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We consider a linear Volterra integral equation of the second kind with a sum kernel Kpt 1 , tq " ř i K i pt 1 , tq and give the solution of the equation in terms of solutions of the separate equations with kernels K i , provided these exist. As a corollary, we obtain a novel series representation for the solution with improved convergence properties. We illustrate our results with examples, including the first known Volterra equation solved by Heun's confluent functions. This solves a long-standing problem pertaining to the representation of such functions. The approach presented here has widespread applicability in physics via Volterra equations with degenerate kernels.
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. In this case the desirability of analytical expansions for the solution is 1991 AMS Mathematics subject classification. 45D05; 45A05.

Introduction.

1.1. Context and background. Inhomogenous linear Volterra integral equations of the second kind are equations in an unknown function of two variables f pt 1 , tq given by [START_REF] Angelo | Two-level quantum dynamics, integrability, and unitary not gates[END_REF] f pt 1 , tq " gpt 1 , tq `ż t 1

well as theoretic considerations pertaining to the existence uniqueness and smoothness of the solutions, we refer to [START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF][START_REF] Hackbusch | Integral Equations: Theory and Numerical Treatment[END_REF].

1.2. Standard Neumann series formulation of the solutions.

It is convenient to introduce first a short hand notation for integrals such as the one appearing in Eq. [START_REF] Angelo | Two-level quantum dynamics, integrability, and unitary not gates[END_REF].

Let t and t 1 be two real variables. Let f pt 1 , tq and gpt 1 , tq be timedependent generalized functions of the form f pt 1 , tq " f pt 1 , tqΘpt 1 ´tq `f 0 pt 1 , tqδpt 1 ´tq, gpt 1 , tq " gpt 1 , tqΘpt 1 ´tq `g 0 pt 1 , tqδpt 1 ´tq, with f , f0 , g and g0 are smooth functions in both variables. Here, δpt 1 ´tq is the Dirac delta distribution and Θp¨q designates the Heaviside theta function, with the convention Θp0q " 1. Then we define the convolution-like ˚-product between f pt 1 , tq and gpt 1 , tq as [START_REF] Cerha | A note on Volterra integral equations with degenerate kernel[END_REF] `f ˚g˘p t 1 , tq :"

ż 8
´8 f pt 1 , τ qgpτ, tq dτ, which evaluates to [START_REF] Schwartz | Théorie Des Distributions[END_REF] `f ˚g˘p t 1 , tq " f0 pt, tqg 0 pt, tqδpt 1 ´tqż

t 1 t
f pt 1 , τ qgpτ, tqdτ `f pt 1 , tqg 0 pt 1 , tq `f 0 pt, tqgpt 1 , tq ¸Θpt 1 ´tq.

This definition gives the identity element with respect to the ˚-product as the Dirac delta distribution, thus denoted 1 ˚:" δpt 1 ´tq. As a case of special interest for the theory of Volterra equations, consider the special cases where f pt 1 , tq :" f pt 1 , tqΘpt 1 ´tq and gpt 1 , tq :" gpt 1 , tqΘpt 1 ´tq.

From now on, the tilde notation indicates that f is an ordinary function.

With the objects f and g, the ˚-product evaluates to `f ˚g˘p t 1 , tq " ż 8

´8 f pt 1 , τ qgpτ, tqΘpt 1 ´τ qΘpτ ´tq dτ, " Θpt 1 ´tq ż t 1 t f pt 1 , τ qgpτ, tq dτ, which makes calculations involving such functions easier to carry out, while the form Eq. ( 2) allows a rigorous treatment of calculations involving other distributions such as 1 ˚. In addition, this shows that for functions of the form of f and g above, if t and t 1 belong to a specific interval I Ď R, then the value of pf ˚gqpt 1 , tq depends only on those of f and g over I 2 . This remark is important when considering functions f and g that are unbounded on R 2 but might still be bounded over some a region of interest I 2 . To benefit from this observation, in the following we often require f and g to be bounded over some region of interest I 2 to ensure boundedness of f ˚g over the same region, rather than assume boundedness over R 2 .

The ˚-product is also well defined for functions which depend on less than two variables. Let mpt 1 q be a generalized function that depends on only one time variable and gpt 1 , tq be as above. Then `m ˚g˘p t 1 , tq " mpt 1 q ż `8

´8 gpτ, tq dτ, `g ˚m˘p t 1 , tq "

ż `8
´8 gpt 1 , τ qmpτ q dτ. In other terms, the time variable of mpt 1 q is treated as the left variable of a generalized function depending on two variables. This observation extends straightforwardly to constant functions.

It is well known that linear Volterra equations of the second kind are solvable using Picard-iterations [START_REF] Giacomo | Integral Equations[END_REF][START_REF] Gripenberg | Volterra Integral and Functional Equations[END_REF]. The underlying principle is simple: noting that, in ˚-product notation, the equation takes on the form f " g `K ˚f, for kernels of the type Kpt 1 , tq " Kpt 1 , tqΘpt 1 ´tq, we deduce that f " g `K ˚f " g `K ˚pg `K ˚f q " g `K ˚g `K ˚K ˚f " ¨¨C ontinuing this process yields the Neumann series representation of the solution

(3) f " ˜ÿ ně0 K ˚n¸˚g ,
where K ˚0 " 1 ˚is the Dirac delta distribution. The same solution holds for matrix-valued Volterra integral equations of the second kind, where the generalized functions f , g and K are time-dependent matrices with distributional entries F, G and K " Kpt 1 , tq Θpt 1 ´tq. In physical contexts, this was first uncovered by F. Dyson [4], who called the solution the time-or path-ordered exponential of G. These objects are of fundamental importance in the field of quantum dynamics, the time-ordered exponential of the Hamiltonian operator dictating the evolution of a quantum system driven by time-varying forces. There, the question of solving Eq. ( 1) with separable kernels is crucial [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF].

