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1 Introduction

Multistage stochastic programming is a powerful framework with multiple applications, e.g.
in the finance, energy and supply chain sectors. If the uncertainty is finitely supported, those
problems can be seen as large-scale deterministic problems. When there is more than 4 or 5
stages, the deterministic equivalent is usually too large to be solved directly. One of the most
successful paradigms in this setting consists in leveraging time-independance assumptions to
derive Bellman equations. The Stochastic Dual Dynamic Programming (SDDP) algorithm, and
its numerous variants, consists in using those equations to derive approximations of the cost-
to-go functions. It has been successfully used on a number of real-world problems, especially
in the field of energy. We show how to derive a dual formulation for these problems and apply
an SDDP algorithm, leading to converging and deterministic upper bounds for risk averse
problems. Details can be found in [1].

While the classical formulation of a multistage program is risk-neutral, meaning that we
minimize an expected cost, a large part of the recent litterature has been devoted to efficiently
introduce risk aversion in this framework, in particular inside the SDDP algorithm. In parti-
cular, coherent risk measures have become a usual tool to represent risk aversion in stochastic
optimization problems. In multistage stochastic programming, minimizing a risk measure of the
sum of costs leads to time-inconsistency. The easiest way to come up with a time-consistent
risk-averse problem is to use composed Markovian risk measures, which, roughly speaking,
means replacing the expectation by a risk measure inside the dynamic programming equation.

More precisely, let (Ω,F ,P) be a probability space, and {ωt}t∈[T ] be a sequence random
variables. We consider the following risk-averse multistage linear program (RA-MSLP)

min
xt,yt

ρ1

(
c>1 y1 + ρ2|ω1

(
· · ·+ ρT |ω[T −1](c

>
T yT )

))
(1a)

s.t. Atxt +Btxt−1 + Ttyt = dt ∀t ∈ [T ] (1b)
xt ≥ 0, yt ≥ 0 ∀t ∈ [T ] (1c)
xt, yt � ω[t] ∀t ∈ [T ] (1d)

where ρt|ω[t] is a coherent risk measure conditional on the past noises ω[t] := {ω1, . . . , ωt}, all
equalities hold almost surely, and constraint (1d) is the non-anticipativity constraint, ensuring
that decisions xt, yt are taken with only the information available at time t.

Assuming that {ωt}t∈[T ] is a sequence of independent random variables, Dynamic Program-



ming leads to the following recursion :

VT +1(xT ) = 0, (2)
Vt(x) = min

xt,yt

ρt

[
c>t yt + Vt+1(xt)

]
s.t. Atxt +Btx+ Ttyt = dt

xt ≥ 0, yt ≥ 0

(3)

where the value of Problem (1) is given by V1(x0).
The classical SDDP algorithm builds outer approximations of the cost-to-go function, leading

to exact lower bounds on the problem. In a risk-neutral framework, upper bounds can be
estimated via Monte Carlo sampling. Unfortunately it is unclear how to extend such statistical
methods to the risk-averse setting. Instead of statistical upper bounds, one can use exact upper
bounds : Through backward recursion ([4]) ; by maintaining upper and lower bounds for all
value functions ; or using Fenchel duality ([3, 2]). While backward recursion can be used for
risk-averse problems, it is more a one-time evaluation than an improving process. On the other
hand, maintaining upper and lower bounds for the value functions can be used in a risk-averse
setting to yield a converging algorithm.

In the risk-neutral case, it has been shown in [3] that we can derive a Bellman-like recursion
for the Fenchel transform of V . A recursion can also be obtained by dualizing the extensive
formulation of the MLSP problem, and recognizing a time-decomposition, as presented in [2].
In both cases, this provides a dual problem on which SDDP can be applied, and whose lower
bounds correspond to upper bounds of (1). Here we develop these ideas in the risk-averse case :
we dualize the extended formulation and show a time-decomposition for the dual problem. We
also deduce a Bellman recursion on the perspective of the Fenchel transform of the value
function. This leads to an algorithm providing converging upper bounds for the risk-averse
setting.
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