
HAL Id: hal-03597313
https://hal.science/hal-03597313

Preprint submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lanczos-like method for non autonomous linear
ordinary differential equations

P.-L Giscard, Stefano Pozza

To cite this version:
P.-L Giscard, Stefano Pozza. A Lanczos-like method for non autonomous linear ordinary differential
equations. 2022. �hal-03597313�

https://hal.science/hal-03597313
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

A Lanczos-like method for non autonomous

linear ordinary differential equations

Pierre-Louis Giscard1† and Stefano Pozza2,3*†

1Université du Littoral Côte d’Opale, EA2597-LMPA-Laboratoire
de Mathématiques Pures et Appliquées Joseph Liouville, Calais,

France.
2*Charles University, Faculty of Mathematics and Physics,

Prague 8, Czech Republic.
3Associated member of ISTI, CNR, Pisa, Italy, and member of

INdAM-GNCS group, Italy.

*Corresponding author(s). E-mail(s): pozza@karlin.mff.cuni.cz;
Contributing authors: giscard@univ-littoral.fr;

†These authors contributed equally to this work.

Abstract

The time-ordered exponential is defined as the function that solves a
system of coupled first-order linear differential equations with gener-
ally non-constant coefficients. In spite of being at the heart of much
system dynamics, control theory, and model reduction problems, the
time-ordered exponential function remains elusively difficult to evaluate.
The ∗-Lanczos algorithm is a (symbolic) algorithm capable of evaluating
it by producing a tridiagonalization of the original differential system.
In this paper, we explain how the ∗-Lanczos algorithm is built from a
generalization of Krylov subspaces, and we prove crucial properties, such
as the matching moment property. A strategy for its numerical imple-
mentation is also outlined and will be subject of future investigation.

Keywords: Lanczos algorithm, Matrix differential equations, Time-ordered
exponential, Matching moments, Tridiagonal matrices, Ordinary differential
equations

1

Springer Nature 2021 LATEX template

2 A Lanczos-like method for linear ODEs

1 Introduction

Let t′ ≥ t ∈ I ⊆ R be variables–called times for convenience–in an interval I,
and A(t′) be an N ×N time-dependent matrix. For a fixed t (usually t = 0),
the time-ordered exponential of A(t′) is defined as the unique solution U(t′, t)
of the non autonomous system of linear ordinary differential equations

A(t′)U(t′, t) =
d

dt′
U(t′, t), U(t, t) = Id, t′ ≥ t, (1.1)

with Id the identity matrix. Note that t represents the time on which the initial
condition is given, and that the (unusual) notation U(t′, t) will be useful later. If
the matrix A commutes with itself at all times, i.e., A(τ1)A(τ2)−A(τ2)A(τ1) = 0
for all τ1, τ2 ∈ I, then the time-ordered exponential is given by the matrix

exponential U(t′, t) = exp
(∫ t′

t
A(τ) dτ

)
. However, when A does not commute

with itself at all times, the time-ordered exponential has no known explicit
form in terms of A and is rather denoted

U(t′, t) = T exp

(∫ t′

t

A(τ) dτ

)
,

with T the time-ordering operator [1]. This expression, introduced by Dyson
in 1952, is more a notation than an explicit form as the action of the time-
ordering operator is very difficult to evaluate. In particular, U(t′, t) does not
have a Cauchy integral representation, and it cannot be evaluated via ordinary
diagonalization. It is unlikely that a closed form expression for U(t′, t) in terms
of A exists at all since even when A is 2 × 2, U can involve very complicated
special functions [2, 3].

Evaluating time-ordered exponentials is a central question in the field of
system dynamics, in particular in quantum physics where A is the Hamilto-
nian operator. Situations where this operator does not commute with itself are
routinely encountered [4], and the departure of the time-ordered exponential
from a straightforward matrix exponential is responsible for many peculiar
physical effects [5–7]. Further applications are found via differential Lyapunov
and Riccati matrix equations, which frequently appear in control theory, filter
design, and model reduction problems [8–12]. Indeed, the solutions of such
differential equations involve time-ordered exponentials [13–16].

In [17], we introduced a tridiagonal form for the matrix A(t′) from which it
is possible to express a time-ordered exponential via path-sum continued frac-
tions of finite depth. More precisely, the described procedure formulates each
element of a time-ordered exponential in terms of a finite and treatable number
of scalar integro-differential equations. Such a tridiagonal form is obtained by
using the so-called ∗-Lanczos algorithm. The algorithm also appeared in [18]
as the paper’s motivation. Despite being at the core of results in [17] and being
the motivation of [18], the ∗-Lanczos algorithm construction and the proofs

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 3

of related main properties have yet not appeared in a scientific journal. The
present paper aims to solve such a gap in the literature as it constructs the
∗-Lanczos algorithm from a (generalized) Krylov subspace perspective, proves
the related Matching Moment Property, introduces a bound for the approxi-
mation error, and adds further results on the breakdown issue that may affect
the method.

1.1 Existing analytical approaches: Pitfalls and
drawbacks

In spite of the paramount importance of the time-ordered exponential, it is
usually omitted from the literature on matrix functions. Until 2015, only two
families of analytical approaches existed (numerical methods will be discussed
in Section 5). The first one to have been devised relies on Floquet theory
and necessitates A(t′) to be periodic (see, e.g., [4]). This method transforms
Eq. (1.1) into an infinite system of coupled linear differential equations with
constant coefficients. This system is then solved perturbatively at very low
order, as orders higher than 2 or 3 are typically too involved to be treated. The
second method was developed in 1954 by Wilhelm Magnus [19]. It produces
an infinite series of nested commutators of A with itself at different times, the
ordinary matrix exponential of which provides the desired solution U(t′, t).
Magnus series are very much in use nowadays [4], especially because they
guarantee that the approximation to U(t′, t) is unitary in quantum mechanical
calculations [4]. Nevertheless, the Magnus series for U(t′, t) has a small (even
if not so restrictively) convergence domain; see [20] and also [21–25].

In 2015, P.-L. G. et al. proposed a third method to obtain time-ordered
exponentials using graph theory and necessitating only the entries A(t′)k` to
be bounded functions of time [26]. The method formulates any desired entry or
group of entries of U(t′, t) as a branched continued fraction of finite depth and
breadth. It has been succesfully used to solve challenging quantum dynamic
problems, see e.g. [27, 28]. This approach is unconditionally convergent and it
provides exact expressions in terms of a finite number of integrals and Volterra
equations. However, it suffers from a complexity drawback. Indeed, it requires
one to find all the simple cycles and simple paths of a certain graph G. These
are the walks on G which are not self-intersecting. Unfortunately, the problem
of enumerating such walks is #P-complete [29], hindering the determination of
exact solutions in large systems that must be treated using a further property
of analytical path-sums called scale-invariance [28]. The present work with
the results in [17, 18] solve this issue with a numerical outlook, by effectively
mapping the dynamical graph G on a structurally simpler graph with well-
chosen time-dependent edge weights. On this graph, the path-sum solution
takes the form of an ordinary, finite, continued fraction.

Springer Nature 2021 LATEX template

4 A Lanczos-like method for linear ODEs

1.2 The non-Hermitian Lanczos algorithm: Background

Consider the simpler case in which A is not time-dependent. The solution
of (1.1) is given by the matrix function exp(A(t′ − t)) which can be numeri-
cally approximated in several different ways (see, e.g., [30–32]). One possible
method is the (non-Hermitian) Lanczos algorithm. Computing the (k, `) ele-
ment of exp(A) is equivalent to computing the bilinear form eHk exp(A) e`, with
ek, e` vectors from the canonical Euclidean basis, and eHk the usual Hermitian
transpose (here it coincides with the transpose since the vector is real). The
non-Hermitian Lanczos algorithm (e.g., [33–36]) gives, when no breakdown
occurs, the matrices

Vn = [v0, . . . ,vn−1], Wn = [w0, . . . ,wn−1],

whose columns are biorthonormal bases respectively for the Krylov subspaces

span{e`,A e`, . . . ,A
n−1 e`}, span{ek,AHek, . . . , (A

H)n−1 ek}.

Note that for A Hermitian and k = ` we can equivalently use the Hermi-
tian Lanczos algorithm (getting Vn = Wn). The so-called (complex) Jacobi
matrix Jn is the tridiagonal symmetric matrix with generally complex elements
obtained by

Jn = WH
n AVn.

As described in [35], we can use the approximation

eHk exp(A)e` ≈ eH1 exp(Jn)e1, (1.2)

which relies on the so-called matching moment property, i.e.,

eHk (A)je` = eH1 (Jn)je1, j = 0, 1, . . . , 2n− 1; (1.3)

see, e.g., [35, 36] for the Hermitian case, and [37, 38] for the non-Hermitian
one. The approximation (1.2) is a model reduction in two senses. First, the
size of A is much larger than n – the size of Jn. Second, the structure of the
matrix Jn is much simpler since it is tridiagonal. From a graph perspective,
looking at A and Jn as adjacency matrices of, respectively, the graphs G and
Hn, the possibly very complicated structure of G is reduced to the path (with
self-loops) Hn. In this framework, Property (1.3) shows that the weighted
number of walks in G of length j from the node k to the node ` is equal to the
weighted number of closed walks of length j in Hn passing through the node
1, for j = 0, 1, . . . , 2n− 1; see, e.g., [39, 40].

