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A B S T R A C T

Composite materials and structures are inherently in-homogeneous across multiple scales. Multi-scale modelling
offers opportunities to apprehend the coupling of material behaviour and characteristics from the micro- to
meso- and macro-scales. In this paper, a multi-scale finite element method (FE2) is proposed to compute the
modal properties of visco-elastic heterogeneous composite materials in terms of damping frequencies and modal
loss factors. In the proposed FE2-based vibration analysis, two finite elements (FE) calculations are carried out
in a nested manner, one at the macro-scale and the other at the micro-scale. Unlike conventional analysis, the
developed analysis does not require homogenized constitutive properties because these are derived from the
micro-scale FE simulations at the representative volume element (RVE) level. The non-linearity at the micro-
scale is accounted by using a frequency dependent Young’s modulus. The Asymptotic Numerical Method (ANM)
and its automatic differentiation is used to solve the non-linear numerical problem. ANM consists of solving
an analytical non-linear problem with a path-following (or continuation) method associated with a high-order
perturbation technique. Compared with existing methods, the originality of the proposed approach lies in its
ability to account for the frequency dependence of Young’s modulus in visco-elastic microstructure. Using the
automatic differentiation makes the proposed approach enough flexible and generic to deal with damped and
undamped vibration analyses of composite materials structures.
1. Introduction

The estimation of the structural damping properties (modal fre-
quencies and loss factors) of composite materials and structures has
been an important subject of research and technological questions over
the last decades and remarkably high numbers of papers have been
published on the subject. The review by Mastroddi et al. [1] on time
and frequency domain linear visco-elastic modelling of highly damped
structures and the review by Chaudhary et al. [2] on the vibration
damping materials and their applications should be reported. Despite
the efforts and the important contributions of many research groups
including research works of the authors [3–8], this field has been
like crystallized around some very limiting models and design rules
using a general linear visco-elastic formulation [9–11]. These models
are too restrictive to obtain effective technical solutions, especially
when large frequency regime and microstructure–structure coupling
are considered [8,9,12–17]. Therefore, the research challenges is to
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propose efficient numerical methods to solve these non-linear problems
in order to determine the damping properties.

In vibration analysis, the frequency dependence of material prop-
erties leads to non-linear eigenvalue problems that cannot be solved
by conventional numerical methods [3]. The damping properties can
be obtained only if the design process effectively integrates the micro-
structural response and morphology. Nevertheless, this very important
aspect of ‘‘material by design’’ has not been fully exploited yet. In
fact, if composite micro-structure design is decisive in the realization
of modern vibration damping, it is a matter of fact that, at present, this
micro-structure design is usually done following some known empirical
rules that do not allow for a true optimization of their dynamical
performances.

A series of micro-mechanical approaches for the estimation of the
damping properties of composite material as a function of the prop-
erties of the constituent materials has been developed in [8,18–20].
vailable online 19 February 2022
666-6820/© 2022 The Authors. Published by Elsevier B.V. This

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jcomc.2022.100240
Received 9 December 2021; Received in revised form 3 February 2022; Accepted 6
is an open access article under the CC BY-NC-ND license

February 2022

http://www.elsevier.com/locate/composites-part-c-open-access
http://www.elsevier.com/locate/composites-part-c-open-access
mailto:salim.belouettar@list.lu
https://doi.org/10.1016/j.jcomc.2022.100240
https://doi.org/10.1016/j.jcomc.2022.100240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcomc.2022.100240&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Composites Part C: Open Access 7 (2022) 100240G. Robin et al.
Recent works proposed to use finite element (FE) solutions in multi-
scale context where the macroscopic parameters are obtained by vol-
ume averaging over statistically representative volume, which are then
used at the macroscopic level [20,21]. These approaches are based on
a hierarchical decomposition of the solution space into a local solution
and a global one and by enforcement of the compatibility conditions.
This multilevel finite element methodology is introduced where the
hierarchical character of model descriptions and simulation results are
exploited to expedite the analysis of the problem. This approach could
provide significant insights in the prediction of dynamical properties
of heterogeneous and visco-elastically reinforced composites, which
makes it ideal for micro/macro analyses where solutions from a local
model are used to derive the solution of the macroscopic model.
For instance, in [20], a multi-scale approach consisting of two scales
transition models has been proposed for the analysis of heterogeneous
micro-structure RVE. An energy-based finite element method is pro-
posed in order to determine the tangent modulus of the RVE and a
classical analytical micro-mechanical model is used at the second scale
to determine the effective stiffness and loss tensors.

FE2 [22] is an increasingly popular class of multiscale methods
because of its versatility to model heterogeneous material behaviour
across multiple scales. In classical FE2 analysis, two finite elements
calculations are carried out in a nested manner, one at the macro-
scale and the other at the micro-scale. Unlike conventional analyses,
the macro-scale FE analysis does not require homogenized constitutive
properties because these are derived from FE simulations at the RVE
level [20,23,24]. In the framework of the FE2 method, the vibration
issue is formulated at two scales: the macroscopic scale that repre-
sents the whole structure to be studied and the microscopic scale
represented by the RVE. Notice that the efficiency of the method
depends on the choice of the RVE and that the classical FE2 method
is still heavy when dealing with high non-linearity problems or 3D real
structures [25]. To overcome this shortcoming, a data-driven method
based on FE2 is proposed in [26] to substitute the heavy micro-level FE
simulations [27].

This work aims to develop an FE2 multi-level materials modelling
and design approach for the vibration modelling and analysis of hetero-
geneous composite materials that accounts for material micro-structure
non-linearity. The Asymptotic Numerical Method (ANM) [28,29] is
used to solve the non-linear problem at the macro-scale. The inte-
grated model is employed to observe the influence of micro-structure
heterogeneity on the natural frequencies and modal loss factors of
a composite structure. The paper is organized into five sections. In
Section 2, the multi-scale formulation of the vibration problem is
presented. The solution strategy of the multi-scale problem is elabo-
rated in Section 3. Section 4 is devoted to numerical tests to assess
and validate the proposed methodology. In Section 5, the approach is
used to design visco-elastic sandwich beams with optimized damping
properties. Finally, Section 6 presents some conclusions.

