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Abstract. The time-ordered exponential of a time-dependent matrix A(t) is defined as the
function of A(t) that solves the first-order system of coupled linear differential equations with
non-constant coefficients encoded in A(t). The authors recently proposed the first Lanczos-
like algorithm capable of evaluating this function. This algorithm relies on inverses of time-
dependent functions with respect to a non-commutative convolution-like product, denoted
∗. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed
to be proved. Here we constructively prove that ∗-inverses exist for all non-identically null,
smooth, separable functions of two variables. As a corollary, we partially solve the Green’s
function inverse problem which, given a distribution G, asks for the differential operator
whose fundamental solution is G. Our results are abundantly illustrated by examples.
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1. Introduction: Time-ordered Exponential and ∗-Lanczos Algorithm

1.1. Context. Consider the N×N matrix A(t′) depending on the real-time variable

t′ ∈ I ⊆ R. The time-ordered exponential of A(t′) is defined as the unique solution

U(t′, t) of the system of coupled linear differential equations with non-constant coef-

ficients

(1.1) A(t′)U(t′, t) =
d

dt′
U(t′, t), U(t, t) = Id, for all t ∈ I,

with t ≤ t′ ∈ I and Id the identity matrix. Under the assumption that A com-

mutes with itself at all times, i.e., A(τ1)A(τ2) − A(τ2)A(τ1) = 0 for all τ1, τ2 ∈
I, then the time-ordered exponential is an ordinary matrix exponential U(t′, t) =

exp
(∫ t′

t
A(τ) dτ

)
. In general, however, U has no known explicit form in terms of A.

Applications can be found in a wide variety of fields, in particular, in open quantum

system problems (e.g., [20]) and in quantum chemistry via magnetic resonance meth-

ods (e.g., [16]). Further applications come from the solution of differential Lyapunov

and Riccati matrix equations, which appear in control theory, filter design, and model

reduction problems [19, 13, 4, 2, 1]. In spite of its widespread applications through-

out physics, mathematics, and engineering, the time-ordered exponential function

is still very challenging to calculate. Recently P.-L. G. and S. P. proposed the first

Lanczos-like algorithm [8] capable of evaluating wHU(t′, t)v for any two vectors w,v

with wHv = 1, where wH is the Hermitian transpose of w. The algorithm inherently

relies on a non-commutative convolution-like product, denoted by ∗, between time-

dependent functions and necessitates the calculation of inverses with respect to this

product. The purpose of the present contribution is to constructively establish the

existence of these inverses. More generally, these results answer the Green’s function

inverse problem: namely, given a function G of two variables, what is the differential

operator whose fundamental solution is G? Here, our results are valid even when

the function G is a smooth and separable function of two variables G(t′, t) rather

than depending solely on t′ − t; a simpler case for which the ∗-product reduces to a

convolution and the solution is obtained from standard Fourier analysis.

Before these results can be presented, we recall the definition and properties of

the product utilized.

1.2. ∗-Product. Let t and t′ be time variables in an interval I ⊆ R. We define D(I)

as the class of the distributions (generalized functions) which are linear superpositions

of Dirac delta derivatives and Heaviside theta functions with smooth coefficients over

an interval I2. That is, d ∈ D(I) if and only if d is a distribution that can be written
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as

(1.2) d(t′, t) = d̃(t′, t)Θ(t′ − t) +

N∑
i=0

d̃i(t
′, t)δ(i)(t′ − t),

where N ∈ N is finite, Θ(·) stands for the Heaviside theta function (with the con-

vention Θ(0) = 1), and δ(i)(·) is the ith derivative of the Dirac delta distribution

δ = δ(0). Here and from now on, a tilde over a function (e.g., d̃(t′, t)) indicates that

it is an ordinary function smooth in both t′ ∈ I and t ∈ I.

We can endow the class D(I) with a non-commutative algebraic structure upon

defining a product between its elements. Let f1(t′, t), f2(t′, t) ∈ D(I) . We define the

convolution-like ∗ product between f1(t′, t) and f2(t′, t) as

(1.3)
(
f2 ∗ f1

)
(t′, t) :=

∫ ∞
−∞

f2(t′, τ)f1(τ, t) dτ.

From this definition, we find the identity element with respect to the ∗-product to

be the Dirac delta distribution, 1∗ := δ(t′ − t). Observe that the ∗-product is not,

in general, a convolution but may be so when both f1(t′, t) and f2(t′, t) depend only

on the difference t′ − t.
As a case of special interest for the ∗-Lanczos algorithm, consider the situation

where f1(t′, t) := f̃1(t′, t)Θ(t′− t) and f2(t′, t) := f̃2(t′, t)Θ(t′− t), where Θ(·) stands

for the Heaviside theta function (with the convention Θ(0) = 1). Then the ∗-product

between f1, f2 simplifies to

(
f2 ∗ f1

)
(t′, t) =

∫ ∞
−∞

f̃2(t′, τ)f̃1(τ, t)Θ(t′ − τ)Θ(τ − t) dτ,

= Θ(t′ − t)
∫ t′

t

f̃2(t′, τ)f̃1(τ, t) dτ,

which makes calculations involving such functions easier to carry out.

The ∗-product extends directly to time-dependent matrices in the following way.

Consider N ×N time-dependent matrices A(t′, t),B(t′, t) whose components are el-

ements in D(I), then

(
B ∗ A

)
i,j

(t′, t) :=

N∑
k=1

(
Bi,k ∗ Ak,j

)
(t′, t) =

∫ ∞
−∞

(
B(t′, τ)A(τ, t)

)
i,j

dτ.

For any integer k ≥ 1, we can also define recursively the kth ∗-power of A as

A(t′, t)∗k := A(t′, t)∗(k−1) ∗ A(t′, t) = A(t′, t) ∗ A(t′, t)∗(k−1),
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where we use the convention A(t′, t)∗0 := Id 1∗, with Id the standard identity matrix.

