalysis. For this purpose, the function systemFromPositions has been

implemented. Other sub-functions have been provided to help the users formatting all inputs

for MLLPA. More information on these functions can be found in the online documentation

of MLLPA30.

The positions are stored in an array of dimension (number frames, number molecules,

number atoms, number space dimensions), with 3 space dimensions in the usual Cartesian

system of coordinates. In the case where no trajectory file has been provided, the number

of frames is set to 1. Because of the tight correlation between the hydrogen atoms and the

heavy atoms they are bonded with, hydrogen atoms are removed from the positions array

in the case of all-atom simulations. For unified atoms and coarse-grained simulations, all
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particles are kept in the array. Atomic bonds, masses, names and IDs are stored as arrays

in a dictionary.

Creating the configuration spaces

The next step prepares the positions for the Machine Learning analysis, either for training or

prediction purposes. Analysing the phase of lipid membranes via Machine Learning requires

two sets of input parameters, which are called configuration spaces: the positions of the

atoms of the molecules in a cylindrical system of coordinates, called coordinates for short,

and the intra-molecular distances set for a specific pair rank, called distances for short.

These two feature or configuration spaces were introduced in detail in our previous paper19.

Once all the molecules conformations have been processed and mapped to their config-

uration spaces, the openSystem function returns as an output an instance of a class named

System. The instance of the System class contains the positions, coordinates and distances

of the molecules, as well as a dictionary summarizing all the information extracted from the

structure file.

Cylindrical Coordinates The positions of the atoms of all molecules in cylindrical coor-

dinates are computed from the positions array, provided in Cartesian coordinates, and from

the atomic masses array stored in the dictionary extracted from the structure file.

In order to properly decorrelate the state of the molecule from its position and orientation

in the membrane or the simulation box, the first step is to compute and subtract the position

of the center of mass of the molecule from the positions of the atoms. This is done molecule

by molecule and frame by frame using operations on matrices (i.e arrays). Any orientation

bias of the molecule in the simulation box is also removed during the second step. To do

so, the molecule is re-orientated to with its longer axis of inertia parallel to the z-axis. This

operation is done by computing the gyration tensor G of the molecule

G =
1

∑N

i mi











GXX GXY GXZ

GY X GY Y GY Z

GZX GZY GZZ











, (1)
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with
∑N

i mi the total mass of the molecule, and GRS the elements of the tensor defined as

the mass weighted sum of the quadratic product of the atoms coordinates along the axis R

and S

GRS =
N
∑

i

miRiSi. (2)

The eigenvectors ea, eb, ec and the eigenvalues λa, λb, λc of the gyration tensor are then

computed from the matrix G

E =











ea,X ea,Y ea,Z

eb,X eb,Y eb,Z

ec,X ec,Y ec,Z











, (3)

where the indices a, b and c are chosen to satisfy λa < λb < λc. Finally, the (orthogonal)

matrix E is inverted and multiplied to the position vectors of all atoms P, properly rotating

the molecule so its longest axis is parallel to the z-axis:

P′ = E−1P. (4)

All the linear computations done here are based on the scientific library NumPy 33.

In the final step, the 3-D Cartesian positions of the rotated molecules are converted

to cylindrical coordinated. As demonstrated in our previous paper19, the azimuth in the

cartesian coordinates of the molecule is not necessary for Machine Learning analysis, and is

therefore removed. The result is an array of dimension (number frames, number molecules,

number atoms, 2).

Ranked Intra-molecular Distances The intra-molecular distances are computed from

the positions array provided in Cartesian coordinates, and from the atomic bond list stored

in the dictionary extracted from the structure file.

For every atom of the molecule, distances are calculated between the atom considered

and each atom forming a pair with it at a given rank along the molecular chain. A pair of

rank R is defined as two atoms separated by R − 1 atoms along the chain, as illustrated in
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Fig. 2. For example, two atoms sharing a direct covalent bond form a pair of rank 1, while

two atoms connected to the same 3rd atom form a pair of rank 2.

The first step in the generation of the distances is to build the list or map of all pairs

inside the molecule with the same given rank. The algorithm used to generate this map is

illustrated in the Supplementary Materials. This has to be done only once per lipid type

when the instance system is created. In the case of ring molecules, only the smallest rank

between two atoms is considered.

Once the map is available, distances are calculated one pair at a time, using the coordinate

space Euclidian distance. The result consists in an array of dimension (number frames,

number molecules, number distances).

Machine Learning training and predictions

The core requirement to recognize phase domains in a lipid membrane is the capacity to

determine the most likely phase domain a given lipid belongs to, based on its conformation

state. MLLPA performs this analysis by resorting to Machine Learning algorithms. These

algorithms are all made available by the scientific library scikit-learn. A total of four models

are used in MLLPA: the K-Nearest Neighbors algorithm (KNN) trained on coordinates,

Naive Bayes Gaussian algorithm (NB) trained on distances, the Support Machine Vector

algorithm (SVM) trained on both. Finally a Classification and Regression Trees (CART)

algorithm is used to compare the predictions of the four other models, to finally decide

the predicted state. The reason why a two-steps ML analysis of the data-set is required

was discussed in length in our previous work19. Briefly, some of the ML algorithms have a

great efficiency for predicting one of the phase but not the other. By using 4 models and

by combining their decision with a classification tree, MLLPA optimises its accuracy for all

phases.

MLLPA is not provided with any built-in ready to use model. Users are required to train

their models on their own systems first. This allows for a better accuracy of the Machine

Learning predictions and makes it possible to use the tool without restriction regarding the

phases, or the lipid molecules architecture and implementation.
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Using systems to train a model

In order to train the models implemented in MLLPA, one must provide exactly 1 system

(as generated above) for each phase to analyse and train the models on. Minimum number

of phases (or states) is 2, but there is in principle no upper limit in the number of phases

that can be trained on. The function used to train the Machine Learning algorithm is called

generateModel. It takes as arguments a list of all the instances of the System class to analyse,

as well as a list of the phases that these systems are meant to represent.

