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Abstract: Dynamic lateral lane change (DLLC) control of automated and connected vehicles (ACVs) is challenging because of
the time-varying and complex properties of the traffic environment. This study proposes a DLLC control strategy combining
dynamic trajectory planning and tracking. According to the real-time longitudinal accelerations and velocities of multiple
surrounding vehicles, as well as the real-time states of the ACVs, the safe trajectory reference of DLLC is obtained by solving a
case-dependent constrained optimisation problem. The lane changing efficiency, vehicle stability and passenger comfort are
considered jointly in the trajectory planning. Then, the dynamic trajectory reference is tracked through a gain-scheduling control
algorithm combining previewed trajectory feed-forward and ACVs states feedback. Gain-scheduling control algorithm based on
a linear time-varying form is utilised to achieve the precise control of the different velocities and improve the real-time ability of
the algorithm. The proposed strategy is tested through software and hardware-in-loop experiments, and in different test
scenarios. The results of simulations and experiments show that the proposed control strategy can achieve a satisfactory
performance of DLLC. The lane changing efficiency, safety, passenger comfort and vehicle stability are verified in complex traffic
environments.

 Nomenclature
Xs, Ys, Zs X-, Y-, Z-axes of vehicle coordinate system
δf steering angle
Fy1 lateral force of the front axle
Fy2 lateral force of the rear axle
k1 cornering stiffness of the front tire
k2 cornering stiffness of the rear tire
Izz moment of inertia around Z-axis
Ixz yaw roll product of inertia
Ixeq moment of inertia around X-axis
a distance from the centre of mass to the front axle
b distance from the centre of mass to the rear axle
um vehicle velocity
usx, usy longitudinal and lateral velocity in the vehicle

coordinate system
β, β̇ sideslip angle and angle velocity
ψ , ψ̇ , ψ̈ yaw angle, angle velocity and angle acceleration
ϕ, ϕ̇, ϕ̈ yaw angle, angle velocity and angle acceleration
ks roll stiffness
cs roll damping
m, ms mass and sprung mass
h distance from the centroid of mass to roll axis
h distance from the centroid of mass to roll axis
ΔM distance from the centroid of mass to roll axis
K control gain
Yr1…Yrn desired lateral displacement
ψd desired lateral displacement
δ angle of the steering wheel
pi j the pressure of four cylinder
t time
T sample time
Xr, Yr longitudinal and lateral displacement
Re lane width
D longitudinal length of the trajectory

Dlf maximum limit determined by the front vehicle of the
target lane (C vehicle)

Dlr maximum limit determined by the rear vehicle of the
target lane (B vehicle)

Dzf maximum limit determined by the front vehicle of the
original lane (E vehicle)

65 km h−1 maximum limit determined by the rear vehicle of the
original lane (D vehicle)

ugx, ugy longitudinal and lateral velocity in the global
coordinate system

usx, usy longitudinal and lateral velocity in the vehicle
coordinate system

Dlf0 initial distance between ACVs and C vehicle
Dlf1 ACV driving distance from the start to the real-time

position under the situation of C vehicle
Dlf2 driving distance of C vehicle from the start to real-time

position
Dlf3 predicted driving distance of C vehicle from real-time

to the predicted position
Dlf4 predicted position under the situation of C vehicle
ulf0 initial velocity of C vehicle
alf initial acceleration of C vehicle
ulfr velocity acceleration of C vehicle at the real-time
tlf time from the real-time to the predicted time when

ACV lateral lane change will be completed
alfr longitudinal acceleration of C vehicle at the real-time
ax, max maximum longitudinal deceleration
lsa distance from the front end to the centroid position of

the ACVs
llfb distance from the rear end to the centroid position of C

vehicle
Dzf0 initial distance between ACVs and E vehicle
Dzf1 real-time position under the situation of E vehicle
Dzf2 driving distance of E vehicle from the start to the real-

time position
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Dzf3 predicted driving distance of E vehicle from real-time
to the predicted position

Dzf4 ACV driving distance from real-time to the predicted
position under the situation of E vehicle

uzf0 initial acceleration of E vehicle
azf longitudinal acceleration of E vehicle
μ1, μ2 angles shown in Fig. 5c
lsw ACVs width
lzfa longitudinal distance from right-front position to the Y-

axis of ACVs
Δlzfb longitudinal distance from limit position to centroid

position of E vehicle
Xzf, Yzf longitudinal and lateral displacement at the predicted

limit position of obstacle avoidance
lzfw E vehicle width
lzrw D vehicle width
ay, max maximum lateral acceleration of trajectory
ay, s, max maximum safe lateral acceleration of trajectory
tc completed time of lateral lane change
tmax maximum allowed cost time of lateral lane change
η weight factor
Ẏ r, Ÿ r first and second derivatives of the trajectory function

equation
X, Y real-time longitudinal and lateral displacement of

ACVs
tp time from start to real-time
umin, umax maximum and minimum of ACV longitudinal velocity
ey error of lateral displacement
eψ error of yaw angle
ay lateral acceleration of ACVs
q1 weight coefficient of lateral displacement error
q2 weight coefficient of yaw angle error
q3 weight coefficient of lateral acceleration
r1 weight coefficient of steering angle
r2 weight coefficient of additional torque
Ys lateral displacement in the vehicle coordinate system

1 Introduction
Traffic jams, vehicle safety problems have become more and more
prominent. In 2016, traffic accidents led to 63,093 deaths, 226,430
injuries and directly 1.21 billion CNY of property losses in China
[1]. According to the World Health Organization report, 93% of
traffic accidents were caused by human error operation [2].
Developing automated and connected vehicles (ACVs) has been
considered as an effective solution to reduce vehicle accidents.
Besides, recent studies have demonstrated that the ACVs could
lead up to 20% energy saving [3]. The lateral lane change of ACVs
not only involves the control of the ACVs but also pays influence
to the whole traffic. Improper lane change may result in collisions
and vehicle instability and affects passenger comfort [4–6]. The
ACS lateral lane change control is also considered as an important
research issue [7–9].