The solution presented in Eq. ( 3) can also be cast as a ˚-resolvent [START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF][START_REF] Giacomo | Integral Equations[END_REF][START_REF] Gripenberg | Volterra Integral and Functional Equations[END_REF], that is

(4) f " p1 ˚´K q ˚´1 ˚g,
where the inverse is taken with respect to the ˚-product. This follows from the observation that the Neumann series Eq. ( 3) is convergent provided Kpt 1 , tq " Kpt 1 , tqΘpt 1 ´tq is such that Kpt 1 , tq is an ordinary function of the two variables bounded over all compact subintervals of the interval of interest pt 1 , tq P I 2 Ď R 2 . Together with the form of Eq. (3), Eq. ( 4) above shows that the whole difficulty in calculating f " p1 ˚´K q ˚g lies in finding the ˚-resolvent of K, denoted from now on R K :" p1 ˚´K q ˚´1 .

A ˚-resolvent such as R K itself satisfies a linear integral Volterra equation of the second kind with kernel K and inhomogeneity 1 ˚" δpt 1 ´tq, as implied by the usual properties of resolvents. Indeed, since K ˚RK " R K ´1˚, we have

R K " 1 ˚`K ˚RK .
While the Neumann series representation of R K " 1 ˚`K `K˚2 `¨¨ï s guaranteed to exist and converges for kernels K " Kpt 1 , tqΘpt 1 ´tq with Kpt 1 , tq bounded over all compact subintervals of I 2 , the speed of convergence and quality of the analytical approximations obtained by truncating this series can be very poor. Fortunately, generic properties of ˚-resolvents allow exact and systematic re-summations of this series that not only speed-up its convergence but ultimately express R K in terms of the ˚-resolvents R Ki whenever Kpt 1 , tq " ř i Ki pt 1 , tq. This approach is particularly very suited to separable kernels for which Ki pt 1 , tq " ãi pt 1 q bi ptq and thus every R Ki is known exactly. This iteration leads to the formal series,

1 1 ´u ´v " 8 ÿ k"0 puvq k p1 ´uq k p1 ´vq k 1 1 ´u 1 1 ´v .
These observations extend to resolvents with respect to non-commutative products, in particular the ˚-product as we show explicitly below.

Consequences for ˚-resolvents.

Inspired by the procedure presented above, we may now express the ˚-resolvent R K for a kernel K " ř d i"1 K i which is a sum of d kernels K i in terms of R Ki , assuming only that the individual R Ki exist and that the overall kernel K is bounded over all compact subintervals of I 2 . We begin by an explicit statement for ˚-resolvents of the results of the previous section, but this time involving the sum of any number d ě 2 of kernels.

Theorem 2.1 (Sum of ˚-resolvents). Let pt 1 , tq P I 2 be two variables and K i pt 1 , tq " Ki pt 1 , tqΘpt 1 ´tq, i " 1, ¨¨¨, d be d ě 2 kernels such all Ki pt 1 , tq are bounded over all compact subintervals of I 2 . Let K be the corresponding sum kernel K :"

ř d i"1 K i . Then all ˚-resolvents R Ki exist and the ˚-resolvent R K of K satisfies R K " T ˚RK `d i "1 R Ki , (6) 
where T :"

1 ˚´d i "1 R Ki ˚p1 ˚´K q,
and there exist and ordinary function T pt 1 , tq bounded over all compact subintervals of I 2 such that T pt 1 , tq " T pt 1 , tqΘpt 1 ´tq This shows that R K satisfies an inhomogeneous linear Volterra integral equation of the second kind with kernel T and inhomogeneity ˚d i"1 R Ki . Consequently, R K is given by the convergent Neumann series

(7) R K " 8 ÿ k"0 T ˚k ˚d i "1 R Ki ,
where T ˚0 " 1 ˚.

Proof. The result follows from direct algebraic manipulations. With T as defined above we have

T ˚RK " 1 ˚˚R K ´d i "1 R Ki ˚p1 ˚´K q ˚RK but p1 ˚´K q ˚RK " 1 ˚, 1 ˚˚R K " R K and ˚d i"1 R Ki ˚1˚" ˚d i"1 R Ki . Thus T ˚RK " R K ´d i "1 R Ki so that T ˚RK `˚d i"1 R Ki " R K .
To obtain the series representation of R K we perform a Picard iteration, assuming convergence for the time being. Iteratively replacing R K by its expression in Eq.( 6),

R K " T ˚ˆT ˚ˆT ˚p¨¨¨q `d i "1 R Ki ˙`d i "1 R Ki ˙`d i "1 R Ki , " `1˚`T `T ˚2 `T ˚3 `¨¨¨˘d i "1 R Ki .
To prove convergence of the above Neumann series, we first reformulate T so as to show that it is of the form T pt 1 , tqΘpt 1 ´tq by explicitly removing the distribution 1 ˚:

T "

