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We show constructively that, under certain regularity assumptions, any system of coupled linear differential equations with variable coefficients can be tridiagonalized by a time-dependent Lanczos-like method. The proof we present formally establishes the convergence of the Lanczos-like algorithm and yields a full characterization of algorithmic breakdowns. From there, the solution of the original differential system is available in closed form. This is a key piece in evaluating the elusive ordered exponential function both formally and numerically.

Introduction

Background

Systems of coupled linear differential equations with non-constant coefficients naturally arise in a variety of contexts in mathematics [START_REF] Reid | Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems[END_REF][START_REF] Kwakernaak | Linear optimal control systems[END_REF][START_REF] Corless | Linear Systems and Control: An Operator Perspective[END_REF][START_REF] Blanes | High order structure preserving explicit methods for solving linear-quadratic optimal control problems[END_REF][START_REF] Benner | Model Reduction and Approximation: Theory and Algorithms[END_REF] and beyond, from engineering to quantum physics [START_REF] Kučera | A review of the matrix riccati equation[END_REF][START_REF] Abou-Kandil | Matrix Riccati Equations in Control and Systems Theory, Systems & Control: Foundations & Applications[END_REF][START_REF] Hached | Numerical solutions to large-scale differential Lyapunov matrix equations[END_REF][START_REF] Kirsten | Order reduction methods for solving largescale differential matrix Riccati equations[END_REF][START_REF] Autler | Stark effect in rapidly varying fields[END_REF][START_REF] Shirley | Solution of the schrödinger equation with a hamiltonian periodic in time[END_REF][START_REF] Lauder | Pulse-shape effects in intense-field laser excitation of atoms[END_REF][START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF]]. Yet, determining the solutions of such systems both formally and numerically remains surprisingly difficult, their widespread applicability making these difficulties only more pressing.

The issue is best presented in the language of linear algebra, and so we consider here an N × N matrix A(t ) depending on the real-time variable t ∈ I ⊆ R encoding the non-constant coupling coefficients of the linear differential system. In this framework, the unique solution U(t , t) of the system of coupled linear differential equations with non-constant coefficients

A(t )U(t , t) = d dt U(t , t), U(t, t) = Id, for all t ∈ I, (1) 
with t ≤ t ∈ I and Id the identity matrix, is called the time-ordered exponential of A(t ). Under the assumption that A commutes with itself at all times, i.e., A(τ 1 )A(τ 2 ) -A(τ 2 )A(τ 1 ) = 0 for all τ 1 , τ 2 ∈ I, then the time-ordered exponential is an ordinary matrix exponential U(t , t) = exp t t A(τ ) dτ . In general, however, U has no known explicit form in terms of A and is usually denoted T exp t t A(τ ) dτ . Determining this object explicitely not only means solving systems of coupled ODEs with variable coefficients but, remarkably, a general strategy would also provide formal solutions to systems of coupled linear and non-linear partial differential equations [START_REF] Kosovtsov | The introduction to the operator method for solving differential equations[END_REF][START_REF] Kosovtsov | The chronological operator algebra and formal solutions of differential equations[END_REF][START_REF] Kosovtsov | Formal exact operator solutions to nonlinear differential equations[END_REF].

In the context of ODEs, only three methods have been devised to calculate ordered exponentials analytically, only one of which is guaranteed to produce an exact answer in a finite number of steps. These are: the Floquet approach, applicable when A(t ) is periodic and which produces an infinite perturbative expansion of the solution1 usually too complicated to be evaluated beyond its first or second terms [START_REF] Blanes | The magnus expansion and some of its applications[END_REF]; the Magnus series expansion [START_REF] Magnus | On the exponential solution of differential equations for a linear operator[END_REF], which presents the solution as the matrix exponential of an increasingly intricate infinite series of nested commutators plagued by incurable divergence issues2 ; and the path-sum approach, which expresses the solution exactly as a continued fraction of finite depth [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF][START_REF] Giscard | General solutions for quantum dynamical systems driven by time-varying Hamiltonians: applications to NMR[END_REF] but requires solving an NP-hard problem [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF][START_REF] Flum | The Parameterized Complexity of Counting Problems[END_REF].

Recently P.-L. G. and S. P. proposed a constructive method to tridiagonalize systems of linear differential equations with non-constant coefficients [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF][START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem[END_REF], from which one can easily evaluate w H U(t , t)v for any two vectors w, v with w H v = 1. Here w H denotes the Hermitian transpose of w. Under the assumptions that the coefficients of the tridiagonalized system are "wellbehaved" distributions (in a sense to be made precise below) and that the method does not breakdown, this approach -a Lanczos-like algorithm -is able to produce the tridiagonalization. The purpose of the present work is to prove that such assumptions hold. That is, we establish that it is indeed possible to tridiagonalize a system of coupled linear differential equations with variable coefficients using a time-dependent Lanczos approach, provided the matrix A(t ) is composed of smooth functions of t and there exists at least one ρ ∈ I so that the matrix A(ρ) is tridiagonalizable in the usual sense. At the heart of the strategy employed is a non-commutative convolution-like product, denoted by * , defined between certain distributions. We therefore begin by recalling the definition and properties of the product utilized before stating and giving the proof on the tridiagonalization.