The dynamic lateral lane change (DLLC) control consists of
trajectory planning and trajectory tracking [10, 11]. The task of the
trajectory planning is to obtain the optimal reference trajectory
according to the dynamic environment and vehicle states; whereas
the task of trajectory tracking is to track the trajectory reference
precisely. The criteria, such as vehicle safety, vehicle stability and
passenger comfort, are usually considered in the control design.

Increasing attention has been paid to trajectory planning. In [8,
12], the desired trajectory reference is obtained by optimising the
parameters of a polynomial trajectory model to avoid stationary
obstacles and fixed-speed obstacles. As lateral lane change
seriously affects safety and traffic operation efficiency, some lane
change planning algorithms seek to find the minimum lane-
changing safety distance (see [13] for instance). Similarly, the
trajectory is planned by assessing the risk level in [14]. Recently,
the machine learning tools, such as fuzzy neural networks, have
been increasingly evoked for trajectory planning purposes [15].
However, the above-mentioned studies assume that the speeds of

surrounding vehicles (SVs) are constant, which could not be true in
practice.

Some dynamic trajectory planning algorithms were proposed to
plan the trajectory of lateral lane change considering the real-time
states of SVs [16–18]. However, only one or two vehicles around
the ACV are considered in these studies. In the actual traffic
environment, more complex surrounding conditions can be
encountered. Trajectory planning should be conducted under more
complex and practical constraints.

As for trajectory tracking, Shah et al. [19] proposed a control
strategy of rear anti-collision for lateral lane change using the
electronic power steering system. Yu et al. [20] proposed a control
strategy of trajectory tracking using a specially designed
hierarchical controller. To improve vehicle stability, some control
algorithms were presented and tested in a high-speed trajectory
tracking case [21–23]. Most control strategies in the above studies
are designed to track the instantaneous trajectory reference of
vehicle lateral displacement or yaw angle. In this framework, a
multipoint preview is feed-forwarded to the control strategy to
achieve good trajectory tracking performance with smaller
fluctuation and control consumption [24, 25].

Robust control algorithms are receiving increasing attention for
DLLC [26–29]. The results in the above studies reveal that robust
control strategies can resist parameter uncertainties and external
disturbances to achieve good trajectory tracking. However, these
proposed robust control strategies involve only steering system
control, which cannot sufficiently guarantee the safety of lateral
lane change, especially in the emergency conditions.

Some control strategies combining a steering system with a
braking system were proposed for trajectory tracking. In [30], an
improved Hamilton algorithm was proposed to achieve obstacle
avoidance. A model predictive control algorithm was studied for
the same purpose in [12]. However, the ACV velocity change
during lateral lane change is not considered in these studies. The
control performance on tracking precision and robustness could be
unsatisfactory regarding that the velocity of ACV is usually varied
in the lane change process.

To overcome the shortcomings of the previous research, a
DLLC control strategy is proposed in this work to improve the
performance of both trajectory planning and tracking modules. In
the control strategy, the studied traffic environment consists of
controlled ACV and four SVs. The velocities and accelerations of
the four SVs are time-varying. The considered traffic environment
is close to an actual traffic environment. According to the
dynamics of the SVs and the states of the ACV, the real-time limits
of the trajectory are determined by respecting safe distances
between the controlled ACV and the SVs. The real-time optimal
trajectory reference is then found by coordinating lane change
efficiency, vehicle stability and passenger comfort within the
limits.

For trajectory tracking, the control algorithm is constructed by
combining previewed trajectory feed-forward and ACVs states
feedback. Gain-scheduling control algorithm based on a linear
time-varying (LPV) form is utilised to achieve the precise control
of different ACV velocities and improve the real-time ability. The
control algorithm integrating steering and braking control is
implemented to ensure the lane change safety under the emergency
condition.

The main contributions of this paper are as follows:

(i) The real-time trajectory planning is realised in a more complex
traffic environment which is close to reality. In particular, the
possible non-smooth aspect of the trajectory tracked and the speed
variability is taken into account.
(ii) The multiple trajectory points preview can be beneficial to cope
with real-time dynamic trajectory tracking. Meanwhile, the gain-
scheduling control algorithm based on the LPV form can deal with
the time-varying ACV velocity and improve the real-time ability of
the algorithm.
(iii) To overcome the shortcoming that the strategy with only the
steering system cannot guarantee the stability of DLLC in
emergency conditions, the proposed control strategy combines a
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steering system with the braking system to maintain yaw and roll
stability of the ACVs.

The remainder of this paper is structured as follows. Section 2
introduces the vehicle model dedicated to the design of the control
strategy. The DLLC control strategy for the ACVs, including
trajectory planning and tracking, is presented in Section 3. In
Section 4, the simulations and HIL experiments are conducted in
different scenarios. The results are analysed and discussed in the
section. Finally, conclusions are made in Section 5.