2. Multi-scale formulation of the vibration problem

2.1. Macroscopic problem formulation

We consider a composite structure characterized by a periodic
micro-structure as depicted in Fig. 2. In the framework of a multilevel
FE2 approach, the macro-scale structure is considered as homogeneous
and represented by the domain 𝛷 in R𝐷 (𝐷 being the domain dimen-
sion) with external boundary 𝜕𝛷 as shown in Fig. 2. The structure
is subjected to prescribed displacements and forces on the disjoint
complementary parts of the boundary 𝜕𝛷𝑢 (Dirichlet boundaries) and
𝜕𝛷𝑇 (Neumann boundary), respectively, such that 𝜕𝛷𝑢 ∩ 𝜕𝛷𝑇 = ∅ and
𝜕𝛷 ∪ 𝜕𝛷 = 𝜕𝛷.
2

𝑢 𝑇
Fig. 1. Schematic representation of the heterogeneous composite structure with
periodic microstructure [30].

Fig. 2. Representation of the Multi-level Modelling Approach based on the FE2 Method.
The exponents + and − are associated with nodal indices on opposite sides of the RVE
with microscopic boundary conditions depending on the macroscopic strain tensor. 𝜔
is the volume of the RVE.

In the context of infinitesimal strain theory and in the absence
of body forces, the free vibration problem to be solved is defined as
follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ ⋅ 𝜎 = 𝜌 𝜕
2𝑢
𝜕𝑡2

∀ 𝑋 ∈ 𝛷

𝑢
(

𝑋
)

= 𝑢̂
(

𝑋
)

∀ 𝑋 ∈ 𝜕𝛷𝑢

𝜎 ⋅ 𝑛 = 𝑇 ∀ 𝑋 ∈ 𝜕𝛷𝑇

𝜀 = 1
2
(

∇𝑢 +𝑇 ∇𝑢
)

(1)

An overline is used to denote macroscopic quantities: 𝜎 is the
macroscopic Cauchy stress tensor, 𝜀 is the macroscopic strain tensor and
𝜌 indicates the material density. The term 𝑢 denotes the macroscopic
displacement field whereas 𝑢̂ are the prescribed displacement, 𝑋 is
the coordinate of a given point in the structure. 𝑛 is the outward unit
normal vector to 𝜕𝛷. The principle of the virtual work gives the weak
form of the free vibration problem associated with Eq. (1) as:

∫𝛷
𝜎 ∶ 𝛿𝜀 𝑑𝛷 + ∫𝛷

𝜌 𝜕
2𝑢
𝜕𝑡2

𝛿𝑢 𝑑𝛷 = 0 (2)

The constitutive relationship between 𝜎 and 𝜀 is given by Hooke’s law:

𝜎 = 𝐶 ∶ 𝜀 (3)
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where 𝐶 is a fourth-order tensor of the behaviour of the macroscopic
tructure. At this stage, this tensor is assumed to be unknown and can
e estimated in a multi-scale analysis by solving a local finite element
roblem at the micro-structure level, see Fig. 2.

.2. Formulation of the micro-scale problem

The analysed micro-structure is heterogeneous as shown in Fig. 1.
his micro-structure is characterized by an RVE that occupies a domain
in R𝐷 with external boundary 𝜕𝜙. In the absence of body forces and

nertia effects, the equilibrium equations are given by the following
elation:

⋅ 𝜎 = 0 ∀ 𝑋 ∈ 𝜙 (4)

here 𝜎 is the microscopic Cauchy stress tensor. Note that the inertia
ffects are neglected at the microscopic level, as in [31–33], in order
o allow for a numerical micro-to-macro transition. This hypothesis is
alid as the micro-structure size is smaller than the wavelength and the
nalysis applies for low and medium frequency ranges.

The associated weak form of the microscopic problem is written as:

𝜙
𝜎 ∶ 𝛿𝜀 𝑑𝜙 = 0 (5)

here 𝜀 denotes the strain tensor at the microscopic scale defined as:

= 1
2
(

∇𝑢 +𝑇 ∇𝑢
)

(6)

he constitutive relationship between 𝜎 and 𝜀 is given as:

= 𝐶 (𝑟) ∶ 𝜀 (7)

here 𝐶 (𝑟) is the fourth order constitutive tensor associated with the
hase (𝑟). At this stage, this tensor is known for each phase (𝑟).

.3. Micro- & macro-scales coupling

The macroscopic stress tensor (𝜎) can be computed from the micro-
copic tensor through three main coupling relations. The first relation
xpresses the macroscopic stress tensor (𝜎) as the average value of the
icroscopic one (𝜎) [34]:

𝜎 = ⟨𝜎⟩ = 1
∣ 𝜙 ∣ ∫𝜙

𝜎 𝑑𝜙 (8)

where ∣ 𝜙 ∣ represents the volume of the RVE. The second relation
expresses the macroscopic strain tensor (𝜀) as the average value of the

icroscopic one (𝜀):

𝜀 = ⟨𝜀⟩ = 1
∣ 𝜙 ∣ ∫𝜙

𝜀 𝑑𝜙 (9)

The last formula is the energy average theorem of Hill–Mandel [34]:

𝜎 ∶ 𝛿𝜀 = ⟨𝜎 ∶ 𝛿𝜀⟩ = 1
∣ 𝜙 ∣ ∫𝜙

𝜎 ∶ 𝜀 𝑑𝜙 (10)

.4. Microscopic boundary conditions

Different types of microscopic boundary conditions such as lin-
ar deformation, uniform traction, or periodic constraints can be se-
ected [35]. The following periodic conditions, on the boundary of the
VE, are considered:
+ − 𝑢− = 𝜀 ⋅

(

𝑋+ −𝑋−) ∀ 𝑋 ∈ 𝜕𝜙 (11)