Given a matrix A with size N , the Lanczos algorithm can be used as a
method for its tridiagonalization (see, e.g., [41]). Assuming no breakdown, the
Nth iteration of the non-Hermitian Lanczos with input the matrix A and a cou-
ple of vectors v,w produces the tridiagonal matrix JN , and the biorthogonal

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 5

square matrices VN ,WN so that

Aj = VN (JN)jWH
N , j = 0, 1, . . . , (1.4)

giving the exact expression

exp(A) = VN exp(JN)WH
N . (1.5)

Theorem 2.3 which we prove in this work extends this result to time-ordered
exponentials.

The Lanczos approximation (1.2) is connected with several further top-
ics, such as (formal) orthogonal polynomials, Gauss quadrature, continued
fractions, the moment problem, and many others. Information about these
connections and references to the related rich and vast literature can be found,
e.g., in the monographs [35, 36, 42] and the surveys [37, 38].

Inspired by approximation (1.2), the ∗-Lanczos algorithm produces a model
reduction of a time-ordered exponential by providing a time-dependent tridiag-
onal matrix Tn satisfying properties analogous to the ones described above [17].
Differently from the classical case, the ∗-Lanczos algorithm works on vector
distribution subspaces and it has to deal with a non-commutative product.

The time-dependent framework in which the proposed method works is
much more complicated than the (time-independent) Krylov subspace approx-
imation given by the (classical) Lanczos algorithm. In this paper, we will not
deal with the behavior of the ∗-Lanczos algorithm considering approximations
and finite-precision arithmetic problems.

1.3 Outline

The work is organized as follows: In Section 2, we build the ∗-Lanczos
algorithm. The algorithm relies on a non-commutative ∗-product between gen-
eralized functions of two-time variables, which we describe in Section 2.1. Then,
in Section 2.2, we state the main result, Theorem 2.2, which underpins the
Lanczos-like procedure. The Theorem establishes that the first 2n ∗-moments
of a certain tridiagonal matrix Tn match the corresponding ∗-moments of
the original matrix A. Theorem 2.2 is proved with the tools developed in
the subsequent Subsection 2.3. Section 3 is devoted to the convergence and
breakdown properties of the algorithm, while examples of its use are given in
Section 4. In Section 5 we outline a way to implement the Lanczos-like proce-
dure numerically and we evaluate its computational cost. Section 6 concludes
the paper.

Springer Nature 2021 LATEX template

6 A Lanczos-like method for linear ODEs

2 The ∗-Lanczos Algorithm

2.1 The ∗-product and ∗-moments

In this section, we recall and complement with further properties and examples,
the product introduced in [18, Section 1.2].

Let t and t′ be two real variables. We consider the class D(I) of all distri-
butions which are linear superpositions of Heaviside theta functions and Dirac
delta derivatives with smooth coefficients over I2. That is, a distribution d is
in D(I) if and only if it can be written as

d(t′, t) = d̃(t′, t)Θ(t′ − t) +

N∑
i=0

d̃i(t
′, t)δ(i)(t′ − t), (2.1)

where N ∈ N is finite, Θ(·) stands for the Heaviside theta function (with
the convention Θ(0) = 1) and δ(i)(·) is the ith derivative of the Dirac delta
distribution δ = δ(0). Here and from now on, a tilde over a function (e.g.,

d̃(t′, t)) indicates that it is an ordinary function smooth in both t′ ∈ I and
t ∈ I. Note that we consider distributions as defined by Schwartz ([43, 44]).
Hence a distribution f ∈ D(I) should be interpreted as a linear functional
applied to test functions.

We can endow the class D(I) with a non-commutative algebraic structure
upon defining a product between its elements. For f1, f2 ∈ D(I) we define the
convolution-like ∗ product between f1(t′, t) and f2(t′, t) as

(
f2 ∗ f1

)
(t′, t) :=

∫ ∞
−∞

f2(t′, τ)f1(τ, t) dτ, (2.2)

that has as identity element the Dirac delta distribution, 1∗ := δ(t′− t). When
f(t′, t) = f(t′− t) has bounded supporting set, the ∗-product f ∗ g (and g ∗ f)
is equivalent to the convolution product for distributions defined by Schwartz
([43, S 11] and [44, Chapter VI]). Since δ(i)(t′−t) has bounded supporting set,
given f ∈ D(I), the ∗-product δ(i)(t′− t)∗f and f ∗ δ(i)(t′− t) are well-defined
and are both elements of D(I); see [18] for further details. Moreover, it holds

δ(i)(t′ − t) ∗ δ(j)(t′ − t) = δ(j)(t′ − t) ∗ δ(i)(t′ − t) = δ(i+j)(t′ − t);
Θ(t′ − t) ∗ δ′(t′ − t) = δ′(t′ − t) ∗Θ(t′ − t) = δ(t′ − t).

Consider the subclass SmΘ(I) of D(I) comprising those distributions of the
form

f(t′, t) = f̃(t′, t)Θ(t′ − t). (2.3)

For f1, f2 ∈ SmΘ(I), the ∗-product between f1, f2 simplifies to

(
f2 ∗ f1

)
(t′, t) =

∫ ∞
−∞

f̃2(t′, τ)f̃1(τ, t)Θ(t′ − τ)Θ(τ − t) dτ,

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 7

= Θ(t′ − t)
∫ t′

t

f̃2(t′, τ)f̃1(τ, t) dτ,

which makes calculations involving such functions easier to carry out and shows
that SmΘ(I) is closed under ∗-multiplication. Together with the arguments
above, this proves that D(I) is closed under ∗-multiplication. Hence, for f ∈
D(I), we can define its kth ∗-power f∗k as the k ∗-products f ∗f ∗ · · · ∗f , with
the convention f∗0 = δ(t′ − t). First examples of ∗-powers are

Θ∗k(t′ − t) =
(t′ − t)k−1

(k − 1)!
Θ(t′ − t); (2.4)(

δ(j)(t′ − t)
)∗k

= δ(kj)(t′ − t). (2.5)

Note that, for members of SmΘ(I), the ∗-product reduces exactly to the
Volterra composition, a product between smooth functions of two-variables
developed by Volterra and Pérès [45]. Volterra composition in the form above
has seen little use since the 1950s because of perceived defects, such as the
lack of identity element, which find remedies in the theory of distributions.

We illustrate the ∗-product behavior with the following example.

Example 2.1 Let f(t′, t) = f̃(t′, t)Θ(t′ − t) = 2 sin(t′)tΘ(t′ − t). Then(
f ∗Θ(t′ − t)

)
(t′, t) =

∫ t′

t
2 sin(t′)τ dτ = sin(t′)(t′2 − t2)Θ(t′ − t),

is the integral of f̃ with respect to t, while(
Θ(t′ − t) ∗ f

)
(t′, t) =

∫ t′

t
2 sin(τ)tdτ = 2t

(
cos(t)− cos(t′)

)
Θ(t′ − t),

is the integral of f̃ with respect to t′. On the other hand, the ∗-products(
f ∗ δ′(t′ − t)

)
(t′, t) =

∫ +∞

−∞
2 sin(t′)τ Θ(t′ − τ)δ′(τ − t) dτ

= −2 sin(t′)Θ(t′ − t) + 2 sin(t′)t′ δ(t′ − t);(
δ′(t′ − t) ∗ f

)
(t′, t) =

∫ +∞

−∞
2 sin(τ)tΘ(τ − t)δ′(t′ − τ) dτ

= 2 cos(t′)tΘ(t′ − t) + 2 sin(t)t δ(t′ − t);

are derived by the formulas(
f ∗ δ′(t′ − t)

)
(t′, t) = −

(
∂

∂t
f̃(t′, t)

)
Θ(t′ − t) + f̃(t′, t′)δ(t′ − t);

(
δ′(t′ − t) ∗ f

)
(t′, t) =

(
∂

∂t′
f̃(t′, t)

)
Θ(t′ − t) + f̃(t, t)δ(t′ − t);

see [18, 44]. From here, one can verify that(
f ∗ δ′(t′ − t)

)
∗Θ(t′ − t) = f, Θ(t′ − t) ∗

(
δ′(t′ − t) ∗ f

)
= f.

Springer Nature 2021 LATEX template

8 A Lanczos-like method for linear ODEs

We will not discuss any further the ∗-product by a Dirac delta deriva-
tive since it would bring us too far from the paper’s goals. More details and
examples can be found in [18].

The ∗-product extends directly to distributions of D(I) whose smooth
coefficients depend on less than two variables. Indeed, consider a generalized
function f3(t′, t) = f̃3(t′)δ(i)(t′ − t) with i ≥ −1 and δ(−1) = Θ. Then

(
f3 ∗ f1

)
(t′, t) = f̃3(t′)

∫ +∞

−∞
δ(i)(t′ − τ)f1(τ, t) dτ,

(
f1 ∗ f3

)
(t′, t) =

∫ +∞

−∞
f1(t′, τ)f̃3(τ)δ(i)(τ − t) dτ.

where f1(t′, t) is defined as before. Hence the variable of f̃3(t′) is treated as the
left variable of a smooth function of two variables. This observation extends
straightforwardly should f̃3 be constant and, by linearity, to any distribution
of D(I).

The ∗-product also naturally extends to matrices whose entries are distribu-
tions of D(I). Consider two of such matrices A1(t′, t) and A2(t′, t) ∈ D(I)N×N

then (
A2 ∗ A1

)
(t′, t) :=

∫ +∞

−∞
A2(t′, τ)A1(τ, t) dτ,

where the sizes of A1,A2 are compatible for the usual matrix product (here and
in the following, we omit the dependency on t′ and t when it is clear from the
context). As earlier, the ∗-product is associative and distributive with respect
to the addition, but it is non-commutative. The identity element with respect
to this product is now Id∗ := Id 1∗, with Id the identity matrix of appropriate
size.