1 ˚´d i "1 R Ki `d i "1 R Ki ˚K, " 1 ˚´d i "1 p1 ˚`K i ˚RKi q `d i "1 R Ki ˚K.
Expanding the above products demonstrates that no isolated 1 ˚remains. Now because all Ki are bounded over all compact subintervals of I 2 , all the Neumann series ř k K ˚k i converge and thus R Ki " 1 ˚`R Ki pt 1 , tqΘpt 1 ´tq with RKi bounded all compact subintervals of I 2 . Since furthermore K " Kpt 1 , tqΘpt 1 ´tq is also bounded, the above result implies that T " T pt 1 , tqΘpt 1 ´tq with T bounded over all compact subintervals of I 2 . We now observe that since Θpt 1 ´tq ˚k " pt 1 ´tq k´1 {pk ´1q! ˆΘpt 1 ´tq, T ˚k is bounded over all compact subintervals of I 2 by C k T pt 1 ´tq k´1 {pk ´1q!, where

C T " sup t 1 ,tPI | T pt 1 , tq|, is a constant that bounds T over I 2 . Thus the Neumann series ř k T ˚k is convergent.
A few remarks are now in order regarding the results of Theorem 2.1:

Remark 2.1. The order in which the individual resolvents R Ki appear in the above products is irrelevant so long as the quantity T is defined correspondingly, i.e. with the same order of the products. Consider an example involving 2 resolvents

K 1 and K 2 . Let R K " p1 ˚´K 1 ´K2 q ˚´1 and T 12 " 1 ˚´R K1 ˚RK2 ˚p1 ˚´K 1 ´K2 q, T 21 " 1 ˚´R K2 ˚RK1 ˚p1 ˚´K 1 ´K2 q.
Then we verify by direct substitution that

R K " T 12 ˚RK `K1 ˚K2 " T 21 ˚RK `K2 ˚K1 .
In general, equally valid formulas are obtained upon permuting the individual resolvents in the theorem results, owing ultimately to the exchange symmetry of the resolvent R K .

Remark 2.2. The quantity T arising in the expansion of the ˚resolvent R K of a sum kernel K " ř d i"1 K i admits many alternative forms that can prove useful in determining bounds on sup t 1 ,tPI 2 |T pt 1 , tq|.

To see this, we first consider an example, that of the sum of three kernels

K " K 1 `K2 `K3 . Then T " 1 ˚´R K3 ˚RK2 ˚RK1 ˚p1 ˚´K 1 ´K2 ´K3 q, " R K3 ˚RK2 ˚RK1 p1 ˚´K 1 q ˚p1 ˚´K 2 q ˚p1 ˚´K 3 q ´1˚`K1 `K2 `K3 ˘, " R K3 ˚RK2 ˚RK1 ˚`K 1 ˚K2 `K1 ˚K3 `K2 ˚K3 ´K1 ˚K2 ˚K3 ˘.
Here, the crux of the proof is to write

1 ˚" R K3 ˚RK2 ˚RK1 ˚p1 ˚Ḱ 1 q ˚p1 ˚´K 2 q ˚p1 ˚´K 3 q.
Of course, we can always do so, which yields the following general expression for the quantity T obtained when expressing the ˚-resolvent of K "

ř d i"1 K i , T " d i "1 R Ki ˚d ÿ n"2 p´1q n ÿ i1ăi2㨨¨ăin K i1 ˚Ki2 ˚¨¨¨˚K in
with the first product understood as

˚d i"1 R Ki " R K d ˚¨¨¨R K2
˚RK1 . An equally valid expression holds upon reversing the orders in the products above, in accordance with Remark 2.1.

The advantages of the theorem's results for calculating ˚-resolvents are as follows: i) They hold for any number of kernels functions in the overall resolvent R K " p1 ˚´K 1 ´K2 ´K3 ´¨¨¨q ˚´1 so long as each is of the form K i pt 1 , tq " Ki pt 1 , tqΘpt 1 ´tq with Ki an ordinary function bounded over all compact subintervals ofI2 ; ii) Solving a Volterra equation with sum kernel only necessitates knowing the ˚-resolvents of the individual kernels K i , a huge advantage in the case of degenerate kernels; iii) The theorem provides a fully explicit series which is a resummed form of the original Neumann series representation of the solution; iv) The theorem yields an improvement of the convergence speed over the original Neumann series especially when one or more kernel K i dominates over the others, see §3.1 and the examples of §4. v) It remains valid should all ordinary functions K1 , K2 , ¨¨¨be time-dependent matrices 2 ;

3. Main result: application to Volterra equations. We may now formulate our general results for the specific purpose of solving linear inhomogenous Volterra equations of the second kind for general sum kernels.

Corollary 3.1. Let I Ď R, pt 1 , tq P I 2 , d P N " t1, 2, 3 ¨¨¨u and Kpt 1 , tq :" 1 ´tq be a sum kernel, in particular all ˚resolvents R Ki must exist. Let gpt 1 , tq be a generalized function that is not identically null over I 2 and let

ř d i"1 Ki pt 1 , tqΘpt
T :" 1 ˚´d i "1 R Ki ˚p1 ˚´K q.
Then the generalized function f , which is solution of the linear Volterra integral equation of the second kind with kernel K and inhomogeneity g, f " g `K ˚f , is given by

f " ˜8 ÿ k"0 T ˚k¸d i "1 R Ki ˚g,
with T ˚0 " 1 ˚. Let f pn´1q be the series as above truncated at order n ´1 ě 0, that is

f pn´1q :" ˜n´1 ÿ k"0 T ˚k¸d i "1 R Ki ˚g
Then, the truncation error is exactly

(8) f ´f pn´1q " T ˚n ˚f.
Proof. For the first statement, observe that R K solves the Volterra equation R K " 1 ˚`K ˚RK . Thus, letting f :" R K ˚g, we have f " p1 ˚`K ˚RK q ˚g " g `K ˚RK ˚g " g `K ˚f , that is f solves the the linear Volterra integral equation of the second kind with kernel K and inhomogeneity g. This observation, together with the form of R K as given by Eq. ( 7) of Theorem 2.1, yields the first result. For the truncation error, we obtain it by direct calculation