It should be noted that the behaviour of a visco-elastic material may
depend on its vibration frequency. The fourth-order constitutive ten-
sor 𝐶 (𝑟), associated with visco-elastic phases of the material at the
micro-scale, can be written as follows:

𝐶𝑣 = 𝐸∗(0)𝐶 + 𝐸(𝜆)𝐶 (12)
3

0 0
here 𝐸∗(0) is related to the delayed elasticity [36], 𝐸(𝜆) is a function
that introduces the frequency dependence, 𝜆 is the eigenvalue of the
structure and 𝜈 is the Poisson ratio. We consider 𝜆 = 𝜔2 where 𝜔 is the
circular vibration frequency. 𝐶0 is defined as follows:

𝐶0 =
1

1 − 𝜈2

⎡

⎢

⎢

⎢

⎣

1 𝜈 0
𝜈 1 0

0 0 1 − 𝜈
2

⎤

⎥

⎥

⎥

⎦

(13)

Introducing Eq. (12) into Eq. (5) and (7), the microscopic problem to
be solved can be written as follow:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫𝜙𝑒
𝑇∇𝑢 ∶ 𝐶𝑒 ∶ ∇𝛿𝑢 𝑑𝜙𝑒 + 𝐸∗(0)∫𝜙𝑣

𝑇∇𝑢 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣+

𝐸(𝜆)∫𝜙𝑣
𝑇∇𝑢 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣 = 0

𝑢+ − 𝑢− = 𝜀 ⋅
(

𝑋+ −𝑋−) ∀ 𝑋 ∈ 𝜕𝜙

(14)

where 𝜙𝑒 and 𝜙𝑣 are, respectively, the domains occupied by the elastic
and visco-elastic materials in the RVE. The obtained problem is non-
linear with a material viscoelastic behaviour considered as frequency
dependent. The detailed problem solving strategy is presented in the
next section.

3. Multiscale solution strategy

The strategy to solve the multi-scale problem is herein presented.
Considering the coupling conditions between macroscopic and micro-
scopic problems, the microscopic problem is first solved. Then, the
obtained solution is used to construct numerically the localization
tensors [37] and then to map the obtained solution in order to estimate
the macroscopic tangent modulus. Classically, the localization tensor is
constructed by using the superposition principle, which is valid only
for linear problems. Since the microscopic problem (14) is nonlinear,
ANM is used to construct a sequence of linear problems such that the
superposition principle can be applied. Details about the ANM can be
found in [38,39].

3.1. Linearization of the microscopic problem using ANM

ANM uses a perturbation technique where the unknowns (𝑢, 𝜆) of
the problem (14) are expanded into power series with respect to a
path parameter 𝑎 that will be defined later. In the analysed case, the
function 𝐸(𝜆), which represents the frequency dependence, is expanded
into power series, as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢(𝑎) = 𝑢0 +
𝑁
∑

𝑖=1
𝑎𝑖𝑢𝑖

𝜆(𝑎) = 𝜆0 +
𝑁
∑

𝑖=1
𝑎𝑖𝜆𝑖

𝐸(𝑎) = 𝐸0 +
𝑁
∑

𝑖=1
𝑎𝑖𝐸𝑖

(15)

(𝑢0, 𝜆0) is the solution of multi-scale problem formulated at the mi-
crostructure level by considering only the real part of Young’s modulus
in the viscoelastic phase. Introducing the power series development
(Eq. (15)) into problem in Eq. (14) and equating the same powers of 𝑎,
the following set of linear problems is obtained:

Order 1.
⎧

⎪

⎨

⎪

⎩

(𝑢1, 𝛿𝑢) = −𝐸1 ∫𝜙𝑣
𝑇∇𝑢0 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣 ∀𝑋 ∈ 𝜙

𝑢+1 − 𝑢−1 = 𝜀 ⋅ (𝑋+ −𝑋−) ∀𝑋 ∈ 𝜕𝜙
(16)



Composites Part C: Open Access 7 (2022) 100240G. Robin et al.

w

w

T
c


m

𝜀

l

3

3

d

T
o

𝑓

Order 𝑘 ≥ 2.

⎧

⎪

⎨

⎪

⎩

(𝑢𝑘, 𝛿𝑢) = −
𝑘−1
∑

𝑚=0
𝐸𝑘−𝑚 ∫𝜙𝑣

𝑇∇𝑢𝑚 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣 ∀𝑋 ∈ 𝜙

𝑢+𝑘 − 𝑢−𝑘 = 𝜀 ⋅ (𝑋+ −𝑋−) ∀𝑋 ∈ 𝜕𝜙

(17)

where the operator (𝑢𝑘, 𝛿𝑢) is defined as follow:

(𝑢𝑘, 𝛿𝑢) = ∫𝜙𝑒
𝑇∇𝑢𝑖 ∶ 𝐶𝑒 ∶ ∇𝛿𝑢 𝑑𝜙𝑒 + 𝐸∗(0)∫𝜙𝑣

𝑇∇𝑢𝑖 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣+

𝐸𝑖 ∫𝜙𝑣
𝑇∇𝑢𝑖 ∶ 𝐶0 ∶ ∇𝛿𝑢 𝑑𝜙𝑣

(18)

Since the nonlinear problem is represented as a set of linear problems,
the principle of superposition applies to construct the localization
tensors at every development order of ANM.