Given a square matrix A(t′, t) composed of elements from D(I), we define
the k-th matrix ∗-power A∗k as the k ∗-products A ∗ A ∗ · · · ∗ A. In particular,
by (2.4) we get the bound

‖A∗k(t′, t)‖? ≤

 sup
τ≥ρ
τ,ρ∈I

‖A(τ, ρ)‖?


k

(t′ − t)k−1

(k − 1)!
Θ(t′ − t); t′, t ∈ I,

with ‖ · ‖? any induced matrix norm. As a consequence, the ∗-resolvent of
any matrix depending on at most two variables is well defined, as R∗(A) :=
(Id∗ − A)

∗−1
= Id∗+

∑
k≥1 A

∗k exists provided every entry of A is bounded for
all t′, t ∈ I (see [26]). Then

U(t′, t) = Θ(t′ − t) ∗ R∗(A)(t′, t) (2.6)

is the time-ordered exponential of A(t′, t); see [26]. Note that time-ordered
exponentials are usually presented with only one-time variable, corresponding
to U(t) = U(t, 0). Yet, in general U(t′, t) 6= U(t′ − t, 0).

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 9

In the spirit of the Lanczos algorithm, given a time-dependent matrix
A(t′, t), we will construct a matrix Tn(t′, t) of size n ≤ N with a simpler
(tridiagonal) structure and so that, fixing the indexes k, `, it holds(

A∗j(t′, t)
)
k,`

=
(
T∗jn (t′, t)

)
1,1
, for j = 0, . . . , 2n− 1, t′, t ∈ I; (2.7)

compare it with (1.3). In particular, when n = N Property (2.7) stands for
every j ≥ 0, giving

R∗(A)k,` = R∗(TN)1,1.

Hence the solution is given by the path-sum techniques exploiting the fact
that the graph having TN as its adjacency matrix is a path that admits self-
loops. More in general, given time-independent vectors v,w we call the jth
∗-moment of A,v,w the scalar function wH(A∗j(t′, t))v, for j ≥ 0 (note that
when the product is omitted, it stands for the usual matrix-vector product).
Then Property (2.7) is an instance of the more general case

wH(A∗j(t′, t))v = eH1 (T∗jn (t′, t)) e1, for j = 0, . . . , 2n− 1, t′, t ∈ I.

2.2 Building up the ∗-Lanczos process

Given a doubly time-dependent matrix A(t′, t) = Ã(t′)Θ(t′−t) and k+1 scalar
generalized functions α0(t′, t), α1(t′, t), . . . , αk(t′, t) ∈ D(I) which play the role
of the coefficients, we define the matrix ∗-polynomial p(A)(t′, t) of degree k as

p(A)(t′, t) :=

k∑
j=0

(
A∗j ∗ αj

)
(t′, t);

moreover, we define the corresponding dual matrix ∗-polynomial as

pD(A)(t′, t) :=

k∑
j=0

(
ᾱj ∗ (A∗j)

)
(t′, t),

where, in general, d̄ is the conjugated value of d ∈ D(I) and it is defined by

conjugating the functions d̃ and d̃i in (2.1). Let v be a time independent vector,
we can define the set of time-dependent vectors p(A)v, with p a matrix ∗-
polynomial. Such a set is a vector space with respect to the product ∗ and with
scalars αj(t

′, t) (the addition is the usual addition between vectors). Similarly,
given a vector wH not depending on time, we can define the vector space
given by the dual vectors wHpD(A). In particular, we can define the ∗-Krylov
subspaces

Kn(A,v)(t′, t) := { (p(A)v) (t′, t) | p of degree at most n− 1} ,
KDn (A,w)(t′, t) :=

{ (
wHpD(A)

)
(t′, t) | p of degree at most n− 1

}
.

Springer Nature 2021 LATEX template

10 A Lanczos-like method for linear ODEs

The vectors v,Av, . . . ,A∗(n−1)v and wH ,wHA, . . . ,wHA∗(n−1) are bases
respectively for Kn(A,v) and KDn (A,w). We aim to derive ∗-biorthonormal
bases v0, . . . ,vn−1 and wH

0 , . . . ,w
H
n−1 for the ∗-Krylov subspaces, i.e., so that

wH
i ∗ vj = δij 1∗, (2.8)

with δij the Kronecker delta.
Assume that wHv = 1, we can use a non-Hermitian Lanczos like biorthog-

onalization process for the triplet (w,A(t′, t),v). We shall call this method the
∗-Lanczos process. The first vectors of the biorthogonal bases are

v0 = v 1∗, wH
0 = wH1∗,

so that wH
0 ∗ v0 = 1∗. Consider now a vector v̂1 ∈ K2(A,v) given by

v̂1 = A ∗ v0 − v0 ∗ α0 = Av − vα0.

If the vector satisfies the ∗-biorthogonal condition wH
0 ∗ v̂1 = 0, then

α0 = wH
0 ∗ A ∗ v0 = wHAv. (2.9)

Similarly, we get the expression

ŵH
1 = wH

0 ∗ A− α0 ∗wH
0 = wHA− α0w

H ,

with α0 given by (2.9). Hence the ∗-biorthonormal vectors are defined as

v1 = v̂1 ∗ β∗−1
1 , w1 = ŵ1,

with β1 = ŵH
1 ∗ v̂1 and β∗−1

1 its ∗-inverse, i.e., β∗−1
1 ∗β1 = β1 ∗β∗−1

1 = 1∗. We
give sufficient conditions for the existence of such ∗-inverses below. Assume
now that we have the ∗-biorthonormal bases v0, . . . ,vn−1 and wH

0 , . . . ,w
H
n−1.

Then we can build the vector

v̂n = A ∗ vn−1 −
n−1∑
i=0

vi ∗ γi,

where the γi are determined by the condition wH
j ∗ v̂n = δjn1∗, for j =

0, . . . , n− 1, giving

γj = wH
j ∗ A ∗ vn−1, j = 0, . . . , n− 1.

In particular, since wH
j ∗ A ∈ KDj+1(A,w) we get γj = 0 for j = 0, . . . , n − 3.

This leads to the following three-term recurrences for n = 1, 2, . . . using the

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 11

convention v−1 = w−1 = 0,

wH
n = wH

n−1 ∗ A− αn−1 ∗wH
n−1 − βn−1 ∗wH

n−2, (2.10a)

vn ∗ βn = A ∗ vn−1 − vn−1 ∗ αn−1 − vn−2, (2.10b)

with the coefficients given by

αn−1 = wH
n−1 ∗ A ∗ vn−1, βn = wH

n ∗ A ∗ vn−1. (2.11)

Should βn not be ∗-invertible, we would get a breakdown in the algorithm,
since it would be impossible to compute vn. We developed a range of general
methods to determine the ∗-inverse of functions of two-time variables which
are gathered in [18]. These methods constructively show the existence of β∗−1

n

almost everywhere on I under the following conditions:

� βn ∈ SmΘ(I);
� βn 6≡ 0 on I2.

Here the last condition means that βn is not identically null over I2. The
question of whether or not all αn, βn ∈ SmΘ(I) was settled affirmatively in
[17]. Let us define

β(1,0)
n (t′, t) :=

∂

∂t
βn(t′, t), t′, t ∈ I.

In [17] we proved that if A(t′, t) = Ã(t′)Θ(t′ − t), composed of elements from

SmΘ(I), and if that β
(1,0)
n (t, t) 6= 0 for every t ∈ I, then the coefficients αn, βn

are in SmΘ(I). The βn are thus ∗-invertible and, furthermore, their ∗-inverses
take on a particular form (see also Theorem 3.1 in Subsection 3.1). Morever

given ρ ∈ I, β
(1,0)
n (ρ, ρ) 6= 0 if and only if the (usual) non-Hermitian Lanczos

algorithm does not breakdown when running on A(ρ),w,v; see [17]. Since
the issue of breakdowns of the ∗-Lanczos algorithm is connected with the
behavior of (usual) Lanczos techniques, we proceed as it is common when
working with the non-Hermitian Lanczos algorithm. Thus, from now on, we

assume all βn to be ∗-invertible and so that β
(1,0)
n (t, t) 6= 0 for every t ∈ I,

while we come back to the issue of breakdowns in Section 3.2

The ∗-orthogonalization process described above defines the ∗-Lanczos
algorithm (Table 1). The reason for this name is that the algorithm resembles
the original Lanczos algorithm. Indeed, if all the inputs were time-independent,
and if we substituted 1∗ with 1 and the ∗ product with the usual matrix-
vector or scalar-vector products, then Algorithm 1 would be mathematically
equivalent to the non-Hermitian Lanczos algorithm.

Springer Nature 2021 LATEX template

12 A Lanczos-like method for linear ODEs

Input: A complex time-dependent matrix A = Ã(t′)Θ(t′−t), and time-independent

complex vectors v,w such that wHv = 1.
Output: Vectors v0, . . . ,vn−1 and vectors w0, . . . ,wn−1 spanning respectively
Kn(A,v), Kn(A,w) and satisfying the ∗-biorthogonality conditions (2.8). The
coefficients α0, . . . , αn−1 and β1, . . . , βn from the recurrences (2.10).

Initialize: v−1 = w−1 = 0, v0 = v 1∗, w
H
0 = wH1∗.

α0 = wHAv,

wH
1 = wHA− α0 w

H ,

v̂1 = Av − v α0,

β1 = wHA∗2 v − α∗20 ,

If β1 is not ∗-invertible, then stop, otherwise,

v1 = v̂1 ∗ β∗−1
1 ,

For n = 2, . . .