The ∗-product is also well defined for functions that depend on less than two-time

variables. Indeed, consider a distribution f3(t′) ∈ D, then

(
f3 ∗ f1

)
(t′, t) = f3(t′)

∫ +∞

−∞
f1(τ, t) dτ,

(
f1 ∗ f3

)
(t′, t) =

∫ +∞

−∞
f1(t′, τ)f3(τ) dτ.

with f1(t′, t) ∈ D(I). Hence the time variable of f3(t′) is treated as the left time

variable of a doubly time-dependent distribution. This observation extends straight-

forwardly to constant functions.

1.3. ∗-Lanczos algorithm. As shown in [7], if Ã(t′) is a time-dependent matrix

with bounded entries for every t′ ∈ I, then the related time-ordered exponential

U(t′, t) can be expressed as

(1.4) U(t′, t) = Θ(t′ − t)
∫ t′

t

R∗(Ã)(τ, t) dτ.

Here R∗ is the ∗-resolvent, defined as

R∗(Ã) :=
(
Id1∗ − Ã

)∗−1
,

= Id 1∗ +
∑
k>0

Ã∗k,

which converges provided every entry of A is bounded for all t′, t ∈ I (see [7]).

Now we can recall the results [8] pertaining to the time-ordered-exponential. Let

A(t′, t) := Ã(t′)Θ(t′ − t) with Ã(t′) a N ×N time-dependent matrix. The ∗-Lanczos

algorithm of Table 1 is a ∗-biorthogonalization process of time-dependent Krylov

subspaces. In this time-dependent framework, it represents a counterpart of the

(classical) non-Hermitian Lanczos algorithm, refer to [21, 11, 14]. The ∗-Lanczos

algorithm produces a sequence of tridiagonal matrices Tn, 1 ≤ n ≤ N , of the form

(1.5) Tn :=


α0 1∗

β1 α1
. . .

. . .
. . . 1∗
βn−1 αn−1

 ,

and such that the matching moment property is achieved:
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Input: A complex time-dependent matrix A, and complex vectors v,w such

that wHv = 1.

Output: Coefficients α0, · · · , αn−1 and β0, · · · , βn−1 defining the matrix Tn

of Eq. (1.5) which satisfies Eq. (1.6).

Initialize: v−1 = w−1 = 0, v0 = v 1∗, w
H
0 = wH1∗.

α0 = wHAv,

wH
1 = wHA− α0 w

H ,

v̂1 = Av − v α0,

β1 = wHA∗2 v − α∗20 ,
If β1 is not ∗-invertible, then stop, otherwise,

v1 = v̂1 ∗ β∗−11 ,

For n = 2, . . .

αn−1 = wH
n−1 ∗ A ∗ vn−1,

wH
n = wH

n−1 ∗ A− αn−1 ∗wH
n−1 − βn−1 ∗wH

n−2,

v̂n = A ∗ vn−1 − vn−1 ∗ αn−1 − vn−2,

βn = wH
n ∗ A ∗ vn−1,

If βn is not ∗-invertible, then stop, otherwise,

vn = v̂n ∗ β∗−1n ,

end.

Table 1. The ∗-Lanczos Algorithm of [8].

Theorem 1.1 ([8]). Let A,w,v and Tn be as described above, then

(1.6) wH(A∗j)v = eH1 (T∗jn ) e1, for j = 0, . . . , 2n− 1.

Note that Theorem 1.1 and its application to the approximation of the time-ordered

exponential are analogous to the results and techniques for (time-independent) ma-

trix function approximation in [10, 11].

In particular, for n = N , we have the exact expression

wHU(t′, t)v = Θ(t′ − t)
∫ t′

t

R∗(Tn)1,1(τ, t) dτ,
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while for n < N , the right-hand side yields an approximation to the time-ordered

exponential. The method of path-sum [7] then gives explicitly

(1.7) R∗(Tn)1,1(t′, t) =
(

1∗ − α0 −
(
1∗ − α1 − (1∗ − ...)∗−1 ∗ β2

)∗−1 ∗ β1)∗−1.
The αj and βj appearing in the Tn matrices are produced by the ∗-Lanczos procedure

through recurrence relations. A crucial step in the algorithm is the ∗-inversion of the

βj , i.e, the calculation of a distribution β∗−1j such that β∗−1j ∗ βj = βj ∗ β∗−1j = 1∗.

The paper [8] assumed the existence of such ∗-inverses. However, if a β∗−1j fails to

exist, then the algorithm suffers a breakdown.

Here we show that the ∗-inverse f∗−1 of a function f(t′, t) = f̃(t′, t)Θ(t′ − t) can

be obtained when f̃ is smooth, not identically null, and separable (see definition in

§2). Note that here and later, the existence of a ∗-inverse means that it exists almost

everywhere in I × I. These results are further developed in [9], where, under the

assumption that βj is not identically null for j = 1, . . . , n, we proved that if all the

entries of Ã(t′) are smooth functions of t′, then

αj(t
′, t) = α̃j−1(t′, t)Θ(t′ − t), βi(t

′, t) = β̃j(t
′, t)Θ(t′ − t), j = 1, . . . , n.

Hence a breakdown is only possible when βj is identically null for some j.

The rest of this article is organized as follows: in §2, we begin by recalling necessary

definitions and properties of separable functions and distributions. In §2.1, we give

the ∗-inverses of functions of a single variable. We then proceed in §2.2 with the

∗-inverses of all functions that are polynomials in at least one variable. Encouraged

by the method underlying these results, in §2.3, we generalize it to construct the

∗-inverse of any piecewise smooth separable function and of any distribution in a

particular class.