3.2. Localization tensors

Considering the scales coupling, the linear problem is first solved
at every order of the ANM. The solution of the microscopic problem
depends linearly on the imposed macroscopic strain. Therefore, the
displacement 𝑢𝑘, can be decomposed into modes associated to different
microscopic boundary conditions. Hence, in the 2D case, one can write:

𝑢𝑘(𝑋) = {𝑢̃11𝑘 (𝑋), 𝑢̃22𝑘 (𝑋), 1
2
[𝑢̃12𝑘 (𝑋) + 𝑢̃21𝑘 (𝑋)]}

⎧

⎪

⎨

⎪

⎩

𝜀11

𝜀22

2𝜀12

⎫

⎪

⎬

⎪

⎭

∀𝑋 ∈ 𝜙 (19)

here 𝑢̃𝑖𝑗𝑘 are solutions at order 𝑘 of the following problems:
{

(𝑢̃(𝑖𝑗)𝑘 , 𝛿𝑢) = 0 ∀𝑋 ∈ 𝜙

𝑢̃(𝑖𝑗)+𝑘 − 𝑢̃(𝑖𝑗)−𝑘 = 𝑋(𝑖𝑗)+ −𝑋(𝑖𝑗)− ∀𝑋 ∈ 𝜕𝜙
(20)

ith:

𝑢̃(11)+𝑘 − 𝑢̃(11)−𝑘 =
[

1 0
0 0

]

(𝑋+ −𝑋−)

𝑢̃(22)+𝑘 − 𝑢̃(22)−𝑘 =
[

0 0
0 1

]

(𝑋+ −𝑋−)

𝑢̃(12)+𝑘 − 𝑢̃(12)−𝑘 =
[

0 1
0 0

]

(𝑋+ −𝑋−)

𝑢̃(21)+𝑘 − 𝑢̃(21)−𝑘 =
[

0 0
1 0

]

(𝑋+ −𝑋−)

(21)

he exponents (𝑖𝑗) indicate that the sought response is related to the
omponent 𝜀𝑖𝑗 of the macroscopic strain tensor. By denoting the tensor
𝐴𝑘 by A𝑘 = {𝑢̃11𝑘 , 𝑢̃22𝑘 , 12 (𝑢̃

12
𝑘 + 𝑢̃21𝑘 )}, the solution 𝑢 = 𝑢0 +

∑𝑁
𝑖=1 𝑎

𝑖𝑢𝑖 can be
written as follows:

𝑢 = A ∶ 𝜀 (22)

where A = A0 +
∑𝑁

𝑖=1 𝑎
𝑖A𝑖. A is a third-order tensor defined by

(𝑖𝑗𝑝) = 𝑢̃(𝑗𝑝)(𝑖) . The introduction of the Eq. (22) in the definition of the
icroscopic tensor 𝜀, gives:

= A,𝑋 ∶ 𝜀 (23)

where A,𝑋 = 1
2

(

∇A + 𝑇∇A
)

is a fourth-order tensor identified as
ocalization tensor.

.3. Microscopic problem solving

.3.1. Discretization by finite element method
The microscopic problem is solved by finite element analysis. After

iscretization, the microscopic problem can be written as follows:
{

[𝐾0 + 𝐸(𝜆)𝐾𝑣]𝑢0 = 0 ∀𝑋 ∈ 𝜙
+ − + − (24)
4

𝑢0 − 𝑢0 = 𝑋 −𝑋 ∀𝑋 ∈ 𝜕𝜙
By using power series expansion of Eq. (15) in Eq. (24), one can write
the problem to be solved at each order of ANM as follows:

Order 1.
{

[𝐾𝑇 ]𝑢1 = −𝐸1𝐾𝑣𝑢0 ∀𝑋 ∈ 𝜙

𝑢+1 − 𝑢−1 = 0 ∀𝑋 ∈ 𝜕𝜙
(25)

Order 𝑘 ≥ 2.

⎧

⎪

⎨

⎪

⎩

[𝐾𝑇 ]𝑢𝑘 = −
𝑘−1
∑

𝑛=0
𝐸𝑘−𝑛𝐾𝑣𝑢𝑛 ∀𝑋 ∈ 𝜙

𝑢+𝑘 − 𝑢−𝑘 = 0 ∀𝑋 ∈ 𝜕𝜙

(26)

It should be noted that at each development order of ANM, there is
only one equation but with two unknowns and a second equation is
therefore needed. The definition of the path parameter 𝑎 will provide
this second equation at each order:

𝑎 = 1
𝑆2

{(𝑢(𝑎) − 𝑢0) ⋅ 𝑢1 + (𝜆(𝑎) − 𝜆0) ⋅ 𝜆1} (27)

By introducing the power series development in Eq. (15) into the
definition of the parameter 𝑎 in Eq. (27), one obtains a second equation
at each order of ANM. The system of equations to be solved at each
order can thus be written as follow:

Order 1.
⎧

⎪

⎨

⎪

⎩

[𝐾𝑇 ]𝑢1 = −𝐸1𝐾𝑣𝑢0 ∀𝑋 ∈ 𝜙

𝑢21 + 𝜆21 = 𝑆2

𝑢+1 − 𝑢−1 = 0 ∀𝑋 ∈ 𝜕𝜙

(28)

Order 𝑘 ≥ 2.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝐾𝑇 ]𝑢𝑘 = −
𝑘−1
∑

𝑛=0
𝐸𝑘−𝑛𝐾𝑣𝑢𝑛 ∀𝑋 ∈ 𝜙

𝑇 𝑢𝑘𝑢1 + 𝜆𝑘𝜆1 = 0

𝑢+𝑘 − 𝑢−𝑘 = 0 ∀𝑋 ∈ 𝜕𝜙

(29)

3.3.2. Automatic differentiation
In the classical version of the ANM, the higher-order differentiation

recurrence formula used to calculate the Taylor coefficients 𝑢𝑘, 𝜆𝑘 and
𝐸𝑘 of 𝑢, 𝜆 and 𝐸 are analytically determined. As discussed in [5],
Automatic Differentiation (AD) offers an efficient technical solution for
derivative computations. In Automatic Differentiation, any numerical
model 𝑏 = 𝑓 (𝑎) is viewed as a sequence of elementary operations. The
automatic derivation of 𝑓 is performed by applying the chain rule to
the sequence of ℎ comprising 𝑓 . Higher order AD relies in practice
on operator overloading as the vehicle of attaching derivative compu-
tations to the elementary operations ℎ provided by the programming
language such as the arithmetic operators and the intrinsic functions.
Let 𝑓 (𝑎) = ℎ𝑜𝑥(𝑎) be an analytical function. From a theoretical point of
view, considering the Faà di Bruno recurrence formula written in terms
of Bell polynomials [5]:

𝑓𝑛 = (ℎ𝑜𝑥)𝑛 =
𝑛
∑

𝑚=1

1
𝑛!

