I. INTRODUCTION

The study of Heun equations has generated significant interest in physics lately due to their proliferation in various contexts including quantum optics [START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF], condensed matter physics [START_REF] Crampé | Free-Fermion entanglement and orthogonal polynomials[END_REF], quantum computing [START_REF] Giorgadze | Monodromic Quantum Computing[END_REF], two-state problems [START_REF] Shahverdyan | Analytic solutions of the quantum two-state problem in terms of the double bi-and triconfluent Heun functions[END_REF], black-hole theory [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF][START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF] and more [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF].

From a mathematical standpoint, recent research has focused on relations and transformations involving Heun functions and other transcendent functions. These include relations with hypergeometric [START_REF] Maier | On reducing the Heun equation to hypergeometric equation[END_REF] and elliptic functions [START_REF] Takemura | Integral transformation of Heun equations and some applications[END_REF] and with solutions of Painlevé equations [START_REF] Slavyanov | Painlevé equations as classical analogues of Heun equation[END_REF].

Yet few studies [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF] have specifically focused on determining their properties most relevant to physical applications. For example, the lack of integral expansions of these functions involving only elementary integrands has been clearly identified as a major obstacle when extracting physical meaning in areas of black holes astrophysics [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF], yet remains unaddressed in the mathematical literature. The present tackles this issue by determining a novel integral representation of the Heun equations involving only elementary functions that is tailored to physical applications. In particular, we demonstrate the applicability of the novel integral representation to the Teukolsky equation [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF] that governs the metric perturbations of rotating black holes. In addition, we provide asymptotic behaviour near singular points to demonstrate uniform convergence of our solutions from horizon to infinity, by means of a single series. This stands in contrast to the state-of-the-art MST formalism [START_REF] Mano | Analytical Solutions of the Teukolsky Equation and Their Low Frequency Expansions[END_REF], that uses two hypergeometric series (one convergent at the horizon and the other at infinity) that must then be matched after an analytic continuation procedure. This last step requires the introduction of an auxiliary parameter lacking physical correspondence, at the very least obscuring the physical picture. The convergence of the integral series over the entire domain from the black hole horizon up to spatial infinity therefore alleviates the need for such parameters lacking physical correspondence when calculating solutions of the Teukolsky radial equation. These solutions are of primary importance for computing quantities of physical interest such as gravitational wave fluxes [START_REF] Fujita | New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation[END_REF] and quasinormal modes [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF]. The present progress in integral representation is enabled by the method of path-sum [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF], which generates the linear Volterra integral equation of the second kind satisfied by any function involved a system of coupled linear differential equations with variable coefficients.

This paper is organised as follows. In Section II we give the minimal necessary background on Heun equations and existing integral representations with their drawbacks. Section III is a self-contained presentation of the novel, elementary integral representations of all functions of Heun class, illustrated with concrete examples. Then, in Section IV we give the elementary integral series representation of the solution to the Teukolsky radial equation. This representation is the first one to be convergent from the black hole horizon up to spatial infinity. We conclude in §V with a brief discussion of the novel integral series and future prospects of the method of path-sum from which they stem for solving the coupled system of Teukolsky angular and radial equations.

II. HEUN DIFFERENTIAL EQUATIONS

A. General Heun Equation

In its canonical form, the General Heun Equation (GHE) is given as follows:

d 2 y(z) dz 2 + γ z + δ z -1 + ε z -t dy(z) dz + αβ z -q z(z -1)(z -t) y(z) = 0, (1) 
where q ∈ C is called the accessory parameter. The parameters satisfy the Fuch's condition: 1 + α + β = γ + δ + ε The GHE has four singular points at z = 0, 1,t, ∞. Concerning its solutions, Maier-completing a task initiated by Heun [START_REF] Heun | Zur Theorie der Riemann'chen Functionen Zweiter Ordnung mit Verzweigungspunkten[END_REF] himself-has shown that there are 192 solutions can be generated using the symmetries of D 4 [START_REF] Maier | The 192 Solutions of the Heun equation[END_REF].

For specific parameter values the Heun equation reduces to other well-known equations of importance: e.g. setting ε = 0, γ = δ = 1/2 yields the Mathieu equation [START_REF] Daniel | Exact solutions of Mathieu equations[END_REF].

B. Confluent Heun Equations

The GHE contains 4 regular singularities but we may apply a confluence procedure to two of its singularities such that we get an irregular singularity. We call the resultant equation a confluent Heun equation (CHE). The CHE contains at least one irregular singular point besides the regular singular points. We can construct local solutions in the vicinity of this irregular singular points by the means of generally divergent Thomé series [START_REF] Slavyanov | Special Functions: A Unified Theory Based on Singularities[END_REF]. By applying the confluence procedure laid out in [START_REF] Slavyanov | Special Functions: A Unified Theory Based on Singularities[END_REF] to the singularities at z = t and z = ∞ in equation 2, we get:

d 2 y(z) dz 2 + γ z + δ z -1 + ε dy(z) dz + αz -q z(z -1) y(z) = 0. ( 2 
)
The number of parameters in the CHE as compared to the GHE is therefore reduced by one. By continuing application of the confluence procedure, we obtain the bi-confluent Heun equation

d 2 y(z) dz 2 + γ z + δ + εz dy(z) dz + αz -q z y(z) = 0, (3) 
and related doubly-confluent Heun equation

d 2 y(z) dz 2 + δ z 2 + γ z + 1 dy(z) dz + αz -q z 2 y(z) = 0, (4) 
and finally the triconfluent Heun equation

d 2 y(z) dz 2 + γ + δ z + εz 2 dy(z) dz + (αz -q)y(z) = 0. ( 5 
)
We refer the reader to [START_REF] Slavyanov | Special Functions: A Unified Theory Based on Singularities[END_REF] for further general informations on these equations.

C. Integral representations of Heun functions

Erdélyi was the first to give an integral equation relating the values taken at two points by a general Heun function [START_REF] Erdélyi | Integral Equations for Heun Functions[END_REF]. His equation, a Fredholm integral equation, involves an hypergeometric kernel and can be used to obtain a series representation of Heun functions as sums of hypergeometric functions with coefficients determined via recurrence relations. Applications of this result in the special cases of Mathieu and Lamé equations were discussed by Sleeman [START_REF] Sleeman | Non-linear Integral Equations For Heun Functions[END_REF]. Naturally, since Erdélyi's breakthrough many mathematical works on Heun equations were concerned with integral transformations involving Heun functions and higher transcendental functions [START_REF] Takemura | Integral transformation of Heun equations and some applications[END_REF][START_REF] Valent | An Integral Transform Involving Heun Functions and a Related Eigenvalue Problem[END_REF] This brief list of contributions is far from exhaustive and we refer the reader to the recent review [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF] on this subject for more details.

The common feature of all of these integral transforms is that they contain higher transcendental functions which makes them physically opaque and of limited use for practical calculations. In addition, the resulting series representations for the Heun functions have insufficient radiuses of convergence causing difficulties for black hole perturbation theory (see Section IV). These issues were noted in the recent review [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF] on Heun's functions, the current state of research on this being described as follows :

"No example has been given of a solution of Heun's equation expressed in the form of a definite integral or contour integral involving only functions which are, in some sense, simpler.[...] This statement does not exclude the possibility of having an infinite series of integrals with 'simpler' integrands".

In this work, we constructively prove the existence of such a representation for all types of Heun's functions and for all parameters, allowing them to take complex values too, in the form of infinite series of integrals whose integrands involve only rational functions and exponentials of polynomials. Furthermore, we show that the series converges everywhere except at the singular points of the Heun function. We show that any Heun function, general or (bi-, doubly-, tri-)confluent, is a sum of exactly two functions each of which satisfy a linear Volterra equation of the second kind with explicitely identified elementary kernels. In particular, any Heun function H(z) itself satisfies a linear integral Volterra equation of the second kind with such an elementary kernel if either there is at least one non-singular point z 0 where H(z 0 ) = H (z 0 ) or there is a point where H(z 0 ) = 0.