2 Simplified vehicle model
The DLLC is determined by lateral motion and handing angle [28,
31]. Meanwhile, passenger comfort and vehicle stability are
affected by the rolling motion during the lane change process. As
shown in Fig. 1, three degrees of freedom (DOF) lateral vehicle
model is established for control purpose [32]. 

The model involves three Kinematic equations of three
freedoms, i.e. lateral, yaw and roll motions. The vehicle horizontal
motion of ACVs is shown in the left figure, which mainly involves
lateral displacement and heading angle and can represent vehicle
yaw stability. In addition, the vertical roll motion of ACVs displays
in the right figure, which can represent the vehicle roll stability.
Therefore, the 3DOF model can be utilised to lateral displacement
and heading angle tracking while improving ACVs yaw and roll
stability. The model is represented as the following equations

musx β̇ + ψ̇ − mshϕ̈ = Fy1cos δf + Fy2 (1)

Izzψ̈ − Ixzϕ̈ = Fy1acos δf − Fy2b + ΔM (2)

Ixeqϕ̈ − Ixzϕ̈ = msghϕ + mshusx β̇ + ψ̇

× cos(ϕ) − ksϕ − csϕ̇
(3)

where the lateral forces of front and rear axles Fy1 and Fy2 can be
expressed using the following tire model

Fy1 = k1 β + a
usx

ψ̇ − δf (4)

Fy2 = k2 β − b
usx

ψ̇ (5)

The detailed assumptions and the description of the simplified
vehicle model can be found in [33].

3 DLLC control strategy
To achieve good lateral lane change control performance for ACVs
in complex traffic environments, a control strategy combing real-

time optimisation based trajectory planning and enhanced LPV-
based gain-scheduling tracking control is proposed.

As shown in Fig. 2, three steps are carried out in the modules of
dynamic trajectory planning. (i) Four maximum longitudinal limits
of safe lateral lane change trajectory for the ACV are calculated
according to the states and positions of the ACV and SVs. (ii)
According to the relative position of the ACV with respect to the
SVs, the four maximum longitudinal limits are conditionally
activated. (iii) The real-time trajectory reference of lateral lane
change is obtained by optimising the designed objective function,
within the real-time longitudinal limits. In the trajectory tracking
module, the real-time desired lateral displacement and yaw angle
are obtained through previewing the real-time optimal trajectory.
The control algorithm is designed based on an LPV model to deal
with the velocity change of the ACV. The feed-forward of
trajectory preview is combined with the feedback of real-time
states in the control design. The linear quadratic regulator (LQR)
classical optimal control algorithm is used to configure the gain-
scheduled controller. The steering angle and additional moment
determined by the controller are transformed into the
corresponding steering wheel angle and wheel cylinder pressure
through a corresponding inverse model. Finally, the steering wheel
angle and wheel cylinder pressure are applied to the virtual vehicle
to achieve the ACV lateral lane change.

In the sequel, the detailed designs of the trajectory planning and
tracking modules are described.

3.1 Dynamic trajectory planning of lateral lane change

The task of dynamic trajectory planning is to obtain the real-time
optimal trajectory for lateral lane change of the ACV under
complex traffic environment according to the dynamic change of
the external environment and the states of the ACV. The module of
dynamic trajectory planning is shown in Fig. 3 in detail. As shown
in the flowchart, the modular of dynamic trajectory planning is
divided into three sub-modules, namely the maximum longitudinal
limits calculation, the decision of real-time limits and the real-time
trajectory optimisation.

As shown in Fig. 4, the complex traffic system is composed of
the ACV and other four SVs to represent the actual traffic
environment. The trajectory of lateral lane change for the ACV is
constrained by the four SVs. For each SV, the maximum safe
longitudinal limit of the lateral lane changing trajectory is
determined to guarantee that the ACV does not collide with the SV.
As lateral lane change of the ACV proceeds, the real-time limit of
lane changing trajectory is dynamically determined by synthesising
the four maximum safe longitudinal limits. Finally, the real-time
optimal lane change trajectory is obtained by maximising the lane
change efficiency, the passenger comfort and the stability of the
ACV within the real-time limit. In Fig. 4, the vehicles with the
black solid line are the vehicles at the start time of the lateral lane
change. The vehicles with the green solid line are the real-time
vehicles and the vehicles with the purple dashed line are the
vehicles of the predicted time when lateral lane change will be

Fig. 1  Sketch map of 3-DOF simplified model
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completed. There are yellow solid lines, red dotted lines and red
dotted lines which all meet the maximum limit. The real-time
maximum limit is the blue solid lines. Through the optimisation
algorithm, the red solid line is obtained as a real-time optimal
trajectory of the lateral lane change.

3.1.1 Longitudinal limits of the trajectory: To simply and
efficiently generate the dynamic trajectory of lateral lane change
and ensure the lateral velocity to zero when the ACVs enter target
lane, the cosine curve is used as the basic curve for the dynamic

trajectory planning of lateral lane change. The curve function is as
follows [5, 13]:

Yr = Re ∗ Xr
D − Re

2π ∗ sin 2πXr
D (6)

As the lane width is usually fixed, the curve shape is determined by
the longitudinal length D of the curve. According to the real-time
information of the ACV and SVs, such as the velocity, acceleration
etc. the real-time trajectory of lateral lane change can be

Fig. 2  Sketch map of control strategy
 

Fig. 3  Flow chart of real time optimal trajectory planning for lateral lane change
 

Fig. 4  Complex traffic environment of typical lateral lane change for ACVs (the vehicles with the black solid line are the vehicles at the start time, the
vehicles with the green solid line are the real-time vehicles, the vehicles with purple dashed line are the vehicles at the predicted time when lateral lane change
will be completed, the yellow solid lines, red dotted lines and red dotted lines are the trajectories met the maximum limit, the blue solid lines is the real time
maximum limit, the red solid line is the real time optimal trajectory)
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dynamically adjusted by changing the planned longitudinal length
D.