𝜕𝑚ℎ
𝜕𝑥𝑚

(𝑥0)𝐵𝑛,𝑚(𝑥(1),… , 𝑥(𝑛−𝑚+1)) (30)

his is a short and effective way to present the Diamant interpretation
f the ANM [5] where 𝑓𝑛 could be split into two parts:

𝑛 = {𝑓1|𝑥1=1}𝑥𝑛 + {𝑓𝑛|𝑥𝑛=0} (31)

On one hand, {𝑓1|𝑥1=1} is the tangent linear derivative evaluated at
𝑥1 = 1. On the other hand, the second term is the Taylor coefficient
𝑓𝑛 evaluated at 𝑥𝑛 = 0 to cancel the contribution of {𝑓1|𝑥1=1}. Applying
the decomposition in Eq. (30) to 𝐸𝑘 in the microscopic problems in

Eqs. (28) and (29) yields:
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Order 1.
⎧

⎪

⎨

⎪

⎩

[𝐾𝑇 ]𝑢1 = −𝜆1{𝐸1|𝜆1=1}𝐾𝑣𝑢0 ∀𝑋 ∈ 𝜙

𝑢21 + 𝜆21 = 𝑆2

𝑢+1 − 𝑢−1 = 0 ∀𝑋 ∈ 𝜕𝜙

(32)

rder 𝑘 ≥ 2.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝐾𝑇 ]𝑢𝑘 = −
∑𝑘−1

𝑛=0 𝜆𝑘−𝑛{𝐸1|𝜆1=1}𝐾𝑣𝑢𝑛 −
∑𝑘−1

𝑛=0{𝐸𝑘−𝑛|𝜆𝑘−𝑛=0}𝐾𝑣𝑢𝑛
∀𝑋 ∈ 𝜙

𝑇 𝑢𝑘𝑢1 + 𝜆𝑘𝜆1 = 0

𝑢+𝑘 − 𝑢−𝑘 = 0 ∀𝑋 ∈ 𝜕𝜙

(33)

he solutions of the microscopic problems at every order 𝑘 can be
ritten as follows:

olution at order 1.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢̂1 = −{𝐸1|𝜆1=1}𝐾
−1
𝑇 𝐾𝑣𝑢0

𝜆1 = ± 𝑆
√

1 + 𝑇 𝑢̂1𝑢̂1
𝑢1 = 𝜆1𝑢̂1

(34)

Solution at order 𝑘 ≥ 2.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢̂𝑘 = −𝐾−1
𝑇 𝐾𝑣({𝐸1|𝜆1=1}

𝑘−1
∑

𝑛=1
𝜆𝑘−𝑛𝑢𝑛 +

𝑘−1
∑

𝑛=0
{𝐸𝑘−𝑛|𝜆𝑘−𝑛=0}𝑢𝑛)

𝜆𝑘 = −𝜆1
𝑇 𝑢1𝑢̂𝑘
𝑆2

𝑢𝑘 =
𝜆𝑘
𝜆1

𝑢1 + 𝑢̂𝑘

(35)

ith this approach, once the frequency dependent Young’s modulus
s defined, the DIAMANT method [5] provides automatically the Tay-
or Series coefficients {𝐸1|𝜆1=1} and {𝐸𝑘−𝑛|𝜆𝑘−𝑛=0} at each step of the
olution.

.3.3. Continuation procedure
Solutions of the presented algorithm are accurate only in the vicinity

f the starting solution (𝑢𝑖, 𝜆𝑖) due to the convergence radius of series.
n fact, if the parameter 𝑎 is larger than the convergence radius, the
olution will not be accurate. Nevertheless, a very small value of the
arameter 𝑎 compared to the convergence radius will increase the
umber of needed iterations and CPU time. As usual in the ANM, the
ast term of the series is used to estimate the convergence radius:

𝑚𝑎𝑥 = (𝛿
‖𝑢1‖
‖𝑢𝑁‖

)
1

𝑁−1 (36)

where 𝛿 is a small parameter to be chosen. An optimal value of the
truncated order of the series is 𝑁 = 20 [39].

3.4. Homogenization tensor

By substituting the relation in Eq. (23) into Eq. (7), the microscopic
stress–strain law can be written as follows:

𝜎 = 𝐶 (𝑟) ∶ A,𝑋 ∶ 𝜀 (37)

ubstituting the relation in Eq. ?? into the average relation of Hill (8),
ne can write:

𝜎 = ⟨𝐶 (𝑟) ∶ A,𝑋⟩ ∶ 𝜀 = 1
∣ 𝜙 ∣ ∫𝜙

𝐶 (𝑟) ∶ A,𝑋 ∶ 𝜀 𝑑𝜙 (38)

Considering the macroscopic stress–strain law (3), the fourth-order
tensor (𝐶) of the behaviour of the macroscopic structure is identified
as follows:

𝐶 = ⟨𝐶 (𝑟) ∶ A,𝑋⟩ =
1 𝐶 (𝑟) ∶ A,𝑋 𝑑𝜙 (39)
5

∣ 𝜙 ∣ ∫𝜙
inally, the macroscopic behaviour is computed from the microscopic
ne, and thus the macroscopic problem can be discretized and solved
y the finite element procedure. It should be noted that only the
ree vibration is studied here. Based on the presented methodological
pproach, the free vibration problem of the considered heterogeneous
tructure can be investigated by discretizing the problem in Eq. (2) and
umerically solving the following linear complex eigenvalue problem
t macroscale:

[𝐾] − 𝜆[𝑀]){𝑈} = 0 (40)

here [𝐾] is a complex macroscopic stiffness matrix and [𝑀] denotes
the macroscopic mass matrix. 𝜆 represents the eigenvalue. The eigen-
value problem (40) leads to complex eigenvalues (𝜆𝑛) from which the
damping properties of the structure are calculated in the following
form:
⎧

⎪

⎨

⎪

⎩

𝛺𝑛 =
√

ℜ(𝜆𝑛)

𝜂𝑛 =
ℑ(𝜆𝑛)
ℜ(𝜆𝑛)

(41)

where ℜ(𝜆𝑛) and ℑ(𝜆𝑛) are respectively the real and imaginary parts of
the 𝑛th eigenvalue 𝜆𝑛.

