Intersection Cuts for Mixed-Integer Signomial Sets

Liding Xu^{1}
OptimiX, LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, France
liding.xu@polytechnique.edu

Mots-clés : MINLPs, Mixed-Integer Signomial Programs, Intersection Cuts, Convex Analysis

1 Introduction

Intersection cuts $[3,10]$ have been tackled in recent years to tighten the polyhedral outer approximation of certain non-convex sets such as lattice set [1], bi-level set [5], outer product set [2] and quadratic set [9].
In this work, we study the intersection cuts for signomial set and mixed-integer-signomial set. Signomial Programs (SPs) and Mixed-Integer Signomial Programs (MISPs) [6, 8] contain signomial terms, the intersection cuts can tighten their Linear Programming (LP) relaxations.

Given an n-dimensional multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbf{R}^{n}$, a signomial term is defined as $x^{\alpha}:=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$. We assume the variables being positive, thus allowing the multi-index α to have negative components. We define the signomial set as follows :

$$
\mathcal{S}_{s}:=\left\{(x, y) \in \mathbf{R}_{+}^{n} \times \mathbf{R}: y(\cdot) x^{\alpha}\right\},
$$

where \cdot can be $\leq,=$ or \geq.
We define the mixed-integer counterpart of the signomial set. Let $[\underline{x}, \bar{x}]$ be the box constraint on x such that $\underline{x}>0$ implicitly imposes the positiveness of x. W.l.o.g., we assume the first $n_{1} \leq n$ entries of x to be integer, and let $\mathcal{D}=\left(\mathbf{Z}_{+}^{n_{1}} \times \mathbf{R}_{+}^{n-n_{1}}\right) \cap[\underline{x}, \bar{x}]$ be the bounded mixedinteger domain. Similarly, the mixed-integer-signomial set is defined as :

$$
\mathcal{S}_{\text {mis }}:=\left\{(x, y) \in \mathcal{D} \times \mathbf{R}: y(\cdot) x^{\alpha}\right\} .
$$

For a non-convex set \mathcal{S}, a convex set \mathcal{C} is \mathcal{S}-free if $\operatorname{int} \mathcal{C} \cap \mathcal{S}=\emptyset$. The intersection cut framework requires two ingredients to generate a valid inequality to separate \bar{z} :
i) a translated simplicial conic relaxation \mathcal{R} with vertex \bar{z} such that $\mathcal{S} \subset \mathcal{R}$ and $\bar{z} \notin \mathcal{S}$;
ii) a \mathcal{S}-free set \mathcal{C} such that $\bar{z} \in \operatorname{int} \mathcal{C}$.

The spatial-branch-and-bound (sBB) algorithm [7] is a general technique to find the global solution of non-convex MINLPs. The second ingredient of intersection cuts, i.e., recession conic relaxation, can be retrieved from the LP-based sBB algorithm. If two \mathcal{S}-free sets $\mathcal{C}_{1}, \mathcal{C}_{2}$ are such that $\mathcal{C}_{1} \subset \mathcal{C}_{2}$, the intersection cut derived from \mathcal{C}_{2} dominates the one derived from \mathcal{C}_{1} [4]. Therefore, the maximal \mathcal{S}-free sets are ideal and crucial to generate strong intersection cuts.
The set \mathcal{S} has a difference-of-concave (DC) representation if it can be expressed as

$$
\mathcal{S}:=\left\{z \in \mathbf{R}^{p}: f_{1}(z)-f_{2}(z) \leq 0\right\},
$$

where f_{1} and f_{2} are concave functions.
[10] proposed the linearization technique to derive \mathcal{S}-free sets in DC-representations. The linearization technique constructs the following \mathcal{S}-free set :

$$
\mathcal{C}:=\left\{z \in \mathbf{R}^{p}: f_{1}(z)-\left(f_{2}(\tilde{z})+\nabla f_{2}(\tilde{z}) \cdot(z-\tilde{z})\right) \geq 0\right\},
$$

where $f_{2}(\tilde{z})+\nabla f_{2}(\tilde{z}) \cdot(z-\tilde{z})$ is the linearization (over-estimator) of f_{2} at \tilde{z}.
Indeed, a non-convex set \mathcal{S} may have various DC-representations. An ideal DC-representation should yield maximal \mathcal{S}-free sets using the linearization technique.

