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ABSTRACT

Lattice Boltzmann (LB) method for atmospheric dynamics is developed by considering the characteristics of the anelastic approximation.
After introducing reference base state values in atmospheric flows, an LB model, with an external force term, has been constructed in
anelastic framework. In the proposed anelastic LB model, mass and momentum conservation equations are solved by the LB method with a
regularization procedure, and temperature field or scalar transport is simulated by finite volume method. The derived macroscopic
governing equations from the anelastic model are analyzed and discussed in Chapman–Enskog asymptotic expansion. The anelastic LB
model is assessed considering three benchmarks including a non-hydrostatic atmospheric inviscid convection, two-dimensional density
currents, and inertia-gravity waves in stably stratified atmospheric layer. The validations demonstrate that the anelastic extension of the LB
method can simulate atmospheric flows effectively and accurately. Besides, the proposed model offers a unified framework for both
Boussinesq approximation and anelastic approximation, which is largely free of characteristic depth of atmospheric flows.

I. INTRODUCTION

Atmospheric dynamics is composed of motions occurring on a
wide range of temporal and spatial scales, including propagating waves
of various types, buoyancy-driven convection, thermal stratification,
etc. To better understand atmospheric flows and related environment
science, numerical simulation is a good complement to field measure-
ments and wind tunnel experiments.1–3 Modeling these hydro-
thermo-dynamical phenomena requires numerical methods for
solving a system of partial differential equations originating from
Navier–Stokes equations. The scales of motion in the atmospheric
flows can be all captured by the fully compressible Navier–Stokes
equations, which are the most complete approaches involving all phys-
ical mechanisms. However, as acoustic modes do not play an impor-
tant role in atmospheric dynamics, it is theoretically appealing and
also numerically advantageous to remove the sound waves entirely
from the governing equations.4

Relative to the full compressible Navier–Stokes equations, the
anelastic model filter acoustic waves while maintaining advection-
diffusion of momentum and supporting internal gravity waves.5–7 The
anelastic approximation accounts for large vertical variations of pres-
sure and density but disregards the time derivative of the density in
the continuity equation, which is widely employed in atmospheric

deep convection simulations. In conventional computational fluid
dynamics framework, the fractional-step method is widely used in
solving the anelastic equations.8 Due to advantages of the lattice
Boltzmann method (LBM) for massively parallel computing as well as
its high fidelity and low dispersion, there are significant research
efforts devoted to extending LBM to large-scale urban flows and shal-
low atmospheric boundary layer flows.9–12

The LBM is originally a weakly compressible flows solver, which
has been developed to an efficient method for complex flows.13,14 The
applications of LBM cover, among others, aerodynamic studies on
full-scale vehicles, turbulent flows in urban areas,15 aerodynamic pre-
dictions on airfoils.16 Furthermore, the LBM has also been extended to
complex multi-physics phenomena through coupling the additional
conservation laws.17–20

The LB models for atmospheric dynamics could be straightfor-
wardly developed by targeting to compressible Navier–Stokes equation
at low Mach limit, considering the density stratification and weakly
compressible feature of atmospheric flows. A set of thermal LB models
was proposed for simulation of low Mach and high Mach number
flows.21–24 However, the time step or Courant–Friedrichs–Lewy (CFL)
number is narrowed in the thermal LB models when it targets to solve
the fully coupled compressible flow system. The compressible LB
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models use the acoustic time step required for numerical stability. This
is impractical from the perspective of weather and climate. Therefore,
a soundproof LB model could be constructed from incompressible LB
models in which the compressibility effect is effectively reduced. Zou
et al.25 made the first attempt to construct an incompressible LB model
for steady flows. He and Luo26 developed another general incompress-
ible LB model, which approximately recovers artificial compressible
version of the incompressible Navier–Stokes equations. Subsequently,
Guo et al.27 developed a pressure-based incompressible LB model to
recover the incompressible Navier–Stokes equations for both unsteady
and steady flows, which achieved an OðMa2Þ accuracy. However,
most of these incompressible LB models were developed for flows with
uniform density, which is only available under Bousssinesq approxi-
mation in shallow atmosphere where the density variations are often
small compared with the mean fluid density. An important extension
of LB method to shallow water equation with nonhydrodynamic
modes was proposed and analyzed by Dellar.28 Several LB models for
simulation of shallow water were developed,29–31 but the shallow water
LB models mainly focus on hydraulics behavior. Conclusively, a LBM
with anelastic approximation is required for modeling atmospheric
flows with deep convection.