III. ELEMENTARY INTEGRAL SERIES FOR ALL TYPES OF HEUN FUNCTIONS

Owing to the emphasis of the present work on concrete results and a physical application, all the technical mathematical proofs are deferred to Appendix A.

A. Notation and convergence

The * notation is useful to denote iterated integrals. Let K(z, z 0 ) be a function of two variables that is continuous over ]z 0 , z[. We denote K(z, z 0 ) = K * 1 (z, z 0 ) and, for any integer n > 1,

K * n (z, z 0 ) = z z 0 K * (n-1) (z, ζ 1 )K(ζ 1 , z 0 )dζ .
In other terms K * n is the Volterra composition [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF] of K with itself n-times. The only type of integral series that is required to present all results of this section is the following, called a Neumann series, G(z, z 0

) := ∑ ∞ n=1 K * n (z, z 0 ), i.e. G(z, z 0 ) = K(z, z 0 ) + z z 0 K(z, ζ 1 )K(ζ 1 , z 0 )dζ 1 + z z 0 z ζ 1 K(z, ζ 2 )K(ζ 2 , ζ 1 )K(ζ 1 , z 0 )dζ 2 dζ 1 + • • • ,
see also Appendix A.A B. Iterated integral series as above are well known to converge provided the kernel K(z, z 0 ) is bounded for all z ≥ z 0 in an interval of interest I ⊆ R [START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF]. Indeed, supposing this condition is met then there exists a finite M K := sup z,z 0 ∈I z≥z 0 |K(z, z 0 )|. This implies that, for all z ≥ z 0 , z, z 0 ∈ I,

K * n (z, z 0 ) ≤ z z 0 z ζ 1 • • • z ζ n-2 |K(z , ζ n-1 )| • • • |K(ζ 2 , ζ 1 )| |K(ζ 1 , z)|dζ n-1 • • • dζ 2 dζ 1 , ≤ M n K z z 0 z 0 ζ 1 • • • z ζ n-2 1dζ n-1 • • • dζ 2 dζ 1 = M n K (z -z 0 ) n n! . ( 6 
)
This result translates into unconditional convergence of the integral series representation of Heun functions on singularity-free intervals. Indeed we show below that Heun functions are given by integral series on two kernels, K 1 and K 2 , which depend on the function but are bounded on singularity-free intervals. Last but not least, the function G(z, z 0 ) defined above, is solution to the linear Volterra integral equation of the second kind

G(z, z 0 ) = K(z, z 0 ) + z z 0 K(z, ζ )G(ζ , z 0 )dζ , (7) 
or, in * notation, G = K + K * G. Thus, the function G can either be evaluated from the integral series or by solving the above Volterra equation. This not only leads to fast reliable numerical implementations of the results presented here [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF] available for download, but also to novel Volterra integral equations satisfied by Heun functions, see Section III C.

B. Representations

We emphasize that all results stated remain valid for complex parameter values. This is crucial notably when forming solutions of the Teukolsky equation in the study of quasinormal modes, for which the frequency parameter takes complex values (see the general setting as given in Eq. (1) and Eq. (22) for a concrete example with complex parameters).

Corollary III.1 (General Heun Equation)

. Let H G (z) be solution of the General Heun Equation,

d 2 H G (z) dz 2 + γ z + δ z -1 + ε z -t dH G (z) dz + αβ z -q z(z -1)(z -t) H G (z) = 0,
with initial conditions H G (z 0 ) = H 0 and ḢG (z 0 ) = H 0 , assuming that z 0 ∈ R is not a singular point of H G . Denote I the largest real interval that contains z 0 and does not contain any singular point of H G . Then, for any z ∈ I,

H G (z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1 + z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i and K 1 (z, z 0 ) = 1 + e -z z z 0 ζ γ 1 (ζ 1 -1) δ (t -ζ 1 ) ε z γ (z -1) δ (t -z) ε e ζ 1 q -αβ ζ 1 (ζ 1 -1) ζ 1 (ζ 1 -t) - ε t -ζ 1 - γ ζ 1 - δ ζ 1 -1 -1 dζ 1 , K 2 (z, z 0 ) = q -αβ z (z -1)z(z -t) - ε t -z - γ z - δ z -1 -1 e z-z 0 - q -αβ z (z -1)z(z -t) ,
and both K 1 and K 2 are bounded over I, implying convergence of the Neumann series for G 1 and G 2 for all z ∈ I.

Example III.1 (Elementary integral series converging to a general Heun function). In order to illustrate concretely the above corollary, consider the following General Heun equation (here with arbitrary parameters),

d 2 H G (z) dz 2 + 2 z + 7 z -1 + (-1) z -4 dH G (z) dz + (3/2)z -1 z(z -1)(z -4) H G (z) = 0, (8) 
with initial conditions H G (6) = H G (6) = 1. Here, the largest real interval containing 6 and none of the singular points 0, 1 and t = 4 is I =]4, +∞[. Thus Corollary III.1 indicates that for any z ∈]4, +∞[,

H G (z) = 1 + z z 0 G 1 (ζ , z 0 )dζ , = 1 + ∞ ∑ n=1 z 6 K * n 1 (ζ , 6)dζ = 1 + z 6 K 1 (ζ , 6)dζ + z 6 ζ 6 K 1 (ζ , ζ 1 )K 1 (ζ 1 , 6)dζ 1 dζ + • • • , with the kernel K 1 given by K 1 (z, z 0 ) = 1 -e -z (z -4) z 2 (z -1) 7 z z 0 e ζ 1 ζ 1 (ζ 1 -1) 6 2 (ζ 1 -4) 2 2ζ 3 1 + 10ζ 2 1 -67ζ 1 + 14 dζ 1 .
In Fig.

(1), we show a purely numerical evaluation of H G (z) together with analytical estimates based on the first few orders of the above series, i.e. we give H

(m)

G (z) := 1 + ∑ m n=1 z 6 K * n 1 (ζ , 6
)dζ , with m = 1, 2, 3 and m = 6. This exhibits the convergence of the Neumann series representation of the path-sum formulation of a general Heun function, as predicted by the theory. 
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G (z) (dotted magenta line), H (1) 
G (z) (dot-dashed red line), H (2) 
G (z) (dashed blue line) and H (6) G (z) (solid blue line, very close to the numerical solution). For orders m ≥ 9, we reach the numerical solution to within machine precision. Note that the integral series given here is convergent on z ∈]4, +∞[ but we show only the interval z ∈ [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF][START_REF] Costa | Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes[END_REF] for illustration purposes.

The results above continue to hold should e.g. z 0 = 3, in which case I =]1, 4[; z 0 = 1/2 implying I =]0, 1[; or z 0 = -20 giving I =] -∞, 0[. In other terms, the integral representation given for the General Heun function is valid everywhere on z ∈ R\{0, 1,t = 4} but can only be used in an interval I where initial conditions for H G are available.

Corollary III.2 (Confluent Heun Equation)

. Let H C (z) be solution of the Confluent Heun Equation, 

d 2 H C (z) dz 2 + γ z + δ z -1 + ε dH C (z) dz + αz -q z(z -1) H C (z) = 0, with initial conditions H C (z 0 ) = H 0 and ḢC (z 0 ) = H 0 , assuming that z 0 = 0 and z 0 = 1. If z 0 < 0, let I =] -∞, 0[, if 0 < z 0 < 1 let I =]0, 1[, and else for z 0 > 1 let I =]1, +∞[. Then, for any z ∈ I, H C (z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1 + z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i , i = 1, 2, and K 1 (z, z 0 ) = 1 + e -z z z 0 e ζ ε ζ γ (ζ -1) δ e zε z γ (z -1) δ e ζ q -αζ (ζ -1) ζ - γ ζ - δ ζ -1 -ε -1 dζ , K 2 (z, z 0 ) = q -αz (z -1) z - γ z - δ z -1 -ε -1 e z-z 0 - q -αz (z -1)z ,
d 2 H C (z) dz 2 + 3 z + (2/3) z -1 + 4 dH C (z) dz + 5z -1 z(z -1) H C (z) = 0 (9)
with initial conditions H C (-5) = 0 and H C (-5) = 1. Suppose that we wish to evaluate H C on the interval z ∈] -∞, 0[, i.e. on both sides z < z 0 and z > z 0 of the conditions at z 0 = -5. Then Corollary III.2 indicates that, for any z ∈] -∞, 0[, we have

H C (z) = e z+5 -1 + z -5 (e z-ζ -1)G 2 (ζ , -5)dζ , with G 2 = ∑ ∞ n=1 K * n 2 and K 2 (z, z 0 ) = 3(5z -1) -e z-z 0 (3z + 4)(5z -3) 3(z -1)z .
We emphasize that these results hold for all z ∈] -∞, 0[ since this interval is divergence free, more precisely K 2 is bounded continuous on any compact subinterval of ] -∞, 0[ and the integral series for G 2 is thus guaranteed to converge on this entire domain (this is shown in the appendix). Note that when considering z < z 0 , all integrals remain the same as for z > z 0 . In Fig.