2 Our results

We show that the signomial set can be transformed into the following normalized DCrepresentation :

$$
\begin{equation*}
\mathcal{S}_{s}=\left\{(u, v) \in \mathbf{R}_{+}^{h} \times \mathbf{R}_{+}^{l}: u^{\beta}-v^{\gamma} \leq 0\right\}, \tag{1}
\end{equation*}
$$

where $\beta \in \mathbf{R}_{+}^{h}$ and $\gamma \in \mathbf{R}_{+}^{l}$ are $h-$ and $l-$ dimensional multi-indices such that $\max \left\{\|\beta\|_{1},\|\gamma\|_{1}\right\}=$ 1. Because u^{β}, v^{γ} are concave, the representation yields a $\mathcal{S}_{s}-$ free set using the linearization technique.
For any non-convex set \mathcal{S}, we give a sufficient condition to guarantee the maximality of a \mathcal{S}-free set; then, we show that the normalized DC-representation is ideal in the sense that it yields the maximal $\mathcal{S}_{s}-$ free set in the non-negative orthant. Some non-ideal DC-representations of \mathcal{S}_{s} are given as well.
We propose a method to enlarge the \mathcal{S}_{s}-free set into the mixed-integer-signomial-free ($\mathcal{S}_{\text {mis }}-$ free) set, where both nonlinear constraints and bounded/integer variables are featured. A byproduct is a strong convex relaxation of the following mixed-integer power cone :

$$
\begin{equation*}
\left\{(x, t) \in \mathcal{D} \times \mathbf{R}: x^{\alpha} \geq t\right\} \tag{2}
\end{equation*}
$$

where $\alpha \in \mathbf{R}_{+}^{p},\|\alpha\|_{1} \leq 1$, and $\mathcal{D} \subset \mathbf{R}_{+}^{p}$ is a bounded mixed-integer domain. The relaxation is stronger than the continuous relaxation $\left\{(x, t) \in \mathbf{R}_{+}^{p} \times \mathbf{R}: x^{\alpha} \geq t\right\}$.

The intersection cut separation problem is reduced to univariate root-finding problems. Such root-finding problems can be solved numerically in quadratic convergence rate by Newton-like algorithms.

Références

[1] Egon Balas. Intersection cuts - a new type of cutting planes for integer programming. Operations Research, 19(1) :19-39, 1971.
[2] Daniel Bienstock, Chen Chen, and Gonzalo Muñoz. Outer-product-free sets for polynomial optimization and oracle-based cuts. Mathematical Programming, 183(1-2) :105-148, 2020.
[3] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Corner polyhedron and intersection cuts. Surveys in Operations Research and Management Science, 16(2) :105120, 2011.
[4] Gérard Cornuéjols, Laurence Wolsey, and Sercan Yildz. Sufficiency of cut-generating functions. Mathematical Programming, 152(1-2) :643-651, 2015.
[5] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. On the use of intersection cuts for bilevel optimization. Mathematical Programming, 172(1) :77-103, 2018.
[6] Andreas Lundell and Tapio Westerlund. Solving global optimization problems using reformulations and signomial transformations. Computers \& Chemical Engineering, 116 :122134, 2018.
[7] Garth P. McCormick. Computability of global solutions to factorable nonconvex programs : Part I - Convex underestimating problems. Mathematical Programming, 10(1) :147-175, 1976.
[8] Ruth Misener and Christodoulos A Floudas. A framework for globally optimizing mixed-integer signomial programs. Journal of Optimization Theory and Applications, 161(3) :905-932, 2014.
[9] Gonzalo Muñoz and Felipe Serrano. Maximal quadratic-free sets. In Daniel Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimization, pages 307-321, Cham, 2020. Springer International Publishing.
[10] Felipe Serrano. Intersection cuts for factorable minlp. In Andrea Lodi and Viswanath Nagarajan, editors, Integer Programming and Combinatorial Optimization, pages 385398, Cham, 2019. Springer International Publishing.

