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a b s t r a c t 

The article deals with an improved treatment of wall models for the simulation of turbulent flows in the 

framework of Immersed Wall Boundaries on Cartesian grids. The emphasis is put on the implementa- 

tion in a Lattice-Boltzmann Method solver without loss of generality, since the proposed approach can 

be used in Navier–Stokes-based solvers in a straightforward way. The proposed improved wall model im- 

plementation relies on the combination of several key elements, namely i) the removal of grid points too 

close to the solid surface and ii) an original computation of wall normal velocity gradient and iii) the 

interpolation scheme. The new method is successfully assessed considering URANS simulations focusing 

on steady solutions of the Zero Pressure Gradient turbulent flat plate boundary layer and the turbulent 

flow around a NACA0012 airfoil at several angles of attack. 
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. Introduction 

The growing interest for using LBM (Lattice Boltzmann Method) 

or high Reynolds number, moderate Mach number aerodynamic 

imulations in recent years can be explained by several factors. 

irstly, this intrinsically unsteady method has a good computa- 

ional efficiency for high fidelity scale-resolving computations like 

ES (Large Eddy Simulation). Simultaneously, the use of scale- 

esolving computations, fueled by expanding computational re- 

ources, enables capturing highly unsteady turbulent flows, such 

s massively separated flows, with a satisfactory accuracy. This 

emains a challenge for the industry standard RANS (Reynolds- 

veraged Navier–Stokes) strategy. Secondly, the Cartesian grids 

sed in LBM allow highly complex geometries to be considered, 

ithout the tedious and user-intensive generation of suitable body 

tted meshes required by classic CFD solvers. Finally, the low nu- 

erical dissipation of standard LBM schemes is favorable for aeroa- 

oustic applications, as well as for propagating wakes over long 

istances to investigate their effects on downstream elements. 

Using wall models to avoid solving flows in the inner region of 

urbulent boundary layers at high Reynolds numbers is common- 

lace in LES [1,2] . Indeed, predictions [3,4] indicate that the cost 

f a wall-resolved LES computation with anisotropic grids in the 

ange of Reynolds numbers of full scale aeronautical flows (around 
∗ Corresponding author. 

E-mail address: johan.degrigny@cerfacs.fr (J. Degrigny). 
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0 7 to 10 8 ) would be one or more orders of magnitude larger than 

heir wall-modelled LES (WM-LES) equivalents. This comes as a 

onsequence of the increasing separation of the scales of the outer 

ow and the scale of the turbulent structures to be resolved in the 

nner boundary layer as the Reynolds number is increased. 

In RANS computations, the wall-normal grid spacing require- 

ent near the wall is essentially the same as in LES (around 1 wall 

nit, such that the first point is located in the viscous sublayer), 

or resolving the strong mean velocity gradients. The grid spacing 

n the wall-parallel direction, however, can be much looser, leading 

o very high aspect ratios of the grid near the wall. In combination 

ith the absence of time-resolution, this greatly reduces the cost 

ncentive for using wall models, typically algebraic ones referred to 

s wall functions [5] . 

In the context of Cartesian grids, the grid spacing in all di- 

ections is constrained by the most stringent requirement in any 

irection e.g. the wall-normal direction in boundary layers. The 

erely geometric implications of this matter, in comparison to the 

nisotropic grids, are examined for the part of the inner boundary 

ayer extending from the wall to 50 wall units, covering the vis- 

ous sublayer and the buffer layer independently of the Reynolds 

umber. Assuming a geometric growth rate of about 1.10 for the 

all-normal spacing (doubling of the grid spacing in all directions 

very 7 cells on a Cartesian grid), the number of nodes required to 

iscretize a cube of 50 wall units can be estimated to be roughly 

00 times larger than the equivalent anisotropic LES grid (based 

n streamwise and transverse spacings of 40 and 20 wall units 

espectively) and nearly 5 × 10 4 times larger than the equivalent 

https://doi.org/10.1016/j.compfluid.2021.105041
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nisotropic RANS mesh (assuming streamwise and transverse spac- 

ngs of 500 and 200 wall units respectively). These cost consid- 

rations are not taking the required time resolution into account, 

hich would depend on the numerical scheme and the turbulence 

odeling strategy. Wall modeling is thus a crucial enabler for sim- 

lating high Reynolds number wall-bounded flows with Cartesian 

rids with any CFD solver, even more so than for LES on conven- 

ional anisotropic grids. 

Another primary challenge for all methods relying on Carte- 

ian grids is that these can almost never be fitted to the shape 

f interest for applying boundary conditions, in particular for solid 

alls. The immersed boundary method (IBM), first introduced by 

eskin [6] to simulate the blood flow around a heart valve, en- 

bles the real shape of solid boundaries to be taken into account, 

ven if they do not coincide with the computational mesh. Fol- 

owing the classification used in the review of Mittal and Iaccarino 

7] , this original formulation uses a continuous forcing approach, 

s the effect of the boundary is distributed over many nodes in 

he vicinity of the boundary. The sharper boundary representation 

btained with the discrete forcing approach [8,9] , where the forc- 

ng due to the boundary is applied locally on the nodes next to 

t, is more appropriate for high Reynolds number boundary layers 

ith their large gradients. This sparked the development of combi- 

ations of turbulent wall modeling with the IBM [10–12] , although 

t has also been demonstrated with continuous forcing [13] . Unlike 

ith body-fitted meshes, imposing the wall shear stress yielded by 

 wall model is not straightforward with the IBM. Even when the 

elocity is set to the appropriate value near the wall, special care 

ay need to be taken for the shear stress to be consistent, in ac- 

ordance with the numerical scheme used [14,15] . 

The diversity of the approaches proposed for implementing 

hese boundary conditions in LBM highlights the difficulty of do- 

ng so accurately. In the frame of wet-node boundary conditions, 

ome authors implement a Dirichlet velocity condition on near- 

all nodes, either by completely reconstructing the distribution 

unctions at the boundary [16,17] or by using an extrapolation 

cheme [18] . Maeyama et al. [19] impose the velocity on the first 

ayer of nodes inside the solid body in the spirit of ghost-cell IBM, 

fter a linearization procedure of the averaged near-wall velocity 

rofile [20,21] , also using an extrapolation scheme. 

With link-wise boundary conditions, a local slip velocity can 

e defined at the wall, using the wall model to account for the 

nresolved part of the boundary layer. Nishimura et al. [22] used 

 linear extrapolation of velocity previously used with other IBM 

mplementations [23,24] with the interpolated bounce back of Yu 

t al. [25] , while Pasquali et al. [26] used Hoffman’s approximation 

27] with the interpolated bounce-back of Geier et al. [28] . The ve- 

ocity can also be imposed on an imaginary surface inside the fluid 

but close to the wall) [29] with the Filippova and Hänel boundary 

ondition [30] . 

The possibility of prescribing an arbitrary wall shear stress con- 

ition [31] has also been exploited to directly enforce the wall 

hear stress from the wall model [32,33] . Within a volumetric LBM 

cheme, this strategy has been assessed for many aerospace appli- 

ations. Aerodynamic validation cases on generic aircraft geome- 

ries have been published for transonic conditions [34] and real- 

stic high lift configurations [35] . Various aeroacoustic cases have 

lso been presented on airframe noise at full scale [36] , turbofan 

oise [37] , jet noise [38] , and trailing edge noise [39] . 

A hybrid between both families has been proposed [40] by ap- 

lying a velocity correction on boundary nodes after performing 

ouzidi’s interpolated bounce-back [41] . Most of these treatments 

ere demonstrated in conjunction with the LES turbulence model- 

ng strategy (WM-LES) [16,18,22,26,33,40] , others with RANS mod- 

ls (WM-RANS) [17,29,32] , and even with a combination of both 

19] (WM-RANS-LES). 
2 
The RANS turbulence modeling approach is used exclusively in 

his study. Since the flow is solved time-accurately in LBM, even 

hen coupled with a RANS model, Unsteady-RANS (URANS) com- 

utations are actually performed. For attached flows devoid of 

arge scale unsteadiness or unsteady external forcing, steady solu- 

ions are nevertheless obtained after the initial transient phase. For 

he development of a wall treatment for high Reynolds number at- 

ached flows, which is the aim of this study, these steady solutions 

re easier to analyze and understand. URANS computations are not, 

owever, the ultimately targeted application, as using an explicit 

ime marching LBM solver for obtaining a steady RANS solution is 

nefficient with respect to dedicated finite volume RANS solvers. 

dditionally, using an isotropic grid provides little or no advan- 

age over the usual highly stretched ones with RANS turbulence 

odeling and results in unnecessarily large grid sizes as outlined 

bove. Nevertheless in the perspective of DES-type hybrid RANS- 

ES methods (see [42] for a review), it allows working specifically 

n the modeling for attached boundary layers which are meant to 

e captured in RANS mode. 

