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Abstract 

The emergence of the first Fitness‑Fatigue impulse responses models (FFMs) have allowed the sport science commu‑
nity to investigate relationships between the effects of training and performance. In the models, athletic performance 
is described by first order transfer functions which represent Fitness and Fatigue antagonistic responses to training. 
On this basis, the mathematical structure allows for a precise determination of optimal sequence of training doses 
that would enhance the greatest athletic performance, at a given time point. Despite several improvement of FFMs 
and still being widely used nowadays, their efficiency for describing as well as for predicting a sport performance 
remains mitigated. The main causes may be attributed to a simplification of physiological processes involved by exer‑
cise which the model relies on, as well as a univariate consideration of factors responsible for an athletic performance. 
In this context, machine‑learning perspectives appear to be valuable for sport performance modelling purposes. 
Weaknesses of FFMs may be surpassed by embedding physiological representation of training effects into non‑linear 
and multivariate learning algorithms. Thus, ensemble learning methods may benefit from a combination of individual 
responses based on physiological knowledge within supervised machine‑learning algorithms for a better prediction 
of athletic performance.

In conclusion, the machine‑learning approach is not an alternative to FFMs, but rather a way to take advantage of 
models based on physiological assumptions within powerful machine‑learning models.
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Key Points

• Fitness-Fatigue models rely on expert knowledge 
and could be extended to more complex functions, 
including other factors of athletic performance for 
prediction purposes while avoiding overfitting.

• Through ensemble learning methods such as stack-
ing, machine-learning approaches are not alterna-
tives to Fitness-Fatigue models but rather a way to 

improve their predictive capability while preserving 
expert information in the modelling.

Introduction
Modelling the effect of training is a major challenge for 
the sport community since the apparition of the first 
mathematical models five decades ago [1]. A simplified 
version of the one from Banister et al. [1], the so-called 
Fitness-Fatigue model (FFM) [2], describes the effect of 
training on athletic performance relying on some basics 
of exercise sciences and training theory. It comes with 
the assumption that each training dose induces two 
antagonistic responses. One represents little long lasting 
positive adaptations—the "Fitness"—and the other, large 
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short lasting negative adaptations—the "Fatigue"—that 
both decay exponentially over time, respectively to their 
magnitude and rate. Basically, the performance modelled 
is given by the difference between the fitness and fatigue 
features. As work proceeded, improvements of the origi-
nal mathematical structure were developed. Based on 
more relevant physiological and practical assumptions, 
models were seeking a better interpretability of parame-
ters and for more accurate predictions. Hence, the under-
lying impulse responses framework relates to a collection 
of FFMs [1–9].

Beyond a simple descriptive aim, the main idea behind 
FFMs was to simulate various training protocols that dif-
fer in terms of amount of training (i.e. the "dose") and 
occurrence in a training process. Through simulations of 
overload and taper cycles, an optimal training protocol 
(i.e. appropriate daily workloads and rest time between 
sessions) that leads to the greatest modelled performance 
would arise and allow for physiological, practical inter-
pretations and applications.

Using the formalism of transfer functions as a model 
of relationships between training doses and fitness and 
fatigue states provides several advantages. First, while 
Banister et al.[1] consider the human performance as the 
result of the difference between two simple first order 
transfer functions, the model could be extended to more 
complex transfer functions. It would allow to model 
much more sophisticated dynamic relationships between 
exercise and state variables, according to the complex-
ity and interactions between physiological processes 
involved in humans [10]. One drawback to this extension 
would be the loss of direct physiological interpretation, 
but the model identification phase would not be further 
complicated. During models training, particular atten-
tion regarding overfitting would be paid to ensure gener-
alisation ability on unknown data.

Secondly, transfer functions are the basic tools of con-
trol theory [11]. Control theory is a branch of math-
ematical optimisation that deals with finding a control 
for a dynamic system over a period of time, such that an 
objective function is optimised. In classical linear quad-
ratic optimal control problems, the resulting control law 
(i.e. the training doses here) can be analytically provided 
from the algebraic representation of the dynamic system 
and the expected output over a finite temporal horizon. 
Hence, the optimal control law is a time-varying linear 
function of the state variables (i.e. fitness and fatigue in 
our case). Control theory framework thus allows for 

analytically computing the optimal training doses in a 
training program, in order to reach a given performance 
setpoint. Although the first FFMs appeared more than 
forty years ago, their use to design the optimal training 
programming is systematically envisaged through simu-
lations, whereas their main advantage relies on their alge-
braic representation for control purposes.