Finally, in §3, we present the relation between our results and the Green’s function

inverse problem.

2. Existence and mathematical expression of ∗-inverses

The calculation of ∗-inverses of functions f(t′, t) carries the gist of the difficulty

inherent in obtaining explicit expressions for time-ordered exponentials. In general,

given an arbitrary ordinary function f̃(t′, t) and barring any further assumption, the

∗-inverse of f(t′, t) = f̃(t′, t)Θ(t′ − t) cannot be given explicitly.1 In this section, we

show that the ∗-inverse f∗−1 is indeed accessible from the solution of an ordinary

1Practical numerical questions pertaining to the behavior of ∗-inverses under time discretization

will be discussed in detail elsewhere. As observed in [8], a time-discretized ∗-inverse is always
computable using an ordinary matrix inverse.

6



linear differential equation provided that f̃(t′, t) is a separable function that is smooth

in t, t′ and not identically null. A function f̃(t′, t) is separable if and only if there

exist ordinary functions ãi and b̃i with

f̃(t′, t) =

k∑
i=1

ãi(t
′)b̃i(t).

We begin by recalling important properties of the Dirac delta distribution and

its derivatives δ(j). The Dirac delta derivatives are characterized by the relation

expounded by Schwartz [22],
∫∞
−∞ δ(j)(q)f(q) dq = (−1)jf (j)(0). From this we get

that ∗-multiplication by δ(j) acts as a derivative operator

(
δ(j) ∗ f

)
(t′, t) =

∫ ∞
−∞

δ(j)(t′ − τ) f(τ, t) dτ,

= −
∫ −∞
∞

δ(j)(q) f(t′ − q, t) dq,

= (−1)j
∂j

∂qj
f(t′ − q, t)

∣∣
q=0

,

= f (j,0)(t′, t),

while we have f ∗ δ(j) = (−1)jf (0,j). The notation f (j,k)(τ, ρ) stands for the jth

t′-derivative and kth t-derivative of f(t′, t) evaluated at t′ = τ, t = ρ. From now on,

we omit the t′ − t arguments of the Heaviside Θ functions and Dirac deltas when

necessary to alleviate the equations.

For functions of the form f(t′, t) = f̃(t′, t)Θ(t′ − t), the derivatives resulting from

the ∗-action of δ(j) are taken in the sense of distributions:

δ(j) ∗ f(t′, t) = f̃ (j,0)(t′, t)Θ + f̃ (j−1,0)(t, t)δ + · · ·+ f̃(t, t)δ(j−1),

(2.1a)

f(t′, t) ∗ δ(j) = (−1)j
(
f̃ (0,j)(t′, t)Θ− f̃ (0,j−1)(t′, t′)δ + · · ·+ (−1)j f̃(t′, t′)δ(j−1)

)
;

(2.1b)

see [22, Chapter 2, § 2]. Finally, we note the following identities between distributions

for j ≥ 0

f̃(t′)δ(j)(t′ − t) = (−1)j
(
f̃(t)δ(t′ − t)

)(0,j)
,(2.2a)

f̃(t)δ(j)(t′ − t) =
(
f̃(t′)δ(t′ − t)

)(j,0)
,(2.2b)

where f̃ is an ordinary function.
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2.1. Functions of a single time variable. The ∗-inverse of functions of a single

time variable times a Heaviside function are easy to find explicitly:

Proposition 2.1. Let a(t′, t) := ã(t′)Θ(t′ − t) and b(t′, t) := b̃(t)Θ(t′ − t) so that

ã and b̃ are differentiable, and not identically null over I. Then

a∗−1(t′, t) =
∂

∂t′
δ(t′ − t)
ã(t′)

, b∗−1(t′, t) = − ∂

∂t

δ(t′ − t)
b̃(t)

.

Proof. Since ã(t′) is an ordinary function and a(t′, t) = ã(t′)Θ(t′− t), Eqs. (2.1) and

[22, Chapter 2, § 2] give

(
a ∗ δ′

)
(t′, t) = ã(t′)δ(t′ − t),

as Θ(0,1)(t′−t) = −δ(t′−t). We deduce that a∗−1(t′, t) = δ′(t′−t)∗(ã(t′)δ(t′ − t))∗−1 .
The ∗-inverse of ã(t′)δ(t′ − t) is the solution x(t′, t) of the equation ã(t′)δ(t′ − t) ∗
x(t′, t) = δ(t′ − t), i.e., x(t′, t) = δ(t′ − t)/ã(t′), from which we get the expression

a∗−1(t′, t) = δ′(t′ − t) ∗ δ(t
′ − t)
ã(t′)

.

An analogous proof yields the inverse b∗−1. �

Proposition 2.1 is particularly useful to determine the ∗-inverse of products of

functions of a single time variable such as those of [8]. We give two detailed examples

of this below:

Example 2.1. Let us determine the ∗-inverse of (t′− t)Θ. To this end, we remark

that (t′ − t)Θ = Θ ∗Θ and thus

((t′ − t)Θ)
∗−1

=
(
Θ∗−1 ∗Θ∗−1

)
.

Since Θ = 1 × Θ, the ∗-inverse of Θ is immediately provided by Proposition 2.1 as

Θ∗−1 = δ′. Then Θ∗−1 ∗Θ∗−1 = δ′′, whose ∗-action on a test function f(t′, t) is

(
Θ∗−1 ∗Θ∗−1 ∗ f

)
(t′, t) = f (2,0)(t′, t).