This paper is organized as follows: after a general description 

f the numerical method, the novel wall model treatment is intro- 

uced. This treatment is then assessed on test cases of increasing 

omplexity: a flat plate and a modified NACA0012 airfoil. 

. Numerical method 

This study is based on an experimental branch of the com- 

ercial LBM solver ProLB (previously known as LaBS), developed 

ithin several scientific entities including CSSI, Renault, Airbus, 

cole Centrale de Lyon, CNRS, and Aix-Marseille University, in part- 

ership with CERFACS. Its formulation is node-based. 

.1. Lattice boltzmann method 

The LBM is based on the statistical mechanics of particles 

t mesoscopic scale, i.e. a scale larger than the molecular scale 

ut smaller than the macroscopic continuum scale. The method’s 

orking quantity is the probability distribution function f (ξi , x , t) 

f the particles with a discrete velocity ξi at location x and time 

. For convenience, the distribution function in the direction of ξi 

s denoted by f i . The macroscopic properties of the fluid can be 

btained by taking the statistical moments of the particle distribu- 

ions 

(x , t) = 

∑ 

i 

f i (x , t) , (1) 

u (x , t) = 

∑ 

i 

c i f i (x , t) , (2) 

here c i = ξi / 
√ 

3 in the present case. 

In the standard LBM, the particle distribution functions are dis- 

retized in space on a regular cubic lattice, where particles travel 

ith their discrete velocity from one lattice site to another in one 

ime step. The choice of the lattice is essential for the isotropy 

f the scheme and its physical properties. In ProLB, the classic 

3Q19 (with 19 discrete velocities in 3 dimensions) lattice is used, 

hich enables modeling weakly compressible isothermal flow. As 

llustrated in Fig. 1 , the nodes are organized in cubic fashion and 

ach node is connected to its direct neighbors by discrete velocities 

long the principal axes and the cubic edge centres. 

The dynamics of the particle distributions on the lattice are 

iven by the Lattice Boltzmann Equation (LBE) 

f i ( x + c i �t, t + �t ) = f i (x , t) + �i (x , t) , (3) 

here �t is the time step. �i (x , t) is the collision operator, and it 

s the key to the physical modeling, as it models the interactions 



Fig. 1. Schematic of the D3Q19 lattice, with 19 velocities (null velocity not shown) 

in 3 dimensions. 
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f particles present at a node at a given time. The simple BGK col- 

ision operator [43] reads 

i = − 1 

τ

(
f i − f eq 

i 

)
, (4) 

hich corresponds to the relaxation of the particle distributions 

owards their equilibrium state f 
eq 
i 

in a characteristic relaxation 

ime τ . The discrete equilibrium functions f 
eq 
i 

are obtained from 

he macroscopic velocity u α and density ρ of the fluid with a dis- 

retized form of the Maxwell-Boltzmann thermodynamic equilib- 

ium 

f eq 
i 

= w i ρ

( 

1 + 

c iαu α

c 2 s 

+ 

u αu β

(
c iαc iβ − c 2 s δαβ

)
2 c 4 s 

) 

, (5) 

ith c s = 1 / 
√ 

3 the speed of sound of the lattice and w i the

eights for each discrete velocity, which are fixed for a given lat- 

ice. The deviation from this equilibrium is noted 

f neq 
i 

= f i − f eq 
i 

. (6) 

In the present study, the Hybrid Recursive Regularised BGK 

HRR-BGK) collison model [44] is employed, which greatly im- 

roves the stability of the original BGK model at high Reynolds 

umbers. 

The LBE can be explicitly advanced in time, through the ”collide 

nd stream” algorithm, alternating the instantaneous exchange of 

omentum of particles at each lattice node in the collision step, 

nd the streaming of particle distributions along each velocity in 

ime and space. Since the particle distributions travel directly form 

ne lattice site to another without any loss or approximation, this 

cheme has a low numerical dissipation. The locality of the non- 

inear collision operator and the simplicity of the streaming proce- 

ure confer it its computational efficiency and a high potential for 

arallelization. 

The Chapman-Enskog expansion can be used to show that the 

acroscopic equations solved with the LBM in the hydrodynamic 

imit are actually the weakly compressible Navier–Stokes equations 

 t ρ + ∂ γ (ρu γ ) = 0 , (7) 

 t (ρu β ) + ∂ α(ρu αu β ) = −∂ β p + ∂ α
(
ρν

(
∂ αu β + ∂ βu α

))
, (8)

ith a cubic velocity deviation in the momentum equation which 

an be neglected in low Mach number flows. The macroscopic 
3 
ressure and viscosity are recovered respectively by 

p = c 2 s ρ, (9) 

= c 2 s (τ − 1 

2 

) . (10) 

or a more thorough description of LBM, the reader is referred to 

44,45] . 

.2. Spalart–Allmaras turbulence model 

For turbulence modeling, the f v 3 variant of the Spalart–

llmaras (S–A) turbulence model without the f t2 term is employed 

n this study. It solves a single transport equation for the pseudo 

urbulent viscosity ˜ ν , which can be rewritten as a function of the 

imensionless viscosity ratio χ = ˜ ν/ν as follows: 

∂χ

∂t 
+ u j 

∂χ

∂x j 
= c b1 ̃

 S χ − c w 1 f w 

ν
(
χ

d 

)2 

+ 

ν

σ

[
∂ 

∂x j 

(
(1 + χ) 

∂χ

∂x j 

)
+ c b2 

∂χ

∂x i 

∂χ

∂x i 

]
, (11) 

here ˜ S is defined by 

˜ 
 = f v 3 � + 

χν

κ2 d 2 
f v 2 , (12) 

ith 

f v 2 = 

1 

( 1 + χ/c v 2 ) 
3 
, f v 3 = 

( 1 + χ f v 1 ) ( 1 − f v 2 ) 

χ
, 

� = 

√ 

2�αβ�αβ, �αβ = 

1 

2 

(
∂u α

∂x β
− ∂u β

∂x α

)
, 

 v 2 = 5 . 

ompared to the original S–A model [46] , the introduction of the 

f v 3 term eliminates the possibility of negative values of ˜ S in the 

roduction source term. All other formulae and constants are the 

ame as in the standard S–A model: 

f w = g 

[
1 + c 6 w 3 

g 6 + c 6 
w 3 

]1 / 6 

, g = r + c w 2 (r 6 − r) r = min 

[ 
χν

˜ S κ2 d 2 
, 10 

] 
, 

 b1 = 0 . 1355 , σ = 

2 

3 
, c b2 = 0 . 622 , 

κ = 0 . 41 , c w 1 = 

c b1 

κ2 
+ 

1 + c b2 

σ
, c w 2 = 0 . 3 , c w 3 = 2 . 

he turbulent viscosity ratio is computed by 

νt 

ν
= χ f v 1 , (13) 

ith 

f v 1 = χ3 / (χ3 + c 3 v 1 ) and c v 1 = 7 . 1 , 

hich is added to the fluid’s molecular viscosity and finally takes 

ffect through the relaxation time in the LBM collision operator. 

The S–A model transport equation is implemented in the LBM 

olver using finite differences on the Cartesian grid. The centered 

nite difference discretization is utilized for the derivatives, ex- 

ept for the convective term for which a hybrid centered/upwind 

cheme is applied. The free-stream value of χ = 3 . 0 is imposed at 

he far field boundaries of the computational domain as recom- 

ended [46,47] while χ = 0 holds at resolved walls. 