* -Product

Let t and t be two real variables. We consider the class D of all distributions which are linear superpositions of Heaviside theta functions and Dirac delta derivatives with smooth coefficients. That is, a distribution d is in D if and only if it can be written as

d(t , t) = d(t , t)Θ(t -t) + N i=0 d i (t , t)δ (i) (t -t),
where N ∈ N is finite, Θ(•) stands for the Heaviside theta function (with the convention Θ(0) = 1) and δ (i) (•) is the ith derivative of the Dirac delta distribution δ ≡ δ (0) . Here and from now on, the tilde on f indicates that f (t , t) is an ordinary smooth function in both variables.

We can endow the class D with a non-commutative algebraic structure upon defining a product between its elements. For f 1 , f 2 ∈ D we define the convolution-like * product between f 1 (t , t) and f 2 (t , t) as

f 2 * f 1 (t , t) := ∞ -∞ f 2 (t , τ )f 1 (τ, t) dτ. ( 2 
)
From this definition, we find that the * -product is associative over D, that D is closed under * -multiplication, and that the identity element with respect to the * -product is the Dirac delta distribution, 1 * := δ(t -t). Observe that the * -product is not, in general, a convolution but may be so when both f 1 (t , t) and f 2 (t , t) depend only on the difference t -t.

As a case of special interest here, we shall also consider the subclass Sm Θ of D comprising those distributions which are piecewise smooth, i.e., of the form

f (t , t) = f (t , t)Θ(t -t). (3) 
For

f 1 , f 2 ∈ Sm Θ , the * -product between f 1 , f 2 simplifies to f 2 * f 1 (t , t) = ∞ -∞ f 2 (t , τ ) f 1 (τ, t)Θ(t -τ )Θ(τ -t) dτ, = Θ(t -t) t t f 2 (t , τ ) f 1 (τ, t) dτ,
which makes calculations involving such functions easier to carry out and shows that Sm Θ is closed under * -multiplication.

The * -product extends directly to distributions for which the smooth coefficients are matrices of smooth coefficients by using the ordinary matrix product between the integrands in (2) (see [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF] for more details). It is also well defined for distributions of D whose smooth coefficients depend on less than two variables. Indeed, consider a generalized function f 3 (t , t) = f 3 (t )δ (i) (tt) with i ≥ -1 and δ (-1) ≡ Θ. Then

f 3 * f 1 (t , t) = f 3 (t ) +∞ -∞ δ (i) (t -τ )f 1 (τ, t) dτ, f 1 * f 3 (t , t) = +∞ -∞ f 1 (t , τ ) f 3 (τ )δ (i) (τ -t) dτ.
where f 1 (t , t) is defined as before. Hence the variable of f 3 (t ) is treated as the left variable of a smooth function of two variables. This observation extends straightforwardly should f 3 be constant and, by linearity, to any distribution of D.

Tridiagonalization: * -Lanczos algorithm

Let A(t , t) := A(t )Θ(t -t) with A(t ) a N × N time-dependent matrix. As shown in [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF], if all entries A(t ) ij are bounded over I, then the related time-ordered exponential U(t , t) can be expressed as

U(t , t) = Θ(t -t) t t R * ( A)(τ, t) dτ. ( 4 
)
Here R * ( A) is the * -resolvent of A, defined as

R * ( A) := Id 1 * -A * -1 = Id 1 * + k>0 A * k , (5) 
the series on the right-hand side converging when A elements are bounded.

Now we can recall results in [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF]: baring breakdowns-which we will characterize below-the * -Lanczos algorithm reproduced here in Table 1 produces a sequence of tridiagonal matrices T n , 1 ≤ n ≤ N , of the form

T n :=      α 0 δ β 1 α 1 . . . . . . . . . δ β n-1 α n-1      , (6) 
and such that the matching * -moment property is achieved: [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF]). Let A, w, v and T n be as described above, then

Theorem 1.1 ([
w H (A * j ) v = e H 1 (T * j n ) e 1 ,
for j = 0, . . . , 2n -1.

Combining this with Eq. ( 5) we have, for n = N , the exact expression

w H U(t , t)v = Θ(t -t) t t R * (T n ) 1,1 (τ, t) dτ,
while for n < N , the right-hand side yields an approximation to the timeordered exponential. The method of path-sum [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF] then gives explicitly

R * (T n ) 1,1 (t , t) = 1 * -α 0 -1 * -α 1 -(1 * -...) * -1 * β 2 * -1 * β 1 * -1 . (8) 
The * -Lanczos algorithm therefore provides the first general purpose approach to the calculation of ordered exponentials that is both exact, reaching the solution in a finite number of steps, and amenable to large-scale numerical computations.