Example 2.2. Let us find the left and right actions of the ∗-inverse of β(t′, t) :=

2
(

sin(t′)− sin(t)
)

+ (t′− t) on test functions. We note that β = b2 ∗ b1 with b2(t′) =
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Θ(t′− t) and b1(t′) = 2(cos(t′)+1)Θ(t′− t). Hence by Proposition 2.1, the left action

of the inverse on a test function f(t′, t) is

β∗−1 ∗ f = b∗−11 ∗ b∗−12 ∗ f =
∂

∂t′

[
1

2(cos(t′) + 1)

∂

∂t′
f(t′, t)

]
,

=
sin(t′)

2(cos(t′) + 1)2
∂

∂t′
f(t′, t) +

1

2(cos(t′) + 1)

∂2

∂t′2
f(t′, t),

and its right action is

f ∗ β∗−1 = f ∗ b∗−11 ∗ b∗−12 =
∂

∂t

[
1

2(cos(t) + 1)

∂

∂t
f(t′, t)

]
,

=
sin(t)

2(cos(t) + 1)2
∂

∂t
f(t′, t) +

1

2(cos(t) + 1)

∂2

∂t2
f(t′, t).

2.2. ∗-inverses of polynomials. The method employed in the proof of Proposi-

tion 2.1 relying on differential equations generalizes straightforwardly to polynomials

in at least one time variable, here taken to be t′. An analogous result can be given

for functions that are polynomials in t.

Proposition 2.2. Let p(t′, t) = p̃(t′, t)Θ(t′ − t) be so that p̃(t′, t) is a polynomial

of degree k ≥ 1 in t′ and is smooth in t. If p(t, t) is not identically null over I, then

p(t′, t)∗−1 = x(t′, t) ∗ δ(k+1)(t′ − t),

where x(t′, t) = x̃(t′, t)Θ(t′ − t) is the solution of the linear homogeneous ordinary

differential equation in t

k∑
j=0

(−1)j p̃(k−j,0)(t, t)x̃(0,j)(t′, t) = 0,

with the boundary conditions

x̃(0,k−1)(t′, t′) =
(−1)k−1

p̃(t′, t′)
, x̃(0,k−2)(t′, t′) = 0, . . . , x̃(t′, t′) = 0.

Proof. Observe that p(t′, t) is a piecewise smooth function, and, as a function of t′,

it has a discontinuity located at t′ = t. Since furthermore, p̃(t′, t) is of degree k in

t′, Eq. (2.1) gives

(
δ(k+1) ∗ p

)
(t′, t) =

k∑
j=0

p̃(k−j,0)(t, t)δ(j)(t′ − t).
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Hence p(t′, t)∗−1 = x(t′, t) ∗ δ(k+1)(t′ − t), where x(t′, t) is the distribution satisfying

(2.3) x(t′, t) ∗

 k∑
j=0

p̃(k−j,0)(t, t)δ(j)(t′ − t)

 = δ(t′ − t).

Now let us assume that the solution x(t′, t) takes the form x(t′, t) = x̃(t′, t)Θ(t′ − t)
with x̃(t′, t) a smooth function of t. Then we get, for j = 0, . . . , k,

x(t′, t) ∗ p̃(k−j,0)(t, t)δ(j) =

p̃(k−j,0)(t, t)(−1)j

(
x̃(0,j)(t′, t)Θ +

j−1∑
`=0

(−1)`+1x̃(0,j−1−`)(t′, t′)δ(`)

)
.

Thus Eq. (2.3) can be rewritten as the system:

k∑
j=0

(−1)j p̃(k−j,0)(t, t)x̃(0,j)(t′, t) = 0,

k∑
j=1

(−1)j−1p̃(k−j,0)(t, t)x̃(0,j−1)(t′, t′) = 1,

k∑
j=2

(−1)j−2p̃(k−j,0)(t, t)x̃(0,j−2)(t′, t′) = 0,

...
...

p̃(t, t)x̃(t′, t′) = 0.

As p̃(t, t) is not identically null, the last k − 1 equations imply x̃(0,j)(t′, t′) = 0 for

j = 0, . . . , k−2. Moreover, since by Eq. (2.2) we have p̃(t, t)δ(t′−t) = p̃(t′, t′)δ(t′−t),
the second equation becomes (−1)k−1p̃(t′, t′)x̃(0,k−1)(t′, t′) = 1. Since the set of zeros

of p̃(t′, t′) is made of isolated points, the ordinary differential equation above has a

solution almost everywhere (more precisely, x̃(t′, t) is defined for t′, t ∈ I \ {τ :

p̃(τ, τ) = 0}). Thus assuming x(t′, t) to be of the form x̃(t′, t)Θ(t′− t) with x̃ smooth

in t is a consistent choice, which concludes the proof. �

Remark 2.1. If p̃(t, t) is identically null over I, then

δ′(t′ − t) ∗ p(t′, t) = p̃(1,0)(t′, t)Θ(t′ − t),

since p is continuous at t′ = t. Hence we can apply Proposition 2.2 to p̃(1,0)(t′, t)Θ(t′−
t). In the further case in which all p̃(j)(t, t) = 0 are identically null for j = 0, . . . , k−1

and p̃(k)(t, t) is a constant α, the ∗-inverse is obtained noting that

δ(k+1)(t′ − t) ∗ p(t′, t) = α δ(t′ − t).
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These considerations show that the condition p̃(t, t) 6= 0 is not necessary for p∗−1(t′, t)

to exist. Rather the condition is that p(t′, t) itself must not be identically zero.

Example 2.3. Let us determine the ∗-inverse of the polynomial p(t′, t) :=
(
t′ −

2t
)
Θ(t′ − t). Following Proposition 2.2 we have p(t′, t)∗−1 = x(t′, t) ∗ δ′′, where

x(t′, t) = x̃(t′, t)Θ and x̃(t′, t) solves

x̃(t′, t) + tx̃(0,1)(t′, t) = 0, x̃(t′, t′) = − 1

t′
.

This gives x̃(t′, t) = −1/t and thus

p(t′, t)∗−1 =

(
1

t
Θ

)
∗ δ′′ = − 2

t3
Θ− 1

t′2
δ − 1

t′
δ′.