.3. Model consistent wall function 

The common use of two-layer wall models in the context of 

he IBM [10,13,15,4 8,4 9] , where the simplified turbulent boundary 

ayer equations are solved on a secondary grid near the wall, once 



Fig. 2. Spalart–Allmaras wall function [47] velocity profile, compared to the linear 

law for the viscous sublayer and the logarithmic law of the wall (with κ = 0 . 41 and 

B = 5 . 165 ) for the inertial sublayer. 
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gain emphasizes the importance of wall modeling for the compu- 

ation of high Reynolds number boundary layers with the IBM. For 

implicity, however, an algebraic wall model, i.e. a wall function, is 

hosen for modeling the under-resolved inner part of the boundary 

ayer, since the improved wall treatment is the focus of this study, 

ather than advanced physical modeling. 

Common relationships are readily available for the velocity in 

he viscous sublayer (linear law) and in the inertial sublayer of 

quilibrium boundary layers (logarithmic law of the wall), but they 

o not apply for the buffer layer between them. Even though sev- 

ral formulas have been proposed to provide a continuous rep- 

esentation of the inner boundary layer [50–52] , their behaviour 

n the buffer layer is not necessarily in agreement with the pro- 

les that would be obtained using a wall-resolved grid on a flat 

late without pressure gradients with any particular RANS model. 

n Cartesian grids, it cannot easily be prevented that some near- 

all nodes are located in the buffer layer. To avoid introducing 

rrors due to this discrepancy, model-consistent wall functions 

also called adaptive wall functions) have been used with the IBM. 

ernardini et al. [53] used the look-up table technique to inter- 

olate the result of a wall-resolved flat plate computation [54] to 

erform RANS and DDES computations with the S–A model. Zhou 

24] used a blend of existing wall function profiles [55] in con- 

unction with the k- ω SST RANS model. In the present study, the 

nalytical solution of the S–A model for a zero pressure gradient 

at plate [47] is employed: 

 

+ (y + ) = B̄ + c 1 log [(y + + a 1 ) 
2 + b 2 1 ] − c 2 log [(y + + a 2 ) 

2 + b 2 2 ] 

−c 3 Arctan [ y + + a 1 , b 1 ] − c 4 Arctan [ y + + a 2 , b 2 ] , 

(14) 

ith y + = 

yu τ
ν , u + = 

u 
u τ

, u τ = 

√ 

τw 
ρ , τw 

the wall shear stress, and

rctan the mathematical equivalent of the FORTRAN function 

tan 2(x, y ) . The constants are: 

B̄ = 5 . 0333908790505579 , a 1 = 8 . 148221580024245 , 

 2 = −6 . 9287093849022945 , 

 1 = 7 . 4600876082527945 , b 2 = 7 . 468145790401841 , 

c 1 = 2 . 5496773539754747 , 

c 2 = 1 . 3301651588535228 , c 3 = 3 . 599459109332379 , 

c 4 = 3 . 639753186 86 844 94 . 

As shown in Fig. 2 , the velocity profile described by this func- 

ion approaches the linear law inside the viscous sublayer ( y + � 5 )

nd the logarithmic law in the inertial sublayer ( y + � 40 ). Barring
4 
umerical error [54] , mesh convergence beyond the inertial range 

hould be possible, at least on a flat plate without pressure gra- 

ients. It should be noted that this profile is obtained under the 

quilibrium assumption, where the pressure gradient and convec- 

ion effects are neglected. Its accuracy is thus expected to degrade 

ith significant deviations from these assumptions e.g. when the 

oundary layer is not fully developed, or in the presence of ad- 

erse pressure gradients. 

An off-wall boundary condition also needs to be provided for 

he turbulent variable of the RANS model. Through its construc- 

ion, the S–A model provides a simple linear relationship for the 

odified eddy viscosity valid for the whole inner boundary layer 

including the buffer layer): 

= κy + . (15) 

. Wall treatment 

This section details the treatment of the wall boundary nodes, 

hich are defined as nodes where the streaming operation cannot 

e performed due to the vicinity of the wall. It is based on the wall

odeling approach, but since the wall shear stress cannot be im- 

osed directly as in classic solvers, the tangential velocity (and its 

all-normal gradient) are instead imposed on the on the bound- 

ry nodes. The particle distributions are then reconstructed from 

he macroscopic quantities to provide boundary conditions for the 

BM scheme. 

The present work does not consider the case in which the grid 

s not uniform along the wall —i.e. grid resolution interfaces inter- 

ect the wall— to focus on the wall model implementation without 

dditional complications. In the case of a node-based solver with 

n overlap of the coarse and fine domains (co-located coarse and 

ne nodes at the interface) as described by Astoul et al. [58] , the

resent method can be extended to these cases by simply treating 

ach boundary node separately. 

.1. Near-wall interpolation 

To apply the tangential velocity boundary condition, the wall 

unction has to be inverted to determine the wall friction veloc- 

ty u τ , based on the tangential velocity at a given distance from 

he wall. This can be done iteratively through a Newton solver 

hen this relationship is implicit, as in Eq. 14 . In some other wall

reatments, the velocity is first interpolated at an artificial point 

often referred to as image point, or reference point) at an arbi- 

rary wall distance, and the wall function is inverted based on this 

nterpolated velocity and the chosen wall distance [17,59] . Accu- 

ately interpolating the highly non-linear velocity profile in tur- 

ulent boundary layers is very challenging, and inaccurate inter- 

olations, such as the IDW (Inverse Distance Weighing) used in 

17] , can lead to poor boundary layer modeling and oscillations in 

ear-wall quantities [60] . Contrary to the fluid velocity, u τ typi- 

ally varies smoothly and can thus be more easily interpolated ac- 

urately, even using simple methods [60] . 

In the present wall treatment, a fixed stencil is used for select- 

ng donor nodes, which includes both direct neighbors and some 

odes from the second layer of nodes around the current bound- 

ry node, as illustrated in Fig. 3 (a.). Stencil locations inside the 

olid, or that match boundary nodes, are discarded so that only 

uid nodes (which have already been computed at the current 

ime step) are used as input. In a first step, u τ is computed for 

ach of these donor nodes by inverting the wall function with their 

espective tangential velocity and wall distance. In a second step, 

he u τ at the current boundary node is estimated by averaging the 

alues computed at the donor nodes, weighed by their inverse tan- 



Fig. 3. Schematic of the interpolation of u τ (a.) and of the simple IDW interpolation 

for the density (b.). 
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ential distance from it: 

 τ, b = 

∑ 

i u τ,i a i ∑ 

i a i 
with a i = 

1 

‖ ( x i − x b ) − ( x i − x b ) · n i ‖ 

2 
, (16) 

here index i loops over the available donor nodes, x b is the posi- 

ion of the current boundary node, x i is the position of donor node 

 , and n i is the unit normal vector to the wall at donor node i . Fi-

ally, the tangential velocity at the current boundary node is com- 

uted by evaluating the wall function with the spatially averaged 

 τ and its wall distance. 

The additional cost incurred by inverting the wall function at 

ach donor node is not expected to be very significant, despite the 

ncrease of the number of times applying this procedure. Indeed, 

s the value of u τ from the previous time step can be used as an

nitial guess for the Newton solver, the number of iterations per- 

ormed each time should be minimal. This cost could be further 

educed by using an explicit wall function [17,60–62] . 

There is no obstacle for employing the IDW interpolation at a 

eference point for the density. Indeed, if the pressure gradients in 

he wall normal direction inside the boundary layers are neglected, 

nd since the scheme is isothermal, the density can be consid- 

red constant in the wall-normal direction. Furthermore, the den- 

ity can also be expected to vary smoothly along the wall in sub- 

onic flows. For setting the density at the current boundary node, a 

eference point is thus defined at a wall distance of 2 . 5 h (where h

s the local grid spacing), on the wall-normal line passing through 

he boundary node as illustrated in Fig. 3 (b.). The density is then 

nterpolated by simple IDW at this location from the same donor 

ode cloud as for u τ : 

ref = 

∑ 

i ρi b i ∑ 

i b i 
with b i = 

1 

‖ 

x i − x ref ‖ 

2 
, (17) 
5 
here x ref is the position of the reference point. Neglecting wall- 

ormal variations, the density at the current boundary node is set 

o be equal to that interpolated at the reference point. 