αn−1 = wH
n−1 ∗ A ∗ vn−1,

wH
n = wH

n−1 ∗ A− αn−1 ∗wH
n−1 − βn−1 ∗wH

n−2,

v̂n = A ∗ vn−1 − vn−1 ∗ αn−1 − vn−2,

βn = wH
n ∗ A ∗ vn−1,

If βn is not ∗-invertible, then stop, otherwise,

vn = v̂n ∗ β∗−1
n ,

end.

Table 1 ∗-Lanczos algorithm.

Let us define the tridiagonal matrix

Tn :=


α0 1∗

β1 α1
. . .

. . .
. . . 1∗
βn−1 αn−1

 , (2.12)

and the matrices Vn := [v0, . . . ,vn−1] and Wn := [w0, . . . ,wn−1]. Then the
three-term recurrences Eqs. (2.10) read, in matrix form,

A ∗ Vn = Vn ∗ Tn + (vn ∗ βn)eHn ,

WH
n ∗ A = Tn ∗WH

n + enw
H
n .

Hence the tridiagonal matrix (2.12) can be expressed as

Tn = WH
n ∗ A ∗ Vn.

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 13

The following property of Tn is fundamental fot the time-ordered exponen-
tial approximation. We will prove it in the following subsection.

Theorem 2.2 (Matching Moment Property) Let A,w,v and Tn be as described
above, then

wH(A∗j)v = eH1 (T∗jn) e1, for j = 0, . . . , 2n− 1. (2.13)

Consider the time-ordered exponential Un given by the differential equation

Tn(t′, t)Un(t′, t) =
d

dt′
Un(t′, t), Un(t, t) = Id. (2.14)

Theorem 2.2 and Eq. (2.6) justify the use of the approximation

wHU(t′, t)v ≈ eH1 Un(t′, t) e1 = Θ(t′ − t)
∫ t′

t

R∗(Tn)1,1(τ, t) dτ ; (2.15)

see [17]. The system (2.14) can be seen as a reduced order model of the initial
differential Eq. (1.1) from two points of view. First, n may be much smaller
than the size of A; in this sense, in Section 3, we will discuss the convergence
behavior of the approximation using Theorem 2.2. Secondly, looking at A and
Tn as adjacency matrices, A may correspond to a graph with a complex struc-
ture, while Tn corresponds to a very simple graph composed of one path with
possible self-loops. Then the path-sum method gives

R∗(Tn)1,1(t′, t) =
(

1∗−α0−
(
1∗−α1− (1∗− ...)∗−1 ∗β2

)∗−1 ∗β1

)∗−1

, (2.16)

see [26, 46]. This expression is analogous to the one for the first diagonal entry
of the inverse of an ordinary tridiagonal matrix [47] (see also [35, 36] for Jacobi
matrices), except here all operations are taken with respect to the ∗-product.

For n = N , we get

VN ∗WH
N = WH

N ∗ VN = Id 1∗. (2.17)

As a consequence

wH(A∗j)v = eH1 (T∗jN) e1, for j = 0, 1, . . . , (2.18)

and therefore the approximation (2.15) is actually exact. More generally, for
n = N , the ∗-Lanczos algorithm produces the full tridiagonalization of A and
of its time-ordered exponential, in a manner analogous to (1.4) and (1.5); see
[17].

Springer Nature 2021 LATEX template

14 A Lanczos-like method for linear ODEs

Theorem 2.3 Let A,VN ,WN and TN be as described above, then

A∗j = VN ∗ T∗jN ∗W
H
N , j = 0, 1, . . . ,

and thus
R∗(A) = VN ∗ R∗(TN) ∗WH

N .

The theorem follows by using (2.17). Here, any entry ofR∗(TN) is calculable
using a path-sum continued of depth at most N .

Remark 2.4 The Lanczos-like method presented here for the time-ordered exponen-
tial is immediately valid for the ordinary matrix exponential function, since the latter
is obtained from the former in the situation where A commutes with itself at all times,

T e
∫
A(τ) dτ = e

∫ t′
t

A(τ) dτ .

This situation includes the case where A is time-independent, in which case setting
t = 0 and t′ = 1 above yields the matrix exponential of A. However, the ∗-Lanczos
algorithm cannot be considered a generalization of the Lanczos algorithm since its
outputs on constant matrices are made of distributions and time dependent functions.

2.3 Matching ∗-moments through ∗-biorthonormal
polynomials

In order to prove Theorem 2.2, we will exploit the connection between the ∗-
Lanczos algorithm and families of ∗-biorthonormal polynomials. Let us define
the set of ∗-polynomials

P∗ :=

{
p(λ) =

k∑
j=0

λ∗j ∗ γj(t′, t)

}
,

with γj(t
′, t) ∈ D(I). Consider a ∗-sesquilinear form [·, ·] : P∗ × P∗ → D(I),

i.e., so that given p1, p2, q1, q2 ∈ P∗ and α, β ∈ D(I), it satisfies

[q1 ∗ α, p1 ∗ β] = ᾱ ∗ [q1, p1] ∗ β,
[q1 + q2, p1 + p2] = [q1, p1] + [q2, p1] + [q1, p2] + [q2, p2].

From now on we assume that every considered ∗-sesquilinear form [·, ·] also
satisfies

[λ ∗ q, p] = [q, λ ∗ p]. (2.19)

The ∗-sesquilinear form [·, ·] is determined by its ∗-moments defined as

mj(t, t
′) := [λ∗j , 1] = [1, λ∗j], j = 0, 1,

We aim to build sequences of ∗-polynomials p0, p1, . . . and q0, q1, . . . so
that they are ∗-biorthonormal with respect to [·, ·], i.e.,

[qi, pj] = δij1∗, (2.20)

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 15

where the subindex j in pj and qj corresponds to the degree of the ∗-
polynomial. Here and in the following we assume m0 = 1∗, getting p0 = q0 =
1∗. Consider the ∗-polynomial

q1(λ) = λ ∗ q0(λ)− q0(λ) ∗ ᾱ0.

The orthogonality conditions (2.20) give α0 = [λ∗ q0, p0]. Similarly, we get the
∗-polynomial

p1(λ) ∗ β1 = λ ∗ p0(λ)− p0(λ) ∗ α0,

with α0 = [q0, λ ∗ p0], β1 = [q1, λ ∗ p0]. Repeating the ∗-orthogonalization
process, we obtain the three-term recurrences for n = 1, 2, . . .

qn(λ) = λ ∗ qn−1(λ)− qn−1(λ) ∗ ᾱn−1 − qn−2(λ) ∗ β̄n−1 (2.21a)

pn(λ) ∗ βn = λ ∗ pn−1(λ)− pn−1(λ) ∗ αn−1 − pn−2(λ), (2.21b)

with p−1 = q−1 = 0 and

αn−1 = [qn−1, λ ∗ pn−1], βn = [qn, λ ∗ pn−1]. (2.22)

Note that deriving the recurrences needs property (2.19). The ∗-biorthonormal
polynomials p0, . . . , pn and q0, . . . , qn exist under the assumption that
β1, . . . , βn are ∗-invertible.

Let A be a time-dependent matrix, and w,v time-independent vectors such
that wHv = 1. Consider the ∗-sesquilinear form [·, ·] defined by

[q, p] = wH qD(A) ∗ p(A)v.

Assume that there exist ∗-polynomials p0, . . . , pn and q0, . . . , qn ∗-
biorthonormal with respect to [·, ·]. Defining the vectors

vj = pj(A)v, wH
j = wH qDj (A),

and using the recurrences (2.21) gives the ∗-Lanczos recurrences (2.10).
Moreover, the coefficients in (2.22) are the ∗-Lanczos coefficients in (2.11).

Let Tn be a tridiagonal matrix as in (2.12) composed of the coefficients
(2.22) associated with the ∗-sesquilinear form [·, ·]. Then we can define the
∗-sesquilinear form

[q, p]n = eH1 qD(Tn) ∗ p(Tn) e1.

The following lemmas show that

mj = [λ∗j , 1∗] = [λ∗j , 1∗]n, j = 0, . . . , 2n− 1,

proving Theorem 2.2.

Springer Nature 2021 LATEX template

16 A Lanczos-like method for linear ODEs

Lemma 2.5 Let p0, . . . , pn and q0, . . . , qn be ∗-biorthonormal polynomials with
respect to the ∗-sesquilinear form [·, ·]. Assume that the coefficients β1, . . . , βn in
the related recurrences (2.21) are ∗-invertible. Then the ∗-polynomials are also
∗-biorthonormal with respect to the form [·, ·]n defined above.

Proof Consider the vectors yHj = eH1 T∗jn and xj = T∗jn e1. Since the matrix Tn is
tridiagonal, for j = 1, . . . , n− 1, we have

eHi xj = 0, for i ≥ j + 2, and eHj+1xj = βj ∗ · · · ∗ β1,

yHj ei = 0, for i ≥ j + 2, and yHj ej+1 = 1∗ .

By assumption, the product βj ∗ · · · ∗ β1 is ∗-invertible. Therefore there exist ∗-
polynomials p̂0, . . . , p̂n−1 and q̂0, . . . , q̂n−1 so that, for i = 0, . . . , n− 1, we get

1∗e
H
i+1 = eH1 q̂Di (Tn), 1∗ei+1 = p̂i(Tn) e1.

Such ∗-polynomials are ∗-biorthonormal with respect to [·, ·]n since they satisfy

[q̂i, p̂j]n = 1∗e
H
i+1 ∗ 1∗ej+1 = δij1∗.