T ˚n ˚f " T ˚n ˚8 ÿ k"0 T ˚k d i "1 R Ki ˚g, " 8 ÿ k"n T ˚k d i "1 R Ki ˚g, " ˜8 ÿ k"0 T ˚k ´n´1 ÿ k"0 T ˚k¸d i "1 R Ki ˚g, " f ´f pn´1q .
Corollary 3.1 is especially well suited to separable kernels, for in such cases all R Ki are exactly available. Recall that a separable kernel takes on the form

Kpt 1 , tq " Kpt 1 , tqΘpt 1 ´tq, Kpt 1 , tq " d ÿ i"1 Ki pt 1 , tq, (9) 
with Ki pt 1 , tq :" ãi pt 1 q bi ptq.

Here all ãi pt 1 q and bi ptq ordinary functions of a single time variable. For the sake of simplicity, we assume that all ãi and bi are bounded and smooth over I. Although these conditions can be relaxed following [START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF], they are satisfied in e.g. all quantum physics applications. Now, all ˚-resolvents R Ki :" `1˚´Ki ˘˚´1 are available in closed form. This result is almost certainly already known although we could not locate it in the literature. We provide it here with a proof for the sake of completeness: Proposition 3.1. Let I Ă R and let pt 1 , tq P I 2 be two variables and let gpt 1 , tq be a generalized function of t 1 , t. Let f pt 1 , tq " f pt 1 , tqΘpt 1 ´tq be a function of t 1 , t over I 2 and Kpt 1 , tq :" ãpt 1 q bptqΘpt 1 ´tq. Let α :" ş Kpτ, τ qdτ " ş ãpτ q bpτ qdτ . Then the solution f of the linear Volterra equation of the second kind f " g `K ˚f with kernel K is f pt 1 , tq " gpt 1 , tqà

pt 1 q ż 8
´8 bpτ q exp ˜ż t 1 τ ãpτ 1 q bpτ 1 qdτ 1 ¸Θpt 1 ´τ qgpτ, tq dτ. (10) Remark 3.1. In the (typical) case where g itself takes on the form gpt 1 , tq " gpt 1 , tqΘpt 1 ´tq, in the expression of Eq. ( 10), gpτ, tq can be replaced with gpτ, tq with the outer integral running from t to t 1 . If instead one chooses gpt 1 , tq " δpt 1 ´tq, then the Volterra equation satisfied by f reads f " 1 ˚`K ˚f , that is f is the ˚-resolvent of K, f " R K and Eq. ( 10) simplifies to R K pt 1 , tq " δpt 1 ´tq `ãpt 1 q bptqe αpt 1 q´αptq Θpt 1 ´tq " δpt 1 ´tq `Kpt 1 , tqe αpt 1 q´αptq Θpt 1 ´tq.

In other terms, the ˚-resolvent of a kernel of the form Kpt 1 , tq " ãpt 1 q bptqΘpt 1 ´tq is exactly available in closed form.

Proof. We proceed by induction on the Neumann series f " `řn K ˚n˘˚g . Convergence of this series is guaranteed whenever ã and b are bounded over all compact subintervals of I, however existence of the final form for f is clearly independent from this assumption. In this situation this form can be understood as the analytic continuation of the original Neumann series.

The proposition to be shown is P n :" ! @n P N : K ˚npt 1 , tq " K˚n pt 1 , tqΘpt 1 ´tq with K˚n pt 1 , tq " ãpt 1 q bptq `αpt 1 q ´αptq ˘n´1 ˆ1{pn ´1q!

) .

We have K ˚1 " K, which proves P 1 . Now supposing P n true,

K ˚pn`1q " ż t 1 t Kpt 1 , τ q K˚n pτ, tqdτ Θpt 1 ´tq, " 1 pn ´1q! ãpt 1 q ż t 1 t
ãpτ q bpτ q `αpτ q ´αptq ˘n´1 dτ bptqΘpt 1 ´tq, where the K˚n pτ, tq term contributes both ãpτ q and bptq, while Kpt 1 , τ q gives rise to ãpt 1 q and bpτ q. Since ãpτ q bpτ q " α1 pτ q, we have that K ˚pn`1q pt 1 , tq " K˚pn`1q pt 1 , tqΘpt 1 ´tq with K˚pn`1q pt 1 , tq " 1 pn ´1q! ãpt 1 q bptq ż t 1 t α1 pτ q `αpτ q ´αptq ˘n´1 dτ, " 1 n! ãpt 1 q bptq `αpt 1 q ´αptq ˘n.

This establishes the implication P n ñ P n`1 and since P 1 holds, P n is true for all n P N. Then ř ně0 K ˚n " 1 ˚`K e α with Ke " Ke αΘ and f is obtained upon ˚-multiplying by g from the right.

A considerable number of Volterra equations of important interest fall in the case where the kernel K is separable: this includes the kernels encountered in the celebrated Bloch-Siegert and Autler-Townes effects, or as shown below, for special functions such as the Heun's functions. More generally, the method of path-sums together with the results of Pleshchinskii [START_REF] Pleshchinskii | On the structure of the solutions of volterra integral equations with degenerate kernel[END_REF], show that the dynamics of all quantum systems driven by time-dependent forces can be determined by solely solving linear Volterra integral equation of the second kind with separable kernels.