( 2) below, we show a purely numerical evaluation of H C (z) together with the truncated integral series approximations

H (m) C (z) := e z+5 -1 + z -5 (e z-ζ -1) 1 + m ∑ n=1 K * n 2 (ζ , -5) dζ , (10) 
= e z+5 -1 + z -5 (e z-ζ -1) 1 + K 2 (ζ , -5) + ζ -5 K 2 (ζ , ζ 1 )K 2 (ζ 1 , -5)dζ 1 + • • • dζ .
Since kernel K 2 is singular at z = 0 just as H C is, we expect the convergence speed of the integral series to slow down when approaching the singular point, as predicted by the bound of Eq.( 6) presented in the appendix. This does not preclude analytically obtaining the correct asymptotic behavior for H C (z) as z → 0 -. Indeed this follows from the behavior of K 2 under the same limit. We demonstrate such a procedure in Section IV D on the Teukolsky radial function, where we recover the asymptotic behavior of a Heun function from its integral series representation.

Corollary III.3 (Biconfluent Heun Equation)

. Let H B (z) be solution of the Biconfluent Heun Equation,

d 2 H B (z) dz 2 + γ z + δ + εz dH B (z) dz + αz -q z H B (z) = 0, with initial conditions H B (z 0 ) = H 0 and ḢB (z 0 ) = H 0 , assuming that z 0 = 0. If z 0 > 0, denote I =]0, +∞[ otherwise let I =]-∞, 0[. Then, for any z ∈ I, H B (z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1 + z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i , i = 1, 2, and K 1 (z, z 0 ) = 1 + e -z z z 0 ζ γ 1 z γ e ζ 1 -1 2 (z-ζ 1 )(2δ +ε(ζ 1 +z)) q -αζ 1 ζ 1 - γ ζ 1 -δ -ζ 1 ε -1 dζ 1 , K 2 (z, z 0 ) = q -αz z - γ z -δ -zε -1 e z-z 0 - q -αz z ,
and both K 1 and K 2 are bounded over I, implying convergence of the Neumann series for G 1 and G 2 for all z ∈ I. 9) (solid black line) with conditions H C (-5) = 0, H C (-5) = 1, together with its integral approximands as per Eq. ( 10), H
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C (z) (dotted magenta line), H (2) 
C (z) (dot-dashed red line) and H [START_REF] Aminov | Black Hole Quasinormal Modes and Seiberg-Witten Theory[END_REF] C (z) (dashed blue line, very close to the numerical solution). Convergence near z = 0 is slowed down due to K 2 being singular at z = 0 just as H C is. Still, the integral series is convergent over the entire domain z ∈] -∞, 0[, a crucial property for perturbative black hole theory that is unique to the present approach. Here as in subsequent examples we plot the various functions over smaller intervals for z, for illustration purposes.

Example III.3 (Evaluating a Biconfluent Heun function via Volterra equations). Let us now consider the following Biconfluent Heun function H

B (z) satisfying d 2 H B (z) dz 2 + (1/10) z + 1 + 6z dH B (z) dz + (-1)z -2 z H B (z) = 0, (11) 
with initial conditions H B (2/3) = 0 and H B (2/3) = -4. Then Corollary III.3 indicates that for z > 0,

H B (z) = 2 + 2 z 2/3 G 1 (ζ , 2/3)dζ -6 e z-2/3 -1 + z 2/3 (e z-ζ -1)G 2 (ζ , 2/3) dζ , (12) 
with G i = ∑ ∞ n=1 K * n i for i = 1, 2, and K 1 (z, z 0 ) = 1 + z z 0 (19 -10ζ (6ζ + 1))e -(z-ζ )(3ζ +3z+2) 10ζ 9/10 z 1/10 dζ , K 2 (z, z 0 ) = 19 -10z(6z + 1) e z-z 0 -10(z + 2) 10z .
Instead of evaluating functions G 1 and G 2 from their integral series, it is preferable to solve the linear integral Volterra equations Eq. ( 7) that they satisfy. Such equations are very well behaved and numerically easy to solve [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF], so that we can evaluate H B thanks to Eq. ( 12) with high numerical accuracy, see Fig. 9) (solid black line), together with the function predicted by Eq.( 12) (dashed blue line). The two are indistinguishable. The integral representation of Eq. ( 12) is valid for z ∈]0, +∞[, we here show only z ∈]0, 10[ for illustration purposes.

d 2 H D (z) dz 2 + δ z 2 + γ z + 1 dH D (z) dz + αz -q z 2 H D (z) = 0
with initial conditions H D (z 0 ) = H 0 and ḢD (z 0 ) = H 0 , assuming that z

0 = 0. If z 0 > 0, denote I =]0, +∞[ otherwise let I =]-∞, 0[. Then, for any z ∈ I, H D (z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1 + z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i , i = 1, 2,
and

K 1 (z, z 0 ) = 1 + e -z z z 0 ζ γ 1 z γ e -δ ζ 1 +2ζ 1 + δ z -z q -αζ 1 ζ 2 1 - γ ζ 1 - δ ζ 2 1 -2 dζ 1 , K 2 (z, z 0 ) = q -αz z 2 - δ z 2 - γ z -2 e z-z 0 - q -αz z 2 ,
and both K 1 and K 2 are bounded over I, implying convergence of the Neumann series for G 1 and G 2 for all z ∈ I.

Example III.4 (Convergence to a Doubly-Confluent Heun function). Let us now consider the following Doubly-Confluent Heun equation, once again with arbitrarily chosen parameters for the example,

d 2 H D (z) dz 2 + (-2) z 2 + 1 z + 1 dH D (z) dz + 10z -(-1) z 2 H D (z) = 0 ( 13 
)
with initial conditions H D (1) = H D (1) = 1/2. Then Corollary III.4 indicates that for z ∈]0, +∞[,

H D (z) = 1 2 + 1 2 ∞ ∑ n=1 z 1 K * n 1 (ζ , 1)dζ , with K 1 (z, z 0 ) = 1 + e -z-1 z z z z 0 e 2ζ 1 + 2 ζ 1 1 ζ 1 (1 -2ζ 2 1 + 11ζ 1 )dζ 1
In Fig. 
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D (z) (dot-dashed red line) and H

D (z) (dashed blue line). Note the integral series provided here is convergent for z ∈]0, +∞[ and show only the interval z ∈ [1, 9] for illustration purposes.

Corollary III.5 (Triconfluent Heun Equation)

. Let H T (z) be solution of the Triconfluent Heun Equation,

d 2 H T (z) dz 2 + γ + δ z + εz 2 dH T (z) dz + (αz -q)H T (z) = 0,
with initial conditions H T (z 0 ) = H 0 and ḢT (z 0 ) = H 0 . Then, for any z ∈ R,

y(z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1 + z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i , i = 1, 2 and K 1 (z, z 0 ) = 1 -e -1 6 z(6γ+2z 2 ε+3δ z+6) z z 0 e 1 6 ζ (6γ+3δζ+2ζ 2 ε+6) ζ (α + δ + ζ ε) + γ -q + 1 dζ , K 2 (z, z 0 ) = -εz 2 + (α + δ )z -q + γ + 1 e z-z 0 -(q -zα),
and both K 1 and K 2 are bounded over R, implying convergence of the Neumann series for G 1 and G 2 for all z ∈ R.