.2. LBM boundary condition implementation 

To set up boundary conditions for LBM at the boundary nodes, 

he computed macroscopic quantities need to be translated into 

he corresponding particle distribution functions. For the sake of 

implicity and robustness, a full reconstruction strategy is adopted 

or boundary nodes: all particle distributions are reconstructed, 

nd the ones reaching boundary nodes through streaming are 

iscarded. As discussed in Section 2.1 , the particle distribution 

unctions can be split into the equilibrium component f eq that 

an be determined by the local fluid density and velocity though 

q. 5 , and the non-equilibrium component f neq .The latter can be 

btained in several ways: Haussmann et al. [18] extrapolated it 

rom the inside of the fluid following Guo’s scheme [63] , Hauss- 

ann et al. [40] used an interpolated bounce-back operation [41] , 

alaspinas and Sagaut [16] exploited the symmetry properties of 

at grid- aligned boundaries. The importance of the f neq com- 

onent to the accuracy of the wall treatment was evidenced by 

aussmann et al. [18] . 

f neq can also be approximately reconstructed from macro- 

copic quantities [56,57] , and this stragety is followed here. In- 

eed the Chapman-Enskog expansion allows making a link be- 

ween this non-equilibrium component and the strain rate tensor 

 = 

(∇u + (∇u ) T 
)
/ 2 : 

f neq 
i 

≈ −w i τ

c 2 s 

Q i : ρS , (18) 

ith Q i = ξi ξi − c 2 s I. 

In order to complete the reconstruction process, the strain rate 

hus has to be known or computed at boundary nodes. The diffi- 

ulty of the numerical estimation of near-wall gradients on under- 

esolved grids for the implementation of boundary conditions in 

BM has previously been noted [64] . 

In attached boundary layers, the wall-normal gradient of the 

angential velocity is expected to be the largest contributor to the 

train rate tensor, thus its estimation is of major importance for 

n accurate implementation of the wall function boundary con- 

ition. As the wall function describes the assumed shape of the 

nner boundary layer velocity profile though an explicit and dif- 

erentiable formula ( Eq. 14 ), an exact formula for the assumed 

all-normal gradient can be obtained. Nevertheless, a discretized 

erivative is preferred in the present wall treatment to help ac- 

ount for the fact that the gradients are not exactly represented in 

he numerical scheme. To this end, the wall function is evaluated 

t the wall distance of the current boundary node n + 
b 

and multi- 

les of the local grid spacing h + (both in wall units) farther away. 

he derivative in the wall-normal direction ( n ) is thus computed 

hrough a third order one-sided finite difference 

d u 

d n 

)
b 

= 

u τ

h 

(
−11 

6 

u 

+ (n 

+ 
b 

)
+ 3 u 

+ (n 

+ 
b 

+ h 

+ )
−3 

2 

u 

+ (n 

+ 
b 

+ 2 h 

+ ) + 

1 

3 

u 

+ (n 

+ 
b 

+ 3 h 

+ )). (19) 

his process is completely local (once u τ is determined) since the 

all function is simply evaluated at arbitrary wall distances i.e. 

o additional data from the flow field is used. Preliminary stud- 

es have shown that using the exact formula degrades the results 

ith respect to the discretized one. 

This discretized wall-normal gradient is then transformed into 

he grid axes for entering the particle distribution reconstruction 

rocess while the other components of ∇u are computed by fi- 



Fig. 4. Examples of cumulative distributions of the wall distance of boundary nodes 

on a sphere, a cylinder, and a NACA0012 airfoil, each with uniform grid spacing at 

the surface. 
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Fig. 5. Schematic of the elimination of boundary nodes located closer to the wall 

than the threshold value t . White squares: excluded original boundary nodes; green 

squares: unaffected original boundary nodes; green triangles: original fluid nodes 

that effectively become boundary nodes; blue circles: unaffected fluid nodes. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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ite differences, namely second order centered where geometri- 

ally possible and first order one-sided otherwise. 

Since the wall function only provides information on the tan- 

ential velocity, a distinct method is needed for its normal compo- 

ent. In the present wall treatment, the normal velocity is set to 

 at the boundary nodes i.e. the non-penetration boundary condi- 

ion valid at the wall is applied directly on the boundary nodes. 

his first order approximation reinforces numerical robustness and 

s not expected to have a large impact on the overall precision of 

he computation since the normal component is minor. This full 

econstruction process does not a priori conserve mass at the wall 

oundary, but it can potentially be combined with a correction for 

ass conservation such as the one of Bocquet et al. [65] if re- 

uired. 

.3. Elimination of nodes too close to the wall 

The staircase patterns of the wall boundaries generated around 

rbitrary geometries introduce geometrical irregularities, even on 

mooth surfaces. Indeed the wall distances d w 

of the boundary 

odes are spread over a large range from 0 to 
√ 

2 h (the longest lat-

ice link) and their distributions cannot be prescribed for the gen- 

ration of grids around realistic geometries. Several examples are 

hown in Fig. 4 for a sphere, a cylinder, and the NACA0012 aifroil. 

n these examples, a large number of boundary nodes are located 

ery close to the wall, with wall distances much smaller than the 

ocal cell size. For instance about 20% are within 0 . 25 h from the

all, and the rate at which nodes located infinitesimally close to 

he wall occur –represented by the slope of the cumulative distri- 

ution at the origin– is not lower than that of being farther away. 

For these nodes located much closer to the wall than the lo- 

al grid spacing, the wall model becomes essentially inoperative. 

ndeed the wall model is used to take into account the large near- 

all gradients that cannot be resolved by the numerical scheme 

or a given grid. Hence if a node is located too close to the wall

ith respect to the grid spacing (i.e. where the gradients cannot be 

esolved), an accurate solution cannot be computed. This situation 

ould also be interpreted as a locally unbounded growth rate of 

he grid spacing in the wall normal direction, as the wall distance 

f boundary nodes approaches 0. Furthermore, the discontinuities 

ccurring at the steps introduce large ratios of the wall distance 

etween adjacent nodes along the wall. This will cause large ve- 

ocity ratios along the wall which can be an additional challenge to 

he numerical scheme for yielding smooth and accurate solutions. 
6 
In the present wall treatment, a threshold t is defined on the 

all distance of boundary nodes, in the local grid spacing unit, to 

esignate boundary nodes deemed too close to the wall. Boundary 

odes which wall distance is smaller than this threshold ( d w 

< th ) 

re completely excluded from the computation to avoid the pre- 

iously mentioned issues. To accommodate this change, the wall 

oundary condition has to be applied on some fluid nodes that 

ave lattice links to the excluded boundary nodes, with which 

he streaming of distributions can no longer take place. They es- 

entially become boundary nodes following the application of the 

hreshold, as illustrated in Fig. 5 . The excluded boundary nodes 

an still be computed through the wall treatment for cosmetic pur- 

oses, they can be given arbitrary values, or they can even be re- 

oved from the data structure if it is convenient to do so, e.g. to 

educe the memory requirements. If they remain in memory, they 

ave to be excluded from all other computations inside the solver, 

n particular for computing gradients. The threshold value should 

e chosen between 0 and 1, as there would be no use in excluding 

oundary nodes that are already farther away from the wall than 

he local grid spacing. In the following, the expression ”boundary 

odes” refers to the original boundary nodes that are located be- 

ond the threshold —thus retaining their function— as well as the 

uid nodes behaving as boundary nodes. 

This technique effectively shifts the application of the wall 

oundary condition away from the walls where the wall distance is 

eemed too small, whereas it remains unchanged where the wall 

istance is deemed large enough. The range of the wall distance 

istribution of boundary nodes becomes th to (t + 

√ 

2 ) h as the 

ntire distribution is shifted away from the wall, as illustrated in 

ig. 6 on a NACA0012 airfoil. Since the wall distance can be kept on 

he order of the grid spacing, the boundary nodes can potentially 

e placed in the inertial sublayer through careful grid generation, 

or the optimal application of algebraic wall functions. 

The effective wall location and shape in the computation re- 

ain unchanged by this procedure, as the true wall distance and 

all normal direction remain used for all boundary nodes. Since 

he location at which the wall boundary condition is imposed is 

erely shifted in space, the computational cost of this treatment is 

ot expected to be significantly affected by the threshold value. A 

light increase in the number of boundary nodes can be expected 

n convex surfaces and conversely a slight decrease on concave 

nes. 