Following Aristotle who said that "for the things we have to learn before we can do, we learn by doing", it is essential to present examples of applications of the above approach. These are presented in Section 4 in ascending order of difficulty. In the remainder of the present section, we give the convergence analysis of the re-summed series.

Convergence analysis.

Here we suppose all ordinary functions Ki pt 1 , tq appearing in the kernel Kpt 1 , tq :" ř d i"1 Ki pt 1 , tqΘpt 1 ´tq " Kpt 1 , tqΘpt 1 ´tq are bounded over all compact subintervals of I 2 so as to guarantee convergence of the original Neumann series. In addition here we let I " rT, T 1 s to avoid confusion with the two variables t, t 1 P I, and thus |I| " T 1 ´T.

Let f pn´1q N

:" ř n´1 k"0 K ˚k ˚g be the approximation obtained from the truncating the original Neumann series at order n ´1, n ě 1. Observe that since Kpt 1 , tq " Kpt 1 , tqΘpt 1 ´tq with Kpt 1 , tq an ordinary function, the Neumann series representation of f shows that there exist ordinary functions f pn´1q , n ě 1 and f such that f pn´1q pt 1 , tq " f pn´1q pt 1 , tqΘpt 1 ´tq and f pt 1 , tq " f pt 1 , tqΘpt 1 ´tq. Now we remark that 

f ´f pn´1q N " 8 ÿ k"n K ˚k ˚g " K ˚n ˚8 ÿ k"0 K ˚k ˚g " K ˚n ˚f, defining C K :" sup t 1 ,tPI 2 | Kpt 1 ,
sup t,t 1 PI 2 | f ´f pn´1q N | ď C f `CK |I| ˘n n! ,
which comes from the observation that the error comprises n, ˚products. This bound is saturated by the constant kernel Kpt 1 , tq " C K Θpt 1 ´tq. For the re-summed series presented here, the error produced by truncating the re-summed series at order n ´1, n ě 1, is given by Eq. ( 8)

f ´f pn´1q " T ˚n ˚f.

Since T pt 1 , tq " T pt 1 , tqΘpt 1 ´tq is bounded over all compact subintervals of I 2 , as established by Theorem 2.1, there exists a constant C T :" sup t 1 ,tPI 2 | T pt 1 , tq|. Then we have sup

t,t 1 PI 2 | f ´f pn´1q | ď C f `CT |I| ˘n n! .
This establishes that the series of Corollary 3.1 converges faster than the original Neumann series provided C T ă C K . Thus, to quantify any possible improvement we need to explicitly bound C T .

Given the construction of R K in terms of the R Ki , we expect the approach proposed here to work best if one of the kernels K i is largely dominant over the others. To make this observation precise, we introduce the concept of ˚-domination: Definition 1. Let f pt 1 , tq and gpt 1 , tq be two generalized functions of two variables defined over I 2 . If there exist a generalized function pt 1 , tq defined over I 2 such that ˚f " g, with C :" sup

t 1 ,t | pt 1 , tq| ď 1,
then we say that f is ˚-dominant over g on I 2 . The function is called the ˚-domination factor of f over g. Introducing C f :" sup t 1 ,t |f pt 1 , tq| and C g :" sup t 1 ,t |gpt 1 , tq| the ˚-domination implies C g ď C ˆCf ˆpt 1 ´tq. Now suppose without loss of generality that K 1 is dominant over all other kernels K 1ăiďd . Let i be the ˚-domination factor of

K 1 over K i Since K " K 1 `řd i"2 K i , the ˚-domination by K 1 gives K i " i ˚K1 and therefore K " K 1 `´ř d i"2 i ¯˚K 1 .
In order to alleviate the notation, we define K :"

ř d i"2 i so that K " K 1 ` K ˚K1
. The quantity T of Corollary 3.1 now reads

T " 1 ˚´d i "2 R Ki ˚RK1 ˚`1 ˚´K 1 ´ K ˚K1 ˘, " 1 ˚´d i "2 R Ki ˚p1 ˚´R K1 ˚ K ˚K1 q, " 1 ˚´d i "2 R Ki ´d i "1 R Ki ˚ K ˚K1 (11) 
since R K1 ˚`1 ˚´K 1 q " 1 ˚. These results produce a tight bound over C T . To see this, we need to control the ˚-resolvents R Ki : Lemma 3.1. Let Kpt 1 , tq :" Kpt 1 , tqΘpt 1 ´tq be a generalized function of two variables defined over I 2 such that K is an ordinary bounded function over all compact subintervals of I 2 . Let C K :" sup t 1 ,tPI |Kpt 1 , tq|. Then the ˚-resolvent R K of K exists and is of the form R K " 1 ˚`R K pt 1 , tqΘpt 1 ´tq, with RK pt 1 , tq an ordinary function bounded over all compact subintervals of I 2 . In particular,

sup t 1 ,tPI | RK pt 1 , tq| ď C K e C K |I| .
Proof. We have R K :" 