Example III.5 (Convergence to a complex-valued Triconfluent Heun function). Consider the Triconfluent Heun function defined as the solution to

d 2 H T (z) dz 2 + 2 -z + 7z 2 dH T (z) dz + (z -(2 + i))H T (z) = 0, ( 14 
)
where i 2 = -1, and with initial conditions H T (-5) = H T (-5) = 2. Corollary III.5 indicates that for z ∈ R,

H D (z) = 2 + 2 z z 0 G 1 (ζ , -10)dζ , with G 1 = ∑ ∞ n=1 K * n 1 and K 1 (z, z 0 ) = 1 -e 1 6 (3-14z)z 2 -3z z z 0 e -1 6 (3-14ζ )ζ 2 +3ζ (7ζ 2 + 1 -i) dζ .
We show in Fig. [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF] convergence to the complex-valued triconfluent Heun function by the integral series

H (m) T (z) := 2 + 2 z z 0 m ∑ n=1 K * n 1 (ζ , -10)dζ , = 2 + 2 z z 0 K 1 (ζ , -10)dζ + z z 0 z z 0 K 1 (z, ζ 1 )K 1 (ζ 1 , -10)dζ 1 dζ + • • •
With this example, we emphasize that all the integrals representations obtained here remain valid for complex-valued Heun functions.
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T (z) (dotted magenta line), H

T (z) (dot-dashed red line) and H

T (z) (dashed blue line). Left figure: real parts of these quantities. Right figure: imaginary parts of these quantities. Note that the integral series provided is convergent over the entire real line, we here show only the interval z ∈ [-5, 7] for illustration purposes.

Remark III.1 (On singularities and complex integration). The integral series representation are convergent on any interval not crossing a singularity as shown in Section. III A. In particular, this allows us to evade the issue of relating the behaviour of the Heun function at one singular point to its behaviour at another so long as there is a singularity-free open interval between these points. As the representations given here fail to be defined at singularities, if there is the need to pass through one, one must resort to contour integration in the complex plane z ∈ C to bypass the singularity. In this situation, attention must be paid to branch cuts, path-dependency may arise and the Stoke phenomenon can be an issue, see [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF][START_REF] Motygin | On numerical evaluation of the Heun functions[END_REF] for a discussion.

C. Volterra equations for Heun functions

If one needs to numerically evaluate a Heun functions using one of the integral series above, it is preferable to do so without evaluating the various orders of the series. Rather, it is much easier and faster to numerically solve the Volterra integral equations Eq. ( 7) satisfied by G 1 and G 2 . This directly and reliably gives access to these functions, i.e. to what the integral series converges to, see [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF] for a downloadable Python implementation. This observation also imply that novel linear Volterra integral equations of the second kind are satisfied by Heun functions, depending on the Cauchy conditions:

Theorem III.1. Let H(z) be a function of the Heun type. If there is a point z 0 where initial conditions are such that H 0 = H 0 , then the derivative Ḣ(z) of H(z) satisfies the Volterra equation

Ḣ(z) = K 1 (z, z 0 ) + z z 0 K 1 (z, ζ ) Ḣ(ζ )dζ .
Proof. If there is a point z 0 where initial conditions are such that H 0 = H 0 , then by any of the above corollaries, the Heun function H(z) is equal to H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ . By Eq. ( 7) or Theorem A.1 this implies that the derivative the Heun function, being proportional to G 1 , satisfies a linear Volterra integral equation of the second kind with kernel K 1 , given in the theorem. This is the first known integral equation satisfied by Heun functions in terms of elementary functions.

Theorem III.2. Let H(z) be a function of the Heun type and let Ḧ(z) be its second derivative. If there is a point z 0 where initial conditions are such that H 0 = 0, then Ḧ(z) -Ḣ(z) satisfies the linear Volterra equation with kernel K

2 Ḧ(z) -Ḣ(z) = K 2 (z, z 0 ) + z z 0 K 2 (z, ζ ) Ḧ(ζ ) -Ḣ(ζ ) dζ .
Proof. Entirely similar to the proof of the previous theorem, this time with G 2 and K 2 .

IV. APPLICATION TO BLACK-HOLE PERTURBATION THEORY A. Motivations

The theory of perturbations of Kerr black holes is governed by the Teukolsky equation [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF]. This equation provides the basic mathematical framework to study the stability of black holes [START_REF] Costa | Mode stability for the Teukolsky equation on extremal and subextremal Kerr spacetimes[END_REF] and yields physical insights in the broader field of gravitational wave astrophysics [START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF].

In the frequency domain, the Teukolsky equation can be decoupled into radial and angular components [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF]. Determining the analytical solutions of the radial equation has been an active area of research since the first formulation of the equations [START_REF] Mano | Analytical Solutions of the Teukolsky Equation and Their Low Frequency Expansions[END_REF][START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF]. To this end, state-of-the-art approaches all rely on the same strategy: i) obtain two series expansions of the solution, one convergent near the black hole horizon the other at spatial infinity; and ii) match both expansions at some intermediate point using a matching parameter. The standard implementation of this strategy, due to Mano, Suzuki and Takasugi (MST) [START_REF] Mano | Analytical Solutions of the Teukolsky Equation and Their Low Frequency Expansions[END_REF], relies on a series of hypergeometric functions at the black hole horizon and of Coulomb wave functions at spatial infinity. Matching both expansions requires the introduction of an auxiliary parameter ν. We stress that this parameter is not part of the original parameters of the Teukolsky equation. Rather ν is a mathematical checkpost introduced to establish the convergence and matching of the hypergeometric and Coulomb series [START_REF] Fujita | New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation[END_REF] and is an unavoidable mathematical step in matched asymptotic expansions of confluent heun solutions [START_REF] El-Jaick | Solutions for confluent and double-confluent Heun equations[END_REF]. The MST strategy successfully yields accurate numerical data for studying gravitational wave radiation from Kerr black holes [START_REF] Fujita | New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation[END_REF][START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF]. It is "the only existing method that can be used to calculate the gravitational waves emitted to infinity to an arbitrarily high post-Newtonian order in principle." [START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF]. At the same time, it has been explicitly recognised that the mathematical complexity of the formalism obscures physical insights into the problem [START_REF] Sasaki | Analytic Black Hole Perturbation Approach to Gravitational Radiation[END_REF]. In particular, the auxiliary parameter ν, which has been called "renormalised angular momentum" to make it more palatable, has limited correspondence to physical phenomenon, if any.

More recently, explicit, analytic solutions to the Teukolsky equation have been established in terms of confluent Heun functions [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF] and general Heun functions [START_REF] Hatsuda | Quasinormal modes of Kerr-de Sitter black holes via the Heun function[END_REF]. Yet, Cook and Zalutskiy [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF] note that in order to extract physical quantities of interest out of this approach, one is forced to revert to Leaver's formalism [START_REF] Leaver | An analytic representation for the quasi-normal modes of Kerr black holes[END_REF] because "the series solution around z = 1 has a radius of convergence no larger than 1, far short of infinity". Thus, just as for the MST formalism the problem is, in essence, that we are lacking a single representation of the solution to the Teukolsky radial equation that is convergent from the black hole horizon up to spatial infinity. The integral series provided in this work addresses this issue completely since it converges on this entire domain, thereby retaining the crucial features of the MST formalism that lead to its widespread applicability, while also not requiring any auxiliary, unphysical parameter. In a similar vein, we can assert that our formalism is suited for practical numerical and even analytical, calculations since the integral series are rapidly convergent, and their asymptotic behavior is analytically available. We may therefore also hope that the integral series representation will help solve the well-recognised computational difficulties that emerge from the MST formalism when applied to gravitational wave physics For completeness, we begin with a brief discussion of the theory of the Teukolsky equation and its reduction to Heun form. We then give the series representation of its solution. Finally, we establish its asymptotics at both the black hole horizon (z → 1 + ) and spatial infinity (z → +∞).

