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1 Introduction
The colored traveling salesmen problem (CTSP) can be stated as follows [5]. Given a undi-

rected graph G=(V, A) with vertex set V = {0, 1, 2, · · · , n} where 0 is the depot while other
vertices N = {1, 2, · · · , n} represent cities and A = {{i, j} : i, j ∈ V, i 6= j} is the set of edges.
Each edge {i, j} ∈ A has a non-negative weight cij representing the traveling distance between
vertices i and j. The vertices of V are divided into m + 1 disjoint sets : m exclusive city sets
{C1, C2, · · · , Cm}, and one shared vertex set S such that ∪m

k=1Ck∪S = V and ∩m
k=1Ci∩S = ∅.

The cities of an exclusive set Ck (k = 1, 2, · · · , m) are to be visited by salesman k only, while
the shared vertices can be visited by any of the m salesmen. Besides, vertex 0 (the depot)
belongs to the shared vertex set S and is visited by all salesmen. CTSP is to determine m
shortest Hamiltonian tours (routes) starting from the depot and ending at the depot such that
each exclusive city in Ck is visited exactly once by salesman k and each shared vertex is visited
exactly once by one of the m salesmen.

CTSP generalizes a variant of the classical traveling salesman problem (TSP), known as the
multiple traveling salesmen problem (mTSP). As mentioned in [5], CTSP is a useful model for
a number of practical problems, such as multi-bridge machining systems and rice harvesters
problem. This work investigates CTSP by proposing an effective heuristic.

2 Grouping memetic search for CTSP
We propose a specialized grouping memetic algorithm (GMA) for CTSP [4], which is com-

posed of four main components : population initialization, local optima exploration, backbone-
based crossover and population updating. GMA starts with an initial population generated by
the population initialization procedure. It then repeats a number of generations during which
new candidate solutions are sampled. At each generation, the backbone-based crossover com-
bines two randomly and uniformly selected parents to generate a promising offspring individual,
where useful building blocks are transformed from the parents to the offspring. Then, local op-
timization is applied to explore local optima around the offspring. For an effective examination
of local optima, GMA employs a specific strategy that combines an inter-route optimization
with the constrained cross-exchange operator and an intra-route optimization with the TSP
heuristic called Edge Assembly Crossover [6]. Finally, a surviving strategy is adopted to update
the population. GMA stops when an allotted cutoff time limit is reached.

3 Computational results
GMA is assessed based on three sets of of 65 instances with 23–7397 vertices, introduced in

[5, 7, 1, 2]. To ensure a fair comparison, we faithfully re-implemented the best ABC algorithm



[7] (denoted by re-ABC). We accomplished an experimental comparison between GMA and
the best performing algorithm ITPLS [3] and re-ABC with the same stopping condition. Each
algorithm was run 20 times independently to solve each instance with distinct random seeds.

Table 1 summarizes the results reported by the compared algorithms on the three sets of
65 instances. Column 2 gives the set name and the number of instances in the set. Column 3
shows the quality indicators (fbest and favg). Columns 4-6 count the number of instances for
which GMA achieves a better, equal or worse value compared with each reference algorithm.
The last column presents the p-values from the Wilcoxon signed-rank test. Table 1 reveals
large performance gaps between GMA and each reference algorithm on Sets II and III. We
conclude that GMA is very competitive for solving CTSP and this is particularly true for large
instances.

TAB. 1 – Summary of comparative results between GMA and two reference algorithms
Algorithm pair Set/Instance Indicator Better Equal Worse p − value
GMA vs. ITPLS I/20 fbest 0 20 0 0.00E+00

favg 0 20 0 0.00E+00
II/14 fbest 7 4 3 2.44E-04

favg 8 1 5 4.80E-02
III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06
GMA vs. re-ABC I/20 fbest 0 20 0 0.00E+00

favg 0 20 0 0.00E+00
II/14 fbest 8 4 2 1.37E-02

favg 9 1 4 4.79E-02
III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06
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