Due to the feature of large spatial scales and strong convection,
the numerical stability of collision model is among the key issues faced
when developing a LB model for atmospheric flows. The most com-
monly used lattice Boltzmann collision model is the single-time relaxa-
tion process, which is the so-called lattice Bhatnagar–Gross–Krook
(LBGK) model.32 In order to overcome the insufficient stability
observed in the LBGK model, several improved collision models with
enhanced stability have been proposed. The multiple relaxation time
(MRT) model was proposed by Lallemand and Luo,33 in which colli-
sion process is modeled in the moment space rather than in discrete
velocities space in the BGK model. The entropic lattice Boltzmann
(ELB) model was developed by introducing a stabilizing process via
Boltzmann's H theorem.34 Besides, the cascaded LB,35 central moment
LB,36,37 and cumulant LB38 models were proposed to improve the sta-
bility and accuracy using central moment or cumulant. Recently, both
basic and improved regularized LBGK (RLBGK) model is developed
to higher-order lattices both for high Reynolds number flows and for
high Mach number flows.39–41 In RLBGK method, a pre-collision
operator is introduced to improve convergence properties at a very
moderate computational overhead. These models were shown to pro-
vide significant improvements over the LBGK method in many high
Reynolds number flows. Moreover, the regularized LBGK model
appears to offer a simple and parameter-free option to save significant
computational costs over the LBGKmodel.

Hybrid LBM has been widely adopted in thermal flows and scalar
transport process. A hybrid thermal LB model has been proposed by
Lallemand et al.,17 where a finite difference algorithm was adopted to
solve energy-conservation equation. A hybrid finite difference thermal
lattice model has been widely studied in nearly incompressible convec-
tive flows.42 Besides, a hybrid finite difference thermal model using
two-dimensional multiple relaxation time collision model has been
presented for low Mach number compressible flows.43 As reported in
studies of Li et al.,44 the hybrid finite difference thermal model can
simply avoid a spurious source term in thermal LB models with force
terms. Besides, the computational efficiency of hybrid approach was
gained in simulation of thermal flows.45

To this end, we aim at developing a LB model for anelastic
approximation, which can effectively extend the application from shal-
low convection under Boussinesq approximation to atmospheric flows
with arbitrary depth. It provides an alternative method for the numeri-
cal simulation of both deep and shallow convection in atmospheric
flows. Indeed, an extension of LBM for anelastic approximation could
extend the application of LBM to shallow and deep convection in a
simple and efficient way. The rest of this article is organized as follows.
In Sec. II, the mathematical approximations done on compressible
Navier–Stokes equations and anelastic approximation are introduced.
In Sec. III, the hybrid LB model with anelastic approximation is pro-
posed, which is based on standard equilibrium distribution with an
external force term corresponding to the anelastic approximation. In
Sec. IV, validation of the proposed model is conducted by simulating
benchmark solutions including a non-hydrostatic atmospheric inviscid
convection case, two-dimensional density currents, and inertia-gravity
wave in stable atmospheric layer. Finally, a conclusion section is given.

II. PHYSICAL GOVERNING EQUATIONS

Although the motion of atmospheric dynamics can be straight-
forwardly described by compressible Navier–Stokes (NS) equations,
the scale-dependent models for atmospheric flows are theoretically
appealing and also numerically advantageous to remove the sound
waves from the NS equations. The anelastic approximation is moti-
vated by atmospheric flows for which the effects of stratification are
important.5,46 Acoustic waves are thereby filtered – hence, the term
anelastic, meaning acoustic-elastic energy is not allowed. In this sec-
tion, the basic equations of anelastic approximation are recalled from
the classical compressible NS equation. Then, a variant form of the
anelastic equations is rewritten to allow the possibility that the equa-
tions can be solved by the LBM.

A. Reminders about compressible Navier–Stokes
equation

The governing equations by using entropy variable s govern the
motion for a compressible atmosphere without rotation and friction
for brevity under a uniform gravity ga ¼ ð0; 0; gzÞ are47,48

@q
@t

þ @

@xa
ðquaÞ ¼ 0; (1a)

q
@ua
@t

þ qub
@ua
@xb

¼ � @p
@xa

� qga; (1b)

q
@s
@t

þ qua
@s
@xa

¼ Qr

T
; (1c)

where the subscript a represents Cartesian coordinates (x, y, z). q,
ua ¼ ðu; v;wÞ, and s is the density, velocity, and entropy, respectively.
The pressure p ¼ qRT satisfies thermodynamic equation of state with
gas constant R and temperature T. Qr is heat rate per unit volume.
Potential temperature h is a more dynamically important quantity
than the actual temperature T, which can be linked with entropy s and
temperature as47

s ¼ Cp ln
h
h00

; s ¼ Cv ln
T

qc�1
; (2)

where Cp is specific heat capacity at constant pressure, c ¼ Cp=
ðCp � RÞ is specific heat ratio, and h00 is a nominal reference value for
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the potential temperature. Thus, the energy equation (1c) can be
rewritten as49

q
@h
@t

þ qua
@h
@xa

¼ h
CpT

Qr : (3)

A relation between the potential temperature h and actual temperature
T can be derived from Eq. (2) as49

T ¼ ph; p ¼ p
p00

� �R=Cp

; h00 ¼ p00
R

� �R=Cp

; (4)

where p00 ¼ 1000 mb is constant reference pressure commonly used
in the atmospheric flows.