Remark 1.1. The described tridiagonalization of the system of ODEs of (1) can also be seen as a * -factorization of the matrix A. Consider the matrices Input: A complex time-dependent matrix A, and complex vectors w, v such that

w H v = 1. Output: Coefficients α 0 , • • • , α n-1 and β 1 , • • • , β n-1
defining the matrix T n of Eq. ( 6) which satisfies Eq. ( 7).

Initialize: v -1 = w -1 = 0, v 0 = v 1 * , w H 0 = w H 1 * . α 0 = w H A v, w H 1 = w H A -α 0 w H , v 1 = A v -v α 0 , β 1 = w H A * 2 v -α * 2 0 , If β 1 is not * -invertible, then stop, otherwise, v 1 = v 1 * β * -1 1 , For n = 2, . . . α n-1 = w H n-1 * A * v n-1 , w H n = w H n-1 * A -α n-1 * w H n-1 -β n-1 * w H n-2 , v n = A * v n-1 -v n-1 * α n-1 -v n-2 , β n = w H n * A * v n-1 , If β n is not * -invertible, then stop, otherwise, v n = v n * β * -1 n , end.
Table 1: The * -Lanczos Algorithm of [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF].

W N = [w 0 , . . . , w N -1 ] and V N = [v 0 , . . . , v N -1
] composed of the vectors computed by the * -Lanczos algorithm. Then

T N = W H N * A * V N , W H N * V N = Id * , (9) 
and

R * (A) = V N * R * (T N ) * W H N ,
with Id * ≡ Id 1 * the identity with respect to the * -matrix-product [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF].

A crucial assumption underlying these results is that the algorithm suffers no breakdown. This is related to the nature of the α j and β j distributions appearing in the T n matrices and which are produced by the * -Lanczos procedure through recurrence relations. These necessitate the * -inversion of the β j , i.e., the calculation of a distribution β * -1

j such that β * -1 j * β j = β j * β * -1 j = 1 * .
The paper [START_REF] Giscard | Lanczos-like method for the time-ordered exponential[END_REF] assumed the existence of such * -inverses, without which the algorithm breaks down. If β j is not identically null, the existence of β * -1 j was proven in a separate work [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem[END_REF] assuming ad minima that the α j and β j would always be piecewise smooth elements of Sm Θ . In other terms, these works conjectured that the tridiagonalization of the system (1) with A composed of functions of Sm Θ is possible when the coefficients β 1 , . . . , β N -1 are not identically null. Here we establish this surprisingly difficult conjecture. Moreover we show that there exists w, v so that the tridiagonalization (9) exists if there exists at least one ρ ∈ I so that

J ρ = Z -1 ρ A(ρ) Z ρ , (10) 
with J ρ a tridiagonal matrix with nonzero off-diagonal elements, and Z ρ a square matrix. This means that A(ρ) must be tridiagonalizable in the usual sense (note that (10) considers the usual matrix-matrix-product).

Main Theorem: tridiagonalization with piecewise smooth functions and characterization of algorithmic breakdowns

Before we state the main theorem on the tridiagonalization of systems of coupled linear differential equations with non-constant coefficients, we begin by exhibiting a relation between breakdowns in the * -Lanczos procedure and breakdowns in the ordinary non-Hermitian Lanczos procedure. This characterizes one of the assumptions of the main theorem and shows that the feasibility of tridiagonalization does not depend on the nature of the entries of the original matrix nor on the kind of product between these entries. Rather breakdowns in tridiagonalization must be topological in origin, i.e., they depend on the structure and the edge weights of the graph whose adjacency matrix is A.

Lemma 2.1. Let T n be the tridiagonal matrix (6) obtained by n iterations of Algorithm 1 with inputs A(t , t) = Ã(t )Θ(t -t), w, v, where all the entries of A(t ) are smooth functions of t , and w, v are time-independent vectors with w H v = 1. Assume that the * -Lanczos coefficients α j-1 , β j are in Sm Θ and that β j (t, t) ≡ 0, for every j = 1, . . . , n -1. Then the following statements are equivalent:

1. β (1,0) 1 , . . . , β (1,0) n-1 are not identically null on I; 2. β (0,1) 1 , . . . , β (0,1)
n-1 are not identically null on I; 3. There exists at least one ρ ∈ I so that the usual non-Hermitian Lanczos algorithm with inputs A(ρ), w, v has no (true) breakdown in the first n -1 iterations.

Note that statement 1 (or equivalently Statement 2) in Lemma 2.1 also implies that there cannot be a breakdown in the first n iterations of Algorithm 1. Hence Statement 3 in Lemma 2.1 is a sufficient condition for not having a breakdown in the * -Lanczos Algorithm. We also remark that the matrix A(ρ) is tridiagonalizable in the sense of [START_REF] Autler | Stark effect in rapidly varying fields[END_REF] if and only if there exists w, v so that the usual non-Hermitian Lanczos algorithm with inputs A(ρ), w, v has no (true) breakdown until the last iteration; see, e.g., [START_REF] Parlett | Reduction to tridiagonal form and minimal realizations[END_REF]. Now we are ready to state our main result.