As shown in Fig. 4, the controlled ACV and the four SVs are
used to represent the practical complex traffic environment. The
planned trajectory should guarantee safe distances from the four
SVs. Hence, four constraints are established as follows:

Maximum longitudinal limit determined by the vehicles on the
target lane: The location relationship of the ACVs and the front
vehicle on the target lane (C vehicle) is shown in Fig. 4. The
vehicles with the black solid line are the vehicles at the start time
of the lateral lane change. The vehicles with the green solid line are
the real-time vehicles and the vehicles with the purple dashed line
are the vehicles of the predicted time when the lateral lane change
is completed. The yellow dotted line trajectory is the trajectory
planned before the current moment. The red solid line trajectory is
the maximum longitudinal limit planned in real-time.

The velocity of the ACV can be transformed from the vehicle
coordinate system to the global coordinate system, as

ugx = usxcos ψ − usysin ψ (7)

ugy = usxsin ψ + usycos ψ (8)

The longitudinal driving distance of the ACV from the start
position to real-time position

Dlf1 = ∫gx

u
dt (9)

The longitudinal driving distance of C vehicle from the start
position to real-time position

Dlf2 = ∫ (ulf0 + alft) dt (10)

The predicted driving longitudinal distance of C vehicle from real-
time position to the predicted position where lateral lane change
will be completed can be real-time obtained through assuming that
longitudinal acceleration of C vehicle is constant from real-time
position to the predicted position

Dlf3 = ulfrtlf + 1
2alfr tlf 2 (11)

The longitudinal driving distance of the ACV from real-time
position to the predicted position completed lateral lane change Dlf4

can be obtained through assuming that the longitudinal velocity of
the ACV is constant from real-time position to the predicted
position

Dlf4 = ugxtlf (12)

The velocity of C vehicle at the predicted position where the lateral
lane change ulfc will be completed is given by

ulfc = ulfr + alfrtlf (13)

It is necessary to leave a certain distance to avoid a collision when
the lane changing is completed. The minimum distance is obtained
by decelerating the two vehicles with the maximum deceleration as
follows:

llf = ugx
2

2axmax
− ulfc

2

2axmax
(14)

The maximum limit is reached as the following geometric relation
holds:

Dlf2 + Dlf3 = Dlf1 + Dlf4 + lsa + llf + llfb − Dlf0 (15)

The predicted time tlf can be obtained from (15). Dlf4 can be
obtained based on (12) using tlf. Then, the maximum longitudinal
limits determined by C vehicle Dlf can be obtained, as

Dlf = Dlf1 + Dlf4 (16)

 
Remark 1: as shown in Fig. 5b, the maximum of D relating to

the rear vehicle on the targeted lane, i.e. Dlr, can be calculated
similarly. 

Maximum longitudinal limit determined by the vehicles on the
original lane: The right front point of the ACV is prone to collide
with the front vehicle on the original lane (vehicle E) in the process
of the lateral lane change. Therefore, the maximum longitudinal
limit determined by E vehicle is obtained based on the limit
position of obstacle avoidance determined by the ACV and vehicle
E (see Fig. 5c).

The longitudinal driving distance of the ACV from the start
position to real-time position is

Dzf1 = ∫ gx
u dt (17)

The longitudinal driving distance of E vehicle from the start
position to real-time position is

Dz f 2 = ∫ (uz f 0 + az f t) dt (18)

Assuming that the longitudinal velocity and yaw angle of the ACV
are constant, the longitudinal driving distance of the ACV from
real-time position to predicted limit position of obstacle avoidance
is calculated as

Dzf3 = ugxtzf (19)

Assuming that the longitudinal acceleration of E vehicle is
constant, the longitudinal driving distance of E vehicle from real-
time position to a predicted limit position of obstacle avoidance is

Dzf4 = uzfrtzf + 1
2azf tzf

2 (20)

As shown in Fig. 5c, the angle formed by the right front point and
centroid of the ACV at the limit position is

μ1 = atan lsw/2
lzfa

(21)

The lateral distance between the ACVs and edge of E vehicle is

hzf = (lsw/2)2 + lzfa
2 sin(ψ − μ) (22)

The longitudinal difference between the centroid of the ACV and
the centroid of E vehicle at the limit position is calculated as

Δlzf = Δlfa + Δlzfb = (lsw/2)2 + lzfa
2 cos(ψ − μ1) + Δlzfb (23)

The limit of D is encountered as the following geometric
relationship holds:

Dzf0 + Dzf2 + Dzf4 = Dzf1 + Dzf3 + Δlzf (24)

The predicted time tzf from real-time position to the predicted limit
position of obstacle avoidance can be obtained using (24). Dzf3 can
then be obtained based on (19).

Longitudinal and lateral displacements at the predicted limit
position of obstacle avoidance are calculated respectively, as
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Xzf = Dzf1 + Dzf3 (25)

Yzf = lzfw
2 − hzf (26)

The maximum longitudinal limit determined by E vehicle is
obtained by substituting (25), (26) into (6).
 