B. The Teukolsky Equation : background

The Teukolsky Equation [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF] is a gauge invariant equation that governs the curvature perturbations of the Kerr black hole [START_REF] Misner | Gravitation[END_REF].The so-called "master" equation for the spin (s) weighted scalar wave function s ψ in Boyer-Lindquist co-ordinates {t, r, θ , φ } [START_REF] Boyer | Maximal Analytic Extension of the Kerr Metric[END_REF] is written as:

(r 2 + a 2 ) 2 ∆ -a 2 sin 2 θ ∂ 2 s ψ ∂t 2 + 4Mar ∆ ∂ 2 s ψ ∂t∂ φ + a 2 ∆ - 1 sin 2 θ ∂ 2 s ψ ∂ φ 2 -∆ -s ∂ ∂ r ∆ s+1 ∂ s ψ ∂ r - 1 sin θ ∂ ∂ θ sin θ ∂ s ψ ∂ θ -2s a(r -M) ∆ + i cos θ sin 2 θ ∂ s ψ ∂ φ -2s M(r 2 -a 2 ) ∆ -r -ia cos θ ∂ ∂t + (s 2 cot 2 θ -s) s ψ = 4πΣT ( 15 
)
where the auxiliary variables are given by:

Σ ≡ r 2 + a 2 cos 2 θ , ∆ ≡ r 2 -2Mr + a 2 (16)
Here, M is the mass of the black hole, a is its angular momentum (per unit mass), T is the source term built from the energymomentum tensor [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF] and the spin parameter s = 0, ±1/2, ±1, ±2 ± 3/2 for scalar, neutrino, electromagnetic and gravitational fields respectively. The equation 15 can be separated in time and frequency domain [START_REF] Teukolsky | Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational[END_REF]. The latter can be performed for the vacuum case (T = 0) by the following separation ansatz:

s ψ(t, r, θ , φ ) = e -iωt e imφ S(θ )R(r). ( 17 
)
For the radial function R(r) we obtain the Teukolsky Radial Equation (TRE):

∆ -s d dr ∆ s+1 dR(r) dr + K 2 -2is(r -M)K ∆ + 4isωr -λ R(r) = 0, ( 18 
)
where,

K ≡ (r 2 + a 2 )ω -am, λ ≡ s A lm (aω) + a 2 ω 2 -2amω. ( 19 
)
For the angular equation, we make x ≡ cos θ . Now the function S(θ ) = s S lm (x; aω) is the spin weighted spheroidal function [START_REF] Breuer | Some properties of spin-weighted spheroidal harmonics[END_REF] which gives the solution for the Teukolsky Angular Equation (TAE):

∂ x (1 -x 2 )∂ x [ s S lm (x; c)] + (cx) 2 -2csx + s + s A lm (c) - (m + sc) 2 1 -x 2 s S lm (x; c) = 0, ( 20 
)
where c = aω is the oblateness parameter, m is the azimuthal separation constant and s A lm (c) is the angular separation constant. The equations 18 and 20 are coupled equations which require simultaneous evaluation of the parameters ω and s A lm (c). Given a value for s A lm (c), we can solve 18 for the complex frequency ω and given the latter, we can solve 20 as an eigenvalue problem for s A lm (c).

C. Teukolsky Radial Equation in Heun Form

We now reduce the Teukolsky Radial Equation to the non-symmetrical Heun form, which allows us to represent its solution with the results of Section. III. There is one small consideration to be noted: depending on the sign of the spin s we wish to operate in, certain parameters of the CHE form of the TAE and TRE flip their signs as given in [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF]. However this is not of relevance for our purposes since our main aim is to work with the CHE form of the equations that obviously remains irrespective of the sign of the spin parameter.

The radial function R(r) solution to Eq. 18 has three singularities: an irregular singular point at r = ∞ and two regular singular points corresponding to the roots of ∆ = 0, which are

r ± = M ± √ M 2 -a 2 .
The values r ± correspond to the event and Cauchy horizon respectively (for an in-depth introduction to the notation and terminology on black-hole mathematics, we refer the reader to [START_REF] Misner | Gravitation[END_REF]). Having identified these, we may now map the Teukolsky Radial Equation into an Heun equation. We close following the standard treatment [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF]. We begin by letting the radial function R be of the form

R(r) = (r -r + ) ξ (r -r -) η e ζ r H(r), (21) 
where the parameters ζ , ξ , η are given by

ζ = ±iω ≡ ζ ± , ξ = -2 ± (s + 2iσ + ) 2 ≡ ξ ± , η = -s ± (s -2iσ -) 2 ≡ η ± , σ ± = 2ωMr ± -ma r + -r - . (22) 
With the dimensionless variables r ≡ r/M, ā ≡ a/M, ω ≡ Mω, ζ ≡ Mζ , we transform the radial coordinate r into the dimensionless variable z defined by z = (rr -)/(r +r -) = (rr-)/(r +r-). Now, any of the eight possible combinations of the parameters {ζ , ξ , η} given in Eqs. [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF] will reduce the Teukolsky Radial Equation ( 18) into the following equation for the auxiliary function H,

d 2 H(z) dz 2 + γ z + δ z -1 + 4p dH(z) dz + 4α pz -σ z(z -1) H(z) = 0, (23) 
which is a Confluent Heun equation. Here, the following variables have been introduced to clarify the equation,

p = (r + -r-) ζ 2 , α = 1 + s + ξ + η -2 ζ + s i ω ζ , γ = 1 + s + 2η, δ = 1 + s + 2ξ , (24) 
σ = s A lm ( ā ω) + ā2 ω2 -8 ω2 + p(2α + γ -δ ) + 1 + s - γ + δ 2 s + γ + δ 2 .
Furthermore, the local solutions at the singularities have the exact same form for all eight combinations of the parameters {ζ , ξ , η} given in Eqs. ( 22) [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF]. BFrom there, expressions for quantities of physical interest such as Quasinormal Modes and Totally Transmitting Modes have been obtained [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF]. The equation can be solved by various methods such as Frobenius series about the singular points [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF] and continued fractions [START_REF] Leaver | An analytic representation for the quasi-normal modes of Kerr black holes[END_REF].

D. Teukolsky radial function: everywhere convergent representation

Elementary integral series

The solution of the Confluent Heun equation ( 23) satisfied by the auxiliary function H(z) is described by Corollary (III.2). Since the singular points are located at z = 0, 1, +∞, given any initial conditions for H(z 0 ) and Ḣ(z 0 ) at z 0 ∈]1, +∞[, the integral series representation of H(z) is guaranteed to converge on the entire domain ]1, +∞[, that is from the black hole horizon up to spatial infinity. This crucial property stands in stark contrast with the hypergeometric and Coulomb series, which converge close to 1 and to +∞, respectively. Because of this, we do not need to introduce the unphysical parameter ν.

Recall that the Teukolsky radial function R and auxiliary function H are related by Eq. ( 21). The auxiliary function is a confluent Heun function given by the following integral series representation, convergent for any z ∈]1, +∞[,

H(z) = H 0 + H 0 z z 0 G 1 (ζ , z 0 )dζ + (H 0 -H 0 ) e z-z 0 -1+ z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ , where G i = ∑ ∞ n=1 K * n i , i = 1, 2,
and

K 1 (z, z 0 ) = 1 + e -(1+4p)z z -γ (z -1) -δ z z 0 e (1+4p)ζ ζ γ (ζ -1) δ σ -4α pζ (ζ -1) ζ - γ ζ - δ ζ -1 -4p -1 dζ , K 2 (z, z 0 ) = σ -4α pz (z -1) z - γ z - δ z -1 -4p -1 e z-z 0 - σ -4α pz (z -1)z .
Here we assumed z 0 ∈]1, +∞[ then H 0 := H(z 0 ), H 0 := Ḣ(z 0 ) and all parameters are given by Eq. ( 24). We now demonstrate convergence of the integral series in two physically relevant yet numerically challenging situations. We reproduce the solution of the Teukolsky radial equation Eq. ( 23) near the singularity at z = 1, i.e. r = r + , where it tends to oscilate wildly. We set all signs to + in Eq. ( 22), let M = 1, s = -2, m = 2, and pick two realistic sets of values for a, ω and s A lm ( ā ω). The values of M, s, m are consistent with solving for higher order modes of gravitational QNMs while we have substituted artificial values of ω and s A lm so as to illustrate the validity of our method for the kind of parameters that occur in QNM computation. We show the real parts of the solution in Figs. ( 6) and [START_REF] Hortaçsu | Heun Functions and Some of Their Applications in Physics[END_REF], demonstrating convergence of the increasing orders in this challenging situation. [START_REF]Very similar behaviours in terms of convergence and oscillations are observed for the imaginary parts, which are not shown owing to length concerns[END_REF] We emphasize that in practice we do not evaluate increasingly high orders of the integral series as shown here to illustrate convergence, instead we directly evaluate the result of the entire integral series from Volterra equations, see [START_REF] Birkandan | Computations of general Heun functions from their integral series representations[END_REF], with concrete Python implementations available for download.