Fig. 6. Cumulative distribution of the wall distance of boundary nodes on a 

NACA0012 airfoil with uniform grid spacing at the surface, for different threshold 

values t for the elimination of nodes too close to the wall. 
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Fig. 7. Schematic of the computational set up for the flat plate case. 
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Another approach to remove issues due to boundary nodes lo- 

ated too close to walls would be to implement the wall treatment 

n the second layer of nodes away from the wall, thereby exclud- 

ng all original boundary nodes. This measure is deemed excessive, 

s a non negligible part of these natural boundary nodes (around 

2% for the example of the sphere in Fig. 4 ) are already located

arther from the wall than the local grid spacing. These nodes are 

ot part of the problem, and there is no reason to exclude them. 

ndeed if this alternative was employed, the range of wall distance 

f effective boundary nodes would be extended from h to 2 
√ 

2 h . 

his larger range would make it more difficult to locate all nodes 

ithin the same region of the boundary layer, and the grid spacing 

ould have to be reduced by about 27% in comparison the thresh- 

ld method to maintain the nodes farthest from the wall within 

he same range of wall distance. 

This technique can be related to the projection technique used 

o construct the near-wall cells in the simplified cut-cell method 

f Harada et al. [59] , whereby the nodes closest to the walls are

liminated. The application of the velocity boundary condition on 

n arbitrary off-wall surface of Filippova et al. [29] would likely 

rovide similar benefits if it is located far enough from the wall. 

is-à-vis the proposed threshold technique, these alternatives are 

ikely to eliminate more near-wall nodes than necessary. 

.4. Summary of the wall treatment 

The wall treatment procedure in the present LBM solver is sum- 

arized below. It is applied on all effective boundary nodes, once 

hey have been identified after applying the wall distance thresh- 

ld. 

1. Select the fluid nodes inside a fixed stencil as donor nodes 

2. Compute u τ for each donor node by inverting the wall function 

( Eq. 14 ) with its tangential velocity and wall distance 

3. Interpolate u τ from the donor nodes in the wall tangential di- 

rection ( Eq. 16 ). 

4. Interpolate the density at the reference point from the donor 

nodes by simple IDW ( Eq. 17 ) and set the same density to the

current boundary node. 

5. Evaluate the wall function ( Eq. 14 ) at the current boundary 

node with the interpolated u τ to obtain the tangential veloc- 

ity and set the normal velocity to 0. 

6. Compute the velocity gradients by finite differences and rectify 

the normal gradient component with the discretized derivative 

of the wall function profile ( Eq. 19 ) 
7 
7. Reconstruct the equilibrium f eq ( Eq. 5 ) and the non-equilibrium 

f neq ( Eq. 18 ) components of the particle distribution function 

from the velocity, density, and the velocity gradient. 

The baseline treatment is very similar to that described by Wil- 

elm et al. [17] , except with the model consistent wall function 

sed in this study. It is identical to the present one but with the 3

ain improvements removed. Instead of interpolating the u τ com- 

uted at each donor node, the tangential velocity at the arbitrary 

eference point is interpolated from that at the donor nodes by 

imple IDW (as described for the density) and the wall function is 

nverted based on this interpolated velocity; instead of using the 

iscretized wall function gradient, all velocity gradients used for 

he reconstruction of particle distributions at the current bound- 

ry node are computed by finite differences using the surrounding 

odes; instead of eliminating boundary nodes too close to the wall, 

ll boundary nodes are computed normally. 

. Validation 

.1. Zero pressure gradient flat plate 

.1.1. Test case presentation 

In the context of the IBM, the flat plate offers the opportunity 

f validating boundary layer modeling on a body-fitted grid, when 

he plate is aligned with the grid axes. Although this simple aca- 

emic case is not very representative of real applications it does 

llow testing the wall treatment in the absence of an irregular grid 

opology at the boundaries. The aim of this test is to evaluate the 

ccuracy of the boundary layer modeling using the present wall 

reatment and its ability to reach grid convergence in ideal condi- 

ions where the wall function is fully consistent with the expected 

olution and the grid is body fitted. 

The wall treatment is applied on a 2 m long plate (the reference 

ength is taken as the half-length L = 1 m). The freestream Mach 

umber is Ma = 0 . 2 and the Reynolds number based on the refer- 

nce length is Re L = 5 × 10 6 . This validation case is given in NASA’s 

urbulence Modeling Resource [66] although some of its specifi- 

ations were adapted for the present study. As illustrated in the 

chematic in Fig. 7 , a constant velocity is imposed on the inflow 

oundary, while a constant pressure is imposed on the outflow 

nd upper boundaries of the domain. As an unsteady compress- 

ble solver is used with reflective boundary conditions, an absorb- 

ng region (following [67,68] ) is placed next to the inlet boundary 

o allow acoustic perturbations to be damped inside the domain. A 

hort section of slip wall upstream of the plate and an extension 

f the plate downstream are excluded from the analysis, and aim 

t avoiding any interference between the wall treatment and the 

ther boundary conditions. As true 2D computations are not pos- 

ible with the ProLB solver, a thin slice of volume is computed, 

ith periodicity conditions applied on the front and back faces. 

he minimum width of the slice is constrained by the coarsest grid 

pacing, since the grid is isotropic. The width of the domain is thus 



Fig. 8. Schematic of the mesh construction including the wall distance of the first 

nodes. 
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Fig. 9. Skin friction coefficient along the flat plat plate for different grid spacings, 

compared to CFL3D results from NASA’s Turbulence Modeling Resource [66] . 

Fig. 10. Longitudinal gradient of the skin friction coefficient along the flat plat 

plate for different grid spacings, compared to CFL3D results from NASA’s Turbulence 

Modeling Resource [66] . 
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qual to the grid spacing away from the plate, which is 8 times 

arger than the spacing at the plate. 

The present wall function based wall treatment is significantly 

ifferent from the resolved adiabatic solid wall condition specified 

n [66] and differences are expected to appear, especially close to 

he upstream end of the plate. Indeed the wall function cannot 

erform accurately where the boundary layer is not thick enough 

or the donor nodes to be located within the range of validity of 

he wall function (viscous sublayer, buffer layer, and inertial layer, 

s illustrated in Fig. 2 ). These errors will inevitably be convected 

ownstream and affect the boundary layer state on the whole 

late. Nonetheless, this configuration is representative of real aero- 

ynamic flows, where boundary layers develop from zero thick- 

ess, and this error should be accounted for in the overall accu- 

acy of the wall model. It is thus justified to compare the results 

btained with the proposed wall treatment to computational re- 

ults obtained with a classic RANS solver on a wall-resolved mesh, 

hich are representative of the results expected with the S–A tur- 

ulence model on this configuration. 

The grid spacing is kept uniform along the wall to avoid re- 

nement interfaces cutting through the boundary layer. The grid 

s thus constructed in streamwise uniform layers as illustrated in 

ig. 8 , with the grid spacing doubling at each interface. Each layer 

omprises approximately 40 cells in the wall-normal direction to 

educe the influence of refinement interfaces parallel to the plate. 

s this grid construction allows choosing a value for the wall dis- 

ance along the plate, which is uniform, a wall distance of 0 . 9 h

s chosen. As the wall distance could be explicitly controlled, the 

limination of boundary nodes too close to the wall is not needed 

nd is thus deactivated. 

.1.2. Results 

To begin, the behaviour of the skin friction coefficient along the 

late, defined as: 

 f = 

τw 

1 / 2 ρ∞ 

V 

2 ∞ 

, (20) 

s examined for coarse, medium, and fine grids with near wall 

pacings of h/L = 7 . 5 × 10 −4 , h/L = 2 . 5 × 10 −4 , and h/L = 6 . 25 ×
0 −5 respectively. On each grid, the accuracy of the skin friction 

mproves as the boundary layer develops along the plate, as shown 

n Fig. 9 , in comparison with the reference computation performed 

ith CFL3D [66] . Downstream of x/L ≈ 0 . 25 , the more refined grids

ield more accurate skin frictions, with a good agreement between 

he fine grid result and the reference on the second half of the 

late. 