We can now verify that this works as expected

p(t′, t)∗−1 ∗ p(t′, t) = −
(

1

t
Θ

)
∗ δ′′ ∗ (t′ − 2t)Θ = −

(
1

t
Θ

)
∗
(
(t′ − 2t)Θ

)(2,0)
,

= −
(

1

t
Θ

)
∗ (δ − tδ′) = −1

t
Θ + (−1)t

(
−1

t2
Θ− 1

t′
δ

)
,

=
t

t′
δ = δ,

where the last equality follows by virtue of Eq. (2.2). Now

p(t′, t) ∗ p(t′, t)∗−1 = (t′ − 2t)Θ ∗
(
−1

t
Θ

)
∗ δ′′,

= (t′ − t)Θ ∗ δ′′ = (−1)2
(
(t′ − t)Θ

)(0,2)
,

=
(
0 + δ + 0δ′

)
= δ.

A technique similar to the one used in the proof of Proposition 2.2 can be applied

to a more general class of functions. For instance, whenever differentiating leads to

an expression like

δ(k) ∗ f(t′, t) = h̃(t)f(t′, t) + g(t′, t),

the expression can be rewritten as(
δ(k) − h̃(t)δ

)
∗ f(t′, t) = g(t′, t).

Then we can go on with a further combination of differentiations until there is no

Heaviside function left on the right-hand side of the above equality. In particular,

such a technique can be used when dealing with commonly encountered exponential

or trigonometric functions.
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2.3. ∗-inverses of piecewise smooth separable functions. The strategy used

in the proof of Proposition 2.1 can be extended to give ∗-inverses in the much more

general case of functions which are separable and piecewise smooth in both time

variables over the interval I.

Theorem 2.1. Consider a function f(t′, t) := f̃(t′, t)Θ(t′−t) with f̃(t′, t) a smooth

function in I × I, and so that f̃(t, t) is not identically null. Assume that there

exists a distribution L(t′, t) :=
∑k+1

j=0 g̃j(t
′)δ(j) ∈ D(I), with g̃j(t

′) smooth functions

depending only on t′ and g̃k+1 6= 0, such that

(2.4) L(t′, t) ∗ f̃(t′, t) = 0.

Then, if k > 0, the ∗-inverse of f is

f∗−1 = r̃−1(t′, t)Θ +

k∑
m=0

r̃m(t′)δ(m),

with the separable smooth function

r̃−1(t′, t) :=

k+1∑
j=0

(−1)j ỹ
(0,j)
j (t′, t),

and the smooth functions

r̃m≥0(t′) :=

k+1∑
j=m+1

(−1)j ỹ
(0,j−1−m)
j (t′, t′),

where ỹj(t
′, t) := x̃(t′, t)g̃j(t) and x̃(t′, t) is the solution of the linear homogeneous

ordinary differential equation in t

k∑
m=0

h̃m(t)x̃(0,m)(t′, t) = 0,

with boundary conditions

x̃(0,k−1)(t′, t′) = −
(
h̃k(t′)

)−1
, x̃(0,k−2)(t′, t′) = 0, . . . , x̃(t′, t′) = 0.

In these expressions, h̃m(t) are smooth functions given by

h̃m(t) :=

k+1∑
j=m+1

j−1∑
`=m

(
`

m

)
(−1)`f̃ (j−`−1,0)(t, t)g̃

(`−m)
j (t).

12



If instead k = 0, the ∗-inverse of f is trivially given by

f∗−1(t′, t) =
1

g̃1(t′)f̃(t′, t′)
L(t′, t).

Inverting the role of t′ and t, a completely similar theorem is proven by changing

all left ∗-multiplications by δ(j) with right multiplications and vice-versa. In this

situation, x̃ satisfies a linear homogeneous ordinary differential equation in t′, and

the boundary conditions involve the variable t.

Proof. By ∗-multiplying L by f , we get

(2.5) L(t′, t) ∗ f(t′, t) =

k+1∑
j=0

g̃j(t
′)
(
δ(j) ∗ f(t′, t)

)
,

where

δ(j) ∗ f(t′, t) = f̃ (j,0)(t′, t)Θ + f̃ (j−1,0)(t, t)δ + · · ·+ f̃(t, t)δ(j−1).

Therefore (2.5) evaluates to

L ∗ f =
(
L ∗ f̃

)
Θ +

k∑
j=0

 k+1∑
`=j+1

g̃`(t
′)f̃ (`−j−1,0)(t, t)

 δ(j).

Noting that L ∗ f̃ = 0 and by applying the transformation of Eq. (2.2) to g̃`(t
′)δ(j),

the last equation can be further expressed in the form L∗f =
∑k

m=0(−1)mh̃m(t)δ(m)

with the smooth functions

h̃m(t) :=

k+1∑
j=m+1

j−1∑
`=m

(
`

m

)
(−1)`f̃ (j−`−1,0)(t, t)g̃

(`−m)
j (t).

Assume that x(t′, t) = x̃(t′, t)Θ(t′ − t), with x̃ smooth function of t, is the ∗-inverse

of L ∗ f . Then it should satisfy

(2.6) x(t′, t) ∗

(
k∑

m=0

(−1)mh̃m(t)δ(m)

)
= δ.