Finally, the unexploited algebraic structure of FFMs 
would also provide state observers. By definition, a state 
observer is a system that provides an estimate of the 
internal state of a given real system, from measurements 
of the input and output of the real system [12]. In our 
field of application, it could be used to precisely estimate 
the state variables of athletes that are considered in the 
model (i.e. fitness and fatigue for FFMs) or to adjust the 
model through performances’ observations.

Whilst FFMs are still considered in exercise and sport 
sciences, they are usually compared to statistical [13, 
14] and machine learning forecasting methods [15] for 
the same purpose. Motivated by their capacity to infer 
parameters and to predict performances accurately, these 
possibly alternative methods have the merit of using all 
available data that stem from any sources (e.g. train-
ing-related, environmental, psychological, nutritional). 
However, when it comes to model a particular athletic 
performance, there is no consensus on the  family of 
models to apply.

Athletic performance is multi-factorial [13, 16, 17]. 
Understanding the relationships between training and 
performance and therefore, to simulate and predict 
changes in performance is a related complex problem. 
Hence, the question that arises is what relevance can 
FFMs ensure in a context of athletic performance mod-
elling? Some potential answers will be discussed in the 
following sections, by (i) briefly introducing the classical 
Fitness-Fatigue model and its conceptual issues and (ii) 
highlighting the contribution of machine-learning meth-
ods to the problem.

Fitness‑Fatigue Model and Conceptual Issues
First of all, let us introduce the mathematical structure 
of FFM. In the original form, fitness and fatigue compo-
nents are described by first order differential equations. 
That is, they are convolution based features in which each 
training input—expressed as a discrete function ω(i)—is 
convolved with an exponential transfer function. Hence, 
the equation of the model is given by the basic level of 
performance p∗ —a model intercept—and the difference 
between the two features, with

(1)p̂(n) = p∗ + k1

n−1∑

i=1

ω(i)e
− 1

τ1
(n−i)

− k2

n−1∑

i=1

ω(i)e
− 1

τ2
(n−i)

, n ∈ N.
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Here, p̂(n) is a modelled performance, k1 and k2 denote 
two gain terms and τ1 , τ2 denote two time constants for 
fitness and fatigue impulse responses, respectively. In this 
form, the model is commonly described as a linear time-
invariant system. However, some alternatives motivated 
by relevant physiological assumptions make the features’ 
parameters varying over time, being dependent on the 
accumulation of training input [4, 5, 7]. This results in 
time-variant systems that should better represent the 
true responses to training.

Yet, the use of FFMs for the purpose of modelling com-
plex phenomena such as athletic performance might be 
in some ways unsuitable. In the following, we simply 
decompose the FFMs’ framework into three levels and 
briefly highlight conceptual issues responsible for errors 
in prediction.

The Input: Quantification of Training
The first step of any training effect modelling using FFMs 
requires to quantify the training itself. Mainly used for 
modelling the training effects on performance in indi-
vidual and endurance sports, a few methods for quanti-
fying the training dose exist. Hence, the aforementioned 
discrete function ω(i) can take various expressions. One 
physiology based on the product of training duration and 
its exponentially weighted physiological response (e.g. 
heart rate changes) is termed Training Impulse (TRIMP) 
[3]. Some other methods commonly rely either on prod-
ucts of volume and intensity parameters, being physiol-
ogy-based (e.g. using heart-rate variations) [18] or not 
[19]. When exercise intensity cannot be objectively meas-
ured, the session TL is usually estimated using an ex post 
rating of perceived exertion multiplied by the session’s 
duration [20, 21]. Exercise intensity can also be meas-
ured in arbitrary units, especially in cases of technical 
sport disciplines [22]. On this basis, the training sessions 
are the only cause of adaptations. That means training 
responses are independent of any other external factors 
to training, yet known to impact athletic performance 
but not accounted for in the model (e.g. environmental 
factors, nutritional and psychological status). Hence, two 
identical training sessions that occur at different training 
stages would induce similar adaptations and responses. 
Besides, various training sessions (e.g. a low intensity 
and prolonged exercise, and high intensity and short 
exercise) may result in similar TL estimates and so Fit-
ness and Fatigue states, despite specific responses and 
adaptations to exercise exist [23, 24]. For example, two 
resistance training sessions (a low intensity, high volume 
and a high intensity, low volume) may lead to similar TL 
indexes according to the product of exercise volume and 
intensity [19]. Finally, athletes usually practice endurance 