Theorem 2.1. Let A(t ) be a N ×N time dependent matrix and let U(t , t) be its time-ordered exponential. Let w and v be time-independent N × 1 vectors with w H v = 1. Assume that for every t in a measurable subset of I, the usual non-Hermitian Lanczos algorithm with inputs A(t ), w, v has no (true) breakdown in the kth iteration, for k = 1, . . . , N -1. If all the entries of A(t ) are smooth functions of t , then there are smooth functions α 0≤j≤N -1 , β 1≤i≤N -1 and distributions

α j (t , t) := α j (t , t)Θ(t -t), β i (t , t) := β i (t , t)Θ(t -t), such that β i (t, t) ≡ 0, β (1,0) i (t, t) ≡ 0, β (0,1) i
(t, t) ≡ 0 and the tridiagonal matrix

T :=      α 0 δ β 1 α 1 . . . . . . . . . δ β N -1 α N -1      , obeys w H A * n v = T * n 1,1 , n ≥ 0 w H U(t , t)v = Θ(t -t) t t R * (T) 1,1 (τ, t) dτ,
where A(t , t) := A(t )Θ(t -t). Furthermore, the * -inverses β * -1 1≤i≤N -1 exist and are of the form β * -

1 i = δ (3) * b, with b ∈ Sm Θ .
Remark 2.1. The Dirac delta distributions δ in the upper diagonal of the matrix T are non-essential. Indeed, one can instead choose to replace them by the piecewise smooth function Θ(t -t), Θ(0) = 1 if at the same time all β j coefficients are replaced with

∂ βj ∂t × Θ(t -t) for 1 ≤ j ≤ N -1.
The feasibility of this operation is guaranteed by the main theorem above. Here, we retain the version with isolated non-essential delta distributions for the ease of the proof.

The proofs of the Theorem 2.1 and Lemma 2.1 occupy the remainder of the present work. We proceed as follows: in Section 3.1 we begin with basic results pertaining to the * -action of derivatives of the Dirac delta distribution. In Section 3.2 we gather technical Lemmas pertaining to * -products of piecewise smooth functions of Sm Θ as well as on the existence and form of their * -inverses. Section 3.3 proves Lemma 2.1. The previous results lead onto the main argument of the proof, in Section 3.4, which is an induction on the α j and β j generalized functions produced by the * -Lanczos algorithm.

Proofs

* -Action of delta derivatives

We begin by recalling basic results pertaining to the * -action of derivatives of the Dirac delta distribution. We denote by δ (j) (t -t) the jth derivative of the Dirac delta distribution δ(t -t) ≡ δ (0) (t -t). We generally omit the (t -t) argument to alleviate the equations, unless absolutely necessary (we do the same with the Heaviside function Θ(t -t)). For a distribution f depending on two times or less, we have [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem[END_REF][START_REF] Schwartz | Théorie Des Distributions, nouvelle édition, entièrement corrigée[END_REF] f * δ (j) (t , t) = (-1) j f (0,j) (t , t),

δ (j) * f (t , t) = f (j,0) (t , t), δ (j) * δ (k) = δ (j+k) , Θ * δ = δ.
The notation f (j,k) (τ, ρ) stands for the jth t -derivative and kth t-derivative of f evaluated at t = τ, t = ρ with the understanding that j = 0 or k = 0 means no derivative is taken. Since the * -product is associative, δ (i) * f * δ (j) = δ (i) * f * δ (j) and the notation f (i,j) is well defined. For piecewise smooth functions

f ∈ Sm Θ , f (t , t) = f (t , t)Θ(t -t), this implies δ (j) * f (t , t) = f (j,0) (t , t)Θ + j-1 k=0 f (j-k-1,0) (t, t)δ (k) , (11a) 
f (t , t) * δ (j) = (-1) j f (0,j) (t , t)Θ + j-1 k=0 f (0,j-k-1) (t , t )δ (k) . (11b) 
Finally, we note the following identities between distributions for j ≥ 0

f (t )δ (j) (t -t) = (-1) j f (t)δ(t -t) (0,j) , (12a) 
f (t)δ (j) (t -t) = f (t )δ(t -t) (j,0) ; (12b)
see, e.g., [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem[END_REF][START_REF] Schwartz | Théorie Des Distributions, nouvelle édition, entièrement corrigée[END_REF].