Moreover, for i = 0, . . . , n − 1, the corresponding recurrence coefficients (2.22) are
the same as the ones of the ∗-polynomials p0, . . . , pn−1 and q0, . . . , qn−1. Indeed,

α̂i−1 = [q̂i−1, λ ∗ p̂i−1]n = eHi−1Tn ei−1 = αi−1,

β̂i = [q̂i, λ ∗ p̂i−1]n = eHi Tnei−1 = βi.

Since p̂0 = p0 = q̂0 = q0 = 1∗, we get p̂i = pi and q̂i = qi for i = 0, . . . , n− 1. �

Lemma 2.6 Let p0, . . . , pn−1 and q0, . . . , qn−1 be ∗-biorthonormal polynomials with
respect to a ∗-sesquilinear form [·, ·]A and to a ∗-sesquilinear form [·, ·]B . If [1∗, 1∗]A =
[1∗, 1∗]B = 1∗, then [λ∗j , 1∗]A = [λ∗j , 1∗]B for j = 0, . . . , 2n− 1.

Proof We prove it by induction. Let mj = [λ∗j , 1∗]A and m̂j = [λ∗j , 1∗]B for j =
0, 1, . . . , 2n− 1. By the expression for the coefficients in (2.22) we get

[q0, λ ∗ p0]A = α0 = [q0, λ ∗ p0]B .

Hence m1 = α0 = m̂1. Assuming mj = m̂j for j = 0, . . . , 2k − 3 we will prove that
m2k−2 = m̂2k−2 and m2k−1 = m̂2k−1, for k = 2, . . . , n. The coefficient expressions
in (2.22) gives

[qk−1, λ ∗ pk−2]A = βk−1 = [qk−1, λ ∗ pk−2]B ,

which can be rewritten as
k−1∑
i=0

k−2∑
j=0

āi ∗mi+j+1 ∗ bj =

k−1∑
i=0

k−2∑
j=0

āi ∗ m̂i+j+1 ∗ bj ,

with ai, bj the coefficients respectively of qk−1 and pk−2. The inductive assumption
implies

āk−1 ∗m2k−2 ∗ bk−2 = āk−1 ∗ m̂2k−2 ∗ bk−2.

The leading coefficients of the ∗-polynomials q2k−2 and p2k−2 are respectively
ak−1 = 1∗ and bk−2 = (βk−2 ∗ · · · ∗ β1)∗−1. Hence m2k−2 = m̂2k−2. Repeating the
same argument with the coefficient αk−1 (2.22) concludes the proof. �

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 17

3 Convergence, breakdown, and related
properties

3.1 The convergence behavior of intermediate
approximations

Assuming no breakdown, the ∗-Lanczos algorithm in conjunction with the
path-sum method converges to the solution wHU(t′, t)v in N iterations, with
N the size of A; see Eq. (2.18). Most importantly, intermediate ∗-Lanczos

iterations provide a sequence of approximations
∫ t′
t
R∗(Tn)1,1(τ, t) dτ , n =

1, . . . , N , whose convergence behavior we analyze hereafter.
As we have already discussed before, under the assumption that all entries

of A are smooth over I and that all the β
(1,0)
j (t, t) 6= 0, for every t ∈ I, all the

αj and βj distributions are elements of SmΘ(I). The proof of this statement is
very long and technical and serves only to establish the theoretical feasibility
of tridigonalization for systems of coupled linear differential equations with
variable coefficients using smooth functions. It was therefore presented in a
separate work. We refer the reader to [17] for a full exposition and proof, while
here we only state some of the main results:

Theorem 3.1 (P.-L. G. and S. P. [17]) Let A(t′, t) = Ã(t′)Θ(t′ − t) be an N × N
matrix composed of elements from SmΘ(I). Let αn−1 and βn be the coefficients gener-
ated by Algorithm 1 running on A and the time-independent vectors w,v (wHv = 1).

For any 1 ≤ n ≤ N , assuming that β
(1,0)
j (t, t) 6= 0 for every t ∈ I, j = 1, . . . , n− 1,

we get βn(t′, t), αn−1(t′, t) ∈ SmΘ(I). In addition, all required ∗-inverses β∗−1
j exist

and are of the form

β∗−1
j = bLj (t′, t) ∗ δ(3)(t′ − t),

with bLj ∈ SmΘ(I).

All bLj have explicit expansions in terms of βj which are given in [17]
but not reproduced here owing to length concerns. When βn 6≡ 0, but

β
(1,0)
n (ρ, ρ) = 0 for some ρ ∈ I, the results of Theorem 3.1 hold if we restrict

the intial interval I to a subinteval J ⊂ I so that ρ /∈ J .

Thanks to these regularity results, we can establish the following bound
for the approximation error:

Proposition 3.2 Let us consider the setting and assumptions of Theorem 3.1. More-
over, let U designate the time-ordered exponential of A and let Tn be the tridiagonal
matrix (2.12) such that

wHA∗jv = (T∗jn)1,1, for j = 0, . . . , 2n− 1.

Then, for t′ ≥ t, with t′, t ∈ I,∣∣∣∣∣wHU(t′, t)v −
∫ t′

t
R∗(Tn)1,1(τ, t) dτ

∣∣∣∣∣ ≤ C2n +D2n
n

(2n)!
(t′ − t)2ne(C+Dn)(t′−t).

Springer Nature 2021 LATEX template

18 A Lanczos-like method for linear ODEs

Here

C := sup
t′∈I
‖A(t′)‖∞, Dn := 3 sup

t′,t∈I2
max

0≤j≤n−1

{
|αj(t′, t)|, |βj(t′, t)|

}
are both finite, with ‖ · ‖∞ the matrix norm induced by the uniform norm..

Proof Assume t′ ≥ t. Observe that

wHU(t′, t)v −
∫ t′

t
R∗(Tn)(τ, t)11 dτ =

∫ t′

t

∞∑
j=2n

wHA∗j(τ, t)v − (T∗jn)1,1(τ, t) dτ,

so that∣∣∣∣∣wHU(t′, t)v −
∫ t′

t
R∗(Tn)(τ, t)11 dτ

∣∣∣∣∣ ≤
∫ t′

t

∞∑
j=2n

∣∣∣wHA∗j(τ, t)v
∣∣∣+
∣∣∣(T∗jn)1,1(τ, t)

∣∣∣ dτ.

Now supt′∈I |wHA(t′)v| ≤ C and∣∣∣∣∣
∫ t′

t
wHA∗j(τ, t)v dτ

∣∣∣∣∣ ≤ Θ(t′ − t) ∗
(
CΘ(t′ − t)

)∗j
= Cj

(t′ − t)j

j!
.

We proceed similarly for the terms involving Tn. Theorem 3.1 implies the existence
of D̂n := supt′,t∈I2 max0≤j≤n−1

{
|αj(t′, t)|, |βj(t′, t)|

}
< +∞. The matrix element

(T∗jn)1,1 is given by the sum of ∗-products of coefficients αi, βi and 1∗. Replacing all

the factors in those ∗-products with D̂nΘ(t′ − t) gives an upper bound for (T∗jn)1,1.
Hence we get∣∣∣∣(T∗jn)1,1

∣∣∣∣ ≤ ((D̂nPnΘ(t′ − t)
)∗j)

1,1

≤ D̂jn‖Pn‖j∞Θ(t′ − t)∗j ,

where Pn is the n× n tridiagonal matrix whose nonzero entries are equal to 1. Note
that ‖Pn‖∞ = 3. Hence the error can be bounded by

∞∑
j=2n

(
Cj +Djn

) (t′ − t)j

j!
≤ (C2n +D2n

n)

2n!
(t′ − t)2n

∞∑
j=0

2n!

(2n+ j)!

(
Cj +Djn

)
(t′ − t)j ,

≤ (C2n +D2n
n)

2n!
(t′ − t)2n

∞∑
j=0

(C +Dn)j(t′ − t)j

j!
,

≤ (C2n +D2n
n)

2n!
(t′ − t)2ne(C+Dn)(t′−t),

concluding the proof. �

Analogously to the classical non-Hermitian Lanczos algorithm, we need to
further assume Dn to be not too large for n ≥ 1 in order to get a meaningful
bound. Such an assumption can be verified a-posteriori. The bound of Propo-
sition 3.2 demonstrates that under reasonable assumptions, the approximation
error has a super-linear decay. Assuming no breakdown, we also recall that the
algorithm does necessarily converge in at most N steps, independently of the
error bound. The computational cost of the algorithm is discussed separately
in Section 5.

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 19

3.2 Breakdown

In the classical non-Hermitian Lanczos algorithm, a breakdown appears either
when an invariant Krylov subspace is produced (lucky breakdown) or when
the last vectors of the biorthogonal bases vn,wn are nonzero, but wH

n vn =
0 (serious breakdown); for further details refer, e.g., to [33, 34, 41, 48–50].
Analogously, in the ∗-Lanczos algorithm 1, a lucky breakdown arises when
either wn ≡ 0 or v̂n ≡ 0. In such a case, the algorithm has converged to the
solution, as the following proposition shows.

Proposition 3.3 Assume that the ∗-Lanczos algorithm in Table 1 does not break-
down until the nth step when a lucky breakdown arises, i.e., v̂n ≡ 0 (or wn ≡ 0).
Then

wH(A∗j)v = eH1 (T∗jn) e1, for j ≥ 0,

wHU(t′, t)v =

∫ t

0
R∗(Tn)1,1(τ, t) dτ.

Proof We prove it for v̂n ≡ 0. The case wn ≡ 0 follows similarly. By the results in
Subsection 2.3, there exists a ∗-polynomial p̂n(λ) =

∑n
j=0 λ

∗j ∗γj , so that p̂n(A)v =
v̂n ≡ 0. Therefore

A∗n v = −
n−1∑
j=0

A∗j v ∗ γj .