In the initial step, the input coordinates and distances arrays are reshaped into ar-

rays of respective dimensions (number frames × number molecules, number atoms × num-

ber cylindrical coordinates) and (number frames × number molecules, number distances).

This process is repeated for each of the k input systems, and all the arrays are then stacked

into two massive arrays of dimensions (
∑k

i number framesi × number moleculesi, 2× num-

ber atoms) and (
∑k

i number framesi × number moleculesi, number

distances). The name of the phases provided in the input are used to generate the array

of classes of dimension (
∑k

i number framesi × number moleculesi, ). These three arrays

constitutes the input set of the Machine Learning training process. A flowchart describing

the generation of model is provided in the Supplementary Materials.

Prior training, the input set is randomly shuffled before being split into three subsets:

a subset for the main training on the four models (KNN, NB, SVM distances and SVM

coordinates), a subset to train the final prediction proposed by the CART algorithm, and

the subset for verification and scoring. The respective sizes of these subsets are 60, 20 and

20% of the input set1.

Once the main training has been completed, the four ML models are asked to predict

the states of the intermediate training subset conformations. The four prediction arrays are

then used to form a unique array on which the CART algorithm is trained. After this step,

MLLPA can be considered as properly trained and ready to predict the phase or state of the

related molecule type. The accuracy is finally assessed by using the third remaining subset.

States are predicted using the two steps prediction routine, and compared to the known

1The proportional sizes of the subsets given here are the default values in MLLPA. Users can edit the

values in the argument of the function generateModel.
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labels. The accuracy is calculated as the ratio of successful predictions.

In order to obtain trustful scores and models, all the subsets are shuffled and split 10

times and the final score is given as the average of all the 10 scores obtained. The model

returned is the model which achieved the best score during the repeated attempts. It is

critical to note here that the accuracy scoring performed by MLLPA depends entirely on the

quality of the training set, and on the accuracy of the state labelling. While ML algorithms

are robust enough to handle a limited amount of incorrectly labelled objects in the training

subsets, a too large number of incorrect label leads to incorrect predictions. It is therefore

necessary to check the scores of the trained model prior to using it.

The generateModel function produces two types of output: first, it generates a dictionary

containing the different Machine Learning models that can be directly used to predict the

phases of unknown system (see section below). It can also generates a model file to store the

trained model for later use. The model file, saved under the format *.lpm (for lipid phase

model), is a simple archive file that can be opened like a *.zip file, or using the readModelFile

function implemented of MLLPA. The content of this file are: a (i) coordinates, a (ii)

distances and a (iii) states list which include the whole input set used to train the model, all

saved as *.csv files; as well as a metadata *.xml file that includes the scores of all parts of

the training and the different relevant information to train the model again on the content

of the *.csv files. The models are not saved as binary files (e.g. Pickle or JSON outputs) to

prevent any compatibility issues with other versions of scikit-learn2 or any other scientific

library required in MLLPA.

Prediction of the phases of a system

Once a model has been trained with MLLPA on a molecule type, it can be used to predict

the state of molecules of the same type in unknown systems. This is done by calling the

function getPhases. The function reads the instance of the System class provided, as well as

either the dictionary of trained models or the path to the model file to use. If a model file

(*.lpm) is provided, MLLPA extracts all the training sets and parameters and re-train the

2To optimise the compatibility and reproducibility, the versions of MLLPA and scikit-learn are saved in

the metadata file within the model file.
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models on them.

Similarly to the model training function, the input coordinates and distances arrays of the

system to analyse are first reshaped. The arrays are then analysed by the trained models and

the predictions of each of the models are processed by the trained CART model to generate

the final prediction on the state of the molecules.

Most biomolecules as well as some lipids do not undergo any phase transition in the

temperature range studied. For example, in a DPPC/DOPC mixture simulated from 290 to

360 K, the DOPC shall remain the whole time in the fluid phase since its melting temperature

is 256 K. As a consequence, the Machine Learning models implemented in MLLPA cannot

be trained on DOPC without further efforts that one can perceive as unnecessary. To

circumvent these specific cases and still allows for later mapping of the membrane, the

function setPhases can also be found in MLLPA. Instead of predicting the state of the

molecules, MLLPA enforces the state provided as an input. The output of both getPhases

and setPhases functions are the updated instances of the System class.

Voronoi tessellation for neighbours identification and analysis

The final part of the MLLPA program analyses the position of the molecules in the simulation

box and builds a Voronoi tessellation of the space to connect the molecules to their direct

neighbours. The tessellation of the space is performed using the centres of mass of the

molecules of the system. Using the predictions of Machine Learning, the phase composition

of the neighbours is directly obtained.

Ghost lipids and tessellations

The tessellation of the membrane is performed by the doVoro function. The function takes as

an input the list of all instances of the System class to analyse the geometry of the membrane

and extract the centres of mass of the molecules to process. Using the centres of mass instead

of specific atoms at the hydrophilic/hydrophobic interface of the membrane allows MLLPA

to work with all types of molecule discretisation, from all-atom to coarse-grain molecules,

and to include hydrophobic molecules inserted inside the bilayers.
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The 3-D tessellation of a lipid bilayer must circumvent a number of difficulties, due to

the asymmetric geometry and the presence of water layers. Indeed, lipids from the upper

leaflet have close neighbours underneath but no neighbour above, and likewise for the lower

leaflet. Because of the periodic boundary conditions (PBC) of the simulation box, lipids

from the other side of the simulation box end up incorrectly identified as neighbours by the

tessellation. This is particularly true in the case of a vesicle, as shown in Fig. 3 (a, b).

MLLPA is designed to avoid this situation. This is done by generating ”ghosts” for all the

molecules in the system. Ghosts are mirrors of the molecules with respect to the membrane

interface with the solvent, which are temporarily included in the Voronoi tessellation. Due

to their close proximity to the original lipids, ghosts get included into the neighbours list,

substituting for the unwanted remote PBC images (cf Fig. 3 (c, d)).

Ghosts are generated using the centers of mass of all the molecules in the membrane.