Asymptotic behavior for z → +∞

Further witnessing to the convergent for all z ∈]1, +∞[ we here recover the asymptotic behavior of H(z) in both limits z → 1 + and z → +∞ from the integral series. We emphasize that this is not possible with any other series representation of H(z), which 

C denoting the sum of the first m terms of the integral series. Note in particular the limit value at the singularity lim z→1 H C (z) = 0.00158589 -i0.00281538 is correctly determined from high enough orders of the integral series. However in practice it is much faster to solve the Volterra equations satisfied by the integral series rather than compute high orders of the Neumann series as done here for illustration purposes. Parameters:

a = 0.2, ω = 2 + i0.5, s A lm ( ā ω) = 1 + i0.75 with z 0 = 2, H 0 = 0, H 0 = 3.
H C (30) (z) 

H C (70) (z) H C ( 
C denoting the sum of the first m terms of the integral series. The limit value at the singularity lim z→1 H C (z) = 0.00408817 -i0.00195016 is recovered from high enough orders of the series. Parameters: a = 0.95, ω = 2.2 + i0.6, s A lm ( ā ω) = 1 + i0.75 and z 0 = 3.5, H 0 = 0 and H 0 = 2 + 3i. converges either in the vicinity of 1 + or of +∞. This analysis is also crucial in confirming that the solution of the Heun equation determined here is exact as it correctly captures the behavior of the function near its singular points. This cannot be done from eikonal solutions, which are only close to the exact solutions away from the singularities [START_REF] Birkandan | Heun-type solutions for Schwarzschild metric with electromagnetic fields[END_REF].

From now on, we write F(z) ∼ a.e. to present the leading term of the asymptotic expansion of the function F(z), disregarding constant factors. For example, we would write 1 + 2/z ∼ a.e z -1 as z → 0.

We begin by determining the asymptotic behavior of K 1 (z, z 0 ) for z 1. This depends on two cases: p = 0 and p = 0. We suppose first that p = 0 and assume that δ + γ > 0. In this situation, the confluent Heun function becomes a well understood hypergeometric function [START_REF] Erdélyi | Higher Transcendental Functions[END_REF] for which we will nonetheless show that we recover the correct asymptotic behavior. Setting p = 0 we get, as z → +∞, K 1 (z, z 0 ) ∼ a.e 1 + e -(1+4p)z z -γ (z -1) -δ -e z z γ+δ + e z 0 z γ+δ 0 ∼ a.e e -z z -δ -γ e z 0 z γ+δ 0 .

Then K 1 (z, z 0 ) is asymptotically the product of a function depending only on z and of a function depending only on z 0 . This property is sufficient to determine the asymptotic behavior of G 1 in closed-form [48]

G 1 (z, z 0 ) ∼ a.e e -z z -δ -γ e z 0 z γ+δ 0 e z z 0 e -ζ ζ -δ -γ e ζ ζ γ+δ dζ = (z 0 /z) δ +γ implying that z z 0 G 1 (ζ , z 0 )dζ ∼ a.
e. z 1-δ -γ for z → +∞. Analyzing K 2 and G 2 yields the same results. Indeed, with p = 0, we have

K 2 (z, z 0 ) ∼ a.e.
-1 z (γ + δ ) -1 e z-z 0 , which is the product of a function of z and a function z 0 so we determine

G 2 (z, z 0 ) ∼ a.e. -1 z (γ + δ ) -1 e z-z 0 e -(z-z 0 ) (z 0 /z) γ+δ , that is G 2 ∼ a.e. z -γ-δ .
From there e z-z 0 -1+ z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ ∼ a.e. z 1-γ-δ . Thus for p = 0 and δ + γ > 0, we get H(z) ∼ a.e. z 1-δ -γ regardless of the conditions at z 0 and provided δ + γ > 0, as expected [START_REF] Erdélyi | Higher Transcendental Functions[END_REF]. Further cases arise for δ + γ ≤ 0 but we do not discuss these here as they correspond to well known hypergeometric results.

Let us now suppose that p = 0. Then, since e 4pζ where E n (z) is the exponential integral function, with asymptotic expansion E n (x) ∼ a.e. e -x /x as x → +∞. This result greatly simplifies K 1 , reducing it to

K 1 (z, z 0 ) ∼ a.e - α z , as z → +∞.
This allows us to determine the asymptotic behavior of G 1 straightforwardly as

G 1 (z, z 0 ) ∼ a.e -α z e z z 0 -α/ζ dζ = -αz -1-α ,
and therefore z z 0 G 1 (ζ , z 0 )dζ ∼ a.e. z -α for z → +∞.

We proceed similarly for K 2 and G 2 . We have K 2 (z, z 0 ) = f (z)e z-z 0 + O(1/z), so that asymptotically K 2 (z, z 0 ) ∼ a.e. f (z)e z e -z 0 for z → +∞. Then K 2 (z, z 0 ) is asymptotically the product of a function depending only on z and of a function depending only on z 0 . We therefore obtain

G 2 (z, z 0 ) ∼ a.e. e z-z 0 f (z)e z z 0 f (ζ )dζ , as z → +∞. The right hand-side is e z-z 0 f (z)e z z 0 f (ζ )dζ = e -4p(z-z 0 ) z 0 -1 z -1 δ z 0 z γ+σ 1 -z 0 1 -z 4α p-σ × 1 z(z -1) (γ -z(γ + δ + 4p(α + z -1) + z -1) + σ ) V. CONCLUSION
In this work, we present novel integral series representations for all functions of Heun class. The major advantage of these representations is that 1) they involve only elementary integrands (rational and exponential functions); 2) they are unconditionally convergent everywhere except at the singular points of the Heun function being studied; and 3) they demonstrate that all functions of Heun class either satisfy linear Volterra integral equations of the second kind, or are given by the sum of two functions satisfying such equations. This allows for fast and reliable evaluations of the Heun functions without computing increasing orders of their integral series representations. For physics applications, in particular in gravitational physics [START_REF] Motohashi | Exact solution for wave scattering from black holes: formulation[END_REF], point 2) above is crucial to calculate solutions of the homogenous Teukolsky radial equation by means of representation that is convergent from the black hole horizon up to spatial infinity.

This paves the way to alternatives to the MST formalism in black hole studies, alleviates the need for introducing the auxiliary parameter ν. For these reasons integral series representations also seem well suited to solving the Teukolsky equations in the extremal spinning case, for which the MST formalism requires a dedicated expansion in terms of special functions [START_REF] Casals | Spectroscopy of extremal and near-extremal Kerr black holes[END_REF]. At the opposite, in the Heun formalism the Teukolsky equations simply become double confluent Heun equations which are immediately available through Corollary III.4. Although a complete review of the literature is beyond the scope of this work, we can mention the burgeoning of novel mathematical techniques for specific questions in black hole studies (in particular for calculating quasinormal mode frequencies), see e.g. [START_REF] Aminov | Black Hole Quasinormal Modes and Seiberg-Witten Theory[END_REF] and [START_REF] Da Cunha | Confluent conformal blocks and the Teukolsky master equation[END_REF]. In this respect, the approach presented here is more of a 'general-purpose' nature since its foremost aim is to represent Heun functions with no convergence issues. We think provides a good starting framework for problem-specific calculations in gravitational wave physics.