B. Anelastic approximation

The state variables are described as small fluctuations (0 super-
script) from corresponding vertical reference base state profiles (s sub-
script), which are the functions of altitude only. Here, qs and ps are the
base state density and pressure, respectively. hs is base state potential
temperature, which servers as a basis for the potential temperature
splitting h ¼ hs þ h0. Considering scale analysis in5

Dps
Dz

¼ �qsg; (5)

and using hydrostatic relation about base state variables, one can
rewrite the continuity, momentum equations, and energy equation as
follows:5

@qsua
@xa

¼ 0; (6a)

qs
@ua
@t

þ qsub
@ua
@xb

¼ � @p0

@xa
� q0ga; (6b)

qs
@h
@t

þ qsua
@h
@xa

¼ Qr

Cp
; (6c)

where q0; h, and p0 are perturbation density, potential temperature,
and pressure, respectively. The thermodynamic relation between the
fluctuations of potential temperature, pressure, and density under the
anelastic approximation is5

q0

qs
¼ p0

qsgHq
� h0

hs
; (7)

where scale of heightsHq is defined as

1
Hq

¼ 1
qs

Dqs
Dz

: (8)

It is important to emphasize that the diagnostic relation Eq. (7) is the
key closure assumption for anelastic theory. By using Eq. (7), the
right-hand side of Eq. (6b) can be written as

� @p0

@xa
� q0ga ¼ qs � @ðp0=qsÞ

@xa
þ h0

hs
g

� �
: (9)

Using the thermodynamic relation between the fluctuations and
height scale Hq, Eq. (9) and supplying the viscous and diffusion terms,
the anelastic viscous equations can be rewritten as

@ua
@xa

¼ �wH�1
q ; (10a)

@ua
@t

þ ub
@ua
@xb

¼ � @p00

@xa
þ �

@2ua
@x2b

þ h0

hs
g; (10b)

@h
@t

þ ua
@h
@xa

¼ 1
qs

@

@xa
Dh

@h
@xa

� �
þ Qr

Cpqs
; (10c)

where p00 ¼ p0=qs. Equations (10a)–(10c) are macroscopic equations,
which will be used to construct an anelastic LB model in this study. If
the vertical scale of motion is small compared with the depth of an adi-
abatic atmosphere,

Hq � 1; qs � q0: (11)

The anelastic equations reduce to the Boussinesq equations for shallow
convection,50,51

@ua
@xa

¼ 0; (12a)

@ua
@t

þ ub
@ua
@xb

¼ � @p00

@xa
þ �

@2ua
@x2b

þ h0

h0
ga; (12b)

@h
@t

þ ua
@h
@xa

¼ 1
q0

@

@xa
Dh

@h
@xa

� �
þ Qr

Cpq0
: (12c)

It removes the limitation of Boussinesq approximation, especially on
vertical direction in which the characteristic vertical displacement of
an air parcel is comparable with the density scale height and the hori-
zontal variations of the thermodynamic variables are small.52

III. LATTICE BOLTZMANN METHOD FOR ANELASTIC
APPROXIMATION
A. Classical nearly incompressible LB model

LBMs aim at solving the lattice Boltzmann equation through
space, time, and velocity discretization.53,54 Space and time are classi-
cally discretized on a Cartesian grid, whereas speeds are discretized on
the so-called DnQm lattice (n dimensions and m discrete velocities
ci;a, i being index of discrete velocities.).

The flow problem is then solved for fiðxa; tÞ, the density distribu-
tion of particles with velocity ci;a at ðxa; tÞ, which can be obtained at
time t þ dt through the so-called LBGK collision model53

fiðxa þ ci;adt ; t þ dtÞ ¼ fiðxa; tÞ � 1
�s

fiðxa; tÞ � f eqi ðxa; tÞ
� �

þ 1� 1
2�s

� �
dtFiðxa; tÞ; (13)

a succession of a streaming and a collision step26,53 which is equivalent
to a Strang-splitting-based time integration method.55 The nondimen-
sional collision time �s is related to the kinematic viscosity � through
� ¼ c2s ð�s � 1