4. Verification and validation tests

Verification and validation (V&V) of the developed approach and
model are critical to build credibility and confidence in model predic-
tions for engineering design analysis. V&V are performed on two typical
examples: (1) a visco-elastically damped composite structure and (2)
a sandwich beam with a heterogeneous visco-elastic core. To show
the flexibility of the approach, heterogeneous composite structures
with visco-elastic material in the matrix and elastic material for the
inclusions and vice versa as well several frequency dependence laws
governing the Young’s modulus evolution are considered.

In the two analysed examples, the reference solution (one scale
model) is discretized using a plane stress six-node triangular finite
element model. In the multi-level approach, the RVE of the microscale
model is discretized using a three-node triangular element while at the
macroscale a nine node quadrangular element is used. A truncation
order of 𝑁 = 20 is considered in the ANM development and the
parameter 𝛿 intervening in the estimation 𝑎𝑚𝑎𝑥 of the convergence
radius is chosen equal to 10−6. The results of the proposed approach
are in very good agreement when compared to the reference one. In
addition, the results show excellent agreement when compared to those
in [23] for the sandwich use-case.

4.1. Application to vibration analysis of heterogeneous structures

4.1.1. Case of constant visco-elastic modulus
The Young’s modulus of visco-elastic phases is approximated by a

constant complex model:

𝐸∗
𝑣𝑒(𝜔) = 𝐸0(1 + 𝑖𝜂𝑣𝑒) (42)

The real Young’s modulus, 𝐸0, is related to the delayed elasticity and
𝜂𝑣𝑒 is the loss factor of visco-elastic material. Material and geomet-
rical properties of the considered heterogeneous cantilever beam are
reported in Table 1.

The inclusions are circular and represent 28% of the volume of
the structure. Two cases are considered for the loss factors of the
visco-elastic material 𝜂𝑣𝑒 ∈ {0.6, 1.5}. For the full model (reference
solution), the structure is discretized in Abaqus Finite Element Solver
using 100870 CPS6M elements involving 1217804 degrees of freedom
(dofs). On the counterpart, only 770 elements involving 824 dofs at the
microscale and 500 elements involving 4242 dofs at the macroscale are

2
needed for the multi-level FE .
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Table 1
Material and geometrical properties of the heterogeneous cantilever
beam.
Elastic material Young modulus 𝐸𝑒 = 109Pa

Poisson’s ratio 𝜈𝑒 = 0.45
Density 𝜌𝑒 = 1550 kg∕m3

Viscoelastic material Young modulus 𝐸𝑣𝑒 = 1794 × 104 Pa
Poisson’s ratio 𝜈𝑣𝑒 = 0.3
Density 𝜌𝑣𝑒 = 968.1 kg∕m3

Beam dimensions Length 𝐿 = 0.2 m
Thickness ℎ = 0.04 m

The first validation (Table 2) concerns an elastic matrix with a visco-
elastic inclusions. The second validation, reported on (Table 3), is a
structure with visco-elastic matrix and an elastic inclusions.

We report the first four global resonant frequencies and modal loss
factors of the analysed cantilever beam. One can see that the results of
the presented approach are in good agreement with the full discretized
model solved in Abaqus as well as those available in the literature with
relative errors less than 1% for the resonant frequencies. Significant
to be reported that only one iteration and 64 seconds are needed to
compute the sixteen modal properties using the proposed approach
when 33 hours are needed to perform the same computation using a
commercial software like Abaqus.

4.1.2. Frequency dependent visco-elastic modulus
The goal of this section is to show the validity of the new approach

regardless of the frequency dependence law governing the evolution of
the Young’s modulus of the visco-elastic material. The shear modulus of
the visco-elastic Polyvinyl butyral Polymer (PVB) may be approximated
at 20 ◦C by a fractional derivative model:

𝐺𝑣𝑒(𝜔) = 𝐺∞ + (𝐺0 − 𝐺∞)[1 + (𝑖𝜔𝜏)1−𝛼]−𝛽 (43)

where 𝐺0 = 479 × 103 Pa, 𝐺∞ = 2.35 × 108 Pa, 𝜏 = 0.3979, 𝛼 = 0.46,
𝛽 = 0.1946. Geometrical and material characteristics of the considered
heterogeneous beam are given in Table 5. Inclusions are circular and
represents 60% of the volume of the structure. Clamped beam boundary
conditions are considered.

For the computation of the full model, 399716 CPS6M elements
leading to 2401858 dofs and roughly about 45 hours computing time
are needed. On the counterpart for the proposed method, only 2722
elements leading to 2844 dofs are needed for the microscopic problem
whereas 3200 elements leading to 26332 dofs are needed for solving of
the macroscopic problem. The calculation of the eight modal properties
need approximately 77 minutes of computation time.

Resonant frequencies and modal loss factors, computed using the
presented approach, are compared to those of the full model as pre-
sented in Table 4. One can see through these results that, the first
four damping properties are in good agreement. The efficiency of the
proposed approach compared to the fully resolved model, is demon-
strated. In this specific case, the ANM procedure needs seven iteration
per mode.

4.2. Application for the vibration analysis of a sandwich beam

The goal of this subsection is to assess the efficiency of the proposed
method in computation of modal properties of visco-elastic sandwich
structures with a heterogeneous visco-elastic core. In order to improve
the damping properties of the sandwich beam with visco-elastic core,
another visco-elastic material with the high damping properties can be
added as inclusions in the core, see Fig. 3.