ř ně0 K ˚n " 1 ˚`ř ně1 K ˚n converges
|R K ´1˚| ď sup t 1 ,tPI 8 ÿ n"1 C n K pt 1 ´tq n´1 pn ´1q! ď C K e C K |I| .
This result is also directly obtained upon ˚-dominating K by C K Θpt 1 tq (this is because C K dominates Kpt 1 , tq by definition, and K " K whenever t 1 ě t while K " 0 otherwise) and using Proposition 3.1 to get the ˚-resolvent of C K . Lemma 3.1 indicates that R Ki " 1 ˚`R Ki pt 1 , tqΘpt 1 ´tq and from there it follows

d i "1 R Ki " 1 ˚`d ÿ n"1 ÿ i1ăi2㨨¨ăin ˆż t 1 t ż t 1 τ1 ¨¨¨ż t 1 τn´2 RKi 1 pt 1 , τ n´1 q ¨¨( 12 
)
¨¨¨R Ki n´1 pτ 2 , τ 1 q RKi n pτ 1 , tqdτ n´1 ¨¨¨dτ 2 dτ 1 ˙Θpt 1 ´tq,
and here all i 1ďjďn indices are integers with 1 ď i j ď d. Then Lemma 3.1 gives sup

t 1 ,tPI ˇˇˇd i "1 R Ki ´1˚ˇˇˇˇď d ÿ n"1 ÿ i1㨨¨ăin n ź j"1 pC Ki j q ˆeř n j"1 C K i j |I| .
where we recall that C Ki :" sup t 1 ,tPI |K i |. The ˚-domination of K i by K 1 gives the bounds C Ki ď C i C K and thus, with C :" max 1ăiďd C i , sup

t 1 ,tPI ˇˇˇd i "1 R Ki ´1˚ˇˇˇď d ÿ n"1 ˆd n ˙pC C K1 q n e nC C K |I| , ď ´C C K1 e C C K 1 |I| `1¯d ´1
and similarly sup

t 1 ,tPI ˇˇˇd i "2 R Ki ´1˚ˇˇˇˇď ´C C K1 e C C K 1 |I| `1¯d ´1 ´1.
Returning to Eq. ( 11), the above bounds give

C T ď ´C C K1 e C C K 1 |I| `1¯d ´1 ´1 `d ˆ´C C K1 e C C K 1 |I| `1¯d ´1˙C C K1 .
Here we used that sup t 1 ,tPI | K | ď d C . In particular C T Ñ 0 as C Ñ 0, that is as K Ñ K 1 as expected. Whether or not this is an improvement, i.e. whether or not C T ă C K , is now seen to depend on the precise relation between the K i and K as it influence both C and the relation between C K and C K1 . If the kernels K i are large and of similar magnitude (yielding C " 1) but such that important cancellations produce a very small overall sum kernel K (for which C K is small), then clearly these cancellations are missed by Corollary 3.1 and convergence is slower than in the original Neumann series. At the opposite, if K is largely dominated by a single kernel K 1 , then the present approach becomes arbitrarily good as K Ñ K 1 . This is for example the case in most physics applications, where K results from a perturbation of some sort around a dominant term K 1 .

Illustrative examples.

We provide two examples of application of our main result, Corollary 3.1, in ascending order of difficulty: i) solution to the linear Volterra equation of the second kind with constant kernel and ii) a new representation of Heun's confluent functions.

Example 4.1 (Constant kernel). Let a and b be two constants and Kpt 1 , tq :" pa `bqΘpt 1 ´tq be the kernel of the homogenous linear Volterra equation of the second kind f " 1 ˚`K ˚f , that is

f pt 1 , tq " δpt 1 ´tq `ż t 1 t pa `bq f pτ, tqdτ Θpt 1 ´tq.
The exact solution is given by the generalized function f pt 1 , tq " δpt 1 ´tq `pa `bqe pa`bqpt 1 ´tq Θpt 1 ´tq.

The ordinary Neumann series for this solution is the Taylor expansion

f pt 1 , tq " δpt 1 ´tq`ˆa `b `pa `bqpt 1 ´tq `pa `bq pt 1 ´tq 2 2 `¨¨¨˙Θpt 1 ´tq
Now let K :" K 1 `K2 , K 1 pt 1 , tq :" aΘpt 1 ´tq and K 2 pt 1 , tq :" aΘpt 1 ´tq. Using Remark 3.1 for the forms of R K1 and R K2 , Corollary 3.1 dictates that

f pt 1 , tq " ÿ k"0 T ˚k ˚`1 ˚`ae apt 1 ´tq Θpt 1 ´tq ˘˚`1 ˚`be bpt 1 ´tq Θpt 1 ´tq ˘. (13) 
Now `1˚`a e apt 1 ´tq Θpt 1 ´tq ˘˚`1

˚`be bpt 1 ´tq Θpt 1 ´tq " 1 ˚`˜a
e apt 1 ´tq `be bpt 1 ´tq `ż t 1 t ae apt 1 ´τ q be bpτ ´tq dτ ¸Θpt 1 ´tq, " 1

˚`ˆa e apt 1 ´tq `be bpt 1 ´tq `ab a ´b ´eapt 1 ´tq ´ebpt 1 ´tq ¯˙Θpt 1 ´tq, " ´1˚`a 2 e apt 1 ´tq ´b2 e bpt 1 ´tq

a ´b Θpt 1 ´tq ¯.
Furthermore, in Eq. ( 13), T is Therefore even at order 0, i.e. with the truncation ř 8 k"0 T ˚k Ñ T ˚0 " 1 ˚, we get f p0q pt 1 , tq :" δpt 1 ´tq `a2 e apt 1 ´tq ´b2 e bpt 1 ´tq a ´b Θpt 1 ´tq.

T " 1 ˚´`
while the order 0 approximation as computed by the original Neumann series is simply δpt 1 ´tq. Note that the result above, as well as T and the series representation of f are all actually well defined in the limit a Ñ b owing to algebraic simplifications; while in the limits a{b Ñ 0 or b{a Ñ 0 the 0th order as given by Corollary 3.1 becomes exact, as expected. At order 1, we get

f p1q pt 1 , tq :" p1 ˚`T q ˚´1 ˚`a 2 e apt 1 ´tq ´b2 e bpt 1 ´tq a ´b Θpt 1 ´tq ¯,
" δpt 1 ´tq `a `b a ´b ´ae apt 1 ´tq ´be bpt 1 ´tq ¯Θpt 1 ´tq `ab pa ´bq 3 e ´pa`bqt ´eat`bt 1 `a2 `ab 2 pt 1 ´tq ´b3 pt 1 ´tq `b2 ȇat 1 `bt `´a 2 pa ´bqpt 1 ´tq `a2 `b2 ˘¯Θpt 1 ´tq.