The upstream extremity of the plate constitutes a singularity, as 

he skin friction should be infinite at this point, which is challeng- 

ng for any solver. The skin friction at this location increases with 
8 
he grid refinement yet its very steep decrease along the plate is 

ot well captured. Indeed, the donor nodes of the first boundary 

odes at the beginning of the plate are located outside the bound- 

ry layer, which is just starting its spatial development in that area, 

uch that the value of C f there is based solely on the freestream 

elocity and the wall distance (proportional to the grid spacing). 

s the boundary layer needs to develop for the wall function mod- 

ling to be accurate, an adaptation distance can be observed before 

he physical modeling reaches its full potential accuracy. 

The gradient of the skin friction along the plate, shown in 

ig. 10 , confirms that between x/L = 0 . 25 and x/L = 0 . 5 , the C f de-

reases faster as the grid is refined. Towards the downstream end 

f the plate, the skin friction gradient approaches that of the refer- 

nce as the grid is refined. In the reference solution, a perturbation 

s visible near x/L = 2 due to the outflow boundary at the end of

he plate, which is avoided in the present computations by extend- 

ng the plate a little farther. 

To further examine the accuracy of the boundary layer model- 

ng, the velocity profile is extracted for each computation at the lo- 

ation where the Reynolds number based of the momentum thick- 

ess Re θ is equal to 10 4 . To that end, the velocity profiles are in-

egrated at small intervals along the plate and the profile where 

e θ is the closest to 10 4 is selected. This target value is typically 

atched very closely. As shown in Fig. 11 , all the velocity profiles 

re consistent with the wall function from their boundary node up 



Fig. 11. Velocity profile at the location of Re θ = 10 4 for different grid spacings, com- 

pared to CFL3D results from NASA’s Turbulence Modeling Resource [66] . 
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Fig. 12. Schematic of the computational set-up for the NACA0012 test case. 
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o about y + = 200 , indicating that the wall function boundary con- 

ition is implemented consistently with the numerical scheme. The 

greement between the profiles obtained in ProLB using the wall 

reatment and the reference computation with CFL3D is improved 

s the grid is refined, and it is very close for the fine grid. 

Due to the isotropy of the grid and to the choice of a stream-

ise uniform construction, the grids used for this simple test case 

re much larger than those reported in [66] ( ≈ 0 . 21 × 10 6 elements

or the converged mesh): ≈ 1 . 5 × 10 6 , ≈ 5 . 0 × 10 6 , and ≈ 2 . 7 × 10 7 

or the coarse, medium, and fine grids respectively. For a more ef- 

cient discretization, the grid at the wall could be selectively re- 

ned towards the upstream end of the plate, where the boundary 

ayer is the thinnest. For the sake of simplicity and robustness, this 

ption is not pursued in the present study. 

.2. NACA0012 airfoil 

.2.1. Test case presentation 

The symmetrical NACA0012 airfoil is a common test case in 

FD for attached flow around a streamlined geometry [66,69] and 

BM computations following different approaches have been re- 

orted. A VLES (Very Large Eddy Simulation) turbulence model- 

ng approach has been applied —mostly in conjunction with a wall 

unction— from Re c = 500 to Re c = 5 × 10 8 [69–71] . RANS compu- 

ations were performed using the S–A turbulence model at Re c = 

 × 10 5 [72,73] with wall-resolved grids. It was also the support 

f DNS computations of laminar-turbulent transition [39] and for 

aminar flow computations [74] . 

The flow conditions documented in the NASA Turbulence Mod- 

ling Resource [66] are considered in the present study,: fully tur- 

ulent flow, Ma = 0 . 15 and Re c = 6 . 0 × 10 6 . The original NACA0012

irfoil profile is extended to obtain a sharp trailing edge and then 

escaled to a unit chord c = 1 , thus the thickness of the airfoil is

lightly reduced below its nominal 12% [66] . In comparison with 

he flat plate, the grid irregularity at the wall and the streamwise 

ressure gradients constitute additional challenges to the bound- 

ry layer flow modeling. A threshold wall distance value of t = 1 

s used throughout this test case, meaning that all boundary nodes 

hich wall distance is lower than the local grid spacing are elimi- 

ated. 

A square computational domain is used, in which the airfoil 

eading edge is positioned at the centre, as shown in Fig. 12 . Since

he airfoil is symmetric, its chord is kept aligned with the grid axes 

o enable the generation of a symmetrical grid, and only positive 

ngles of attack are considered. The angle of attack α is varied 
9 
y modifying the free stream inflow conditions (Dirichlet condition 

n the velocity V ∞ 

) imposed on the upstream and lower faces of 

he domain, while the freestream density ( ρ∞ 

) is imposed on the 

ownstream and upper boundaries for all computations. As these 

oundaries are reflective, absorbing regions are placed adjacent to 

hem to damp acoustic waves inside the domain, which mainly 

riginate from the initialization of the computation. Like for the 

at plate case, the grid spacing is kept constant around the skin 

f the airfoil but it is coarsened away from it in layers of approx- 

mately 9 nodes each while ensuring the grid transition interfaces 

re symmetric. The domain is periodic in the spanwise direction 

nd its width is equal to the far field grid spacing, as for the flat

late case. For the selected grid, its spanwise extent is 64 times 

he grid spacing on the airfoil. 

.2.2. Grid effects 

To ensure that the far-field boundaries are sufficiently far from 

he airfoil for a negligible impact on the results in comparison with 

ther sources of error, their distances are varied from 20 c to 100 c

t the angle of attack of 10 ◦ and with a near wall grid spacing of

/h = 10 0 0 nodes per chord length. The thickness of the absorbing 

ayers is also varied in conjunction with the far-field distance, from 

 c to 4 c. For simplicity, only the effects on the drag coefficient and 

ift coefficient are considered, where D and L are the integrated 

orce components along and perpendicular to the freestream veloc- 

ty respectively, and S is the planform area of the extruded airfoil. 

he distance of the far-field boundaries seems to have a relatively 

ow influence on C d , with a variation of approximately 8% over the 

ange considered, as shown in Fig. 13 . As the drag only varies by 

C d = 0 . 0 0 01 between 80 c and 100 c, the far-field distance of 80 c

s chosen for the remainder of the study, with 4 c thick absorbing 

ayers. No meaningful effect is observed on C l . 

The uniform grid spacing at the wall is also varied, from c/h = 

50 to c/h = 40 0 0 points per chord, at the angle of attack of 10 ◦.

he thickness of the refinement layers around the airfoil varies 

ith grid spacing, since it is defined relative to the local grid 

pacing i.e. the growth rate is kept constant. With a drag vari- 

tion of about 280% over the range considered, the grid density 

as a much larger influence than that of the far-field distance, as 

hown in Fig. 14 . Since there remains a significant difference of 

C d = 0 . 0015 between the finest ( c/h = 40 0 0 ) and second finest

 c/h = 3200 ) grid, the finest one is selected for the remainder of

he study. This grid density is finer than those reported in the pre- 

ious studies using wall functions (approximately 500 points per 



Fig. 13. Drag coefficient of the NACA0012 airfoil for different distances between 

the airfoil and the far-field boundaries of the computational domain at α = 10 ◦ and 

c/h = 10 0 0 nodes per chord. 

Fig. 14. Drag coefficient of the NACA0012 airfoil for different grid spacings at the 

skin, in nodes per chord at α = 10 ◦ . The horizontal line shows the level of the 

CLF3D result from NASA’s Turbulence Modeling Resource [66] . 

Fig. 15. Cross section of the selected grid ( c/h = 40 0 0 nodes per chord) around the 

NACA0012 airfoil, showing the 6 finest refinements. 
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Fig. 16. Wall distance of boundary nodes in wall units y + on the suction side of 

the NACA0012 airfoil at α = 10 ◦ for the selected grid (40 0 0 nodes per chord). 
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hord [70] and 850 points per chord [71] ), and it is coarser than

hose reported for the wall resolved ones for a lower Reynolds 

umber (50 0 0 points per chord [64] and 8192 points per chord 

73] ). A cross section of this grid in the vicinity of the airfoil

s shown in Fig. 15 . Although a strict grid convergence is not 

chieved, the error with respect to the reference computation is 

ignificantly reduced as the grid is refined. No significant effect is 

bserved on the lift coefficient. 