Remark 2: As shown in Fig. 5d, the maximum value of D
relating to the rear vehicle on the original lane, i.e. Dzr, can be
calculated similarly.

Fig. 5  Maximum longitudinal length limit of lane change trajectory determined by four SVs
(a) Determined by the front vehicle on the target lane, (b) Determined by the rear vehicle on the target lane, (c) Determined by the front vehicle on the original lane, (d) Determined
by the rear vehicle on the original lane
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3.1.2 Decision module of trajectory limit: Once the four
maximum longitudinal limits are determined, it is necessary for the
real-time to decide which limits should be considered in the
trajectory planning. From Figs. 5c and d, it is seen that the ACV
and the vehicles on the original lane do not collide when the lateral
position of right rear points exceeds the outermost point of the
vehicles on the original lane. The maximum longitudinal limits
determined by the vehicles on the original lane should not be
considered to plan the trajectory of ACVs after this case. In this
case, the trajectory can be planned in a more slack condition. The
judging criterion is formulated as

Yr ≥ lzrw/2 − (lsw/2)2 + lzfa
2 sin(ψ − μ1)

and Yr ≥ (lsw/2)2 + lzrb
2 sin(ψ + μ2) + lzfw/2

(27)

If vehicle states satisfy (27), the real-time longitudinal limit is only
determined by maximum longitudinal limits related to the vehicles
on the target lane, as

Dmax = Min Dlf, Dlr (28)

If vehicle states do not satisfy (27), the real-time longitudinal limit
is determined by the maximum longitudinal limits corresponding to
the four vehicles on both the original and the target lane

Dmax = Min Dlf, Dlr, Dzf, Dzr (29)

3.1.3 Optimal trajectory of lane change: The objective
functions of trajectory planning are designed considering the
efficiency of the lane change, passenger comfort and roll stability,
and is optimised within the real-time longitudinal limits. Thus,
safety is also taken into account in trajectory planning.

The efficiency of lane changing can be characterised by the
time of the lane change process. Whereas, passenger comfort and
roll stability can be quantified by the lateral acceleration. However,
efficiency is mutually contradictory with respect to comfort and
roll stability. Therefore, the optimisation objective function is
designed by balancing the two contradictory factors [16], as

Q = η ay, max

ay, s, max
+ 1 − η

tc
tmax

, 0 ≤ η ≤ 1 (30)

The weights of the two factors can be adjusted by configuring η
The lateral acceleration of the trajectory is formulated as

ay = ρ ∗ ugx
2 (31)

where the curvature of the trajectory for lateral lane change is

ρ = Ÿ r

1 + Ẏ r
2 3/2 (32)

According to (6), Ẏ r and Ÿ r are deduced, respectively, as

Ẏ r = Re
D − Re

D cos 2πXr
D (33)

Ÿ r = 2πRe
D2 sin 2πXr

D (34)

It is assumed that the real-time velocity ugx is constant after the
current time. The cost of time for lateral lane change is

tc = tp + D − Xr
ugx

(35)

The optimal longitudinal length of lane change trajectory is
obtained by minimising the objective function defined in (30)

within the previously acquired constraints. The optimal real-time
trajectory of lateral lane change can further be obtained using (6).

3.2 Tracking control of dynamic trajectory

To achieve the good effect of lateral lane change for ACVs, the
dynamic planned trajectory must be accurately tracked using low
control consumption and maintaining stable vehicle states. In [24,
25], the reference trajectory is fed to the controller through the
multipoint preview operation. The control strategy is then designed
by combining trajectory feed-forward with states feedback to
obtain good effects of the reference trajectory tracking. The
multipoint preview operation realises the human-like trajectory
tracking control with the comfort easily accepted by passengers.
Meanwhile, it is also demonstrated that low control consumption
and stable vehicle states can be achieved with this control strategy
[34].

3.2.1 State equation: The state equation dedicated to DLLC
design is composed of the simplified vehicle model introduced in
Section 2 and two additional equations relating to lateral
displacement and yaw angle

ẋ = Ax + Bu (36)

where

u = [δf ΔM]T

x = β ψ̇ ϕ ϕ̇ Y ψ T

A = M−1G
B = M−1S

with

M =

musx 0 0 −msh 0 0
0 Izz 0 −Ixz 0 0

msusxh Ixz 0 −Ixeq 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

G =

k1 + k2 −musx + ak1

usx
− bk2

usx
0 0 0 0

ak1 − bk2
a2k1 + b2k2

usx
0 0 0 0

0 −msusxh ks − msgh cs 0 0
0 0 0 1 0 0

usx 0 0 0 0 usx

0 1 0 0 0 0

S = −k1 −k1a 0 0 0 0
0 1 0 0 0 0

T

The lateral displacement and yaw angle are incorporated into the
control strategy to lay the necessary foundation for position and
yaw tracking of lane change for ACVs. The state equation of the
control strategy is discretised so that the control strategy can run on
the controller

x k + 1 = Adx k + Bdu k (37)

3.2.2 Enhanced state-space model considering trajectory
preview: The real-time optimal trajectory of lateral lane change is
real-time previewed and multiple previewed points are fed to the
trajectory tracking controller. As shown in Fig. 6, the references of
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longitudinal and lateral displacements can be obtained by the
multi-preview [24, 25, 34].