Once again, this is well defined in the limit a Ñ b in spite of the a´b in denominators, owing to algebraic simplifications with the numerators.

It is straightforward to continue to higher orders but the resulting expressions are too cumbersome to be reported here. In contrast with the expressions obtained from the original Neumann series, e.g. δpt 1 tq `pa `bq at order 1, the superiority of Corollary 3.1 is obvious.

Example 4.2 (Heun functions). Heun confluent functions are special transcendental functions known from general relativity and astrophysics [START_REF] Hortaçsu | Heun functions and some of their applications in physics[END_REF] as well as quantum optics [START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF]. Heun's functions are known only from the context of differential equations [START_REF] Ronveaux | Heun's Differential Equations[END_REF][START_REF]NIST Digital Library of Mathematical Functions[END_REF], being defined as the solution to Heuns differential equation. No integral equation satisfied by these functions is known so far. To quote a recent review [START_REF] Hortaçsu | Heun functions and some of their applications in physics[END_REF] on Heun's functions, the current state of knowledge is as follows :

"No example has been given of a solution of Heuns equation expressed in the form of a definite integral or contour integral involving only functions which are, in some sense, simpler.[...] This statement does not exclude the possibility of having an infinite series of integrals with 'simpler' integrands".

Here we give two Volterra equations of the second kind for which Heun's confluent function is the solution, implying two infinite series of integrals converging to Heun's function via Corollary 3.1.

We start with the work of Xie and Hai [START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF], who considered the system of coupled linear differential equations with non-constant coefficients,

2iω d dt aptq " νbptq `f ptqaptq, (14a) 2iω d dt bptq " νaptq ´f ptqbptq, (14b) 
where f ptq :" f 1 sinpωtq and f 1 , ν and ω are real parameters originating from a quantum Hamiltonian. The authors showed that this system is equivalent to Heun's equation, hence is solved by certain Heun confluent functions, here denoted H c . For example, for aptq we have [START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF],

aptq " c 1 e ipf1{ωq sin 2 pωt{2q H c `α, β, γ, δ, η, sin 2 pωt{2q c2 e ipf1{ωq sin 2 pωt{2q sinpωt{2q H c `α, ´β, γ, δ, η, sin 2 pωt{2q ˘,
where c 1 and c 2 are constants determined from the initial conditions and α :" 2if 1 {ω, β " γ " ´1{2, δ " if 1 {ω and η " ´if 1 {p2ωq `3{8 ν2 {p4ω 2 q.

The system of Eq. ( 14) is easily mapped into a homogenous linear Volterra equation of the second kind via the method of path-sum [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF]. This gives, for c 1 " 1 and c 2 " 0,

aptq| c1"1,c2"0 " ż t 0 ´1˚`p i{2qf ´pν 2 {4qR ¯˚´1 pτ, 0q dτ, (15) 
where R :" 1 ˚F ˚1 "

ş t 1 t ş t 1 τ1 F pτ 2 , τ 1 qdτ 2 dτ 1 Θ and F pt 1 , tq :" `1˚´p i{2qf ˘˚´1 " δpt 1 ´tq`i 2 sinpωt 1 qe ´i{p2ωq `cospωt 1 q´cospωtq ˘Θ,
as per Proposition 3.1. Here again and from now on, we omit the pt 1 ´tq arguments of the Heaviside theta functions to alleviate the equations. The part of the solution with c 1 " 0 and c 2 " 1 is obtained from the above by ˚-multiplication of 9 aptq c1"1,c2"0 with qpt 1 , tq :" pν{2q ş t 1 t F pt 1 , τ qdτ Θ, as dictated again by path-sum [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF]. The integral equation of interest here is that satisfied by 9 a, namely

) 9 a " 1 ˚``´p i{2qf `pν 2 {4qR ˘˚9 a (16 
This is precisely a homogeneous linear Volterra integral equation of the second kind with separable kernel Kpt 1 , tq :" Kpt 1 , tqΘpt 1 ´tq, where

Kpt 1 , tq " ´i 2 f pt 1 q `ν2 4 spt 1 q ´ν2 4 sptq,
with s :" ş ş t 1 τ1 F pτ 2 , τ 1 qdτ 2 dτ 1 so that Rpt 1 , tq " `spt 1 q ´sptq ˘Θ. Already this is in important result in the study of Heun functions for which not only was there no known Volterra equation whose solution involved Heun functions, but also because now that such an equation is known the ordinary Neumann series ř 8 k"0 K ˚k provides a novel series representation of these functions. For us, it is convenient to see the kernel K as the sum of two kernels

K i pt 1 , tq " Ki pt 1 , tqΘpt 1 ´tq, i " 1, 2, with K1 pt 1 , tq " K1 pt 1 q :" ´i 2 f pt 1 q `ν2 4 spt 1 q, K2 pt 1 , tq " K2 ptq :" ´ν2 4 sptq.
Indeed, given that K1 pt 1 q and K2 ptq effectively depend on a single time variable each, the corresponding resolvents R K1 and R K2 are given by Proposition. (3.1):

R K1 pt 1 , tq " δpt 1 ´tq `ˆ´i 2 f pt 1 q `ν2 4 spt 1 q ˙e´i 2 ş t 1 t f pτ qdτ `ν2 4 ş t 1 t spτ qdτ Θ, R K2 pt 1 , tq " δpt 1 ´tq ´ν2 4 sptqe ´ν2 4 ş t 1 t spτ qdτ Θ,
where Θ " Θpt 1 ´tq. For convenience, in the following we designate RKi pt 1 , tq the ordinary part of the R Ki so that R Ki " δpt 1 ´tq RKi pt 1 , tqΘpt 1 ´tq.