Technical results

In this section we gather crucial technical Lemmas. The first result pertains to derivatives of * -products of functions of Sm Θ , establishing that all derivatives of order k ≤ n of a * -product of n functions are identically null when t = t. The second Lemma gives the generic form for the * -inverse of a function of Sm Θ . Lemma 3.1. Let f j (t , t) := f j (t , t)Θ(t -t), j = 1, 2, . . . , be a family of functions of Sm Θ . Let

F n := F n (t , t)Θ(t -t) = f n * • • • * f 1 for n ≥ 2.
Then for 0 ≤ q + r ≤ n -2 we have,

F (q,r) n (t, t) ≡ 0, ( 13 
)
and consequently, for 0 ≤ q + r ≤ n -1,

δ (q) * F n * δ (r) (t , t) = (-1) r F (q,r) n (t , t) Θ(t -t). (14) 
In particular,

F (n-1,0) n (t, t) = f n (t, t) • • • f 2 (t, t) f 1 (t, t) = (-1) n-1 F (0,n-1) n
(t, t). More generally, if none of the f j (t, t) are identically null, then F (q,r) n (t, t) ≡ 0 when q + r = n -1.

If f j (t, t) ≡ 0 is true for all 1 ≤ j ≤ n, then Eq. ( 13) is true for n ≥ 1 as long as 0 ≤ q + r ≤ 2n -2 and Eq. ( 14) holds whenever n ≥ 1 and 0 ≤ q + r ≤ 2n -1. If in addition none of the f j (t, t) (1,0) are identically null, then F (q,r) n (t, t) ≡ 0 when q + r = 2n -1. This Lemma extends naturally to * -products of functions of Sm Θ whose smooth part depends on less than two time variables, e.g. a(t )Θ(t -t).

Proof. We proceed by induction on n. The base case, at n = 2, follows from a direct calculation

F 2 (t , t) = f 1 * f 1 (t , t) = t t f 2 (t , τ ) f 1 (τ, t)dτ Θ(t -t).
Since both f 2 and f 1 are continuous as functions over I 2 , then the above integral vanishes under the limit t → t, establishing that F 2 (t, t) ≡ 0. For the derivatives of F 2 , we get that

F (1,0) 2 (t, t) = f 1 (t, t) f 2 (t, t) = -F (0,1) 2 (t, t)
is not identically null whenever neither f 1 (t, t) nor f 2 (t, t) are identically null. Now, assume that the Lemma holds for every * -product of n functions in Sm Θ and let

F n (t , t) := F n (t , t)Θ(t -t) = f n * f n-1 * • • • * f 1 with n ≥ 2.
We will establish the Lemma by proving that this implies the required properties for F n+1 .

We get δ (q) * F n+1 * δ (r) = δ (q) * f n+1 * F n * δ (r) . For 0 ≤ q + r ≤ n -1, by the inductive assumption and Eq. ( 11) we get

δ (q) * F n * δ (r) = (-1) r F (q,r) n Θ. Thus F n = Θ * q * (-1) r F (q,r) n Θ * Θ * r . Therefore δ (q) * f n+1 * F n * δ (r) = δ (q) * (f n+1 * Θ * q ) * (-1) r F (q,r) n Θ.
Since q + 1 ≤ n, the Lemma holds for f n+1 * Θ * q , giving δ (q) * (f n+1 * Θ * q ) = G q ∈ Sm Θ . Finally we get

δ (q) * f n+1 * F n * δ (r) = G q Θ * (-1) r F (q,r) n Θ,
which is a * -product of two functions in Sm Θ . Hence, as we have already proved in the base case, (-1) r F (q,r)

n+1 (t, t) = δ (q) * f n+1 * F n * δ (r) t =t ≡ 0, 0 ≤ q + r ≤ n -1, from which we get δ (q) * F n+1 * δ (r) (t , t) = (-1) r F (q,r) n+1 (t , t) Θ(t -t), 0 ≤ q + r ≤ n.
There remains to establish that F (q,r) n+1 (t, t) is not identically null for q+r = n if none of the f n (t, t) ≡ 0. This follows from the observation that since G q (t, t) = f n+1 (t, t) for every q ≥ 0, then given q + r = n F (q,r)

n+1 (t, t) = δ * G q-1 Θ * (-1) r F (q-1,r) n Θ t=t = (-1) r f n+1 (t, t) F (q,r) n (t, t),
and, similarly, we get

F (q,r) n+1 (t , t ) = G q Θ * (-1) r-1 F (q,r-1) n Θ * δ t=t = (-1) r f n+1 (t, t) F (q,r) n (t, t).
Hence, for q + r = n, F (q,r) n+1 (t , t ) is not identically null since f n+1 (t, t) ≡ 0 and F (q,r-1) n (t, t) ≡ 0 by assumption and induction, respectively. The same argument establishes that F (n+1,0) n+1 (t, t) = n+1 j=1 f j (t, t). This gives the first part of the Lemma.