The vector between the center of mass of the individual molecules rg and the center of mass

of the total membrane rG is then calculated. In the case of a vesicle, the center of mass of

the total membrane reduces to a single point which is computed (Fig. 3 (e)), while in the

case of a bilayer the ”center of mass” is a Z-plane separating the two leaflets (Fig. 3 (f)). As

a consequence, the vectors will always be taken parallel to the z-axis (normal to the bilayer).

It is therefore essential to specify in the input which type of geometry should be analysed.

After this step, the leaflet in which each lipid is located is determined.

Once the vectors have been computed, the position rmax of the furthest atom of the

molecule from the center of mass of the bilayer along the unitary vector (rg − rG)/|rg − rG|

is found. Finally, the center of mass of the ghost lipid rg,ghost is calculated by adding twice

the distance of the center of mass of the lipid to its furthest atom along the vector, i.e

rg,ghost = rg + 2(rmax − rg) · (rg − rG)/|rg − rG|. In the case of the vesicles, the ghost of

inner leaflets are computed using the position of the closest atom and by removing twice the

distance.

Using ghost lipids during tessellation allows MLLPA to accurately estimate the individual

volume per molecule, based on the Voronoi cell19. For most of the geometries, MLLPA tries

automatically to generate ghosts for all the types of molecules provided. However, in certain

cases the generation of ghosts must be avoided, e.g. with molecules completely inserted
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inside the membrane such as the cholesterol. For this reason, some molecule types can be

specifically excluded from the ghost generation when calling doVoro.

The Voronoi tessellation is then computed frame by frame. The volumes and the list

of neighbours of each cell of the tessellation are extracted, as well as vertices for display

purposes. The neighbour list is cured twice, first by removing the ghosts from the list to

only keep ”real” lipids, then by removing spurious neighbours. Spurious neighbours can

appear during the mathematical process of tiling the 3-Dimensional space; particles can be

assigned as closest neighbours while other particles are technically in between them because

the geometrical construction can find common vertices. In this case, the surface area of the

face shared by the two tessellation cells will be abnormally small (> 1% of the total surface

of the tessellation cell). To remove the latter, a threshold is applied to only keep neighbours

with a face surface greater than 1%. The result of the tessellation is an instance of the

custom class Tessellation designed within MLLPA.

Neighbour phase composition mapping

Once the tessellation of the system has been computed, MLLPA can combine it with the Ma-

chine Learning predictions to calculate the phase composition of the neighbours surrounding

each lipid, using the tessellation results. This is illustrated in Fig. 4.

The function used for this step is readNeighbors. The function readNeighbors only takes

one argument, which is the instance of the class Tessellation generated using the command

doVoro. The composition of the neighbours states is given in the output as an array con-

taining the number of neighbours found in each phase. The dimension of this array is

(number frames, number molecules, number phases). To avoid any confusion in the attribu-

tion of the position in the last dimension of the array with the respective state, the function

also outputs an array with the sorted names of the phases.

Software outputs

All the outputs described in the previous sections are internal variables that can only be

read within Python, except for the model files created by generateModel. To allow the users
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to save their results as standard files on the computer, MLLPA comes with a selection of

functions, described below.

The instances of the class System, containing positions and states after the Machine

Learning predictions, can be saved using the function saveSystems. The function takes as

an input the list of all instances to save, but also the desired output format. saveSystems

can save the data in 3 different formats: (i) standard text spreadsheets in *.csv file, and

hierarchically structured (ii) text *.xml file or (iii) binary *.h5 file to be read with HDF5

readers. When instances are saved, the centers of mass of all molecules along with their

states are saved in the file for each frame of the simulation. Since *.csv file can only support

2-dimensional arrays for input, the (number frames, number molecules, number dimensions)

centers of mass and (number frames, number molecules) phases are flattened first into ar-

rays of dimensions (number frames × number molecules, number dimensions) and (num-

ber frames × number molecules,) respectively.

The instances of the class Tessellation, containing all the information on the cell found

during the tessellation along with the neighbour composition, can be saved using the function

saveVoro. Similarly to saveSystems, saveVoro takes as an input the list of all instances to

save and the desired output format. Likewise, the data can be exported as *.csv, *.xml or

*.h5 formats. Because of the limits of the *.csv format, the vertices are not saved if this

format is used.

VALIDATION SIMULATIONS

Methods

MLLPA was tested with various MD simulations of lipid membranes, mostly planar bilayers

but also vesicles. All the systems were created using the CHARMM-GUI website34–38. All

simulations were performed using GROMACS39,40 and the force fields Charmm3641 for all-

atom simulations, or Martini42–44 for the coarse grained ones. The simulations were always

ran long enough to reach equilibrium, prior to collecting statistics. Unless stated, this

corresponds to 25 ns of equilibration and another 25 ns of production. A complete description
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of the simulation parameters used is provided in the Supplementary Materials. All visual

representations of the simulations were obtained using Ovito 2.945.

Results

In order to assess the accuracy and stability of the software, we simulated lipid membranes

composed of different types of lipids and with different geometries. Several types of tests

were conducted on these membranes, which we detail in the different subsections below.

Gel/Fluid transitions in a single lipid type bilayer

We started by training MLLPA with pure lipid bilayers made of a single type of lipid: DPPC,

DPPE or DMPE. For DPPC, we tested both all-atom (Charmm36) and coarse-grained force-

fields (Martini). MLLPA was always set to identify either the gel or fluid phases, and was

trained on at least 500 lipids in each phase. The systems were selected to be always at

least 30 degrees above and below the melting transition that we found by simulating over

a wide range of temperatures. The nature of the phases was confirmed by controlling the

areas per lipid and tail order parameters (cf. Supplementary Materials). The total accuracy

(mean accuracy over gel and fluid predictions) of the models trained using this protocol

always exceeded 85%, with DPPC (all-atom) measured with an accuracy of 98.0 ± 0.9%

(cf. Fig. 5(Top)). The coarse-grained model achieved a slightly lower score then its all-atom

counterpart, with only 86.8± 0.7%. Such accuracy is extremely satisfying for identification of

lipid phases. Complete details of all the scores are provided in Table 2 of the Supplementary

Materials.