We can now turn to using Corollary 3.1 with d " 2, gaining yet another new series representation of Heun functions, so far expressed solely through a power series expansion around the origin [START_REF] Slavyanov | Special Functions: A Unified Theory Based on Singularities[END_REF][START_REF] Ronveaux | Heun's Differential Equations[END_REF].

In order to alleviate the notation, we introduce R12 pt 1 , tq such that R K1 ˚RK2 " δpt 1 ´tq `R 12 pt 1 , tqΘpt Then the quantity T " 1 ˚´R K2 ˚RK1 ˚p1 ˚´K 1 ´K2 q is here found to be T pt 1 , tq " T pt 1 , tqΘpt 1 ´tq with T pt 1 , tq " R12 pt 1 , tq `ż t 1 t R12 pt 1 , τ q ´K 1 pτ, tq `K 2 pτ, tq ¯dτ.

With this, Corollary 3.1, Remark 2.1 and Eq.( 15) give e ipf1{ωq sin 2 pωt{2q H c `α, β, γ, δ, η, sin 2 pωt{2q ˘Θptq "

ż t 0 ˜8 ÿ k"0 T ˚k ˚K1 ˚K2 ¸pτ 1 , 0qdτ 1 , " ż t 0
´`1 ˚`T `T ˚2 `T ˚3 `¨¨¨˘˚K 1 ˚K2 ¯pτ 1 , 0qdτ 1 .

Because K1 depends only on t 1 while K2 depends only on t, K 1 ˚K2 simplifies to pK 1 ˚K2 qpt 1 , tq " K1 pt 1 q K2 ptqpt 1 ´tqΘpt 1 ´tq and therefore e ipf1{ωq sin 2 pωt{2q H c `α, β, γ, δ, η, sin 2 pωt{2q "

ż t 0 K1 pτ 1 qτ 1 dτ 1 K2 p0q `ż t 0 ż τ 1 0 T pτ 1 , τ 1 q K1 pτ 1 qτ 1 dτ 1 dτ 1 K2 p0q `ż t 0 ż τ 1 0 ż τ 1 τ1
T pτ 1 , τ 2 q T pτ 2 , τ 1 q K1 pτ 1 qτ 1 dτ 2 dτ 1 dτ 1 K2 p0q

`ż t 0 ż τ 1 0 ż τ 1 τ1 ż τ 1 τ2
T pτ 1 , τ 3 q T pτ 3 , τ 2 q T pτ 2 , τ 1 q K1 pτ 1 qτ 1 dτ 3 dτ 2 dτ 1 dτ 1 K2 p0q

`¨¨ḧ ere we have removed the Θptq factors appearing in all terms on both the left and right hand-sides, however this means that the above expansion is valid only for t ě 0.

Conclusion.

In this note, we presented a novel, analytically computable series for the solution of inhomogenous linear Volterra equations of the second kind with arbitrary sum kernel. Equivalently, we expressed the solution of the equation f " g `K ˚f with kernel K " ř i K i in terms of the solutions of the equations f i " δ `Ki ˚fi . These results completely bypass the standard strategy consisting in turning the Volterra equation in a system of coupled linear differential equations with non-constant coefficients, with the aim of producing explicit, computable, analytical expressions. As an illustration, we obtained an hitherto unknown Volterra linear integral equation of the second kind satisfied by Heun's confluent functions and a novel series representation for these functions.

  time derivative with respect to t 1 of the ordered exponential of the time-dependent matrix Vpt 1 , tq " Ṽpt 1 , tqΘpt 1 ´tq

  tq| and C f :" sup t,t 1 PI | f pt 1 , tq|, we have the immediate bound, for t 1 ě t,[START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF] 

  since K is bounded, which implies sup t 1 ,tPI |K ˚n| ď sup t 1 ,tPI |C ˚n K | with

		`C˚n K ˘pt 1 , tq " C n K	pt 1 ´tq n´1 pn ´1q!	,
	and thus	
	sup	| RK | " sup	
	t 1 ,tPI	t 1 ,tPI	

  1 ´tq and thusR12 pt 1 , tq " RK1 pt 1 , tq `R K2 pt 1 , tq `ż t 1 t RK1 pt 1 , τ q RK2 pτ, tqdτ,

	"	ˆ´i 2	f pt 1 q	`ν2 4	spt 1 q ˙e´i 2	ş t 1 t f pτ qdτ `ν2 4	ş t 1 t spτ qdτ
		´ν2 4	sptqe	´ν2 4	ş t 1 t spτ qdτ
			`ˆ´i ν 2 8	f pt 1 qsptq	´ν4 16	spt 1 qsptq ˙ż
					t 1	e ´i 2	ş t 1 τ 1 f pτ qdτ `ν2 4	ş t 1 τ 1 spτ qdτ e	4 ´ν2	ş τ 1
					t		

t spτ qdτ dτ 1 .

In this case, ˚-resolvents such as p1˚´Vq ˚´1 pt 1 , tq should be understood as the
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