We now proceed similarly to the proof of Proposition 2.2. Since again

x(t′, t) ∗ δ(m) = (−1)mx̃(0,m)(t′, t)Θ + (−1)m
m−1∑
j=0

(−1)j+1x̃(0,m−1−j)(t′, t′)δ(j),

13



it follows that

(
x ∗ L ∗ f

)
(t′, t) =

k∑
m=0

h̃m(t)

x̃(0,m)(t′, t)Θ +

m−1∑
j=0

(−1)j+1x̃(0,m−1−j)(t′, t′)δ(j)

 ,

=

k∑
m=0

h̃m(t)x̃(0,m)(t′, t)Θ +

k∑
m=1

m−1∑
j=0

h̃m(t)(−1)j+1x̃(0,m−1−j)(t′, t′)δ(j),

=

k∑
m=0

h̃m(t)x̃(0,m)(t′, t)Θ +

k−1∑
j=0

k∑
m=j+1

h̃m(t)(−1)j+1x̃(0,m−1−j)(t′, t′)δ(j).

Now by Eq. (2.2), h̃m(t)δ(j) =
(
h̃m(t′)δ

)(j,0)
=
∑j

n=0

(
j
n

)
h̃
(j−n)
m (t′)δ(n), we have

k−1∑
j=0

k∑
m=j+1

h̃m(t)(−1)j+1x̃(0,m−1−j)(t′, t′)δ(j)

=

k−1∑
j=0

k∑
m=j+1

(−1)j+1x̃(0,m−1−j)(t′, t′)

j∑
n=0

(
j

n

)
h̃(j−n)m (t′)δ(n),

=

k−1∑
n=0

k−1∑
j=n

k∑
m=j+1

(−1)j+1x̃(0,m−1−j)(t′, t′)

(
j

n

)
h̃(j−n)m (t′)

 δ(n).

Hence Eq. (2.6) becomes equivalent to the ordinary homogenous linear differential

equation in t

(2.7)

k∑
m=0

h̃m(t)x̃(0,m)(t′, t) = 0,

with boundary conditions

k−1∑
j=0

k∑
m=j+1

(−1)j+1x̃(0,m−1−j)(t′, t′)h̃(j)m (t′) = 1,

k−1∑
j=n

k∑
m=j+1

(−1)j+1x̃(0,m−1−j)(t′, t′)

(
j

n

)
h̃(j−n)m (t′) = 0, n = 1, . . . , k − 1.

For every t′ such that h̃k(t′) 6= 0, the last k − 1 equations imply x̃(0,j)(t′, t′) = 0, for

j = 0, . . . , k − 2, and x̃(0,k−1)(t′, t′)h̃k(t′) = −1. Thus x̃ is well defined for almost

every t′ ∈ I as the unique solution of Eq. (2.7) with the boundary conditions above

and the choice of x̃ as a smooth function of t is consistent (x̃(t′, t) is defined for every

t′, t ∈ I \ {τ : f̃(τ, τ)g̃k+1(τ) = 0}).
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We can now evaluate f∗−1 = x ∗ L explicitly,

f∗−1 =

k+1∑
j=0

(−1)j
(
x̃(t′, t)g̃j(t)

)(0,j)
Θ +

k+1∑
j=1

(−1)j
j−1∑
m=0

(
x̃(t′, t′)g̃j(t

′)
)(0,j−1−m)

δ(m),

= r̃−1(t′, t)Θ +

k∑
m=0

r̃m(t′)δ(m),

with the smooth functions

r̃−1(t′, t) :=

k+1∑
j=0

(−1)j
(
x̃(t′, t)gj(t)

)(0,j)
,

r̃m≥0(t′) :=

k+1∑
j=m+1

(−1)j
(
x̃(t′, t′)g̃j(t

′)
)(0,j−1−m)

.

Note that x̃(t′, t) can be written as a linear combination of functions of t, which are

a basis of the solution subspace of the differential equation (2.7), with coefficients

dependent on t′. Therefore x̃(t′, t) is separable, and so is r̃−1. �

Remark 2.2. As explained in Remark 2.1, the assumption f(t, t) = 0 is not

necessary. We can reformulate the theorem statement so that the condition is f not

identically zero on I.

The most stringent condition imposed by Theorem 2.1 is the existence of the

differential operator L with coefficients that depend only on t′. This condition can

be made more transparent upon relating it to the class of separable functions.

Let ỹ1(t′), . . . , ỹk+1(t′) be smooth functions of t′, and ã1(t), . . . , ãk+1(t) be func-

tions of t. If ỹ1(t′), . . . , ỹk+1(t′) are linearly independent, equivalently, the related

Wronskian W (ỹ1, . . . , ỹk+1) is not identically null, i.e.,

W (ỹ1, . . . , ỹk+1) :=

∣∣∣∣∣∣∣∣∣
ỹ1 ỹ2 . . . ỹk+1

ỹ′1 ỹ′2 . . . ỹ′k+1
...

...
...

ỹ
(k)
1 ỹ

(k)
2 . . . ỹ

(k)
k+1

∣∣∣∣∣∣∣∣∣ 6= 0,

then there exist L as in Theorem 2.1 so that L ∗ f̃ = 0 for every separable function

(2.8) f̃(t′, t) = ã1(t)ỹ1(t′) + · · ·+ ãk+1(t)ỹk+1(t′).
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Indeed, the conditions L ∗ ỹj = 0, for j = 1, . . . , k + 1, give the system
ỹ1 ỹ′1 . . . ỹ

(k)
1

ỹ2 ỹ′2 . . . ỹ
(k)
2

...
...

...

ỹk+1 ỹ′k+1 . . . ỹ
(k)
k+1



g̃0
g̃1
...
g̃k

 = −g̃k+1


ỹ
(k+1)
1

ỹ
(k+1)
2

...

ỹ
(k+1)
k+1

 ,

whose solutions exist since the Wronskian is not identically null. In particular,

at least one of the solutions has smooth coefficients. Theorem 2.1 thus yields the

following corollary for separable functions:

Corollary 2.1. Let f(t′, t) := f̃(t′, t)Θ(t′ − t) with f̃(t′, t) a smooth separable

function in I × I so that f̃(t, t) is not identically null. Then f∗−1 exists and is given

as in Theorem 2.1.