For the distance configuration space, the lipid types simulated in the all-atom force field

were all trained with a neighbour rank set to 6 and the Martini coarse-grain force field was

treated with a neighbour rank of 4, although tests showed little effect of the exact rank

selection for most lipids, as illustrated in Fig. 5(Bottom).

To assess the execution speed of MLLPA, we ran tests on a standard local computer from

mid-2011 (Intel Core i5 2.5 GHz, AMD Radeon HD 6750M 512 MB, 20 GB 1333 MHz DDR3).

During these tests, MLLPA opened simulation files with different numbers of lipid molecules,
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analysed their phase, tessellated the space and listed the neighbours. The efficiency of

MLLPA is constant with the number of atoms being processed, with an average of 10 µs

per frame per atom processed. MLLPA was in fact found ten times less efficient when a

small amount of frames is analysed than with a large trajectory, with an average speed of

33 µs.atom−1.frame−1 for 10 frames and 4 µs.atom−1.frame−1 for 5000 frames. This is due

to MDAnalysis requiring a constant time to first open the trajectory file. Overall the speed

obtained for large trajectories is extremely satisfying. Details on the speed tests are provided

in the Supplementary Materials.

The models generated previously can be directly used to follow the evolution of a mem-

brane during its melting transition. We have demonstrated this in a recently published

paper, where we used MLLPA to visualise the membrane domain topography while increas-

ing the temperature of the system19. We propose here to use MLLPA to produce a dynamic

video rendering of a phase transition in a DPPC membrane while cooling it from 358 to

288 K (snapshot of the video given in Fig. 6, complete video available in Supplementary

Materials). As demonstrated in our previous work, monitoring the membrane composition

by identifying states of individual lipids together with a dynamical neighbours list enables a

quantitative analysis of the local lipid environment during the phase transition).

Binary and ternary membranes

The control tests discussed so far were all performed on pure lipid bilayers. We therefore

assessed how efficient MLLPA was on lipid mixtures by analysing first a binary mixture of

DPPC and DPPE. These two lipids have identical chains but different headgroups and melt

at different temperatures. We generated for this purpose a set of bilayers with different lipid

ratio using CHARMM-GUI, ranging from 0 to 100% of DPPE. The number of lipids was

kept constant equal to 64. Each of these systems was simulated at temperatures ranging

from 293 to 353 K for 50 ns, and the last 25 ns of the run were analysed by MLLPA to

measure the ratio of lipids found in the fluid phase. The results are shown in Fig. 7.

The gel/fluid ratios found for all systems are consistent with the known DPPC/DPPE

temperature-composition phase diagram. We were indeed able to superimpose the MLLPA

results with the experimental region of binary phase coexistence46. We performed the sim-
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ulation at 328 K of a larger 1/1 system made of a total of 256 lipids to precisely measure

the fluid/gel ratio of each lipid species, and found that 46 ± 8% of the DPPE were in the

gel state, while only 38 ± 7 % of the DPPC were found in that state. This shows that the

high melting temperature DPPE molecules are more likely to display a gel state, while the

low melting temperature DPPC molecules are rather found in the fluid state. This result

is consistent with the mean field picture of a coexistence between DPPC-rich liquidus and

DPPE-rich solidus phases.

Confident in the accuracy of MLLPA on binary systems, we went further and tried to

study a ternary membrane made of DPPC, DOPC and Cholesterol at different ratios. These

mixtures known as ”raft forming mixtures” are known to display a new type of ordering

called ”Liquid ordered phase” (Lo). The emergence of the Lo phase poses a real challenge to

MLLPA, as the cholesterol-rich liquid ordered phase Lo is characterised by very ordered chain

tails, similar to the gel phase47. Due to similarity with the gel phase, we expect that DPPC

lipids in the Lo phase will mostly be assigned by MLLPA to a gel state for a MLLPA model

trained with a pure DPPC system. A more complete study of the Lo phase via MLLPA is

detailed in the last section to verify this aspect.

This system provides an example of a situation where some lipid components are not

subjected to the lipid phase transition. DOPC for instance has such a low melting point

temperature (-20◦C) that no phase transition is observed in the range of simulated tem-

peratures. We therefore prepared bilayers made of 64 lipids at different compositions, and

simulated them for 50 ns at 298 K. Once again, the last 25 ns were analysed with MLLPA.

This time, only the DPPC molecules had their states predicted by Machine Learning. DOPC

and Cholesterol molecules were both analysed with the function setStates, respectively with

the labels fluid and cholesterol. Since in this setup only the DPPC molecules undergo a

phase transition, only the ratio of DPPC in the fluid phase over the whole number of DPPC

molecules in the systems were counted. The results are given in Fig 8 (Top). A version

without the coloured area can be found in the Supplementary Materials.

The different measured fluid/gel ratios match the experimental phase diagram reported

for DPPC/DOPC/Cholesterol mixtures at this temperature48. As anticipated, MLLPA han-

dles the Lo phase like a gel phase and does not distinguish between the presumed Lβ, Lo
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or Lβ-Lo coexisting phases membranes, all associated with a fluid ratio circa 26% (blue do-

mains in Fig. 8 (Top)). The predominant fluid character of DPPC molecules belonging to

the DOPC-rich liquid disordered phase Ld (structurally similar to Lα) is however clear, with

a fluid ratio of 86 ± 5% of fluids in mixtures associated to Lα domain. The Lβ-Lα and

Lβ-Lα-Lo coexistence regions could be distinguished from the other domains, but couldn’t

be differentiated from each other, as both showed circa 70% of fluid molecules.

Nonetheless, the effect of the presence of cholesterol molecules has a significant effect

on the phase composition of the DPPC molecules. Indeed, the Ld-Lo coexistence domain

can easily be distinguished from the rest of the diagram, and found with a 50 ± 20% phase

coexistence between gel and fluid phases.

Tracking molecules relative to the surrounding phase composition

We have already proved in our previous work19 that MLLPA could be used to analyse the

local environment of a lipid in a membrane, even during events such as a phase transition. We

now test here the efficiency of the software when it comes to tracking the position of a non-

phospholipid molecule within the membrane and relative to the phase composition. To do

so, we considered the same ternary mixtures investigating this time the spatial distribution

of the cholesterol (cf Fig. 8 (Bottom)).