and resistance training, and other disciplines to enhance 
performance.

Since FFMs are sensitive to the nature of the model 
input [25], a consistent training quantification method 
that is not biased by the type of training is required 
across training sessions.

Taking this stand, a univariate configuration of FFMs 
reduces the space of dimensions around adaptations to 
training into one single dimension, solely characterised 
by the training quantification. This is at the expense of all 
relevant information that can be  captured and that may 
explain a part of athletic performance, even if the training 
quantification is objectively well estimated.

It also questions training quantification based on arbi-
trary methods, which might bring "noise" into the model-
ling in  cases where there is an inexact appreciation of the 
exercise demand by the coach.

The Function: A Physiological Approximation
Attempting to model athletic performance upon a mathe-
matical representation of physiological principles is obvi-
ously commendable. However, it implies being confident 
in the model itself, leaving no room for vague theoretical 
approximations. Among the aforementioned variants of 
the original FFM, improving model complexity (e.g. by 
adding components in the model) does not guarantee the 
best model performances [26], even though such models 
are supposed to represent the physiological responses 
better. Therefore, the pertinence of adding antagonistic 
components to the most basic structure (i.e. only based 
on the fitness component) and more generally, the theo-
retical hypothesis behind FFMs might be questioned. 
However, some authors have proposed refinements and 
extensions of the two-components FFM formulation (see 
Eq. 1) in light of physiological responses to exercise. On 
one side, non-linear modifications of the mathematical 
structure allow model saturation effects [7, 27], describ-
ing over-training phenomena. Otherwise, state kinetics 
were adjusted in order to better represent physiologi-
cal mechanisms (e.g. tissue remodelling, myosin ATPase 
activity) [28, 29] through delayed [8], growth and decay 
kinetics in response to exercise [9]. However, these modi-
fications remain to be more broadly tested in ecological 
conditions with real data.

The Output: The Performance
Finally, FFMs attempted to model either an athletic per-
formance during a competitive season, a physical ability 
that relates to an athletic performance (e.g. mean power 
or velocity sustained over shorter distances than ones 
performed during competitions) [5, 30] or a physiological 
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state [31, 32]. In general, choosing the appropriate model 
output has a strong implication in the modelling process. 
Modelling changes in physical ability instead of a full dis-
cipline-specific performance may allow for repeating less 
invasive and better controlled testing all along a training 
process. However, whatever form the output takes (i.e. an 
athletic performance or a physiological state), its multi-
faceted nature involves factors that are not considered 
in the univariate model. Therefore, the training history 
merely characterised by training loads may only explain 
a part of changes in the output, somehow resulting in a 
lack of model performances.

To summarise, FFMs’ ability to predict changes in ath-
letic performance is greatly impacted by univariate mod-
elling issues and a simplification of human physiological 
adaptations to exercise and training. Moreover, consid-
ering only the training loads responsible for changes in 
athletic performance implies neglect of all related con-
founding variables that influence both independent 
and dependent variables, causing spurious associations 
between input and output of the model.

A Machine‑Learning Perspective of the Problem
Machine-learning models (ML) come with a different 
approach to the problem. Attempting to predict target 
variables from sets of co-variables, they foster a multivar-
iate modelling that comprises not only training load vari-
ables but all measured variables that may explain changes 
in athletic performance. Such models are thus considered 
as valuable solutions for predicting sport performances.