2Þdt , and cs is the lattice sound speed, inherent of the
lattice DnQm choice.56

The incompressible LB models have been proposed by He et al.26

and Guo et al.27 In this study, the equilibrium distribution of the basic
incompressible LB model is expanded to the third order to further
reduce Galilean invariant error, which is expressed as follows:
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f eqi ¼ qki þ wi
cia
c2s

ua þ
H

ð2Þ
i;ab

2c4s
uaub þ

H
ð3Þ
i;abc

6c6s
uaubuc

" #
; (14)

where k0 ¼ w0 � 1 for stationary discrete velocity, ki ¼ wi for the rest

of discrete velocities. H ð3Þ
i;abc ¼ ci;aci;bci;c � c2s ½cid�abc where ½cid�abc

¼ ci;adbc þ ci;bdac þ ci;cdab. The moments of the equilibrium distri-
bution function are summarized as follows:X

i

f eqi ¼ 0; (15a)

X
i

f eqi ci;a ¼ ua; (15b)

X
i

f eqi ci;aci;b ¼ qc2s dab þ uaub; (15c)

X
i

f eqi ci;aci;bci;c ¼ c2s udabc½ � þ uaubuc þ Uabc; (15d)

where ½udabc� ¼ uadbc þ ubdca þ ucdba. The symmetry-breaking
error Uabc is due to the topology of the nearest-neighbor lattices
(D2Q9, D3Q19, and D3Q27), Uabc ¼ 0 except for Uaaa ¼ �qu3a. The
deviation induced by Uabc can be neglected in atmospheric flows at
low Mach number.

The solutions of the lattice Boltzmann equation approximate the
macroscopic equations

@ua
@xa

¼ 0; (16a)

@ua
@t

þ ub
@ua
@xb

¼ � @p
@xa

þ �
@2ua
@x2b

þ OðMa2Þ: (16b)

It is well known that Eq. (16) by the incompressible LB model is only
applicable for flows with a uniform density field.

B. Anelastic lattice Boltzmannmodel

An anelastic model within the framework of LBMs for atmo-
spheric flows with a height-dependent density is developed in this
section. In anelastic approximation, acoustic waves are filtered and
pressure is expanded into the sum of a vertical reference pressure and
pressure fluctuations. The small pressure fluctuations are decoupled
from corresponding vertical reference density and pressure.

In the present study, an approach using external force terms is
proposed to develop an anelastic LB model based on standard LB
model (e.g., D2Q9, D3Q19). This is done by introducing an external
force term wi into generic force Fi and its moments are expressed asX

i

wi ¼ W0; (17a)

X
i

wici;a ¼ Wa; (17b)

X
i

wici;aci;b ¼ Wab: (17c)

It is worth noting that the moments of force term wi,W0; Wa andWab

are under-determined. The exact expressions of them are determined
by considering that the proposed LB model recovers anelastic Eq. (10).

The same evolution equation and equilibrium distribution functions
as with a standard LB model are adopted in the model.

To derive macroscopic equations under anelastic approximation
with external force terms, the density distribution function fi is
expanded around the f eqi distributions as follows: To derive macro-
scopic equations, the density distribution function fi is expanded
around the f eqi distributions as follows:

fi ¼ f ð0Þi þ ef ð1Þi þ e2f ð2Þi þ � � � ; (18)

with X
i

f ðnÞi ¼ 0;
X
i

ciaf
ðnÞ
i ¼ 0; n > 0: (19)

By matching the scales of e1; e2, we have

e1 :
@

@t1
þ cia

@

@x1a

� �
f eqi þ f ð1Þi

s
¼ wð0Þ

i ; (20)

e2 :
@f eqi
@t2

þ @

@t1
þ cia

@

@x1a

� �
f ð1Þi þ f ð2Þi

s
¼ 0: (21)

Considering that the equilibrium density distribution function satisfies
the velocity moment condition, one can sum Eqs. (20) and (21) in the
velocity phase space. The t1 and t2 order of the continuity equation
and momentum equation can be derived as

@ua
@x1a

¼ W0; (22)

@ua
@t1

þ @

@x1b
ðuaub þ qc2s dabÞ ¼ Wa; (23)

@ua
@t2

þ @

@x1b

X
i

ciacibf
ð1Þ
i

� �
¼ 0: (24)

Rewriting f ð1Þi in Eq. (24) with Eqs. (22) and (23), one obtains

Pab ¼
X
i

ciacibf
ð1Þ
i

¼ �s
X
i

ciacib
@

@t1
þ cia

@

@x1a

� �
f eqi � wð0Þ

i

� �

¼ �s c2s
@ub
@xa

þ @ua
@xb

� �
þ ðc2s dab � uaubÞW0

�

þuaWb þ ubWa �Wab þ OðMa3Þ
�
: (25)

Using Eqs. (22) and (23), the above equation can be further approxi-
mated as follows:

@Pab

@xb
¼ �

@2ua
@x2b

þ �
@

@xa

@ub
@xb

þ O
Ma3

Re

� �
; (26)

where Ma and Re number is, respectively, defined asMa ¼ ua=cs and
Re ¼ uaHq=�. Due to @ub=@xb ¼ W0 ¼ w=Hq 6¼ 0, a compensation
term �@ðw=HqÞ=@xa is added in Wa. The second-order force terms
Wab is given as

Wab ¼ ðc2s dab � uaubÞW0 þ uaWb þ ubWa: (27)

The following viscous term in recovered macroscopic equations can be
derived as
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Pab ¼ �
@ua
@xb

;
@Pab

@xb
¼ �

@2ua
@x2b

þ O
Ma3

Re

� �
: (28)

The term uaW0 ¼ �uaw=Hq is of order of OðMa2H�1
q Þ, the convec-

tive term is given as

@

@xb
ðuaubÞ ¼ ub

@ua
@xb

þ ua
@ub
@xb

¼ ub
@ua
@xb

þ O
Ma2

Hq

 !
: (29)

By applying the above results, the following anelastic equations are
recovered by the proposed LB model,

@ua
@xa

¼ �wH�1
q ; (30a)

@ua
@t

þ ub
@ua
@xb

¼ �@p00

@xa
þ �

@2ua
@x2b

þ h0

hs
g þO

Ma3

Re
þMa2

Hq

 !
; (30b)

where Wa ¼ gh0=hs � �@ðw=HqÞ=@xa and p00 ¼ ðq� q0Þc2s are
applied. Finally, the solutions of the proposed lattice Boltzmann equa-
tion approximate the macroscopic anelastic equations for atmospheric
flows.

C. Recursive regularized LBmodel with forcing term

The regularization procedures were proposed for improve stabil-
ity of LBMs.57 They play the role of a filter on undesirable ghost
moments of the numerical scheme. The accuracy and stability of regu-
larized BGK model were well analyzed in both inviscid acoustic prob-
lems58 and turbulent flows.59 Practically, a regularized distribution
function is introduced through recomputing the non-equilibrium
parts prior to the collision step. The lattice Boltzmann BGK equation
with recursive regularization is expressed as

fiðxa þ ciadt ; t þ dtÞ ¼ f eqi ðxa; tÞ þ 1� 1
�s

� �
RðfineqÞ

þ dt
2
wiðxa; tÞ; (31)

where the off-equilibrium distribution function is expressed as

f neqi ¼ fiðxa; tÞ � f eqi ðxa; tÞ þ dt
2
wiðxa; tÞ: (32)

RðfineqÞ is recursive regularization operator

RðfineqÞ ¼ wi
H iab

2c4s
A

ð1Þ
ab þH iabc

6c6s
A

ð1Þ
abc

� �
; (33)

where A
ð1Þ
ab ¼Pi ciacibf

neq
i is the second-order off-equilibrium

moment and the third-order off-equilibrium moment is recursively

computed by using A
ð1Þ
abc ¼ uaA

ð1Þ
bc þ ubA

ð1Þ
ca þ ucA

ð1Þ
ab . For the

proposed anelastic LB model, the velocity ua is updated only. It can be
computed by considering the forcing term wi as

ua ¼
X
i

ciafi þ dt
2

X
i

ciawi: (34)

In addition, a correction term si ¼ � wi
2c4s

H i;abrUabc is added
into forcing term to cancel symmetry-breaking errors Uabc, which is

due to the topology of the nearest-neighbor lattice.24,60 Uabc ¼ 0
except for Uð3Þ

aaa ¼ �u3a, (here, a is related to components of Cartesian
coordinates without summation over repeated index).

D. Finite volumemethod for scalar transport

In this paper, the continuity equation and momentum equation
are solved by the lattice Boltzmann equation, while scalar transport
equation is solved separately by finite type technique. Numerically,
double distribution function models are not optimal from the compu-
tational standpoint despite there is no need to use a full set of distribu-
tion functions to simulate a scalar, even though this numerical
inefficiency can be improved somewhat by using some redundant
degree of freedom in LB models in diffusion dominated condition.61

Considering that mass conservation, the energy (potential tempera-
ture) or scalar conservation equations can be expressed by following
general convection-diffusion form:48,62

@/
@t

þ u � r/ ¼ rðCr/Þ þ Q/; (35)

where u is macroscopic velocity vector, / is general scalar, and C is
general diffusion coefficient. Q/ is general source term which could
represent Qr in Eq. (6c). The explicit second-order Runge–Kutta
scheme is adopted as temporal discretization, which is given as