Thanks to the previous results, we can also show that the set made of all the

distributions in D(I) with separable coefficients is closed under ∗-inversion:

Corollary 2.2. Let d ∈ D(I) a distribution with separable coefficients, i.e., so

that it can be written as

d(t′, t) = d̃(t′, t)Θ(t′ − t) +

N∑
i=0

d̃i(t
′, t)δ(i)(t′ − t),

with d̃, d̃1, . . . , d̃N separable functions. Then the ∗-inverse of d exists and can be

written as

d∗−1(t′, t) = Θ(t′ − t)∗(N+1) ∗ h∗−1(t′, t),

where h(t′, t) is a separable function. Furthermore, d∗−1 is a distribution with sepa-

rable coefficients.

Proof. Consider the separable function d̃i(t
′, t) =

∑k
j=1 ãj(t

′)̃bj(t). Then we get

d̃i(t
′, t)δ(i)(t′ − t) ∗Θ(t′ − t) =

k∑
j=1

ãj(t
′)̃bj(t)δ

(i)(t′ − t) ∗Θ(t′ − t).

Note that

ãj(t
′)̃bj(t)δ

(i)(t′ − t) ∗Θ(t′ − t) = ãj(t
′)
(
δ(i)(t′ − t) ∗ b̃j(t′)Θ(t′ − t)

)
.

Hence the first formula in (2.1) gives

d̃i(t
′, t)δ(i)(t′ − t) ∗Θ(t′ − t) = f̃i(t

′, t)δ(i−1),
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where f̃i is a separable function. Repeating the same argument for all d̃i and recalling

that the integral of a separable function is still separable, we get

d(t′, t) ∗Θ(t′ − t) = g̃(t′, t)Θ(t′ − t) +

N−1∑
i=0

g̃i(t
′, t)δ(i)(t′ − t),

with g̃, g̃1, . . . , g̃N − 1 separable functions. By recursion, there exists a separable

function h̃ so that

d(t′, t) ∗Θ(t′ − t)∗(N+1) = h̃(t′, t)Θ(t′ − t) =: h(t′, t).

The ∗-inverse of h exists by Corollary 2.1. Thus there exists also the inverse of d,

which is given by

d∗−1(t′, t) = Θ(t′ − t)∗(N+1) ∗ h∗−1(t′, t).

By Theorem 2.1, h∗−1 is a distribution with separable coefficients, and so is d∗−1. �

Example 2.4. Let us determine the ∗-inverse of f(t′, t) = (t′2 − t/t′)Θ(t′ − t).
Since f̃(t′, t) is separable, smooth in both variables, and f̃(t, t) is not identically null,

Theorem 2.1 applies immediately. Setting L(t′, t) := g̃0(t′)δ+ g̃1(t′)δ′+ g̃2(t′)δ′′ with

g̃0(t′) := 1, g̃1(t′) := 0 and g̃2(t′) := −t′2/2, we have k = 1 and L(t′, t) ∗ f̃(t′, t) = 0.

This leads to

h̃0(t) := 3t/2, h̃1(t) := (t4 + t2)/2,

which are the only non-identically null functions h̃m. The function x̃ is thus the

solution of

3x̃(t′, t) + t(1 + t2)x̃(0,1)(t′, t) = 0, x̃(t′, t′)
t′2

2
(t′2 + 1) = −1.

We find

x̃(t′, t) = −2t′(t2 + 1)3/2

(t′2 + 1)5/2t3
.

We verify that

x ∗ L ∗ f = h̃1(t)x̃(t′, t′)δ =
t2
(
t2 + 1

)
t′2 (t′2 + 1)

δ = δ,

indicating that indeed

f∗−1 = x ∗ L =

(
2t′(t2 + 1)3/2

(t′2 + 1)5/2t3
Θ

)
∗
(
δ − t′2

2
δ′′
)
.
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Example 2.5. Let us determine the ∗-inverse of f(t′, t) = cos(t′)tΘ(t′− t). Since

f̃(t′, t) is separable, smooth in both variables, and f̃(t, t) is not identically null,

Theorem 2.1 applies. Furthermore, let L(t′, t) := δ + δ′′ = 1 × δ + 0 × δ′ + 1 × δ′′

and observe that L(t′, t) ∗ f̃(t′, t) = 0. It follows that here k = 1 and x̃(t′, t) is the

solution of

−t sin(t)x̃(t′, t)− t cos(t)x̃(0,1)(t′, t) = 0, x̃(t′, t′) =
1

t′ cos(t′)
.

This gives

x̃(t′, t) =
cos(t)

cos(t′)2t′
,

and, from there,

f∗−1(t′, t) =
sin(t′)

cos(t′)2t′
δ +

1

cos(t′)t′
δ′.

We verify this result

f∗−1(t′, t) ∗ f(t′, t) =
sin(t′)

cos(t′)2t′
cos(t′)tΘ− (−1)

1

cos(t′)t′
(
− sin(t′)tΘ + cos(t)t δ

)
,

=
cos(t)t

cos(t′)t′
δ = δ,

by virtue of Eq. (2.2). The proof for f(t′, t) ∗ f∗−1(t′, t) = δ is similar.

Example 2.6. Let us determine the ∗-inverse of e3t
′+t. We can apply Theo-

rem 2.1, this time with L(t′, t) = δ − (1/3)δ′, i.e., k = 0. Thus

f̃∗−1(t′, t) = −3e−4t
′
(
δ − 1

3
δ′
)
.

We verify this result immediately

f ∗ f∗−1 = −3e3t
′−3tΘ + (−1)

(
− 3e3t

′−3tΘ− e−t
′+t′δ

)
= δ,

and similarly for f∗−1 ∗ f .