Hence, in general, for every k ≥ n there exist a ∗-polynomial rn−1 of degree n − 1
so that A∗k v = rn−1(A)v.

By Theorem 2.2 and using the notation of Subsection 2.3, we get

eH1 q
D
j (Tn) ∗ p̂n(Tn) e1 = wHqDj (A) ∗ p̂n(A)v = 0, j = 0, . . . , n− 1.

As shown in the proof of Lemma 2.5, eH1 q
D
j (Tn) = 1∗e

H
j+1, for j = 0, . . . , n − 1.

Therefore we get p̂n(Tn) e1 = 0. As a consequence, for every k ≥ n we get

(Tn)∗n e1 = −
n−1∑
j=0

(Tn)∗j e1 ∗ γj ,

and thus (Tn)∗k e1 = rn−1 (Tn) e1. Since rn−1 has degree n−1, Theorem 2.2 implies

wHA∗k v = wHrn−1(A)v = eH1 rn−1(Tn) e1 = eH1 (Tn)∗k e1,

concluding the proof. �

The ∗-Lanczos algorithm construction and its polynomial interpretation
in Subsection 2.3 suggest that it may be possible to deal with the serious
breakdown issue by a look-ahead strategy analogous to the one for the non-
Hermitian Lanczos algorithm; see, e.g., [33, 34, 41, 48–53]. Nevertheless, we
need to discuss the particular case of serious breakdowns arising when w = ei
and v = ej . If i 6= j, then wHv = 0, which does not satisfy the ∗-Lanczos
assumption. Moreover, if i = j and A is a sparse non-Hermitian matrix, then
it may be possible that Aii ≡ 0 and A∗2ii ≡ 0. As a consequence, we get

Springer Nature 2021 LATEX template

20 A Lanczos-like method for linear ODEs

β1 ≡ 0. We can try to fix these problems rewriting the approximation of the
time-ordered exponential U as

eHi Uej = (e + ei)
HUej − eHUej ,

with e = (1, . . . , 1)H . Then one can approximate (e + ei)
HU ej and eHU ej

separately, which are less likely going to have a breakdown, thanks to the fact
that e is a full vector; see, e.g., [35, Section 7.3].

4 Examples

In this section, we use the ∗-Lanczos algorithm 1 on examples in ascend-
ing order of difficulty. All the computations have been performed using
Mathematica 11.

Example 4.1 (Ordinary matrix exponential) Let us first consider a constant matrix

A =

−1 1 1
1 0 1
1 1 −1

 .

Because A commutes with itself at all times, its time-ordered exponential coincides

with its ordinary exponential, T e
∫
A(τ) dτ ≡ eA(t′) (we set t = 0). Note that the

matrix chosen here is symmetric only to lead to concise expressions suitable for
presentation in an article, e.g.,(

eAt
′)

11
= −1

2
sinh(2t′) +

1

2
cosh(2t′) +

1

2
cosh

(√
2t′
)
, (4.1)

and that such symmetries are not a requirement of the ∗-Lanczos approach.
Now let us find the result of Eq. (4.1) with Algorithm 1. We define w := vH :=

(1, 0, 0), w0 = w1∗, v0 = v1∗, from which it follows that α0(t′, t) = −1 × Θ(t′ − t)
and w1 = v̂H1 = (0, 1, 1)Θ(t′ − t). Furthermore, since A is a constant matrix times
Θ(t′ − t), we have A∗n = Ãn ×Θ(t′ − t)∗n = Ã× (t′ − t)n−1/(n− 1)!×Θ(t′ − t) and
similarly α∗20 (t′, t) = α̃2

0 × (t′ − t)Θ(t′ − t). Thus

β1 = wHA2v × (t′ − t)Θ(t′ − t)− α̃2
0(t′ − t)Θ(t′ − t) = 2(t′ − t)Θ(t′ − t).

The ∗-inverse follows as β∗−1 = 1
2δ
′′ [18], from which we get

v1 = v̂1 ∗ β∗−1
1 = (0, 1, 1)H

1

2
δ′(t′ − t),

Now it follows that

α1(t′, t) = w1 ∗ A ∗ v1 =
1

2
Θ(t− t′),

w2(t′, t) = w1 ∗ A− α1 ∗w1 − β1 ∗w0 = (0, 1,−1)
1

2
(t′ − t)Θ(t′ − t),

v̂2(t′, t) = A ∗ v1 − v1 ∗ α1 − v0 = (0, 1,−1)H
1

4
δ(t′ − t),

β2 = w2 ∗ A ∗ v1 =
1

4
(t′ − t)Θ(t′ − t).

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 21

Then β∗−1
2 = 4δ′′ and so

v2 = v̂2 ∗ β∗−1
2 = (0, 1,−1)Hδ′′(t′ − t) α2 = w2 ∗ A ∗ v2 = −3

2
Θ(t′ − t).

At this point we have determined the ∗-Lanczos matrices T, V and W entirely

T =

 −Θ δ 0

2Θ∗2 1
2Θ δ

0 1
4Θ∗2 − 3

2Θ

 , V =

δ 0 0

0 1
2δ
′ δ′′

0 1
2δ
′ −δ′′

 , WH =

δ 0 0
0 Θ Θ

0 1
2Θ∗2 − 1

2Θ∗2

 .

In all of these expressions, Θ is a short-hand notation for Θ(t′ − t) and δ, δ′ and
δ′′ are to be evaluated in t′ − t. It is now straightforward to verify the matching
moment property

(
T∗j
)
11

=
(
A∗j
)
11

for all j ∈ N. We can also check directly that
the time-ordered exponential of A is correctly determined from T using either the
general formula of Eq. (2.16) or, because the situation is so simple that all entries
depend only on t′ − t, we may use a Laplace transform with respect to t′ − t. This

gives T(s), and the inverse Laplace-transform of the resolvent
(
I − T(s)

)−1

11
is the

desired quantity. Both procedures give the same result, namely the derivative of eAt

as it should [26], i.e.,

(Id∗ − T)∗−1
11 (t′, 0) =

(
sinh(2t′) +

1√
2

sinh
(√

2t′
)
− cosh(2t′)

)
Θ(t′),

which is indeed the derivative of Eq. (4.1).

Example 4.2 (Time-ordered exponential of a time-dependent matrix) In this exam-
ple, we consider the 5× 5 time-dependent matrix A(t′, t) = Ã(t′)Θ(t′ − t) with

Ã(t′) =


cos(t′) 0 1 2 1

0 cos(t′)− t′ 1− 3t′ t′ 0
0 t′ 2t′ + cos(t′) 0 0
0 1 2t′ + 1 t′ + cos(t′) t′

t′ −t′ − 1 −6t′ − 1 1− 2t′ cos(t′)− 2t′

 .

The matrix Ã does not commute with itself at different times Ã(t′)Ã(t)− Ã(t)Ã(t′) 6=
0, and the corresponding differential system Eq. (1.1) has no known analytical solu-
tion. We use Algorithm 1 to determine the tridiagonal matching moment matrix
T such that

(
A∗j
)
11

=
(
T∗j
)
11

for j ∈ N. We define w := vH := (1, 0, 0, 0, 0),
w0 = w1∗, v0 = v1∗, from which it follows that

α0(t′, t) = cos(t′)Θ(t′ − t),

w1 =
(
0, 0, 1, 2, 1

)
Θ(t′ − t),

v̂1 =
(
0, 0, 0, 0, t′)HΘ(t′ − t),

β1(t′, t) =
1

2

(
t′2 − t2

)
Θ(t′ − t).

Observing that β1 = Θ(t′ − t) ∗ t′Θ(t′ − t), we get β∗−1
1 = 1

t δ
′(t′ − t) ∗ δ′(t′ − t) =

− 1
t2
δ′(t′ − t) + 1

t δ
′′(t′ − t), so that

v1 = v̂1 ∗ β∗−1
1 =

(
0, 0, 0, 0, 1

)H
δ′(t′ − t),

which terminates the initialization phase of the Algorithm. We proceed with

α1(t′, t) = w1 ∗ A ∗ v1 = cos(t)Θ(t′ − t),

Springer Nature 2021 LATEX template

22 A Lanczos-like method for linear ODEs

w2 = w1 ∗ A− α1 ∗w1 − β1 ∗w0,

=
(
0, t′ − t, t′ − t, t′ − t, 0

)
Θ(t′ − t),

v̂2 = A ∗ v1 − v1 ∗ α1 − v0 =
(
0, 0, 0, t, −2t

)H
δ(t′ − t),

β2 = w2 ∗ A ∗ v1 = t(t′ − t)Θ(t′ − t).

As we did for β1, we factorize β2 = Θ(t′ − t) ∗ tΘ(t′ − t) so that its ∗-inverse is
β∗−1

2 = 1
t′ δ
′(t′ − t) ∗ δ′(t′ − t) = 1

t′ δ
′′. Then

v2 =
(
0, 0, 0, 1, −2

)H
δ′′(t′ − t).