To date, there is a growing attraction of using ML mod-
els for modelling adaptations to training [33] as well as for 
predicting athletic performances [15, 34, 35]. That inter-
est may be justified by a high predictive power of non-lin-
ear ML models in many applications, particularly when 
they are compared to FFMs or other univariate models in 
sports [15, 35]. Yet, if we compare performances of ML 
models to FFMs, this is not surprising because the latter 
represent a restrictive class of models based on strong 
assumptions (e.g. impulse nature of the response to exer-
cise, the athletic performance resulting from the differ-
ence between two states, i.e. fitness and fatigue), which 
are essentially linear. Such a comparison is also largely 
biased by the higher degree of freedom of ML models. 
Therefore, we believe that ML models should not be con-
sidered as an alternative to FFMs, but a way to improve 
and broaden  FFM applications instead.

Expert knowledge and strong physiological assump-
tions that led to the mathematical framework of FFMs 
represent  valuable information that could be used inside 
ML models. In addition, raw data may also be considered 
in order to keep the maximum amount of information 

and thus,  advance the athletic performance modelling 
through an inclusive perspective. Nevertheless, to our 
knowledge no studies combining FFMs and ML models 
have been carried out. To be concrete about FFMs, let us 
suggest some possible alternatives. First, FFMs are mostly 
univariate except for a very recent study from Piatrikova 
et al.[36] that included well-being indicators as additional 
model inputs even though it might question the sound-
ness of linearly combining impulse responses to any 
well-being indicators. Hence, extension of FFMs could be 
envisaged through state perturbations, or perturbations 
directly related to the model’s ouput. Alternatively, multi-
variate extensions of FFMs could be made based on linear 
models’ generalisation, widely used in statistics and ML.

Since several extensions [3–9] of the former FFM [1] 
have been developed for predictive applications, there is 
no consensus about the optimal mathematical structure 
to be retained. Each of the FFMs variants have their own 
advantages and drawbacks but they remain close in terms 
of predictive performances while being heterogeneous in 
terms of complexity. In addition, predictions made from 
these models suffer from high bias and low variance, in 
particular when the target is greatly sensitive to other 
variables than training load dynamics. For these reasons, 
combining several FFMs could allow predictive perfor-
mances to increase. From this perspective, the optimal 
combination model of predictions computed from differ-
ent FFMs and ML algorithms could be learnt from data 
as in stacking methods [37] where a regressor is trained 
to combine several decision tree predictions in an opti-
mal way. Let us consider a set of FFMs predicting athletic 
performances through fitness and fatigue states, along 
with ML models that include any other variables of inter-
est, of any kind. Predictions of all base-models (FFMs and 
ML models) can be aggregated through a "meta-regres-
sor" such as a regularised linear regression. Base-models 
are composed of various FFMs and ML models which are 
concurrently trained (within validation procedures such 
as cross-validation) [38]. The overall process is presented 
in Fig. 1.

To summarise, the meta-model could thus be used to 
find the best combination of FFMs and ML models for 
better prediction purposes [39]. In addition, opting for 
inherently interpretable "white box" models (i.e. mod-
els which provide understandable mappings between 
inputs and outputs through closed formulas or graphs, 
such as linear regressions or decision trees) as meta-
models [40, 41] could improve experts’ understanding of 
the  FFMs’ shortcomings and how ML models can com-
pensate for them. In addition, stacked ensembles do not 
require a larger sample size than if the models were used 
separately.
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Conclusion
More than forty years after their initial presentation, 
FFMs are still used for athletic performance modelling 
despite mitigated models’ efficiency. Their univariate 
configuration and a simplification of human physiologi-
cal adaptations to training may be the leading causes. 
Yet, it would be worthwhile to extend them to a more 
sophisticated mathematical framework, still based on 
bio-physiological knowledge. Sports scientists and 
coaches would also benefit from their algebraic rep-
resentation to identify optimal training programming 
without requiring any simulations. Finally, we truly 
believe  that the ML approach is not an alternative to 
FFMs, but rather a way to take advantage of models 
based on control theory. In this sense, ensemble learn-
ing should be studied in the specific context of ath-
letic performance modelling, using the actual scientific 
knowledge within hypothesis-free ML models.
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