This was achieved by calling the functions doVoro to map the molecules and their closest

neighbours, and ReadNeighbors to collect the statistics regarding the surroundings of each

molecule. From these analysis, we extracted only the phase assignation of the neighbours

of the cholesterol molecules. This allowed us to plot a series of 2-D histograms showing the

preferred location of the cholesterol in the membrane in terms of lipid phases for different

lipid compositions of the membrane, as shown in Fig. 9 for the 50/30/20 and 70/10/20

systems representing respectively the gel-Lo and the Ld-Lo domains, and the Supplementary

Materialsfor other systems.

The observations MLLPA allowed us to make indicate clearly that in our simulations

the cholesterol molecules tends to remain preferably in environments matching the gel/fluid

ratio measured by MLLPA. This means that these molecules prefer to stay at the interface

between the gel and fluid domains. The snapshot presented in Fig. 8 (Bottom) suggests a
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separation in two domains between a DOPC rich fluid region and a DPPC rich gel fluid, with

some clustered cholesterol seemingly remaining at the interface, and a few dispersed DPPC

lipids in fluid state (Fig. 9 (Bottom)). However, because our methods lacks the capability

of discriminating Lo and gel phase, it is difficult to conclude on the nature of the domains

visible in Fig. 8 (Bottom).

Lipid vesicle

In order to demonstrate that MLLPA is able to deal with systems more complicated than sin-

gle flat bilayers, we generated via CHARMM-GUI a vesicle made of a DPPC/DOPC/Cholesterol

mixture of ca 70/5/25. Due to the large system size, the Martini force field was used in this

case. The vesicle was simulated for 1 µs at 283 K. Following the simulation, the phase com-

position of the molecule was measured using MLLPA at 71.7 ± 1.0% of lipids in the fluid

phase. A visualisation of the outer leaflet of the vesicle, using a Lambert azimuthal equal-

area projection is shown in Figure 11 of the Supplementary Materials. This is a significant

difference from the previous results on Charmm and from the literature, where a bilayer

made of such lipid composition would be expected to display a Lβ-Lo domain coexistence.

However, it has been reported in the literature that obtaining a gel phase in coarse-grained

vesicles can be quite challenging49.

Since our objective here is to test the capacity of MLLPA to analyse the average environ-

ment of a molecule of interest, here cholesterol, in a complex geometry such as a vesicle, we

decided to go further with the analysis despite our vesicle not being in the expected phase.

The result of the tessellation and neighbour searching algorithms was found to be perfectly

similar to result obtained in a plane bilayer with a all-atom force field model. Indeed, as

shown in the Supplementary Materials, the cholesterol is mainly located at the interface

between the gel and fluid phase domains.

Limitations of MLLPA: Lo-gel state recognition

So far our tests have successfully proven that MLLPA is a reliable and efficient tool to identify

gel and fluid phases in lipid membranes, and then to locate the average phase environment of

a given lipid molecule. In this last section, we discuss one current limit of the software, which
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is about the discrimination between Lo and gel phases in cholesterol-phospholipid mixtures.

Until now, we did not attempt to distinguish between the two ordered Lo and gel phases

occurring in ternary raft forming mixtures. We now check whether MLLPA can reliably make

a distinction among DPPC molecules pertaining to each one of these two environments. This

poses a real challenge, as Fig. 10 (Top) shows, because lipids in cholesterol-rich Lo domains

display typical elongated tails, very much as in the gel phase.

We therefore exposed MLLPA to three training sets: G,Lo,Ld. The gel phase training

set G consisted in a pure DPPC membrane simulated at 298 K. The liquid disordered phase

training set Ld was a collection of DPPC conformations arising from the simulation of a

DOPC-rich membrane (DPPC/DOPC 1:9) that the previous binary gel/fluid MLLPA model

found to be at > 90% in the fluid phase (cf. Fig. 8 (Top)). Finally, the liquid ordered phase

training set Lo was taken from a DPPC/Chol 1:1 membrane, that the previous gel/fluid

MLLPA model was categorizing as similar to a gel phase. As a control, a segment order

parameter analysis of the Lo and G training sets was performed, which lead to a slightly

different value (see Supplementary Materials). Because of differences in the lipid composition

and number of DPPC molecules, the number of frames analysed for each training simulations

sets was adjusted to give to the three training sample sets an identical size. Complete details

of all the scores are provided in Table 3 of the Supplementary Materials.

The first critical observation is that the training scores generated by MLLPA seem to

indicate that MLLPA is perfectly able to recognise the Lo phase from both the gel and fluid

phases. Indeed, the total score achieved was of 98.8 ± 0.4 %, with an accuracy of 98 ± 1 %

and 98.5 ± 1.0 % respectively for the gel and Lo lipids.

However, we can see that some ML algorithms have trouble to differentiate gel from

Lo. For example, the SVM algorithm on coordinates, which achieves an accuracy ¿ 90%

to recognise fluid lipids, found both gel and Lo with an accuracy circa 60%, close to an

uninformed guess. This leads to serious concern about the reliability of the scores obtained

for Lo. To investigate this further, we performed a cross-check analysis by training the

software with one system and making it analyze the other system(s) as well as itself. Some

significant results are shown in Fig. 10 (Bottom), and all the detailed scores and results are

given in the Table 4 of the Supplementary Materials.
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When analysed with a model trained on two states gel/fluid, the gel system is naturally

found with a gel ratio of 97± 2% consistent with the training scores. However, when analysed

with the model trained on the three states, the ratio of gel found in the pure low temperature

DPPC (gel) system drops to 75 ± 8 % and 22% of the lipid are identified as being part of

the Lo phase. Since the Lo phase implies the presence of cholesterol in the membrane, the

pure DPPC bilayer should not display such an amount of Lo phase. Moreover, the analysis

by the three states model of the 1:1 DPPC/Chol system (Lo) only predicts a Lo state ratio

of 66 ± 12 %. This score is only marginally higher than a Lo-gel random guess, proving that

MLLPA cannot recognise unambiguously the Lo phase in spite of the latter being presumably

dominant. This shows that there is definitely an important cross-talk between the gel and

Lo conformations, that our current ML analysis is not able to significantly suppress.