The transition relationship of longitudinal displacement is

Xr k + 1 = Xr k + ugxT (38)

The lateral displacements is the function of longitudinal
displacement, as

Yr k + 1 = Re ∗ Xr k
D − Re

2π ∗ sin 2πXr k
D (39)

The state equation of lateral displacement is formed using the
lateral displacement of multiple previewed points

Yr k + 1 = DYr k + EYrn k (40)

where

D =

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮
0 0 0 ⋯ 1
0 0 0 ⋯ 0

E =

0
0
⋮
0
1

Yr k = Yr1, Yr2 , …, Yrn]T

The enhanced state-space model is realised combining the state
equation (36) with the feed-forward of trajectory, as

xd k + 1
Yr k + 1

Z k + 1

=
Ad 0
0 D

AZ

x k
Yr k

Z k

+ 0
E
Ez

Yrn k +
Bd

0
Bz

δf k
ΔM
U k

(41)

where Z = β ψ̇ ϕ ϕ̇ Y ψ Yr1 Yr2 ⋯ Yrn
T

The lateral displacement and yaw angle are the characterisation
and determinant of the trajectory, and thus considered as two
control references. In addition, the ACV lateral acceleration should
be reduced as much as possible to improve vehicle stability and
passenger comfort. The lateral acceleration of the ACV

ay = c1A
C

x + c1B
D

δf k
ΔM (42)

where

c1 = usx 0 0 − msh
m 0 usx

The lateral acceleration is discretised as

ay k + 1 = Cdx k + Dd
δf k
ΔM

(43)

The error of lateral displacement

ey = Y − Yr1 (44)

The error of yaw angle

eψ ≃ ψ − ψd = ψ − Yr2 − Yr1

xr2 − xr1
= ψ − Yr2 − Yr1

ugx ∗ T (45)

The output equation of enhanced state-space is composed of the
aforementioned three variables, as

ey k
eψ k
ay k
YZ k

=
Ec

ACd
CZ

x k
Yr k

Z k

+
0
Dd
DZ

δf k
ΔM
U k

(46)

where

Ec =
0 0 0 0 1 0 −1 0 0 ⋯ 0

0 0 0 0 0 1 1
ugx ∗ T − 1

ugx ∗ T 0 ⋯ 0

ACd = Cd 0 0 0 ⋯ 0

3.2.3 LPV model formulation and gain-scheduling controller
design: A matrix polytope can be described as the convex hull of a
finite number of matrices with the same dimensions [33], such as

Co Wi, i = 1, …, j := ∑
i = 1

j
σiWi:σi ≥ 0, ∑

i = 1

j
σi = 1 (47)

An LPV state-space model is written in the following form

ẋ′ = A′ ρ x′ + B′ ρ u′
y′ = C′ ρ x′ + D′ ρ u′ (48)

where A′ ρ , B′ ρ , C′ ρ  and D′ ρ  are matrices of state space and
depend on the time-varying parameter ρ. ρ is in the region formed
by polytope, as

ρ ∈ Θ := Co h1, h2, …, hj (49)

Then, the state-space matrices A′ ρ , B′ ρ , C′ ρ , D′ ρ  can be
written as

A′ ρ B′ ρ
C′ ρ D′ ρ

∈ Co
Ai′ Bi′
Ci′ Di′

=
A′ hi B′ hi

C′ hi D′ hi
, i = 1, …, j

(50)

ACV velocities are usually time-varying in the lateral lane change
process. For instance, if the braking system works to maintain
vehicle stability under the emergency conditions, the ACV
velocities will change during the lateral lane change. In this view,
the LPV model, in which ACV velocity is considered as the time-
varying variable, is used to design the control strategy.

From (41) and (46)), it can be seen that the longitudinal velocity
usx and its reciprocal 1/usx are time-varying in umin, umax  and
1/umax, 1/umin  [31]. The convex tetrahedron is defined including all

possible values of uncertain matrices, as follows:

h1 = [umin , 1/umax h2 = [umin , 1/umin

h3 = [umax , 1/umax h4 = [umax , 1/umin
(51)

Fig. 6  Multi-points preview of real time optimal trajectory for lateral lane
change
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Defining the following intermediate variables

ρ̄1 = umax − usx
umax − umin

ρ̄2 = usx − umin

umax − umin

ρ⌣1 = 1/umin − 1/usx
1/umin − 1/uax

ρ⌣2 = 1/usx − 1/umax

1/umin − 1/umax

(52)

the enhanced state-space model shown in (41) and (46) can be
written as

Z k + 1 = ∑
i = 1

4
σiAz hi Z k

+ ∑
i = 1

4
σiBz hi U k + EzY r + 1 k

(53)

and

Yz k = ∑
i = 1

4
σiCz hi Z k + ∑

i = 1

4
σiDz hi U k (54)

where σ1 = ρ̄1ρ
⌣

1, σ2 = ρ̄1ρ
⌣

2, σ3 = ρ̄2ρ
⌣

1, σ4 = ρ̄2ρ
⌣

2
The LQR algorithm, considered as the classical optimal

algorithm, is used to calculate the controller gains. The objective
function of trajectory tracking control is defined as

J = ∑
k = 0

∞
Q Yz k 2 + R(U k )2 (55)

where

Q =
q1 0 0
0 q2 0
0 0 q3

, R = r1 0
0 r2

are the weight coefficients of the controller.
The calculation of the control gains of the four vertexes K hi

can be achieved by solving the Riccati (details can be found in
[35]). Then, the gain-scheduling controller is obtained using

U k = − ∑
i = 1

4
σiK hi ∗ Z k (56)

4 Simulations and hardware-in-loop test
To verify the proposed control strategy, three test conditions are
designed

(i) Constant velocity of SVs.