Assuming f j (t, t) identically null for j = 1, . . . , n + 1, by Eq. ( 11) we get

f j (t , t) = Θ(t -t) * f (1,0) j (t , t), j = 1, . . . , n + 1. Hence F n+1 = Θ * f 1 * Θ * f 2 * • • • * Θ * f n+1 is a * -product of 2n+2 functions in Sm Θ .
Applying the first part of the Lemma to such a * -product, we conclude the proof. Lemma 3.2. Let f (t , t) := f (t , t)Θ(t -t) with f smooth. Let k ∈ N be the smallest integer such that f (k,0) (t, t) and f (0,k) (t, t) are not identically null. Then the * -inverse of f exists almost everywhere on I 2 and is given by

f * -1 = f L inv * δ (k+2) = δ (k+2) * f R inv . Both f L,R inv ∈ Sm Θ , f L,R inv (t, t)
are not identically null and

f L inv := f (k,0) (t , t ) -1 Θ + t t r L (t , τ )dτ Θ, r L (t , t) := r L (t , t)Θ = 1 f (k,0) (t, t) ∞ n=1 (-g L ) * n , g L (t , t) := ∞ m=1 f (m+k,0) (t, t)Θ * m . while f R inv := f (0,k) (t, t) -1 Θ + t t r R (τ, t)dτ Θ, r R (t , t) := r R (t , t)Θ = 1 f (0,k) (t , t ) ∞ n=1 (-g R ) * n , g R (t , t) := ∞ m=1 f (0,m+k) (t , t )(-1) m+k Θ * m .
Proof. Because f is smooth in both time variables, we can appeal to the Taylor series representation

f (t , t) = n≥k f (n,0) (t, t) (t -t) n n! Θ, = n≥k f (n,0) (t, t)Θ * n+1 , = Θ * k+1 * f (k,0) (t, t)δ + ∞ m=1 f (m+k,0) (t, t)Θ * m , = Θ * k+1 * f (k,0) (t, t)δ + g(t , t)Θ , with g(t , t) := ∞ m=1 f (m+k,0) (t, t)Θ * m = m=1 f (m+k,0) (t, t) (t -t) m-1 (m -1)! Θ.
The inverse of f (t , t) will therefore be of the form f (k,0) (t, t)δ + g(t , t) * -1 * δ (k+1) , provided the inverse of f (k,0) (t, t)δ + g(t , t)Θ does indeed exist.

In order to alleviate the notation, let f t designate f (k,0) (t, t). Let us suppose that the * -inverse r of f t δ +g exists. Then it should satisfy ( f t δ +g) * r = δ. Expanding this out, we get δ -g * r = f t r, that is f -1 t δ -f -1 t (g * r) = r. Iteratively replacing r on the left-hand side by its value as given by the righthand side we get,

r = f -1 t δ -g * ( f -1 t δ) + g * g * ( f -1 t δ) -• • • = ∞ n=0 (-g) * n * ( f -1 t δ), = f -1 t ∞ n=0 (-g) * n
Given the form of g and f being smooth, g is bounded and the series above is convergent, except possibly at a countably finite number of points t ∈ I for which f (k,0) (t, t) = 0. Therefore r exists with,

r = f -1 t δ + r(t , t)Θ, with r(t , t)Θ := f -1 t ∞ n=1 (-g) * n .
Returning to the * -inverse of f we have thus proven that it exists and takes on the form,

f * -1 = 1 f t δ + r(t , t)Θ * δ (k+1) ,
where r is an ordinary function. Now it suffices to observe that 1

f (k,0) (t , t ) Θ * δ ≡ f -1 t Θ * δ = f -1 t δ = f -1 t δ,
where the last equality follows from Eq.( 12) with j = 0. Furthermore t t r(t , τ )dτ Θ * δ = r(t , t)Θ. Therefore,

f * -1 = f -1 t Θ + t t r(t , τ )dτ Θ * δ (k+2) , (15) 
and the content of the parenthesis is f L inv . There remains to show that f inv (t, t) is not identically null. To this end, remark that as r is smooth in both time variables, the integral from t to t of r(t , τ ) vanishes under the limit t → t. Given that here Θ(0) = 1, there remains

f L inv (t, t) = f -1 t .
which is not identically null, by assumption. The proof for f R inv is entirely similar, with the starting Taylor expansion being around t , t instead of t, t. This establishes the Lemma.