/nþ1=2 ¼ /n þ dt
2

FCð/nÞ þ FDð/nÞ þ Qn
/

� �
/nþ1 ¼ /n þ dt FCð/nþ1=2Þ þ FDð/nþ1=2Þ þ Qnþ1=2

/

h i
;

(36)

where FC, FD represents convection term and diffusion term. The gen-
eral scalar conservation equation is spatially discretized using mono-
tonic upwind scheme for conservation laws (MUSCL) and central
difference (CD) schemes, where the MUSCL scheme is adopted for the
convection term and the CD scheme for the diffusion term. The third-
order MUSCL scheme63 with the van Albada limiter function wðrÞ ¼
2r=ð1þ r2Þ is adopted in this study and is used to avoid spurious oscil-
lations. In the following study, / represents potential temperature h and
convection-diffusion of potential temperature is solved by the finite vol-
ume method (FVM), which is an alternative formulation of energy
equation and no heating rate is considered withQ/ ¼ 0.

IV. NUMERICAL TESTS AND DISCUSSIONS

In order to assess the validity of the proposed regularized LB
model for solving anelastic Eq. (10), atmospheric deep convection of
thermal rising bubble, density currents in neutral atmospheric condi-
tion and inertia-gravity waves are analyzed and discussed in this sec-
tion. The typical D2Q9 lattice stencil is employed in the simulations.
The inviscid flows are treated as quasi-inviscid, with a very small non-
dimensional viscosity � ¼ 10�15. The computational domain, bound-
ary condition (BC), and initial perturbation in the three benchmarking
test cases are summarized as follows:

(A) Atmospheric deep convection64–67

Domain: height of [0, 10] km and width of [0, 20 km].
Boundary: rigid wall BC on four sides.
Perturbation: h0 ¼ 2 cos2 pL

2 , with L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xcÞ2

x2r
þ ðz�zcÞ2

z2r

q
; xc

¼ 10:0 km, zc ¼ 2:0 km, and xr ¼ zr ¼ 2:0 km.
(B) Density currents68–70
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Domain: height of [0, 6.4] km and width of [−25.6, 25.6] km.
Boundary: rigid wall BC on top and bottom, periodic BC on
lateral side.
Perturbation: h0 ¼ �15 1þcosðpLÞ

2 , with L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xcÞ2

x2r
þ ðz�zcÞ2

z2r

q
;

xc ¼ 0:0 km, zc ¼ 3:0 km, and xr ¼ 4:0 km, zr ¼ 2:0 km.
(C) Non-hydrostatic inertia-gravity waves64,66,67

Domain: height of [0, 10] km and width of [0, 300] km.
Boundary: rigid wall BC on top and bottom, periodic BC on
lateral side.
Perturbation: h0 ¼ 0:01 sinðpz=HÞ

1þL2 , with L ¼ ðx�xcÞ
xr

, xc¼ 100 km
and xr¼ 5 km.

A. Atmospheric deep convection

A rising thermal bubble in deep atmosphere is examined using
the present anelastic model. The simulation is two-dimensional, with a
domain height of 10 km and width of 20 km.64 Rigid wall boundary
conditions are specified on all four sides of the domain. The initial
unperturbed environment is calm (zero initial wind everywhere),
hydrostatic, and neutrally stable, defined by a constant potential tem-
perature of 300K. The value of base state pressure at the surface p00 is
1000 mb, and the profile of base state fields is obtained by integrating
the hydrostatic equation upwards with hs ¼ 300 K and gravity
g¼ 9.81 m2/s. A warm perturbation is placed at the center of the
domain, which is specified by65

h0 ¼ 2 cos2
pL
2
; (37)

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xcÞ2

x2r
þ ðz � zcÞ2

z2r

s
; (38)

xc ¼ 10:0 km, zc ¼ 2:0 km, and xr ¼ zr ¼ 2:0 km. No physical or
computational diffusion is applied as the simulation presented in Ref.
65, which is implemented by �s � 0:5 and �¼ 0 m2/s in our
simulation.

Driven by buoyancy, the warm bubble rises and rolls up on the
sides. The dynamics of the thermal rising bubble is reproduced by the
anelastic LB model and unphysical wiggles are suppressed by regulari-
zation and MUSCL scheme. Results of a simulation with 25-m grid
spacing after 1000 s of integration are presented in Figs. 1 and 2. In
agreement with the results in Refs. 65 and 66, the warm bubble rises
and expands over time. Two rotors develop on the sides of the warm
bubble, while the top of the thermal is stretched. The benchmark solu-
tion in Ref. 65 was obtained with third-order Runge–Kutta time
marching and fifth-order spatial derivatives on 100-m grid spacing.