The y + of the boundary nodes on the suction side of the airfoil 

s mostly around 100, as shown in Fig. 16 , which is appropriate 

or using a wall function as they are likely to be inside the in-

rtial layer. It exceeds y + = 400 near the leading edge, indicating 
10 
hat the grid is probably still too coarse for the donor nodes to 

e within the range of validity of the wall function in this area. 

owards the trailing edge, it falls below y + = 50 , such that some 

oundary nodes could be located in the buffer layer, suggesting 

hat the grid is overly fine in this region. A more optimal distribu- 

ion of nodes could be achieved if the grid density was decreased 

long the chord. The wide spread of the y + point cloud is due to 

he staircase pattern of the boundary nodes inherent to the use 

f a Cartesian grid as noted in Section 3.3 . Around the location of 

aximum thickness ( x/c ≈ 0 . 3 ), the airfoil skin becomes tangent to 

he grid axis and in the absence of steps in the grid boundary, the 

 

+ of boundary nodes follows a parabola-like curve. 

The selected grid comprises a total of ≈ 1 . 07 × 10 8 nodes, 

hich is much larger than that for the reference computations 

ith the CFL3D solver [66] . This is a consequence of the isotropy 

f the grid for achieving adequate y + at boundary nodes: near the 

all, the streamwise and spanwise spacings are the same as the 

all-normal one, even though there is no benefit for this with 

 RANS model. Additionally, since a 3D solver is used for this 

D case, the width of the domain is linked to the coarsest grid 

pacing. Indeed, increasing the far field grid spacing increases the 

idth of the periodic domain, and thus the number of fine nodes 

ear the wall in the spanwise direction. Due to this trade off, 

hich is only valid for a thin slice computation, nodes far away 

rom the airfoil account for a non-negligible fraction of the total 

omputational cost. Finally the elimination of boundary nodes too 

lose to walls further increases the y + for a given grid spacing h . 

.2.3. Results 

The results obtained in ProLB with the present wall treatment 

re compared to the ones from the classic finite volume solvers 

FL3D [75] and elsA [76] . The CFL3D results are retrieved from 

he NASA Turbulence Modeling Resource [66] . Previous studies on 

he same geometry with the Spalart–Allmaras turbulence model 

mploying a wall function [70] or resolved wall boundary condi- 

ions [72,73] are not included in comparisons, as their computa- 

ions were made at different Reynolds numbers. 

Firstly, the surface coefficients on the airfoil skin are examined. 

he pressure coefficient is defined as 

 p = 

p − p ∞ 

1 / 2 ρ∞ 

V 

2 ∞ 

(21) 

ith p the static pressure, p ∞ 

the far field static pressure, is shown 

n Figs. 17 , 18 , and 19 at α = 0 ◦, 10 ◦ and 15 ◦ respectively. It varies

moothly along the chord of the airfoil at all angles of attack con- 

idered, except for some minor oscillations on the suction peak. It 



Fig. 17. Pressure coefficient C p along the chord of the NACA0012 airfoil at α = 0 ◦ , 

for ProLB with the present wall treatment, CFL3D [66] , and elsA. 

Fig. 18. Pressure coefficient C p along the chord of the NACA0012 airfoil at α = 10 ◦ , 

for ProLB with the present wall treatment, ProLB with the baseline wall treatment, 

CFL3D [66] , and elsA. 
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Fig. 19. Pressure coefficient C p along the chord of the NACA0012 airfoil at α = 15 ◦ , 

for ProLB with the present wall treatment, CFL3D [66] , and elsA. 

Fig. 20. Skin friction coefficient C f along the chord of the NACA0012 airfoil at α = 

0 ◦ for ProLB with the present wall treatment, CFL3D [66] (suction side only), and 

elsA. 
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s also in very close agreement with results obtained with classic 

ANS solvers on body-fitted meshes, except for a slight shift on the 

uction surface at 15 ◦. 

The skin friction coefficient C f (shown in Figs. 20 , 21 , and 22

or α = 0 ◦, 10 ◦, and 15 ◦ respectively) also varies smoothly along 

he chord, although the agreement with the classic RANS compu- 

ations is not as good as for the surface pressure. At α = 0 ◦, the

urface coefficients on the upper and lower surfaces overlap. The 

greement between the present results and the benchmark is pro- 

ressively improved along the chord although the values of the 

ody fitted computations are not reached. Like for the flat plate 

ase, the error is large where the boundary layer is very thin and 

t is reduced as the boundary layer develops. The slight differences 

etween the CFL3D and the elsA results are likely due to the dif- 

erences between the meshes used, neither of which are elaborated 

o a calibration standard [66] . 

As the angle of attack is increased, the agreement on the pres- 

ure side is improved, suggesting a better boundary layer model- 

ng. Indeed, as the stagnation point moves onto the pressure side, 

his side becomes more similar to a flat plate and the adverse 

ressure gradient observed at α = 0 ◦ is eliminated. On the suction 

ide, where the adverse pressure gradient becomes stronger with 

ngle of attack, the agreement with the body-fitted computations 

mproves towards the trailing edge, yet as at α = 0 ◦, C f remains

ver-estimated. In the CFL3D and elsA computations at α = 15 ◦, 2D 
11 
ow separation occurs on the suction side close to x/c = 0 . 9 , as C f 
eaches 0. This change in flow topology is not captured with the 

resent wall treatment. 

Besides the present improved wall treatment, Figs. 18 and 

1 show the results with the baseline treatment for α = 10 ◦. This 

aseline corresponds to the same solver (and identical simula- 

ion set-up), but with its 3 main features disabled: the advanced 

nterpolation for u τ , the discrete wall function gradient evalua- 

ion, and the elimination of boundary nodes too close to the wall. 

harp wiggles are observed on the pressure profile with the base- 

ine treatment, especially around x/c ≈ 0 . 3 , even though the over- 

ll values remain close to the references. The skin friction profiles 

btained with the baseline treatment are noisier than the corre- 

ponding pressures, and they show much larger deviations with 

espect to the references. It thus appears that the proposed treat- 

ent is a great improvement over the baseline, both in terms of 

ccuracy and of smoothness. 

To further examine how the boundary layer is captured using 

he improved wall treatment, normal velocity profiles are extracted 

rom the ProLB and elsA results for α = 10 ◦ at different locations 

long the chord: close to the leading edge ( x/c = 0 . 1 ), at midchord

 x/c = 0 . 5 ), and close to the trailing edge ( x/c = 0 . 9 ) on both the

ressure side and the suction side. 

On the pressure side, at x/c = 0 . 1 ( Fig. 23 ), the elsA profile

ollows the wall function profile in the viscous sublayer and the 



Fig. 21. Skin friction coefficient C f along the chord of the NACA0012 airfoil at 

α = 10 ◦ for ProLB with the present wall treatment, ProLB with the baseline wall 

treatment, CFL3D [66] , and elsA. 

Fig. 22. Skin friction coefficient C f along the chord of the NACA0012 airfoil at α = 

15 ◦ for ProLB with the present wall treatment, CFL3D [66] (suction side only), and 

elsA. 

Fig. 23. Normal velocity profile in wall units extracted at x/c = 0 . 1 on the pressure 

side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and elsA, 

compared to the Spalart–Allmaras wall function. The grey box shows the potential 

wall distance range of the donor nodes in ProLB. 

Fig. 24. Normal velocity profile in wall units extracted at x/c = 0 . 5 on the pressure 

side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and elsA, 

compared to the Spalart–Allmaras wall function. The grey box shows the potential 

wall distance range of the donor nodes in ProLB. 
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12 
uffer layer up to about y + = 15 . Above, however, it appears there

s no logarithmic region, as observed by Knopp et al. [55] close to 

he leading edge of another airfoil. A low friction Reynolds num- 

er ( Re τ = 

u τ δ
v with δ the boundary layer thickness) of Re τ = 151 

n elsA confirms that the RANS boundary layer is not very devel- 

ped at this location, only about �x/c ≈ 0 . 03 downstream from 

he stagnation point. For the boundary layer to be accurately cap- 

ured using the wall treatment, the boundary nodes and their 

onor nodes need to be located within the range of validity of the 

all model i.e. the range in which there is a good agreement be- 

ween wall model and the RANS solution. At this location, the grid 

pacing would have to be about 13 times smaller than the cur- 

ent size, with the boundary nodes in the viscous sublayer and the 

onor nodes in the buffer layer. Although it is not accurate, the ve- 

ocity profile obtained with the wall treatment is consistent with 

he wall function profile in the entire boundary layer, thus bypass- 

ng the outer region of the boundary layer. Although this is not 

hysically coherent, it appears to be the consequence of imposing 

he wall function profile where the boundary layer is too thin to 

e resolved. 