There are two possible explanations regarding the impossibility of discriminating liquid

ordered from pure gel. First, it could be that our features spaces (distances and coordinates)

both miss some important characteristics that would discriminate the states at the single

DPPC molecular level. For instance, the construction of our features spaces requires the

lipids to be oriented according to their tensor of gyration. This process removes all informa-

tion on the tilt of the chain relative to the bilayer normal. As a consequence, if two phases

can only be differentiated by this tilt, MLLPA will not be able to distinguish between them.

The second possibility is that single Lo and gel molecular states are so similar in reality

that only the proximity of a cholesterol molecules can tell which of the two states is actually

realised. This last result shows a limitation of MLLPA as far as recognizing the lipid phase

at the single lipid molecule level is concerned. We can however foresee this limitation as an

important analysis tool, as a failure from MLLPA to distinguish between two phases would

demonstrate the similarity of their intrinsic configuration.

SUMMARY

We introduced a robust and predictive ML tool, MLLPA, that can efficiently assign a state

to a lipid based on its likely participation in a gel or fluid phase. We have proven with these

simulations that MLLPA was a robust and efficient analysis software that could deal with
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many different models and types of lipids. The accuracy in identifying the gel or fluid state

is really satisfying for a Machine Learning-based software, with the most common types of

lipid achieving scores above 95%. This is essential for the capacity of MLLPA to detect

the average environment of membrane molecules, as shown with the tracking of cholesterol

molecules in the membrane. All of these operations can be achieved at reasonable speed,

with an average processing time of 3 µs/atom/frame on a standard local computer without

any parallelisation.

We expect that MLLPA has vocation to contribute significantly to the analysis of phase-

driven interactions in lipid membranes such as hydrophobic pollutants50–52, or to analysis of

membrane proteins local environment53,54.

We have also shown in this paper a limit of the software, notably in the case of cholesterol

induced lipid chain order, where no conclusion could be reached based solely on the molecular

conformation of the DPPC molecules. Future work should indicate which way might lead to

the best possible discrimination of the liquid ordered-gel domains.
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Figure 1: Snapshots of two DPPC molecules extracted from a membrane simulated (Left)

in the gel phase and (Right) in the fluid phase. The typical conformation of a lipid in the gel

phase is easily seen here, with elongated tails along the normal to the plane of the membrane,

while a lipid in the fluid phase have disordered tails with random orientations.

Figure 2: Illustration of the pairs between atoms along the same chain, starting from the

atom in black and for different ranks as defined in MLLPA. The colour code is used to

highlight the different pairs found with the same rank.

Figure 3: Illustration of the issues that can occur in (a) vesicles and (b) bilayers while

assigning neighbors using tessellation; respectively by assigning neighbors through a block

of solvent or through the PBC of the simulation box. Figures (c) and (d) show how the

presence of ghosts corrects the issues in neighbors listing. Figures (e) and (f) illustrates how

ghosts are created. The center of mass of the membrane is shown as a blue point in the

vesicle and a dashed line with the bilayer. Vectors used for the creation of the ghosts are

shown as coloured arrow, blue vector corresponds to rg −rG while red vector is rg,ghost−rG.

The examples of issues were exaggerated in this illustration for clarity.

Figure 4: The phase composition of the neighbours of a molecule is extracted according

to a Voronoi tessellations. Once the list of neighbours is obtained, their states/phases are

collected and analysed.

Figure 5: (Top) Training score accuracy obtained by training MLLPA to differentiate gel

and fluid phases in different lipids bilayer models (C.: Charmm36 all-atom force field, M.:

Martini coarse-grained force-field. The difference in model is also highlighted by the change

of colour). (Bottom) Evolution of the overall accuracy of MLLPA to recognise gel and fluid

phases in a DPPC bilayer as a function of the neighbour rank used for the data collection,

for atomic and coarse-grained models.
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Figure 6: (Top) Snapshot of the top leaflet of a DPPC bilayer undergoing phase separation

during a phase transition, with a Voronoi tessellation highlighting the distinct gel (blue) and

fluid (red) domains. Dashed lines show the limits of the PBC box. (Bottom) Evolution of

the ratio of DPPC in the fluid phase in the bilayer during a gentle cooling, going from 358

to 288 K by decreasing the system temperature by 1 K/ns. The evolution is compared with

the one of the area per lipid (in blue).

Figure 7: Phase diagrams showing the ratio of (Top) DPPC and (Bottom) DPPE lipid

molecules found in the fluid phase in a 64 lipid bilayer made of different ratio of DPPE

and simulated at different temperatures. Each point represents the result of a simulation

run. The plain black lines are the experimental phase diagram as found by Shimshick and

McConnell46.

Figure 8: (Top) Phase diagram of ternary membranes made of DPPC/DOPC/Cholesterol at

different ratios and simulated at 298 K. Each point represents the result of a simulation run.

The plain and dashed black lines are the experimental phase diagram as found by Veatch et

al. at the same temperature48. The colored areas highlight the average values found inside

each domain (Bottom) Snapshot of a ternary membrane made of DPPC/DOPC/Cholesterol

at the ratio 50/30/20 and simulated at 298 K. The DPPC are shown in red or blue depending

on their states as identified by MLLPA, respectively fluid and gel. The DOPC molecules are

shown in orange/dark yellow as they are always identified by MLLPA has being fluid. The

cholesterol molecules, which also do not have a transition are shown in black.