Figures 1 and 2 display the temperature and vertical velocity con-
tours obtained by anelastic LB model, respectively. It is seen that both
the temperature field and velocity field obtained by the anelastic LBM
model are in good agreement with results displayed in Refs. 65 and 66.

In order to quantitatively validate the proposed model, the values
of the thermal perturbation amplitude are given in Table I. The com-
puted final values of thermal perturbation are confirmed closely with
benchmark solution in Ref. 65 and the soundproof results in the Ref.
67. The deviations increase when mesh size increased from 25 to 50
m. However, almost the same values of maxima and minima with
compressible and soundproof results have been predicted by the pro-
posed model in this test case. These values strongly suggest that the
proposed model can give the same unsteady results with compressible
and soundproof model, temporally and spatially. The simulations
were carried on Dell workstation with 32G RAM and 12 cores of

FIG. 1. Potential temperature at t¼ 1000 s obtained by the present anelastic LB
model in simulation of rising thermal bubble. The unit of space of domain is km.
Results are obtained on grid size dx¼ 25 m with parameters: viscosity �¼ 0 m2/s,
relaxation time �s � 0:5 and heat conductivity k¼ 0W/(m2 K).

FIG. 2. Vertical velocity at t¼ 1000 s obtained by the present anelastic LB model
in simulation of rising thermal bubble. The unit of space of domain is km. Results
are obtained on grid size dx¼ 25 m with parameters: viscosity �¼ 0 m2/s, relaxa-
tion time �s � 0:5 and heat conductivity k¼ 0W/(m2 K).

TABLE I. Comparison of maxima and minima of vertical velocity and perturbation
potential temperature at final time t¼ 1000 s. Results are obtained by the present
LB model with parameters: kinematic viscosity �¼ 0 m2/s, relaxation time �s ¼ 0:5
and heat conductivity k¼ 0W/(m2 K) on spacing sizes 25 and 50 m.

dx : 25 m dx : 50 m Reference 65 Reference 67

wmax 14.21 14.0 14.54 13.69
wmin −8.68 −8.50 −8.58 −8.45
hmax 1.96 1.90 2.07 1.54
hmin 0.0 0.0 −0.14 −0.10
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Xenon-6148 2.4G Hz (OpenMPI used). The central processing unit
(CPU) time for dx ¼ 25 m and dx ¼ 50 m is approximately 32 and
58minutes, respectively.

B. Density currents under anelastic approximation

The second test consists of a negative potential temperature per-
turbation in a neutrally stratified atmosphere,68,69

h0 ¼ �15
1þ cosðpLÞ

2
; (39)

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xcÞ2

x2r
þ ðz � zcÞ2

z2r

s
; (40)

xc ¼ 0:0 km, zc ¼ 3:0 km, xr ¼ 4:0 km, and zr ¼ 2:0 km.
The simulation is also two-dimensional, with a domain height of

[0, 6.4] km and width of [−25.6, 25.6] km. The boundary conditions
are periodic on the left and right sides, solid walls on the top and bot-
tom boundaries. The initial unperturbed environment is calm, hydro-
static, and neutrally stable, defined by a constant potential
temperature hs ¼ Ts of 300K. The reference value of pressure p00 at
the surface is 1000 mb. The profile of base state variables is calculated
with hs and gravity g¼ 9.81 m2/s. The initial velocity is set to zero in
the whole domain.

Simulations based on the LB model with anelastic approximation
are carried with dx¼ 50, 100, and 200 m. The selected kinematic
viscosity and diffusivity are equal to � ¼ 75:0 m2/s and diffusivity
C ¼ 75:0 m2/s, respectively. Initially, the negative buoyancy of the bub-
ble drives it down, until it hits the bottom boundary and starts spread-
ing in the horizontal direction with small-scale Kelvin–Helmholtz
instabilities. Due to the symmetry of the test case, only the sub-domain
[0, 19.2] km� [0, 4.8] km is shown in Fig. 3. The method recovers well
the flow patterns at the different scales and gives a good representation
of the vortices. The benchmark solution is given in Refs. 68 and 70 by
high-order and spectral type schemes on 100-m resolution.

Comparison of front location at 900 s obtained by the proposed
model and results in literature68,70 is reported in Table II. The value of
location is in good agreement with reference values. It is shown that
our anelastic LB model has obtained almost the same front location
compared with results in Ref. 70 and results.68 The differences increase
when mesh size is increased from 50 to 200 m. However, the maxi-
mum deviation remains within 1%.