Further downstream on the pressure side, at x/c = 0 . 5 ( Fig. 24 ),

he boundary layer is further developed in elsA, with Re τ increased 

o 1663, and the wall function validity is extended up to approx- 

mately y + = 80 . The profile obtained with the present wall treat- 

ent is much closer to elsA, but even though the velocity at the 

oundary node is the same, differences exist in the wake region. 

ndeed, as the boundary node is located at the upper bound of 

he wall function validity, the donor nodes are located above it, 

nevitably introducing errors. 

At x/c = 0 . 9 ( Fig. 25 ), the boundary layer continues thicken-

ng ( Re τ = 2892 in elsA) and the wall function remains valid until 

bout y + = 200 . The wall treatment yields a profile in good agree- 

ent with the one obtained with elsA. It appears that the errors 

n the boundary layer history are drowned out by the thickening 

f the boundary layer as it develops, such that an accurate solution 

an be found even though it is under resolved farther upstream. 

On the suction surface, at x/c = 0 . 1 ( Fig. 26 ), the boundary layer

s already more developed than at the same location on the pres- 

ure surface ( Re = 1338 in elsA), with the wall function valid up to 

bout y + = 100 . Similarly as on the pressure surface, however, the 

rofile obtained with the wall treatment is consistent with the wall 

unction profile, yet far from the elsA result. Indeed the boundary 

ode and the donor nodes are above the validity range of the wall 

aw. 



Fig. 25. Normal velocity profile in wall units extracted at x/c = 0 . 9 on the pres- 

sure side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and 

elsA, compared and to the Spalart–Allmaras wall function. The grey box shows the 

potential wall distance range of the donor nodes in ProLB. 

Fig. 26. Normal velocity profile in wall units extracted at x/c = 0 . 1 on the suction 

side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and elsA, 

compared to the Spalart–Allmaras wall function. The grey box shows the potential 

wall distance range of the donor nodes in ProLB. 
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Fig. 27. Normal velocity profile in wall units extracted at x/c = 0 . 5 on the suction 

side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and elsA, 

compared to the Spalart–Allmaras wall function. The grey box shows the potential 

wall distance range of the donor nodes in ProLB. 

Fig. 28. Normal velocity profile in wall units extracted at x/c = 0 . 9 on the suction 

side of the airfoil at α = 10 ◦ , for ProLB with the present wall treatment and elsA, 

compared to the Spalart–Allmaras wall function. The grey box shows the potential 

wall distance range of the donor nodes in ProLB. 

i  

c

t

m

s

t

u

r

t

w

i

r

t

w

w

l

 

w

i  

o

At x/c = 0 . 5 ( Fig. 27 ), the wall function seems valid up to nearly

 

+ = 200 yet the slope of the logarithmic region seems higher in 

lsA than in the wall function. This is likely because of the adverse 

ressure gradient, consistently with the profiles shown by Knopp 

t al. [55] . With the wall treatment, even though the donor nodes 

re within the range of validity of the wall function, and despite 

he higher friction Reynolds number ( Re τ ≈ 3802 in elsA) than at 

/c = 0 . 9 on the pressure side, the agreement between the ProLB 

nd the elsA profiles is not significantly better than at x/c = 0 . 1 . 

At x/c = 0 . 9 ( Fig. 28 ), the wall function no longer seems to

e applicable. Indeed the slope of the inertial layer seems fur- 

her increased than at x/c = 0 . 5 and a small shift is visible, even

n the buffer layer, as the boundary layer is deformed by the ad- 

erse pressure gradient and approaches separation. The agreement 

etween the present wall treatment and elsA is worse than at 

/c = 0 . 5 despite the larger friction Reynolds number ( Re τ ≈ 4223 

n elsA). 

Finally the global lift and drag coefficients are considered, 

hich are both integrated form the surface coefficients. The lift co- 

fficient predicted with ProLB using the present wall treatment is 

n very good agreement with the body-fitted RANS codes and thin 

irfoil theory in the linear part of the lift curve ( α � 10 ◦), as shown
13 
n Fig. 29 , in line with the very good agreement of the pressure

oefficients. Viscous effects are expected to have minimal contribu- 

ions to the lift in this range, so that the errors in boundary layer 

odeling on the suction surface have little impact on the lift. 

At higher angles of attack ( α � 10 ◦), however, viscous effects 

uch as trailing edge flow separation on the suction surface, reduce 

he lift in comparison to thin airfoil theory. This non-linearity is 

nder-estimated as the accuracy of the present wall treatment is 

educed. Indeed at α = 15 ◦ the local flow separation on the suc- 

ion side in CFL3D and in elsA is not captured with the present 

all treatment in conjunction with the S–A wall function, as noted 

n Fig. 22 . Since 2D RANS computations cannot be expected to be 

eliable in predicting stall, wind tunnel results are added for fur- 

her reference. At α = 20 ◦, stall has already occurred both in the 

ind tunnel and in the elsA computation but the lift predicted 

ith ProLB continues to increase as massive flow separation is de- 

ayed. 

At α = 0 ◦, the drag coefficient ( C d ) estimated with the present

all treatment is in good agreement with the other data, as shown 

n Fig. 30 . Similarly to the lift, the results degrade as the angle

f attack is increased and the drag is over-estimated, as it is the 



Fig. 29. Lift coefficient ( C l ) as a function of angle of attack for ProLB with the 

present wall treatment, CFL3D [66] , elsA, and experimental results [77] . 

Fig. 30. Drag coefficient ( C d ) as a function of angle of attack for ProLB with the 

present wall treatment, CFL3D [66] , elsA, and experimental results [77] . 
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ase for the C f on the suction side. On the contrary, at α = 20 ◦,

he sudden drag rise due to stall is not captured. 

The inability of the present implementation to predict flow sep- 

ration (and thus stall) accurately is its major limitation. It is not 

urprising, however, since the simple algebraic wall function used 

oes not take the effects of adverse pressure gradients into ac- 

ount. 

. Conclusion 

An improved immersed boundary turbulent wall treatment for 

igh Reynolds number flows on Cartesian grids has been presented 

n the context of LBM. The under-resolved velocity gradients near 

he wall are carefully taken into account by imposing a discretized 

orm of the gradients from the wall model. Boundary nodes located 

oo close to the wall with respect to the grid spacing to be accu- 

ately computed by the numerical scheme are eliminated, thus lo- 

ally shifting the application of the boundary condition away from 

he wall where appropriate. 

This treatment has been validated through URANS computa- 

ions (focusing on steady solutions) with a node-based LBM solver 

n a flat plate with a body-fitted grid and on a NACA0012 airfoil. In

oth cases, visibly smooth surface pressure and skin friction coeffi- 

ients have been obtained. Furthermore, its potential for accurately 

apturing the boundary layer on a non-body-fitted curved surface 

as been demonstrated, provided the underlying wall model re- 
14 
ains valid. In comparison with the baseline wall treatment, sig- 

ificant improvements in smoothness and accuracy of surface co- 

fficients is demonstrated. With the algebraic wall function used 

n this study, surface coefficients were accurately predicted where 

he boundary layer was well developed, its outer region was suffi- 

iently resolved, and in the absence of significant adverse pressure 

radients. Flow separation and stall are not well predicted. 

Future studies should investigate the potential improvements in 

hysical modeling that could be achieved through the integration 

f a more advanced wall function including streamwise pressure 

radient effects. Since this wall treatment has been validated for 

ttached flow with a RANS model, it could be employed in com- 

utations with hybrid RANS-LES models on more complex geome- 

ries. 
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