(ii) Obstacle avoidance with time-varied acceleration and velocity
of SVs.
(iii) Emergency condition with time-varied acceleration and
velocity of SVs.

The performance of the control strategy can be fully demonstrated
in the three conditions. The first two conditions are validated on
the software simulation platform combining Matlab/Simulink and
Trucksim, whereas the last condition is tested on HIL test bench
based on PXI-1042 and built by the Simulink-Trucksim- real-time
system interfaced using Labview. The software simulation platform
using Trucksim and Matlab/Simulink is constructed as follows: the
parameters of ACVs are set and the traffic environment is
constructed by Trucksim. The acceleration and velocity of SVs are
controlled, and the dynamic trajectory planning and tracking are
constructed by the Matlab/Simulink. The information of ACVs
states is real-time delivered to Matlab/Simulink. Based on the
information, the steering angle or brake pressure is determined by
running the proposed control strategy in the Matlab/Simulink. The
determined control values are delivered to Trucksim, and are used
to control the ACVs in the Trucksim. The overview of the HIL test
bench is shown in Fig. 7. 

The key parameters of the ACV are shown in Table 1. 
Note that, in each scenario, once the ACV completes the lane

change, the ACV is controlled to follow the centre line of the target
lane and the length of trajectory no longer changes.

4.1 Simulations and analysis

4.1.1 Condition 1: constant velocity of SVs: The simulation
condition is set as follows: the initial velocity of the ACV equals to
90 km h−1, the initial velocities, longitudinal accelerations and
distances of the front and the rear vehicles on the original lane and
the front and the rear vehicles on the target lane are 36 km h−1,
0 m s−2, 70 m; 156 km h−1, 0 m s−2, 60 m and 72 km h−1, 0 m s−2, 70 
m; 155 km h−1, 0 m s−2, 60 m; respectively. The performance of the
proposed control strategy in normal lateral lane change can be
illustrated in this case.

The simulation results are shown in Figs. 8 and 9. As shown in
Fig. 8a, by carrying on the trajectory optimisation in the whole
lateral lane change process, the longitudinal limits are determined.
Within the longitudinal limits, the optimal longitudinal length can
be acquired by minimising the objective function defined in (30).
The trajectory of the ACV can be planned using the obtained
optimal longitudinal length according to (6).

As shown in Figs. 8c and d, the ACV tracks well the trajectory
reference generated in the trajectory planning phase. The maximum
lateral displacement error of trajectory tracking is 0.05 m,
accounting only for 1.5% of lateral distance.

The handing angle (Ψ) tracking is also an important aspect for a
lateral lane change. According to Figs. 9a and b, the handing angle
of the dynamic reference trajectory can be tracked well by the
proposed control strategy. The maximum error of handing angle is
the 0.07° and the maximum error percentage is 3.4% by

Fig. 7  Overview of the HIL test bench
 

Table 1 Parameters of the ACV
Parameter m, kg I, kg m2 a, m b, m k1, N/rad k2, N/rad
value 7388 38,170 2.995 1.495 208,860 513,650
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calculation. So, the attitude of the ACV can change as the reference
trajectory changes. Meanwhile, the good effect of the handing
angle tracking can also improve the passenger comfort of lateral
lane change for ACVs.

In Figs. 9c and d the handing angle velocity changes smoothly
and the amplitude is small. Yaw stability can, therefore, be
guaranteed. From Fig. 8b, the lateral acceleration is in the range of
±0.5 m s−2 and changes smoothly during the whole process of the
lateral lane change.

4.1.2 Condition 2: obstacle avoidance with a real-time
change of acceleration and velocity of SVs: This situation is
designed to verify the proposed control strategy in the situation that
the ACV first avoids obstacle and then continues the lane change in
the dynamic traffic environment.

The acceleration and velocity of the ACV and the SVs are set as
follows: initial velocity of the ACV equal to 75 km h−1, the initial
velocities and distances of the front and the rear vehicles on the
original lane, and the front and the rear vehicles on the target lane
are 52 km h−1, 35 m; 108 km h−1, 50 m and 65 km h−1, 20 m;
55 km h−1, 150 m; respectively. The real-time changing
accelerations of the SVs are shown in Fig. 10a. 

The longitudinal limits determined by four SVs are shown in
Fig. 10b. The real-time optimal longitudinal length of planning
trajectory for lateral lane change can be divided into two parts. The
front part is before the separation point of the green line and red
line; the rear part is after the separation point. In the front part, the
optimal longitudinal length follows the limit of the front vehicle on
the original lane. This process continues until the separation point.
After that, the ACV will not collide with the vehicles on the
original lane. Only the limits introduced by the vehicles on the
target lane will be considered in trajectory planning.

As shown in Figs. 10c and d, the real-time reference trajectory
can be well tracked smoothly by the proposed control strategy with
small displacement error. The maximum lateral displacement error
of trajectory tracking is 0.06 m and the maximum error percentage
is 1.7%. According to the comparative calculation of the time when
the reference trajectory and controlled trajectory reach to the
maximum values, the delay time is about 30 ms.

In Figs. 11a and b, the proposed control strategy can adjust
quickly to track well the reference of handing angle and the error is
close to zero. Therefore, the obstacle avoidance performance
during the lane change is verified. In Figs. 11c and 11d, the
heading angle velocity and the sideslip angle are within the range
of ±2.3∘ s−1 and ±0.7°, respectively. Therefore, the yaw and roll
stability of vehicle and passenger comfort can be maintained under
the condition.