Proof of Lemma 2.1

Note that β j = Θ * β

(1,0) j Θ since β j (t, t) ≡ 0, for j = 1, . . . , n -1. Considering that T * j+1 n (t , t) 11 can be written as a sum of * -products of j + 1 functions among α 0 , . . . , α n-1 , β 

∂ j ∂t j T * j+1 n (t , t) 11 t =t = J j+1 n (t, t) 11 , j = 0, 1, 2 . . . , (16) 
with

J n (t) :=       α 0 (t, t) 1 β (1,0) 1 (t, t) α 1 (t, t) . . . . . . . . . 1 β (1,0) n-1 (t, t) α n-1 (t, t)       .
Moreover, w H A * j+1 v is a sum of * -products of j + 1 functions in Sm Θ . Hence by Lemma 3.1

∂ j ∂t j w H A * j+1 v (t , t) t =t = w H A j (t)v, j = 0, 1, 2 . . . , (17) 
Here, notice that ordinary matrix powers appear on the right hand side and not * -powers anymore. Then, Theorem 1.1 implies

w H A j (t)v = J j n (t) 11 , j = 0, . . . , 2n -1. ( 18 
)
Let us fix ρ ∈ I. The following statements are equivalent (see, e.g., [START_REF] Parlett | Reduction to tridiagonal form and minimal realizations[END_REF][START_REF] Pozza | The Lanczos algorithm and complex Gauss quadrature[END_REF][START_REF] Pozza | The Gauss quadrature for general linear functionals[END_REF]):

• The (usual) non-Hermitian Lanczos process with inputs A(ρ), w, v generates an n×n (time-independent) tridiagonal matrix S n,ρ with nonzero elements on the off-diagonals;

• The (usual) non-Hermitian Lanczos process with inputs A(ρ), w, v does not have a (true) breakdown in the first n -1 iterations;

• There exists a n×n (time-independent) tridiagonal matrix with nonzero elements on the off-diagonal H n,ρ satisfying

w H A(ρ) j v = e T 1 (H n,ρ ) j e 1 , j = 0, . . . , 2n -1. 
In particular, every such H n,ρ is in the form

H n,ρ = D ρ S n,ρ D -1
ρ , with D ρ a non-singular diagonal matrix. Therefore if for a fixed ρ ∈ I the coefficients β

(1,0) 1 (ρ, ρ), . . . , β

(1,0) n-1 (ρ, ρ) are non-zero, then by Eq. ( 18) the non-Hermitian Lanczos process on A(ρ), w, v does not have a (true) breakdown in the first n -1 iterations and give as an output a tridiagonal matrix S n,ρ so that J n (ρ) = D ρ S n,ρ D -1 ρ , with D ρ a nonsingular diagonal matrix. Conversely, if for a fixed ρ ∈ I the non-Hermitian Lanczos process on A(ρ), w, v has not a (true) breakdown in the first n -1 iterations, then it generates a tridiagonal matrix S n,ρ with nonzero elements in the off-diagonal. Therefore since J n (ρ) = D ρ S n,ρ D -1 ρ with D ρ a non-singular diagonal matrix, the coefficients β

(1,0) 1 (ρ, ρ), . . . , β (1,0) n-1 (ρ, ρ) are non-zero. Being β (1,0) 1 (t, t), . . . , β (1,0)
n-1 (t, t) smooth functions of t ∈ I, they are either identically null on I or nonzero almost everywhere on I, showing that Statement 1 is equivalent to Statement 3.

By similar arguments, Statement 2 is equivalent to Statement 3, concluding the proof.

Proof of Theorem 2.1

We are now ready to prove Theorem 2.1. We begin with proving the Theorem's statements concerning the off-diagonal coefficients β j . For all integers 1 ≤ n ≤ N -1, we denote P n the proposition:

P n :="For all 1 ≤ j ≤ n, β j ∈ Sm Θ , β j (t , t ) ≡ 0 is identically null and neither β

(1,0) j (t , t ) nor β (0,1) j (t, t) are identically null."

We establish P n by induction.

Proof for the coefficients β. Observe that the jth * -moment of the matrix A satisfies m j (t , t) := w H A * j v ∈ Sm Θ for j ∈ N. Since by definition α 0 (t , t) = w H Av, α 0 ∈ Sm Θ and

β 1 (t , t) = m 2 (t , t) -α * 2 0 (t , t),
then β 1 ∈ Sm Θ . In addition, the * -product of two elements of Sm Θ is null whenever t = t owing to the continuity of the integrand, and thus we immediately get m 2 (t, t) = α * 2 0 (t, t) ≡ 0 entailing that β 1 (t, t) ≡ 0. Finally, we get β

(1,0) 1 (t , t ), β (0,1) 1 (t , t ) not identically null by Lemma 2.1. Assuming n ≥ 1, the central object of interest is F n+1 (t , t) := m 2n+2 (t , t) -T * 2n+2 n+1 (t , t) 11 . (19) 
Observe that m 2n+2 (t , t) is a sum of * -products of 2n + 2 functions in Sm Θ . Moreover, by the inductive assumption, for j = 1, . . . , n we have β j ∈ Sm Θ and β j (t, t) ≡ 0. As a consequence,

β j (t , t) = -β (0,1) j (t , t)Θ * Θ = Θ * β (1,0) j (t , t)Θ. Hence T * 2n+2 n+1
(t , t) 11 can be written as a sum of * -products of 2n + 2 functions among α 0 , . . . , α n , β (0,1) 1 Θ, . . . , β (0,1) n Θ and Θ. Then F n+1 ∈ Sm Θ and, by Lemma 3.1, for q + r ≤ 2n,

F (q,r) n+1 (t, t) ≡ 0. ( 20 
)
while for 0 ≤ q + r ≤ 2n + 1,

δ (q) * F n+1 * δ (r) (t , t) = (-1) r F (q,r) n+1 (t , t) Θ(t -t). (21) 
We can further identify F n+1 upon noting that since m 2n+2 (t , t) = T * 2n+2 

As a final remark, note that β * -1 n+1 exists and is of the form β * -1 n+1 = δ (3) * b n+1 , with b n+1 ∈ Sm Θ given explicitly by Lemma 3.2.