Finally, we stress that our novel mathematical results were obtained by applying the method of path-sum to Heun's equation. This method, relying on the algebraic combinatorics of walks on graphs, was originally designed to solve systems of coupled differential equations and compute matrix functions. While it already proved successful in the fields of quantum dynamics [START_REF] Giscard | Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF], matrix theory [START_REF] Giscard | Evaluating Matrix Functions by Resummations on Graphs: The Method of Path-Sums[END_REF] and more [START_REF] Giscard | Exact Inference on Gaussian Graphical Models of Arbitrary Topology using Path-Sums[END_REF], we think that this work opens new venues for its use in ordinary differential equations and general relativity.

Given that a linear Volterra integral equations of the second kind always has an explicit solution in the form of a Neumann series of the kernel obtained from Picard iteration, we present below the ensuing elementary integral series representations for the solution y 0 U 11 (z, z 0 ) + (y 0y 0 )U 12 (z, z 0 ) of Eq. ( 26). This will be greatly facilitated by Volterra compositions, presented in the proof of the Theorem.

Proof. The central mathematical concept enabling the path-sum formulation of path-ordered exponentials is the * -product. This product is defined on a large class of distributions [START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczoslike method[END_REF], however for the present work only its definition on smooth functions of two variables is required. For such functions the * -product reduces to the Volterra composition, a product between functions first expounded by Volterra and Pérès in the 1920s [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF] and which had largely fallen out of use by the early 1950s for a reason that appears, restrospectively, to be the lack of a mathematical theory of distributions. The Volterra composition of two smooth functions of two variables f (z, z 0 ) and g(z, z 0 ) is f * g (z, z 0 ) = That is, the variable of h(z) is always treated as the left variable of a function of two variables. The identity element for the * -product is the Dirac distribution, denoted 1 * ≡ δ (zz 0 ), an observation which we here accept without proof as it would require presenting the full theory of the * -product [START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczoslike method[END_REF]. Similarly we accept without proof that for any bounded function f (z, z 0 ) of two variables, f * 0 = 1 * , while f * 1 = f and f * n+1 = f * f * n = f * n * f [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF]. Furthermore, if f is bounded the Neumann series ∑ ∞ n=0 f * n (z, z 0 ) converges superexponentially and thus unconditionally [START_REF] Linz | Analytical and Numerical Methods for Volterra Equations[END_REF] to an object, called the * -resolvent R f of f , given by , where the * -multiplication by 1 on the left is a short-hand notation for an integral with respect to the left variable, since for any f smooth, (1 * f )(z, z 0 ) = z z 0 f (ζ , z 0 )dζ Θ(zz 0 ). Furthermore, since M 22 depends on a single variable, its * -resolvent can be shown to be Since R 1 and R 2 are * -resolvents, we may express them as the unconditionally convergent Neumann series involving the corresponding kernels K 1 and K 2 , i.e. R i = 1 * + ∑ ∞ n=1 K * n i or equivalently G i = ∑ ∞ n=1 K * n i , i = 1, 2. This yields an explicit representation for the solution of Eq. ( 26) as series of elementary integrals:

R f (z, z 0 ) = ∞ ∑ n=0 f * n (z, z 0 ) = δ (z -z 0 ) + f (z, z 0 )Θ(z -z 0 ) + z z 0 f (z,
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 1 FIG. 1. Convergence to a general Heun function with elementary integrals. Numerical evaluation of the general Heun function solution of Eq. (8) (solid black line), together with the first integral approximands of it: H

and both K 1

 1 and K 2 are bounded over I, implying convergence of the Neumann series for G 1 and G 2 for all z ∈ I. Example III.2 (Convergence to a Confluent Heun function). Let us now consider the following Confluent Heun function H C (z) satisfying

FIG. 2 .

 2 FIG. 2. Convergence to a Confluent Heun function with elementary integrals over the interval ] -∞, 0[. Numerical solution of the Eq. (9) (solid black line) with conditions H C (-5) = 0, H C (-5) = 1, together with its integral approximands as per Eq. (10), H

  (3) below.Corollary III.4 (Doubly-confluent Heun Equation). Let H D (z) be solution of the Doubly-confluent Heun Equation,

FIG. 3 .

 3 FIG.3. Biconfluent Heun function from Volterra equations. Numerical solution of the Eq. (9) (solid black line), together with the function predicted by Eq.(12) (dashed blue line). The two are indistinguishable. The integral representation of Eq. (12) is valid for z ∈]0, +∞[, we here show only z ∈]0, 10[ for illustration purposes.

( 4 )

 4 below, we show a purely numerical evaluation of H D (z) together with analytical approximations based on the first few orders of the above series, i.e. we give H (m) D (z) := 1 + ∑ m n=1 z 1 K * n 1 (ζ , 1)dζ , with m = 3, 5, 8. This demonstrates again the convergence of the Neumann series representation of the path-sum formulation of a general Heun function, as predicted by the theory. Here the exact H D (z) and H (m) D (z) become indistinguishable for m ≥ 9.

FIG. 4 .

 4 FIG. 4. Convergence to Doubly-Confluent Heun function with elementary integrals. Numerical solution of the Eq. (13) (solid black line), together with its integral approximands H (3) D (z) (dotted magenta line), H

FIG. 5 .

 5 FIG. 5. Convergence to a complex-valued Triconfluent Heun function with elementary integrals. Numerical solution of the Eq. (14) (solid black line), together with its integral approximands H

FIG. 6 .

 6 FIG.6. Solution of the Teukolsky radial equation near a black hole horizon. In black, real part of the solution of radial Teukolsky equation, rescaled as 10 3 e -3z H C (z) for better visualization. Also shown are increasing orders of the integral series representation, H

FIG. 7 .

 7 FIG. 7. Solution of the Teukolsky radial equation near a black hole horizon. In black, real part of the solution of radial Teukolsky equation, as 10 3 e -2z H C (z) for better visualization. Also shown are increasing orders of the integral series representation, H

  ζ γ (ζ -1) δ f (ζ ) = -e 4pζ ζ γ+δ 4α p+γ+δ ζ + 4p + O(1/ζ 2 ), we have, asymptotically for z → +∞, K 1 (z, z 0 ) ∼ a.e. 1e -4pz z -γ z -δ × z γ+δ e 4pz -4α p E -γ-δ +1 (-4pz) .

z z 0 f

 0 (z, ζ )g(ζ , z 0 )dζ Θ(zz 0 ), with Θ(.) the Heaviside theta function under the convention that Θ(0) = 1. This extends to functions of less than two variables, for example if h(z) is a smooth function of one variable, thenh * g (z, z 0 ) = h(t ) z z 0 g(ζ , z 0 )dζ Θ(zz 0 ), g * h (z, z 0 ) = z z 0 g(z, ζ )h(ζ )dζ Θ(zz 0 ).

1 f

 1 ζ 1 ) f (ζ 1 , z 0 )dζ 1 Θ(zz 0 ) (z, ζ 2 ) f (ζ 2 , ζ 1 ) f (ζ 1 , z 0 )dζ 2 dζ 1 Θ(zz 0 ) + • • • .Seeing this as steming from a Picard iteration entails an additional property of * -resolvents, namely that they solve the Volterra equation of the second kind with kernel f , R f = 1 * + f * R f . Thus we have R f * (1 *f ) = 1 * and are therefore justified in writing R f = 1 *f * -1 . In order to avoid distributions altogether, it is more convenient to define G f := R f -1 * and rewite the Volterra equation satisfied by R f as G f = f + f * G f , which is an ordinary linear integral Volterra equation of the second kind.The Neumann integral series obtained from Picard iterations for G f as above is now G f = ∑ ∞ n=1 f * n , the convergence of which is guaranteed provided f is bounded over the interval of interest as discussed in the main text. In this case, truncating the series at order m, yields a relative error of at mostG f (z, z 0 ) -∑ m n=1 f * n (z, z 0 ) ≤ M m f m! with M f := sup ζ ,ζ ∈]z 0 ,z[: ζ ≥z | f (ζ , ζ )|. Path-sum expresses the path-ordered exponential of any finite variable matrix in terms of a finite number of Volterra compositions and * -resolvents. The path-sum formulation of the path-ordered exponential of the 2 × 2 matrix M(z) is U 11 (z) = 1 * R 1 , and R 1 = 1 * -M 11 -M 12 * 1 * -M 22 * -1 * M 21 * -1