Meanwhile, to demonstrate the advantages of the proposed
control strategy, the performance comparisons of different control
strategies with multipoint preview and without preview are
conducted in this condition. As shown in Figs. 10c, d, 11a and b,
the performance comparisons indicate whether the tracking is a
displacement tracking or a heading angle tracking, and it also
indicates that the tracking performance with preview is better than
that without preview.

4.2 Verification on the HIL test bench

Considering the high experiment cost, the influence of natural
conditions and the large testing area of real vehicle test, a HIL test
bench was constructed to simulate the fourth test condition in a
quasi-real test environment.

On the HIL test bench, the emergency condition with real-time
changing accelerations and velocities of SVs is simulated. The
condition is set as follows: initial velocity of the ACV is equal to
80 km h−1, the initial velocities and distances of the front and the
rear vehicles on the original lane and the front and the rear vehicles
on the target lane are 18 km h−1, 20 m; 85 km h−1, 30 m; 85 km h−1,
24 m and 57 km h−1, 30 m; respectively. The real-time changing
accelerations of SVs are shown in Fig. 12a. The condition is called
an emergency due to the small space of lateral lane change caused
by SVs.

Fig. 8  Simulation results in condition 1
(a) Trajectory length, (b) Lateral acceleration, (c) Displacement tracking, (d) Error of
displacement

 

Fig. 9  Simulation results in condition 1
(a) Handing angle tracking, (b) Error of handing angle, (c) Heading angle velocity, (d)
Roll angle

 

Fig. 10  Simulation results in condition 2
(a) Longitudinal acceleration, (b) Trajectory length, (c) Displacement tracking, (d)
Error of displacement
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As shown in Fig. 12a, the front vehicle on the original lane
accelerates to expand distance when the ACV is too close to it. The
longitudinal limits of the lane-changing trajectory determined by

the four SVs are shown in Fig. 12b. The real-time optimal
longitudinal length of planning trajectory is illustrated by the red
curve. The curve can be divided into three parts. In the first part,
the optimal trajectory length is obtained respecting the distance
constraints carried by the vehicles of both the original lane and
target lane. In the second and the third parts, the planned trajectory
is constrained only by the positions of the vehicles in the target
lane, as the safe distances from the ACV to the vehicles on the
original lane can always be guaranteed. As shown in the figure, in
the first part, the optimal planned trajectory follows the limit
caused by the front vehicle in the original lane. The front and the
rear vehicles in the target lane constrain the planned trajectory in
the second and third parts, respectively.

To demonstrate the advantages of the proposed control strategy
combining the steering system with braking system for an
emergency condition, the control effect of the presented control
strategy is compared with that of the control strategy with only the
steering system. As shown in Figs. 12c and d, the trajectory
reference can be well tracked using the proposed control strategy.
Small displacement error is guaranteed. The maximum lateral
displacement error is 0.17 m, accounting for the error percentage of
4.8%. Obviously, the control performance of the proposed control
strategy is better than the control strategy only using the steering
system.

According to Figs. 13a and b, the proposed control strategy can
adjust quickly to track well the reference handing angle again and
the error is close to zero. From Figs. 13c and d, the side angle and
roll angle are within the stable range and the fluctuation is small.
The proposed control strategy can cope with the emergency
condition. However, the control performance with only steering
system is not so satisfactory as the proposed one.

The target velocity of the ACV is set to 80 km h−1 at the
beginning. In Fig. 13b, the velocity of the ACV decreases since
there is a needful braking action in the lateral lane change. The
velocity of the ACV increases to the target velocity when the
braking action is disabled. Despite the velocity of the ACV
changes dynamically, the proposed control strategy can also
achieve good control of the lateral lane change. The proposed gain-
scheduling control strategy based on enhanced LPV model is,
therefore, verified to be able to adapt to the dynamic velocity of the
ACV.

5 Conclusion
Control of lateral lane change is one of the key elements of ACV
control. In this work, a DLLC control strategy based on real-time
trajectory planning and LPV-based gain-scheduling trajectory
tracking control is proposed. Different test conditions are designed
to test the proposed strategy. From the results of software
simulations and HIL experiments, it is concluded that

(i) The maximum longitudinal limits of lane change trajectory
determined by the SVs on the original and target lanes are real time
obtained according to the dynamic information like accelerations,
positions and velocities of the ACV and the SVs.
(ii) By solving the constrained optimisation problem, optimal
trajectory planning can be achieved in real-time and complex
traffic environment caused by SVs.
(iii) Precise and stable trajectory tracking control can be realised
thanks to a series of specific designs, including multi-step
trajectory preview, the combination of steering control and braking
control, LPV-based gain-scheduling control design.
(iv) The good performance of the proposed control strategy is
verified in different traffic conditions, from constant velocity to
varied velocity and acceleration of SVs and ACVs, from the
normal DLLC condition to the emergency condition.

The ongoing work is oriented to verify the proposed control
strategy in a real traffic environment.

Fig. 11  Simulation results in condition 2
(a) Handing angle tracking, (b) Error of handing angle, (c) Heading angle velocity, (d)
Sideslip angle

 

Fig. 12  HIL experiment results in condition 3
(a) Longitudinal acceleration, (b) Trajectory length, (c) Displacement tracking, (d)
Error of displacement

 

Fig. 13  HIL experiment results in condition 3
(a) Handing angle tracking, (b) Velocity, (c) Side angle, (d) Roll angle
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