The faces are in glass, and the core is heterogeneous with PVB
matrix and 3M ISD112 inclusions. The PVB is considered at 20 ◦C
6

Fig. 3. Schematic representation of the sandwich beam with heterogeneous core.
Source: Image taken from [40].

and its shear modulus is given by Eq. (43). The 3M ISD112 is also
considered at 20 ◦C and its Young’s modulus is given by [6]:

𝐺∗
𝑣𝑒(𝜔) = 𝐺0(1 +

3
∑

𝑗=1

𝛥𝑗𝜔
𝜔 − 𝑖𝛺𝑗

) (44)

where the parameters 𝐺0 and (𝛥𝑗 , 𝛺𝑗) are given in Table 8. Geometrical
and material characteristics of considered Glass/PVB-3M ISD112/Glass
sandwich beam are given in Table 9. Inclusions are horizontal elliptic
and represents 40% of the volume of the structure. Clamped beam
boundary conditions are considered.

The predicted resonant frequencies and modal loss factors are com-
pared in Table 6. The results obtained with both methods are in good
agreement. The presented approach is thus efficient to compute the
damping properties of the visco-elastic sandwich beam with heteroge-
neous core in case of the frequency dependent modulus (Table 7).

5. Application: Design of visco-elastic sandwich structures with
high damping properties

The aim of this section is to assess the ability of the proposed
methodological approach to optimize the damping properties of the
visco-elastic sandwich structures. To achieve this goal, let us con-
sider a Glass/PVB/Glass sandwich beam under the clamped–clamped
boundary conditions. The material and geometrical properties of the
considered beam are given in Table 9. The shear modulus of PVB at
20 ◦C is approximated by the fractional derivative model Eq. (43).
In order to improve the damping properties of the beam, 3M ISD112
inclusions are added in the PVB core. The shear modulus of the 3M
ISD112 at 20 ◦C is given by the ADF model in Eq. (44). The influence
of the volume fraction and the morphology of the 3M ISD112 inclusions
on the damping properties of the beam, are assessed based on the
proposed approach.

5.1. Volume fraction effect

To assess the influence of the volume fraction of inclusions on
damping properties, we vary the volume fraction of 3M ISD112 in-
clusions from 0% (corresponding to Glass/PVB/Glass beam) to 100%
(corresponding to a Glass/3M ISD112/Glass beam). The considered
inclusions are horizontal elliptic. Evolution of the three first resonant
frequencies and modal loss factors according to the evolution of the
volume fraction of inclusions are plotted in Figs. 4 and 5. One can
note from Fig. 5 that the modal loss factors increase when the volume
fraction of 3M ISD112 increases. This occurs since the 3M ISD112 is
softer than PVB at 20 ◦C. Indeed, in the sandwich structures with a
visco-elastic core, the damping is mainly due to the shear deformation
in the visco-elastic core especially when the faces are stiffer than the
core [6]. Nevertheless, the resonant frequencies decrease when the
volume fraction of 3M ISD112 increases as showed by Fig. 4. Thus,
increasing of the volume fraction of 3M ISD112 leads to loss of rigidity
in the whole structure.
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Table 2
Comparative results for the resonant frequencies (𝛺) and the modal loss factors (𝜂) obtained by the presented
approach and the fully resolved model (FRM) in the case of the cantilever beam where the matrix is elastic
and the inclusions are viscoelastic.
𝜂𝑣𝑒 Modes Presented approach FRM Attipou et al. [23]

𝛺 (Hz) %ER 𝜂∕𝜂𝑣𝑒 %ER 𝛺 (Hz) 𝜂∕𝜂𝑣𝑒 𝛺 (Hz) 𝜂∕𝜂𝑣𝑒
0.6 1 96.45 0.10 0.030 3.44 96.54 0.029 97.00 0.029

2 498.34 0.30 0.041 0.00 496.86 0.041 502.62 0.0385
3 1154.68 0.44 0.047 −4.08 1149.67 0.049 1166.68 0.0442
4 1878.80 0.34 0.052 −5.45 1871.28 0.055 1901.02 0.0486

1.5 1 96.51 0.00 0.030 7.14 96.51 0.028 – –
2 498.91 0.22 0.041 2.50 497.79 0.040 – –
3 1156.25 0.72 0.047 −2.08 1148.04 0.048 – –
4 1881.62 0.26 0.052 −1.89 1876.82 0.053 – –
Table 3
Comparative results for the resonant frequencies (𝛺) and the modal loss factors (𝜂)
btained by the presented approach and the fully resolved model (FRM) in the case of
he cantilever beam where the matrix is viscoelastic and the inclusions are elastic.
𝜂𝑣𝑒 Modes Presented approach FRM

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

0.6 1 25.39 0.63 0.586 0 25.23 0.586
2 135.56 0.54 0.587 0 134.83 0.587
3 321.00 0.46 0.588 0 319.52 0.588
4 531.08 0.40 0.589 0 528.94 0.589

1.5 1 25.77 0.62 1.421 −0.07 25.61 1.422
2 137.48 0.54 1.427 0 136.74 1.427
3 325.29 0.46 1.431 0 323.81 1.431
4 537.83 0.39 1.434 0.07 535.73 1.433

Table 4
Comparative results for the resonant frequencies (𝛺) and the modal loss factors (𝜂)
btained by the presented approach and the fully resolved model (FRM) in the case of
he C–C beam with PVB at 20 ◦C.
Matrix elastic and Inclusions viscoelastic

Modes Presented approach FRM

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

1 551.62 0.02 0.0324 0.00 551.72 0.0324
2 1262.39 0.25 0.0361 0.27 1265.58 0.0362
3 2111.84 0.45 0.0370 0.27 2121.30 0.0369
4 3028.24 – 0.0375 – – –

Matrix viscoelastic and Inclusions elastic

Modes Presented approach FRM

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

1 401.34 1.96 0.136 2.16 393.63 0.139
2 1000.08 1.83 0.115 1.71 982.14 0.117
3 1753.67 1.44 0.105 6.25 1728.76 0.112
4 2595.14 – 0.098 – – –