1 * -M 22 * - 1 = 1 *z z 0 M 1 ,

 221101 +M 22 e 1 * M 22 ⇒ 1 * -M 22 * -1 (z, z 0 ) = δ (zz 0 ) + M 22 (z)e 22 (ζ )dζ Θ(zz 0 ).Now the form of U 11 as claimed in the theorem follows upon writing the * -products as explicit integrals with M given by Proposition. (A.1). For U 12 , the path-sum formulation readsU 12 = 1 * 1 * -M 11 * -1 * M 12 * R 2 , R 2 = 1 * -M 22 -M 21 * 1 * -M 11 * -1 * M 12 * -and the theorem result for U 12 follows upon writing the * -products as explicit integrals with M given by Proposition. (A.1)
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which yields the asymptotic result, G 2 (z, z 0 ) ∼ a.e. e -4pz z -δ -γ-4α p , as z → +∞.

This implies that e z-z 0 -1+ z z 0 (e z-ζ -1)G 2 (ζ , z 0 )dζ ∼ a.e. e -4pz z -4α p-δ -γ .

Gathering our results, we conclude that when p = 0, H(z) ∼ a.e. z -α or H(z) ∼ a.e. e -4pz z -4α p-δ -γ , as z → +∞, which gives the same asymptotic behavior as obtained from series designed to converge when z → +∞ [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF][START_REF] Ronveaux | Heun's Differential Equations[END_REF]. The result for p = 0 yields the correct asymptotics of the hypergeometric function obtained in this case.

Asymptotic behavior for z → 1 +

In this situation, we begin with

where c = σ -4α pδ and c = γ + 4p + 1. In order to progress without presenting cumbersome equations, denote F(ζ ) the following indefinite integral

, where E n (x) is the exponential integral function. In particular E n (x) ∼ a.e. x n-1 c 1 +c 2 as x → 0 + and where c 1 and c 2 are non-zero real constants that are irrelevant here. This implies F δ (ζ ) ∼ a.e. (ζ -1) 1+δ . Now given that

then K 1 (z, z 0 ) ∼ a.e. 1, as z → 1 + . This implies that G 1 (z, z 0 ) ∼ a.e e z-z 0 and therefore z z 0 G 1 (ζ , z 0 )dζ ∼ a.e. 1 as z → 1 + . For K 2 and G 2 we begin by noting that for z close to 1,

from which it follows that G 2 (z, z 0 ) ∼ a.e. (z -1) -δ for z → 1 + , and therefore

Note that this assumes that δ > 0. If this is not the case, then the asymptotics is O(1).

Gathering our results, we get that

which gives the same asymptotic behavior as obtained from series representations of H(z) for z close to 1 [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF][START_REF] Ronveaux | Heun's Differential Equations[END_REF].

E. Remarks on the Teukolsky Angular Equation

The Teukolsky angular equation 20 has two regular singular points at x = ±1 and an irregular singular point at infinity. Just like the radial equation, we can transform it to either the Bocher symmetrical form [START_REF] Cook | Gravitational perturbations of the Kerr geometry: High-accuracy study[END_REF] or the non-symmetric canonical form of the confluent Heun equation [START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF]. It follows that any solution to the angular equation has an integral series representation as described in this work.

A. APPENDIX: PROOF OF THE RESULTS

The method of proof is as follows: we map the Heun equation onto a system of two coupled linear first order differential equations with variable coefficients. The solution of such systems is given by a formal object called a path-ordered exponential, which we present below. Then we use the path-sum method to evaluate this path-ordered exponential. Finally we extract the desired Heun function from the path-sum solution.

A. Path-ordered exponentials

All the results are corollaries of the general purpose method of path-sum, which permits the exact calculation of path-ordered exponentials of finite variable matrices. The path-ordered exponential U(z) of a variable matrix M(z) is the unique matrix solution to the system of coupled first order ordinary linear differential equations with variable coefficients encoded by M(z), i.e.

and such that for all z 0 , U(z 0 , z 0 ) = Id is the identity matrix of relevant dimension. The solution of Eq. ( 25) is the path-ordered exponential U(z, z 0 ) of M, denoted

where P the path-ordering operator,

We refer the reader to [START_REF] Dyson | Divergence of Perturbation Theory in Quantum Electrodynamics[END_REF] for the origins of this notation.

Although used primarily to gain analytical understanding into the dynamics of quantum systems driven by time-dependent forces, path-sum relies solely on the algebraic combinatorics of walks on graphs that is valid irrespectively of the nature or size of the matrix M. It is also only distantly related to the famous Feynman's path-integrals. The interest here is that when calculating path-ordered exponentials, the method natively generates integral representations of the solutions. The strategy thus consists in calculating the ordered exponential of a matrix M(z) designed so that the solution of Eq. ( 25) should involve the desired Heun's function.

In order to recover an integral representation for all of Heun's functions, remark that Eqs. (1)-5) all take the form

We thus focus on obtaining the integral representation of the solution of Eq. ( 26) in terms of integrals involving B 1 and B 2 , irrespectively of what these functions are. To this end, we begin by exihibiting a matrix M(z) whose path-ordered exponential involves a function solution to Eq. ( 26).

Proposition A.1. Let y(z) be a solution of Eq. ( 26) with initial conditions y(z 0 ) = y 0 and y (z 0 ) = y 0 . Let

and let U(z, z 0 ) := Pe 

, where we omitted the (z) arguments to alleviate the notation. Then

This is precisely Eq. ( 26). Now, since ψ 1 (z 0 ) = y 0 is the desired initial condition, and since ψ(z 0 ) = M(z 0 ).ψ(z 0 ), then to get ψ1 (z 0 ) = y 0 we must have ψ 2 (z 0 ) = y 0y 0 . From there and given that ψ(z) = U(z, z 0 ).ψ(z 0 ), we obtain ψ 1 (z) = y 0 U 11 (z, z 0 ) + (y 0y 0 )U 12 (z, z 0 ), which completes the proof.

B. Path-sum formulation

We may now use the method of path-sum to calculate the path-ordered exponential of M to recover the desired integral representations. We first state and prove the general result concerning Eq. ( 26) before giving its corollaries in the specific cases of the general Heun, confluent, biconfluent, doubly-confluent and triconfluent Heun functions.

Theorem A.1. Let M(z) be given as in Eq. ( 27), let U(z, z 0 ) be its path-ordered exponential. Then

where G i (z, z 0 ), i = 1, 2, satisfy the linear integral Volterra equation of the second kind

Theorem A.2. Let y(z) be the unique solution of y (z) -B 1 (z)y (z) -B 2 (z)y(z) = 0, such that y(z 0 ) = y 0 and y (z 0 ) = y 0 . Then

where G 1 and G 2 satisfy linear Volterra integral equations of the second kind with kernels respectively given by K

In consequence, G 1 and G 2 have the following representation as integral series G

The series representation is guaranteed to converge to G i everywhere except at the singular points of K i . More precisely, let ]z 0 , z 1 [ be an open interval over which K i is divergent free and let

This immediately provides the Corollaries of the main text for the general Heun, confluent, biconfluent, doubly-confluent and triconfluent Heun's functions upon replacing B 1 and B 2 appearing in Eq. ( 26) and Theorem A.2 with their values as dictated by Eqs. [START_REF] Xie | Analytical results for a monochromatically driven two-level system[END_REF][START_REF] Crampé | Free-Fermion entanglement and orthogonal polynomials[END_REF][START_REF] Giorgadze | Monodromic Quantum Computing[END_REF][START_REF] Shahverdyan | Analytic solutions of the quantum two-state problem in terms of the double bi-and triconfluent Heun functions[END_REF][START_REF] Borissov | Exact Solutions of Teukolsky Master Equation with Continuous Spectrum[END_REF].