Figure 9: Color coded histograms of the (# gel, # fluid) distribution of probability to find

a cholesterol molecule in a environment composed of a given amount of gel and fluid lipids

measured in bilayers made of DPPC/DOPC/Cholesterol mixtures of (Top) 50/30/20 and

(Bottom) 70/10/20. The red dashed lines shows the measured gel/fluid ratio in all lipids

(DPPC + DOPC).
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Figure 10: (Top) Snapshot of membrane slices found in the disordered liquid phase packed

with cholesterol (gray). Lipids have been coloured in order to highlight the different leaflet

in which they are located. (Bottom) Ratio of lipids in different phases measured in two

DPPC/DOPC/Cholesterol systems at 298 K: a bilayer in the gel phase and another one in

the disordered liquid phase Lo. The analysis was made with a model trained on three sets of

gel, Lo and fluid lipids (red). Error bars are the standard deviation on the ratio measured

over a 25 ns simulation run.
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1 Description of the software

Figure 1: Flowchart of the logic structure used in MLLPA to read the simulation files and
generate the instance of system class containing all the information on the selected lipid
type.
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Figure 2: Flowchart of the logic structure used in MLLPA to construct the map at the
neighbour rank N.
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Figure 3: Flowchart of the logic structure used in MLLPA to prepare the training sets and
train the Machine Learning models to predict the states of molecules.
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2 Verification simulations

2.1 Simulation paramaters

The simulations on the all-atom forcefield Charmm36 (version used: June 2015) were per-
formed on Gromacs 2016.4. The complete details on the simulation parameters are exactly
the same as the ones described in our previous paper1. Briefly, the membranes were first
relaxed through a steepest descent energy minimization, followed by a 10 ps NVT thermal-
ization at the desired temperature. Then, the bilayer was subject to a 1 ns NPT equilibration
run coupled with a semi-isotropic barostat (1 bar in all directions). The system was then
further equilibrated at the desired temperature with the same semi-isotropic barostat during
a second NPT equilibration step of 10 ns. Molecular dynamics production runs of 50 ns were
finally generated at the same temperature and with the same semi-isotropic barostat. The
analysis were performed on the last 25 ns of simulations. All time steps were set to 2 fs.

The simulation on the coarse-grain forcefield Martini (version used: 2.2) were performed
on Gromacs 2019.4. For these systems, the minimisation and equilibration used were the
ones provided by CHARMM-GUI2,3 instead of the one used for the all-atom forcefield. Once
the systems were ready, molecular dynamics production runs of 100 ns were generated at
the required temperature. Similarly to the all-atom systems, the analysis were performed
on the last 25 ns of simulations. The leap-frog integration algorithm4 was used for the
simulation runs, with a time step of 20 fs. Temperature and pressure were kept constant using
respectively a V-rescale thermostat (correlation time τT = 1 ps) and a Parrinello-Rahman
semi-isotropic barostat (correlation time τP = 12 ps, compressibility 3 × 10−4 bar−1). The
lipid membrane and the solvent were separated into two groups for the thermostat. All other
parameters are given in Table 1.

Parameter Value
cutoff-scheme Verlet
nstlist 20
ns type grid
pbc xyz
verlet-buffer-tolerance 0.005
epsilon r 15
coulombtype reaction-field
rcoulomb 1.1
vdw type cutoff
vdw-modifier Potential-shift-Verlet
rvdw 1.1

Table 1: Names and values of the Gromacs input parameters for the MD simulation runs
made with the Martini forcefield.
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2.2 Speed Tests

Figure 4: Evolution of the average processing time, given per atom and per frame, analysed
of MLLPA (Top) as a function of the number of atoms and (Bottom) as a function of the
number of frames processed. The blue area corresponds to the standard deviation measured
during the speed test.
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2.3 Gel/Fluid transitions

2.3.1 DPPC - Charmm
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Figure 5: Measurements used to confirm that the DPPC systems simulated underwent a
phase transition and could be used to train MLLPA. (Top) Evolution of the area per lipid
of the system with the temperature, and (Bottom) tail order parameters measured for the
system found in gel (288 K) and fluid (358 K). The order parameters have been averaged over
the number of lipids and frames in the trajectory. Plain and open symbols are respectively
the sn1 and sn2 tails of the lipids.
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2.3.2 DMPE
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Figure 6: Measurements used to confirm that the DMPE systems simulated underwent a
phase transition and could be used to train MLLPA. (Top) Evolution of the area per lipid
of the system with the temperature, and (Bottom) tail order parameters measured for the
system found in gel (288 K) and fluid (358 K). The order parameters have been averaged over
the number of lipids and frames in the trajectory. Plain and open symbols are respectively
the sn1 and sn2 tails of the lipids.
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2.3.3 DPPE
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Figure 7: Measurements used to confirm that the DPPE systems simulated underwent a
phase transition and could be used to train MLLPA. (Top) Evolution of the area per lipid
of the system with the temperature, and (Bottom) tail order parameters measured for the
system found in gel (298 K) and fluid (368 K). The order parameters have been averaged over
the number of lipids and frames in the trajectory. Plain and open symbols are respectively
the sn1 and sn2 tails of the lipids.
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2.3.4 DPPC - Martini
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Figure 8: Measurements used to confirm that the DPPC systems, based on the Martini
coarse-grain model this time, simulated underwent a phase transition and could be used to
train MLLPA. (Top) Evolution of the area per lipid of the system with the temperature,
and (Bottom) tail order parameters measured for the system found in gel (288 K) and fluid
(358 K). The order parameters have been averaged over the number of lipids and frames in
the trajectory. Plain and open symbols are respectively the sn1 and sn2 tails of the lipids.
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SCORES
LIPID MODEL Total Gel Fluid

Final 98.0 ± 0.9 98.6 ± 0.8 97 ± 1
SVM (c.) 97 ± 1 95 ± 3 98.3 ± 0.9

DPPC KNN 95 ± 2 91 ± 3 99.5 ± 0.5
Charmm SVM (d.) 97.6 ± 0.7 97 ± 1 98 ± 1

NB 96 ± 1 98.6 ± 0.6 93 ± 2
Final 89 ± 2 88 ± 3 91 ± 4

SVM (c.) 88 ± 2 85 ± 3 92 ± 2
DMPE KNN 87 ± 2 81 ± 3 94 ± 2

SVM (d.) 88 ± 2 88 ± 3 89 ± 3
NB 87 ± 2 86 ± 2 87 ± 3
Final 97 ± 1 97 ± 2 96 ± 1

SVM (c.) 95.8 ± 0.8 94 ± 2 98 ± 1
DPPE KNN 95 ± 1 91 ± 3 99 ± 2

SVM (d.) 96 ± 1 96 ± 2 97 ± 2
NB 94 ± 1 97 ± 1 92 ± 2
Final 86.8 ± 0.7 86 ± 3 87 ± 2