Remark 2.3. Our results concern ∗-inverses of separable functions of the form

f := f̃Θ, with f̃ separable and smooth in t′ and t. In particular, they do not

extend easily to ∗-resolvents, which are ∗-inverses of distributions of the form δ − f ,

typically with f as above. Rather, ∗-resolvents are best determined as solutions of a

linear Volterra integral equation of the second kind with kernel f and inhomogeneity

1∗ = δ,

R∗(f) :=
(
1∗ − f

)∗−1 ⇒ R∗(f) = δ + f ∗R∗(f).
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There is a vast literature on the existence and smoothness of the solutions of such

equations [12, 23, 18], as well as numerous techniques to determine them both ana-

lytically and numerically [24, 15, 17, 6]. In the context of the ∗-Lanczos algorithm, ∗-
resolvents play a central role in the final step when computing R∗(T)11 via Eq. (1.7),

but they can also be profitably exploited when calculating the β∗−1j . Indeed, for

j ≥ 2, βj can be expressed in the alternative way

(2.9) βj = (wH
j + wH

j−2) ∗ A ∗ vj−1 − 1∗.

The advantage of this representation is that it shows β∗−1j to be the ∗-resolvent of

γj = (wH
j +wH

j−2) ∗A ∗vj−1, which gives direct access to all research on solutions of

Volterra equations, including for situations where βj does not satisfy the assumptions

of Theorem 2.1.

3. Relation to the Green’s function inverse problem

Let G be a distribution. The Green’s function inverse problem consists in de-

termining an operator DG whose fundamental solution is G, i.e., DG (G) = δ. This

problem, also known as kernel inverse problem, appears sporadically in the literature

when a kernel function G is motivated by external constraints, and the correspond-

ing differential operator is determined from it secondarily; see e.g., in interpolation

problems [3, 5].

In the most commonly encountered framework, however, the product utilized is a

convolution. Then DG is found from its Fourier (or Laplace) transform, which is the

inverse of the Fourier transform of G. The problem considered here is thus more gen-

eral, the ∗-product reducing to a convolution only when the functions involved depend

only on the difference between the two-time variables. Here we rather only suppose

that G ∈ D(I) is a non-identically null distribution of the form G := G̃(t′, t)Θ(t′− t)
such that G̃ is separable and smooth in both time variables. Then the proof of

Theorem 2.1 constructively shows that there exists a distribution G∗−1 ∈ D(I) such

that

G∗−1 ∗G = δ.

In other terms, the ∗-action of G∗−1 on G is identical with the ordinary action of the

differential operator DG whose Green’s function is G. In order to give DG explicitly,

observe that

G∗−1 = r̃−1(t′, t)Θ +

k∑
m=0

r̃m(t′)δ(m),
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with the smooth functions r̃−1≤j≤k defined in Theorem 2.1. Since for any distribution

f , δ(j) ∗ f = f (j,0), we get the action of DG on any distribution f as

DG(f) =

∫ ∞
−∞

r̃−1(t′, τ)Θ(t′ − τ)f(τ, t) dτ +

k∑
m=0

r̃m(t′)
∂m

∂t′m
f(t′, t).

Here recall that should f depend on a single variable or less, then it should be

treated as the left time-variable as indicated in Subsection 1.2, that is here t′.

4. Conclusion

The ∗-Lanczos algorithm for evaluating time-ordered exponentials relies on the ex-

istence of the ∗-inverses of the coefficients βn(t′, t) produced by the algorithm. Should

an inverse fail to exist, the Lanczos procedure suffers a breakdown, and the ordered

exponential cannot be evaluated. Now, assume that βn(t′, t) = β̃n(t′, t)Θ(t′ − t),

where β̃n(t′, t) is a separable function (which is true under some regularity condi-

tions, as we proved in [9]). We showed that if βn(t′, t) is not identically null, then its

∗-inverse exists and the algorithm does not breakdown. Furthermore, we described

explicit procedures to obtain the required ∗-inverses and illustrated our results with

several examples. These procedures relate ∗-inverses to the solutions of linear dif-

ferential equations with smooth coefficients. As a consequence of these results, we

proved that the set of all the distributions in D(I) which have separable coefficients

is closed under ∗-inversion. As a corollary of this work, we solved a generalization of

the Green’s function inverse problem for piecewise smooth distributions.
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[14] J. Liesen, Z. Strakoš: Krylov subspace methods: principles and analysis. Numerical Mathe-
matics and Scientific Computation Series Profile, Oxford University Press, Oxford, 2013. Zbl

1307.65001, MR3024841

[15] P. Linz: Analytical and numerical methods for Volterra equations. SIAM Studies in Applied
Mathematics, Vol. 7, Society for Industrial and Applied Mathematics, Philadelphia, 1985. Zbl

0566.65094, MR0796318

[16] M. Mehring, V. A. Weberruss: Object-oriented magnetic resonance: Classes and objects,
calculations and computations. Elsevier Science, 2012.

[17] A. D. Polyanin, A. V. Manzhirov: Handbook of integral equations. Chapman & Hall/CRC,

Boca Raton, second edition, 2008. Zbl 1154.45001, MR2404728
[18] L. Razdolsky: Integral Volterra equations. In Probability Based High Temperature Engineering,

Springer International Publishing, Cham, 2017, 55–100.

[19] W. T. Reid: Riccati matrix differential equations and non-oscillation criteria for associated
linear differential systems. Pac. J. Math. 13 (1963), 665–685. Zbl 0119.07401, MR0155049

[20] A. Rivas, S. F. Huelga: Open quantum systems. An introduction. SpringerBriefs in Physics,
Springer, Berlin, 2012. Zbl 1246.81006, MR2848650

[21] Y. Saad: Iterative methods for sparse linear systems. Society for Industrial and Applied Math-

ematics, Philadelphia, second edition, 2003. Zbl 1031.65046, MR1990645
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