These results establish P n ⇒ P n+1 and, since P 1 holds, P n is true for n = 1, 2, . . . , N -1.

Proof for the coefficients α. A completely similar proof works for the α j coefficients, on invoking auxiliary matrices Q n defined as equal to T n but for α n-1 set to 0. Then Hence α n ∈ Sm Θ , however α n (t, t) may be not identically null.

Conclusion

In this work, we have shown that any systems of coupled linear differential equations (1) with smooth coefficients can be tridiagonalized when the matrix of coefficients A(t ) is tridiagonalizable in the ordinary sense for at least one t ∈ I. In particular, baring accidental breakdowns of the * -Lanczos algorithm, we showed that for any matrix A(t ) composed of smooth functions of t and for any two vectors v and w, there exists a tridiagonal matrix comprising only piecewise smooth functions and non-essential Dirac delta distributions (Remark 2.1) whose ordered exponential evaluated between w H and v yields the same result as the ordered exponential of A evaluated between these two vectors. Moreover, we proved that a sufficient condition for not having a breakdown in the * -Lanczos algorithm is that the usual non-Hermitian Lanczos algorithm with inputs A(t ), w, v does not breakdown for at least one t ∈ I. Given the pervasive presence of systems of coupled linear differential equations with non-constant coefficients in applications-for example all closed quantum dynamical systems subjected to time-dependent forces produce such a system-this result provides an essential basis for the evaluation and understanding of ordered exponentials. Concretely, the proofs provided here guarantee the existence and good-behavior of a constructive procedure, the * -Lanczos algorithm, capable of exactly evaluating ordered exponentials in a finite number of steps.

k 11 whenever

 11 k ≥ n + 2. Since T * 2n+2 k 11 -T * 2n+2 n+1 11 = β n+1 * • • • * β 2 * β 1 ,

G

  n (t , t) := m 2n+1 (t , t) -Q * 2n+1 n+1 11 = α n * β n * • • • * β 1 and furthermore G n ∈ Sm Θ . Since now α n = G n * F * -1 n , then α n = G n * F * -1 n = G n * δ (2n) * δ * F inv = G (0,2n) n (t , t)Θ * δ * F inv = G (0,2n+1) n (t , t)Θ + G (0,2n) n (t, t)δ * F inv .

That is, a series in terms of powers of a parameter that should be small to guarantee convergence.

That is its convergence domain is incurably small[START_REF] Fel'dman | On the convergence of the magnus expansion for spin systems in periodic magnetic fields[END_REF][START_REF] Maricq | Convergence of the magnus expansion for time dependent two level systems[END_REF][START_REF] Sánchez | New analytic approximations based on the magnus expansion[END_REF]. In spite of this, Magnus series are very much in use nowadays in quantum physics[START_REF] Blanes | The magnus expansion and some of its applications[END_REF], because they guarantee the unitary of the approximated solutions even when the series diverges (!).
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we get

From now on, we suppose that F n+1 (t , t) is not identically null over I 2 . Indeed, should it be the case, then Eq. ( 23) implies that β n+1 (t , t) is identically null, which corresponds to a breakdown of the * -Lanczos algorithm. Lemma 2.1 shows that such a case is in contradiction with the theorem assumptions and in fact corresponds to a breakdown of the ordinary non-Hermitian Lanczos procedure.

In order to determine what kind of distribution is β n+1 , we seek to express it as

To this end, we first need to show the existence of F * -1 n and precisely control what form this may possibly take. We exploit again the fact that

Considering that by induction β

(1,0) j (t, t) ≡ 0 for j = 1, . . . , 2n-2, Lemma 3.1 gives

Thus, by Lemma 3.2, the * -inverse of F n exists and takes on the form

where F inv ∈ Sm Θ . We can now return to calculating β n+1 . We start with

By Eq. ( 21), we have

Θ and hence

because F inv ∈ Sm Θ . This shows that β n+1 ∈ Sm Θ is piecewise smooth. Furthermore, in the limit t → t, the integral above vanishes since the integrand is smooth, and F (0,2n) n+1 (t, t) is identically null by Eq. ( 20), consequently β n+1 (t, t) ≡ 0. Since neither β (1,0) n+1 (t, t) nor β (0,1) n+1 (t , t ) are identically null by Lemma 2.1, the proof is concluded.