C. Non-hydrostatic inertia-gravity waves

The last test case deals with a perturbation on the thermally strat-
ified background with a horizontal flow u¼ 20 m � s–1.64,67 Different
with previous two test cases, a stratification effect is introduced by the
Brunt–V€ais€al€a frequency,

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g
hs

Dhs
Dz

s
: (41)

FIG. 3. Potential temperature perturbation obtained by anelastic LB model in
the density currents test case. (a) t¼ 0 s, (b) t¼ 300 s, (c) t¼ 600 s, and (d)
t¼ 900 s. The unit of domain axis is meter and potential temperature perturbation
is in Kelvin. Results are obtained on grid size dx¼ 25 m with parameters: viscosity
� ¼ 75:0 m2/s and diffusivity C ¼ 75:0 m2/s.

TABLE II. Comparison of front location at 900 s. In data listed in Ref. 68, AFD repre-
sents the results by a quasi-compressible high-order finite difference method, MUa is
the result given by an anelastic solver and REFQ presents the results obtained by
the other quasi-compressible solver.

dx Present Bryan70 Straka et al.68

50 m 15.37 km 15.375 km AFD: 15.17 km
100 m 14.9 km 15.45 km MUa: 14.56 km
200 m 14.4 km 15.50 km REFQ: 15.51 km
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In this case, we obtain the range hs [300, 332.19] K for z [0, 10]
km in the background thermal stratification with the values N¼ 0.01
s−1, g¼ 9.81 m � s–2, and hs;0 ¼ 300K. In a [0, 300] � [0, 10] km2

domain, the following initial perturbation is introduced:

h0 ¼ 0:01
sinðpz=HÞ
1þ L2

; (42)

where

FIG. 4. Potential temperature perturbation in non-hydrostatic inertia-gravity waves.
(a) t¼ 1000 s, (b) t¼ 2000 s, and (c) t¼ 3000 s. Computed solution by the anelas-
tic LB model with dx ¼ 400 m.

FIG. 5. Potential temperature perturbation compared with reference solution.67 (a)
t¼ 1000 s, (b) t¼ 2000 s, and (c) t¼ 3000 s. Our results are computed solution by
the anelastic LB model with dx ¼ 400 m and dx ¼ 200 m, non-dimensional relax-
ation time is close to �s ¼ 0:5. The reference results (cross) were obtained by a
blended soundproof-to-compressible numerical model.
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L ¼ ðx � xcÞ
xr

; (43)

xc ¼ 100:0 km, H¼ 10.0 km, and xr ¼ 5:0 km. With the same treat-
ment as in the previous cases, boundary conditions are set periodic on
the lateral sides while solid walls conditions are imposed on top and
bottom boundaries. Unlike the previous test cases, here the dominant
physical mechanism is chiefly wavelike rather than vertically
buoyancy-driven. Inertia-gravity waves develop in the horizontal
direction. The simulation is performed with dx ¼ 200 and 400 m, cor-
responding time step approximately equals to 0.4, 0.8 s, respectively.
The kinematic viscosity � ¼ 10:0 m2/s and diffusivity C ¼ 10:0 m2/s
are adopted in the simulation.

In order to compare the present results with the benchmark solu-
tions given in the literature,66,67 the present results of wave pattern of
the potential temperature field are shown in Fig. 4. It can be observed
from Fig. 4 that the present results obtained by the LB method with
anelastic model agree well with the results in literature.

A quantitative comparison between the results obtained by the
present model and the results in Ref. 67 is reported in Fig. 5. The solu-
tion in Ref. 67 was obtained using a blended soundproof-to-compress-
ible numerical model with the second-order finite volume
discretization. Potential temperature perturbations through horizontal
centerline using a horizontal cuts of the two-dimensional plots at
height z¼ 5000 m are shown in those figures. Moreover, the potential
temperature profile at time t¼ 1000, 2000, and 3000 s are in very good
agreement with the data in literature. The maxima and minima of per-
turbations of potential temperature are in line with published works.
The present results show that the anelastic LB model with the regular-
ized scheme and hybrid thermal model can be applied for non-
hydrostatic inertia-gravity waves problems, and the well performances
of the present method for this kind of atmospheric problems are
demonstrated.

V. CONCLUSIONS

In this paper, an LB-based anelastic model for atmospheric con-
vection is proposed. A regularized BGK model is employed in LB
equation and finite volume scheme is adopted on energy-conservation
equation. Based on the standard LB model for flows at nearly constant
density, the external force terms are derived to incorporate non-
hydrodynamic modes under anelastic approximation. The macro-
scopic governing equations and effects of force terms under anelastic
and Boussinesq approximations are analyzed and discussed by
Chapman–Enskog asymptotic expansion. Three benchmark problems
have been used to assess the new model: a non-hydrostatic atmo-
spheric convection, two-dimensional density currents, and inertia-
gravity waves in stable atmospheric layer have been investigated. The
validations demonstrate that the present extension of the LBM can
simulate atmospheric flows under anelastic approximation accurately.
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