Table 5
Geometrical and material characteristics of the considered clamped–
clamped heterogeneous beam containing PVB at 20 ◦C.
Elastic material Young modulus 𝐸𝑒 = 16.015 × 109 Pa

Poisson’s ratio 𝜈𝑒 = 0.44
Density 𝜌𝑒 = 490 kg∕m3

Viscoelastic material Shear modulus 𝐺0 = 479 × 103 Pa
Poisson’s ratio 𝜈𝑣𝑒 = 0.4
Density 𝜌𝑣𝑒 = 999 kg∕m3

Beam dimensions Length 𝐿 = 0.4 m
Thickness ℎ = 0.05 m

5.2. Influence of the shape of inclusions

In the considered heterogeneous structures, the fibre inclusions
can have three morphologies: horizontal elliptic, circular and vertical
elliptic. In this section we assess the influence of every morphology on
7

the damping properties of sandwich beams with a visco-elastic core.
Table 6
Resonant frequencies (𝛺) and modal loss factor (𝜂) of the considered Glass/PVB-3M
ISD112/Glass sandwich beam under clamped–clamped boundary conditions.

Modes Presented approach ABAQUS

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

1 93.75 −1.42 0.109 0.00 95.10 0.109
2 231.94 −1.07 0.0760 −1.55 234.44 0.0772
3 428.64 −0.54 0.0620 −1.81 430.96 0.0609
4 681.79 −0.25 0.0460 −1.50 683.48 0.0467

Table 7
Comparative results for the resonant frequencies (𝛺) and the modal loss factors (𝜂)
obtained by the presented approach and the fully resolved model (FRM) in the case of
the C–C beam with PVB at 20 ◦C.

Matrix elastic and Inclusions viscoelastic

Modes Presented approach FRM

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

1 551.62 0.02 0.0324 0.00 551.72 0.0324
2 1262.39 0.25 0.0361 0.27 1265.58 0.0362
3 2111.84 0.45 0.0370 0.27 2121.30 0.0369
4 3028.24 – 0.0375 – – –

Matrix viscoelastic and Inclusions elastic

Modes Presented approch FRM

𝛺 (Hz) %ER 𝜂 %ER 𝛺 (Hz) 𝜂

1 401.34 1.96 0.136 2.16 393.63 0.139
2 1000.08 1.83 0.115 1.71 982.14 0.117
3 1753.67 1.44 0.105 6.25 1728.76 0.112
4 2595.14 – 0.098 – – –

Table 8
Fit-parameters of the 3M ISD112 at 20 ◦C.
j 𝐺0 (Pa) 𝛥𝑗 𝛺𝑗 (rad/s)

1 2.8164 31.1176
2 0.0511 × 106 13.1162 446.4542
3 45.4655 5502.5318

Table 9
Material and geometrical properties of the considered Glass/PVB-3M ISD112/Glass
sandwich beam.

Elastic faces Young modulus 𝐸𝑓 = 64.5 × 109 Pa
Poisson’s ratio 𝜈𝑓 = 0.22
Density 𝜌𝑓 = 2737 kg∕m3

Thickness ℎ𝑓 = 9 × 10−3 m

Poisson’s ratio of the matrix 𝜈0𝑚 = 0.4
Density of the matrix 𝜌0𝑚 = 999 kg∕m3

Viscoelastic core Poisson’s ratio of inclusions 𝜈0𝑖 = 0.5
Density of inclusions 𝜌0𝑖 = 1600 kg∕m3

Thickness ℎ𝑐 = 4 × 10−3 m

Whole structure dimensions Length 𝐿 = 800 × 10−3 m
Thickness ℎ = 22 × 10−3 m
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Fig. 4. Evolution of three first resonant frequencies (𝛺) according to the evolution of
volume fractions of inclusions.

Fig. 5. Evolution of three first modal loss (𝜂) factors vs of volume fraction of the
inclusions.

For this purpose, the multi-scale finite element approach developed
previously is used to compute the damping properties of the considered
sandwich beam according to the evolution of the ratio 𝑎𝑒∕𝑏𝑒. 𝑎𝑒 and
𝑏𝑒 are the principal axis of the ellipse that define the morphology of
the inclusion. The inclusions are horizontal for 𝑎𝑒∕𝑏𝑒 > 1, circular for
𝑎𝑒∕𝑏𝑒 = 1 and vertical elliptic for 𝑎𝑒∕𝑏𝑒 < 1. The volume fraction of
the fibre inclusions is fixed at 20%. For a fixed volume fraction of
inclusions, we assess the influence of their morphology on damping
properties. The evolution of the three first resonant frequencies and the
modal loss factors according to the ratio 𝑎𝑒∕𝑏𝑒 are plotted on Figs. 6
and 7. The ratio 𝑎𝑒∕𝑏𝑒 has no significant influence on the resonant
frequencies while the modal loss factors vary according to the ratio
𝑎𝑒∕𝑏𝑒 as clearly demonstrated in Figs. 6 and 7. It should be noted that
the lower modal loss factors correspond to circular (𝑎𝑒∕𝑏𝑒 = 1) fibre
inclusions whereas the highest values of modal loss factors correspond
to the highest value of the ratio 𝑎𝑒∕𝑏𝑒. This allows one to increase the
damping effects based on the inclusions morphology.
8

Fig. 6. Evolution of the three first resonant frequencies (𝛺) according to the
morphology of the inclusions.

Fig. 7. Evolution of the three first modal loss factors (𝜂) according to the morphology
of the inclusions.

6. Conclusion

A multi-scale finite element approach has been proposed to compute
the damping properties of visco-elastically damped composite struc-
tures. The non linear vibration problem is solved using the ANM com-
bined to the automatic differentiation method and tool. The analysed
use-cases demonstrate the flexibility, the accuracy and the efficiency of
the proposed numerical approach. The flexibility results from the use of
automatic differentiation which allows for analysing different structural
configurations regardless the used material frequency dependent laws.
As regards the efficiency, the proposed approach allows for analysing
constant and frequency dependent Young’s modulus with a massive
reduction of CPU time.
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