Continuing in this fashion yields the tridiagonal output matrix T5 ≡ T,

T=


cos(t′)Θ δ 0 0 0

1
2 (t′2−t2)Θ cos(t)Θ δ 0 0

0 t(t′−t)Θ α̃2(t′, t)Θ δ 0

0 0 − 1
2 (3t2−4tt′+t′2)Θ α̃3(t′, t)Θ δ

0 0 0 (−2t2+3tt′−t′2)Θ α̃4(t′, t)Θ

,
with

α̃2(t′, t) = (t′ − t) sin(t) + cos(t),

α̃3(t′, t) =
1

2

(
4(t′ − t) sin(t)−

(
(t− t′)2 − 2

))
cos(t),

α̃4(t′, t) =
1

6

((
(t− t′)2 − 18

)
(t− t′) sin(t) +

(
6− 9(t− t′)2

)
cos(t)

)
,

and the bases matrices

V5 =


δ 0 0 0 0

0 0 0 δ(3) −2δ(4)

0 0 0 0 δ(4)

0 0 δ′′ −δ(3) δ(4)

0 δ′ −2δ′′ 2δ(3) −3δ(4)

 , WH
5 =


δ 0 0 0 0
0 0 Θ 2Θ Θ

0 Θ∗2 Θ∗2 Θ∗2 0

0 Θ∗3 2Θ∗3 0 0

0 0 Θ∗4 0 0

 .

In all of these expressions, Θ and δ(n) are short-hand notations respectively for
Θ(t′ − t) and δ(n)(t′ − t). All the required β∗−1

j were calculated using the strategies

described in [18], getting the factorized ∗-inverses

β∗−1
3 =

1

t
Θ(t′ − t) ∗ δ(3)(t′ − t), β∗−1

4 =
t′

t2
Θ(t′ − t) ∗ δ(3)(t′ − t).

We have also verified that
(
A∗j
)
11

=
(
T∗j
)
11

holds for j up to 9. The ∗-resolvent
of T has no closed-form expression, its Neumann series likely converging to a hith-
erto undefined special function. Ultimately, such difficulties are connected with
the propensity of systems of coupled linear ordinary differential equations with
non-constant coefficients to produce transcendent solutions.

5 Outlook: Numerical implementation

We do not expect closed-forms to exist in most cases for the entries of time-
ordered matrix exponentials as these can involve complicated special functions
[2]. Also, very large matrices A(t′) are to be treatable by the algorithm for it
to be relevant to most applications. For these reasons, it is fundamental to

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 23

implement the ∗-Lanczos algorithm numerically, e.g., using time discretization
approximations.

As shown in [26], there exists an isometry Φ between the algebra of distribu-
tions of D(I) equipped with the ∗-product and the algebra of time-continuous
operators (for which the time variables t′ and t serve as line and row indices).
Consider, for simplicity, a discretization of the interval I with constant time
step ∆t; then these operators become ordinary matrices. Specifically, given
f, g ∈ SmΘ(I), their discretization counterparts are the lower triangular matri-
ces F,G. Moreover, the function f ∗ g corresponds to the matrix FG∆t, with
the usual matrix product. In other terms, the isometry Φ followed by a time
discretization sends the ∗-product to the ordinary matrix product times ∆t.
Similarly, the Dirac delta distribution is sent to the identity matrix times
1/(∆t), the kth Dirac delta derivative δ(k) is sent to the finite difference matrix

(
Mδ(k)

)
ij

=
1

(∆t)k+1

{
(−1)i−j

(
k
i−j
)
, if i ≥ j

0, else
,

and Θ is sent to the matrix (MΘ)ij = 1 if i ≥ j and 0 otherwise. Most
importantly, in this picture, the ∗-inverse of a function f(t′, t) ∈ D(I) is given
as F−1/(∆t)2, with F the lower triangular matrix corresponding to f . More-
over, the time-discretized version of the path-sum formulation Eq. (2.16) only
involves ordinary matrix resolvents. At the same time, the final integration
of R∗(Tn)11 yielding wHUv becomes a left multiplication by MΘ. Therefore,
a numerical implementation of the time-discretized ∗-Lanczos algorithm only
requires ordinary operations on triangular matrices.

We can now meaningfully evaluate the numerical cost of the time-
discretized version of the algorithm. Let Nt be the number of time subin-
tervals in the discretization of I for both the t and t′ time variables. Then
time-discretized ∗-multiplications or ∗-inversions cost O(N3

t) operations. Con-
sidering a sparse time-dependent matrix A(t) with Nnz nonzero elements, the
∗-Lanczos algorithm therefore necessitates O(Ni × N3

t × Nnz) operations to
obtain the desired wHUv. Here Ni is the number of iterations needed to get
an error lower than a given tolerance. Unfortunately, as well-explained in [36],
the presence of computational errors can slow down the (usual) Lanczos algo-
rithm convergence. Hence, in general, we cannot assume Ni ≈ N since the
∗-Lanczos algorithm could analogously require more iterations. However, in
many cases, the (usual) Lanczos algorithm demands few iterations to reach
the tolerance also in finite precision arithmetic. We expect the ∗-Lanczos algo-
rithm to behave analogously, giving Ni � N in many cases. Concerning Nt,
there is no reason to expect that is would depend on N since Nt controls the
quality of individual generalized functions. We also remark that the ∗-Lanczos
algorithm can exploit the sparsity structure of the matrix A, making it inher-
ently competitive when dealing with large sparse matrices that are typical of
applications.

Springer Nature 2021 LATEX template

24 A Lanczos-like method for linear ODEs

The classical numerical methods (e.g., Runge–Kutta methods) for the
approximation of the system of ODEs (1.1) are known to perform poorly in
certain cases. These include for example, very large system sizes, or in the
presence of highly oscillatory coefficients. Consequently, in the last decades,
novel techniques have been sought and proposed, many of which are based on
the Magnus series; see, for instance, [4, 23, 54–61]. However, for large matrices,
these methods are known to be highly consuming in resources. This motivates
the research of novel approaches in particular for large-scale problems. Here
the guaranteed convergence of the ∗-Lanczos algorithm in a finite number of
iterations, the sequence of approximations it produces, its ability to exploit
matrix sparsity and its relations with numerically well studied Lanczos pro-
cedures are all promising elements which justify further works on concrete
numerical implementations. More precise theoretical results about the over-
all approximation quality and further issues on numerical applications of the
present algorithm are beyond the scope of this work. They will appear together
with a practical implementation of the algorithm in a future contribution.

6 Conclusion

In this work, we constructed the ∗-Lanczos algorithm as a biorthogonaliza-
tion process of Krylov subspaces composed of distributions with respect to
the ∗-product, a convolution-like product. The algorithm relies on a non-
commutative operation and is analogous in spirit to the non-Hermitian Lanczos
algorithm. The ∗-Lanczos algorithm can be used to express the element
of a time-ordered exponential of size N × N by the path-sum continued
fraction (2.16). To our knowledge, such an expression is the only one com-
posed of O(N) scalar integro-differential equations. This approach generates
controllable sequences of time-ordered exponential approximations, offers an
innovative perspective of the connection between numerical linear algebra and
differential calculus, and opens the door to efficient numerical algorithms for
large scale computations.

Acknowledgments. We thank Francesca Arrigo, Des Higham, Jennifer
Pestana, and Francesco Tudisco for their invitation to the University of Strath-
clyde, without which this work would not have come to fruition. The first
author was supported in part by 2019 Alcohol project ANR-19-CE40-0006
and 2020 Magica project ANR-20-CE29-0007. The second author was sup-
ported by Charles University Research programs No. PRIMUS/21/SCI/009
and UNCE/SCI/023.

Declarations

� On behalf of all authors, the corresponding author states that there is no
conflict of interest.

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 25

References

[1] Dyson, F.J.: Divergence of perturbation theory in quantum electrodynam-
ics. Phys. Rev. 85(4), 631–632 (1952). https://doi.org/10.1103/PhysRev.
85.631

[2] Xie, Q., Hai, W.: Analytical results for a monochromatically driven two-
level system. Phys. Rev. A 82, 032117 (2010)

[3] Hortaçsu, M.: Heun functions and some of their applications in physics.
Adv. High Energy Phys. 2018, 8621573 (2018)

[4] Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and
some of its applications. Phys. Rep. 470(5), 151–238 (2009)

[5] Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys.
Rev. 100, 703–722 (1955)

[6] Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian
periodic in time. Phys. Rev. 138, 979–987 (1965)

[7] Lauder, M.A., Knight, P.L., Greenland, P.T.: Pulse-shape effects in
intense-field laser excitation of atoms. Opt. Acta 33(10), 1231–1252
(1986)

[8] Reid, W.T.: Riccati matrix differential equations and non-oscillation cri-
teria for associated linear differential systems. Pacific J. Math. 13(2),
665–685 (1963)

[9] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems vol. 1. Wiley-
interscience, New York (1972)

[10] Corless, M., Frazho, A.: Linear Systems and Control: an Operator Per-
spective. Pure and Applied Mathematics. Marcel Dekker, New York
(2003)

[11] Blanes, S.: High order structure preserving explicit methods for solv-
ing linear-quadratic optimal control problems. Numer. Algorithms 69(2),
271–290 (2015)

[12] Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model Reduction
and Approximation: Theory and Algorithms. Computational Science and
Engineering. SIAM, Philadelphia (2017)

[13] Kučera, V.: A review of the matrix Riccati equation. Kybernetika 9(1),
42–61 (1973)

[14] Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati

https://doi.org/10.1103/PhysRev.85.631
https://doi.org/10.1103/PhysRev.85.631

Springer Nature 2021 LATEX template

26 A Lanczos-like method for linear ODEs

Equations in Control and Systems Theory. Systems & Control: Founda-
tions & Applications. Birkhäuser, Basel (2003)

[15] Hached, M., Jbilou, K.: Numerical solutions to large-scale differential
Lyapunov matrix equations. Numer. Algorithms 79(3), 741–757 (2018)