SVM (c.) 87 ± 1 84 ± 3 90 ± 2
DPPC KNN 86 ± 2 81 ± 4 92 ± 2
Martini SVM (d.) 79 ± 2 75 ± 4 85 ± 3

NB 77 ± 3 73 ± 4 82 ± 3

Table 2: Complete details of the scores obtained during the training of the different lipid
types (DPPC, DMPE and DPPE) and models (all-atom, coarse-grain) used in this paper.
The scores were calculated by MLLPA by repeating and averaging the training 10 times with
different shuffling of the training dataset and a validation set with 20% of the size of training
set.
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2.4 Ternary phase diagram
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Figure 9: Phase diagram of ternary membranes made of DPPC/DOPC/Cholesterol at dif-
ferent ratios and simulated at 298 K. Each point represents the result of a simulation run.
The plain and dashed black lines are the experimental phase diagram as found by Veatch et
al.5 at the same temperature.
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Figure 10: Color coded histograms of the (# gel, # fluid) distribution of probability to find
a cholesterol molecule in a environment composed of a given amount of gel and fluid lipids
measured in bilayers made of DPPC/DOPC/Cholesterol mixtures of (Top) 50/40/10 and
(Bottom) 10/80/10. The red dashed lines shows the measured gel/fluid ratio in all lipids
(DPPC + DOPC).
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Figure 11: (Top) Voronoi tessellation of the Lambert azimuthal equal-area projection of a
70/5/25 DPPC/DOPC/Cholesterol vesicle simulated using the coarse-grain force field. To
gain in readibility, the position of the center of mass of the lipids are not shown in the
projection. DPPC lipids found in the gel state are shown in black, while both DPPC and
DOPC found in the fluid state are shown in white. This color code was picked in order to
facilitate the comparision with the typical experimental representation of phase domains in
vesicles6. Cholesterol molecules are coloured in gray. (Bottom) Color coded histograms of
the (# gel, # fluid) distribution of probability to find a cholesterol molecule in a environment
composed of a given amount of gel and fluid lipids measured in the vesicle shown above. The
red dashed lines shows the measured gel/fluid ratio in all lipids (DPPC + DOPC).
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2.5 Exotic phases
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Figure 12: Measurement of the tail order parameters of DPPC molecules in three
DPPC/DOPC/Cholesterol systems simulated at 298 K to generate the ternary phase di-
agram. The respective phases given were determined by comparison with phase diagrams
found in the literature5. The order parameters have been averaged over the number of lipids
and frames in the trajectory. Plain and open symbols are respectively the sn1 and sn2 tails
of the lipids.
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SCORES
TRAINING MODEL Total Lβ Lo Lα

Final 98.8 ± 0.4 98 ± 1 98.5 ± 0.9 99.6 ± 0.9
SVM (c.) 71 ± 2 59 ± 6 65 ± 5 90 ± 3

All phases KNN 98.9 ± 0.5 98 ± 1 98.6 ± 0.9 100.0 ± 0.0
SVM (d.) 91 ± 1 92 ± 3 86 ± 2 96 ± 1

NB 74 ± 2 73 ± 5 68 ± 2 81 ± 3
Final 99.7 ± 0.3 99.4 ± 0.7 100.0 ± 0.0

SVM (c.) 92 ± 2 92 ± 4 92 ± 4
Lβvs. Lα KNN 99.7 ± 0.3 99.3 ± 0.7 100.0 ± 0.0

SVM (d.) 96.9 ± 0.9 96 ± 1 98 ± 2
NB 87 ± 2 87 ± 4 88 ± 4
Final 99.7 ± 0.3 99.7 ± 0.4 99.7 ± 0.5

SVM (c.) 95 ± 2 92 ± 4 99.5 ± 0.6
Lovs. Lα KNN 99.9 ± 0.2 99.7 ± 0.4 100.0 ± 0.0

SVM (d.) 97 ± 2 89 ± 4 91 ± 2
NB 90 ± 2 89 ± 4 91 ± 2
Final 98.3 ± 1.0 98 ± 2 98 ± 1

SVM (c.) 64 ± 2 64 ± 9 67 ± 7
Lβvs. Lo KNN 98.4 ± 0.9 98 ± 1 99 ± 1

SVM (d.) 89.9 ± 0.8 93 ± 2 87 ± 1
NB 76 ± 3 78 ± 3 75 ± 4

Table 3: Complete details of the scores obtained during the different types of training per-
formed on the three DPPC/DOPC/Cholesterol systems simulated at 298 K and found in the
Lβ, Loand Lαphases (cf. Figure 12). The scores were calculated by MLLPA by repeating
and averaging the training 10 times with different shuffling of the training dataset and a
validation set with 20% of the size of training set.
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SYSTEMS
TRAINING PHASE Lβ Lo Lα

Lβ 75 ± 8 30 ± 10 10 ± 10
All phases Lo 22 ± 8 70 ± 10 20 ± 10

Lα 3 ± 2 2 ± 2 70 ± 20
Lβ 97 ± 2 94 ± 4 20 ± 20

Lβvs. Lα Lo

Lα 3 ± 2 6 ± 4 80 ± 20
Lβ

Lovs. Lα Lo 84 ± 2 97 ± 3 20 ± 10
Lα 16 ± 3 3 ± 3 90 ± 10
Lβ 78 ± 8 40 ± 10 70 ± 20

Lβvs. Lo Lo 22 ± 8 60 ± 10 30 ± 20
Lα

Table 4: Ratio of each DPPC phase found by MLLPA in three DPPC/DOPC/Cholesterol
systems simulated at 298 K and respectively in the Lβ, Lo and Lα phases (cf. Figure 12).
The scores of four distinct training are compared: a training on the three phases, a training
on only the Lβ and Lα phases, a training on only the Lo and Lα phases and a training on
only the Lβ and Lo phases. Cells in pale blue shows the phase ratio found by MLLPA in the
same system used to train the model, highlighting potential issues found by MLLPA.
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