[16] Kirsten, G., Simoncini, V.: Order reduction methods for solving large-
scale differential matrix Riccati equations. SIAM J. Sci. Comput. 42(4),
2182–2205 (2020). https://doi.org/10.1137/19m1264217

[17] Giscard, P.-L., Pozza, S.: Tridiagonalization of systems of coupled linear
differential equations with variable coefficients by a Lanczos-like method.
Linear Algebra and its Applications 624, 153–173 (2021). https://doi.
org/10.1016/j.laa.2021.04.011

[18] Giscard, P.-L., Pozza, S.: Lanczos-like algorithm for the time-ordered
exponential: The ∗-inverse problem. Appl. Math. 65(6), 807–827 (2020).
https://doi.org/10.21136/am.2020.0342-19

[19] Magnus, W.: On the exponential solution of differential equations for a
linear operator. Comm. Pure Appl. Math. 7(4), 649–673 (1954)

[20] Casas, F.: Sufficient conditions for the convergence of the Magnus expan-
sion. J. Phys. A 40(50), 15001–15017 (2007). https://doi.org/10.1088/
1751-8113/40/50/006

[21] Fel’dman, E.B.: On the convergence of the Magnus expansion for spin
systems in periodic magnetic fields. Phys. Lett. 104A(9), 479–481 (1984)

[22] Maricq, M.M.: Convergence of the Magnus expansion for time dependent
two level systems. J. Chem. Phys. 86(10), 5647–5651 (1987)

[23] Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group
methods. Acta Numer. 9, 215–365 (2000). https://doi.org/10.1017/
S0962492900002154

[24] Moan, P.C., Niesen, J.: Convergence of the Magnus series. Found.
Comput. Math. 8(3), 291–301 (2007). https://doi.org/10.1007/
s10208-007-9010-0

[25] Sánchez, S., Casas, F., Fernández, A.: New analytic approximations based
on the Magnus expansion. J. Math. Chem. 49(8), 1741–1758 (2011)

[26] Giscard, P.-L., Lui, K., Thwaite, S.J., Jaksch, D.: An exact formulation
of the time-ordered exponential using path-sums. J. Math. Phys. 56(5),
053503 (2015)

https://doi.org/10.1137/19m1264217
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.21136/am.2020.0342-19
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1017/S0962492900002154
https://doi.org/10.1017/S0962492900002154
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1007/s10208-007-9010-0

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 27

[27] Balasubramanian, V., DeCross, M., Kar, A., Parrikar, O.: Quantum com-
plexity of time evolution with chaotic Hamiltonians. J. High Energ. Phys.
134 (2020)

[28] Giscard, P.-L., Bonhomme, C.: Dynamics of quantum systems driven by
time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian
and applications to NMR. Phys. Rev. Research 2, 023081 (2020). https:
//doi.org/10.1103/PhysRevResearch.2.023081

[29] J. Flum, M.G.: The parameterized complexity of counting problems.
SIAM J. Comput. 33, 892–922 (2004)

[30] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the expo-
nential of a matrix. SIAM Rev. 20(4), 801–836 (1978)

[31] Moler, C., Van Loan, C.: Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49
(2003)

[32] Higham, N.J.: Functions of Matrices. Theory and Computation, p. 425.
SIAM, Philadelphia (2008)

[33] Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos pro-
cess and related algorithms. I. SIAM J. Matrix Anal. Appl. 13(2), 594–639
(1992)

[34] Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos pro-
cess and related algorithms. II. SIAM J. Matrix Anal. Appl. 15(1), 15–58
(1994)

[35] Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with
Applications. Princeton Ser. Appl. Math., p. 363. Princeton University
Press, Princeton (2010)

[36] Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis.
Numer. Math. Sci. Comput. Oxford University Press, Oxford (2013)

[37] Pozza, S., Pranić, M.S., Strakoš, Z.: Gauss quadrature for quasi-definite
linear functionals. IMA J. Numer. Anal. 37(3), 1468–1495 (2017)

[38] Pozza, S., Pranić, M.S., Strakoš, Z.: The Lanczos algorithm and complex
Gauss quadrature. Electron. Trans. Numer. Anal. 50, 1–19 (2018)

[39] Estrada, E., Rodŕıguez-Velázquez, J.A.: Subgraph centrality in complex
networks. Phys. Rev. E 71, 056103 (2005)

[40] Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of
adjacency matrices. Linear Algebra Appl. 433(3), 637–652 (2010)

https://doi.org/10.1103/PhysRevResearch.2.023081
https://doi.org/10.1103/PhysRevResearch.2.023081

Springer Nature 2021 LATEX template

28 A Lanczos-like method for linear ODEs

[41] Parlett, B.N.: Reduction to tridiagonal form and minimal realizations.
SIAM J. Matrix Anal. Appl. 13(2), 567–593 (1992)

[42] Draux, A.: Polynômes Orthogonaux Formels. Lecture Notes in Math., vol.
974, p. 625. Springer, Berlin (1983)

[43] Halperin, I., Schwartz, L.: Introduction to the Theory of Distributions.
University of Toronto Press, Toronto (19 Feb. 2019). https://doi.org/10.
3138/9781442615151. https://toronto.degruyter.com/view/title/550976

[44] Schwartz, L.: Théorie Des Distributions, Nouvelle édition, entièrement
corrigée, refondue et augmentée edn. Hermann, Paris (1978)

[45] Volterra, V., Pérès, J.: Leçons sur la Composition et les Fonctions
Permutables. Éditions Jacques Gabay, Paris (1928)

[46] Giscard, P.-L., Thwaite, S.J., Jaksch, D.: Walk-sums, continued fractions
and unique factorisation on digraphs. arXiv:1202.5523 [cs.DM] (2012)

[47] Kılıç, E.: Explicit formula for the inverse of a tridiagonal matrix by
backward continued fractions. Appl. Math. Comput. 197(1), 345–357
(2008)

[48] Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. PhD thesis,
University of California, Berkeley (1982)

[49] Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm
for unsymmetric matrices. Math. Comp. 44(169), 105–124 (1985)

[50] Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of
the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J.
Sci. Comput. 14, 137–158 (1993)

[51] Brezinski, C., Redivo Zaglia, M., Sadok, H.: Avoiding breakdown and
near-breakdown in Lanczos type algorithms. Numer. Algorithms 1(3),
261–284 (1991)

[52] Brezinski, C., Redivo Zaglia, M., Sadok, H.: A breakdown-free Lanczos
type algorithm for solving linear systems. Numer. Math. 63(1), 29–38
(1992)

[53] Pozza, S., Pranić, M.: The Gauss quadrature for general linear functionals,
Lanczos algorithm, and minimal partial realization. Numer. Algor 88,
647–678 (2021). https://doi.org/10.1007/s11075-020-01052-y

[54] Hochbruck, M., Lubich, C.: Exponential integrators for quantum-classical
molecular dynamics. BIT Numer. Math. 39(4), 620–645 (1999). https:
//doi.org/10.1023/A:1022335122807

https://doi.org/10.3138/9781442615151
https://doi.org/10.3138/9781442615151
https://toronto.degruyter.com/view/title/550976
https://doi.org/10.1007/s11075-020-01052-y
https://doi.org/10.1023/A:1022335122807
https://doi.org/10.1023/A:1022335122807

Springer Nature 2021 LATEX template

A Lanczos-like method for linear ODEs 29

[55] Budd, C.J., Iserles, A., Iserles, A., Nørsett, S.P.: On the solution of lin-
ear differential equations in lie groups. Philosophical Transactions of the
Royal Society of London. Series A: Mathematical, Physical and Engineer-
ing Sciences 357(1754), 983–1019 (1999) https://arxiv.org/abs/https://
royalsocietypublishing.org/doi/pdf/10.1098/rsta.1999.0362. https://doi.
org/10.1098/rsta.1999.0362

[56] Iserles, A.: On the global error of discretization methods for highly-
oscillatory ordinary differential equations. BIT Numer. Math. 42(3),
561–599 (2002). https://doi.org/10.1023/A:1022049814688

[57] Iserles, A.: On the method of Neumann series for highly oscillatory
equations. BIT Numer. Math. 44(3), 473–488 (2004). https://doi.org/10.
1023/B:BITN.0000046810.25353.95

[58] Degani, I., Schiff, J.: RCMS: Right correction Magnus series approach
for oscillatory ODEs. J. Comput. Appl. Math. 193(2), 413–436 (2006).
https://doi.org/10.1016/j.cam.2005.07.001

[59] Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for
highly oscillatory Hamiltonian systems: A review. In: Mielke, A. (ed.)
Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576.
Springer, Berlin, Heidelberg (2006)

[60] Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for lin-
ear Schrödinger equation in the semiclassical regime with time-dependent
potential. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 472, 20150733 (2016)

[61] Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical
Integration. CRC Press, Bocan Raton, FL (2017)

{https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1999.0362}
{https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1999.0362}
https://doi.org/10.1098/rsta.1999.0362
https://doi.org/10.1098/rsta.1999.0362
https://doi.org/10.1023/A:1022049814688
https://doi.org/10.1023/B:BITN.0000046810.25353.95
https://doi.org/10.1023/B:BITN.0000046810.25353.95
https://doi.org/10.1016/j.cam.2005.07.001

	Introduction
	Existing analytical approaches: Pitfalls and drawbacks
	The non-Hermitian Lanczos algorithm: Background
	Outline

	The -Lanczos Algorithm
	The -product and -moments
	Building up the -Lanczos process
	Matching -moments through *-biorthonormal polynomials

	Convergence, breakdown, and related properties
	The convergence behavior of intermediate approximations
	Breakdown

	Examples
	Outlook: Numerical implementation
	Conclusion
	Acknowledgments

