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ϵ-greedy automated indentation of cementitious materials for phase mechanical properties determination

Introduction

Indentation is one of the primary techniques used to assess the mechanical properties of materials at various scales and can typically help design new materials or assess materials' durability against degradation. Microindentation and nanoindentation have been extensively developed during the last decades to measure the elastic [START_REF] Mayo | Mechanical properties of nanophase TiO 2 as determined by nanoindentation[END_REF][START_REF] Pharr | Measurement of Thin Film Mechanical Properties Using Nanoindentation[END_REF] and viscoelastic properties of material phases [START_REF] Fischer-Cripps | A simple phenomenological approach to nanoindentation creep[END_REF][START_REF] Cheng | Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids[END_REF][START_REF] Jones | Short-term creep of cement paste during nanoindentation[END_REF] or hardening properties [START_REF] Meng | Identification of material properties using indentation test and shape manifold learning approach[END_REF]. Load ranges of around some millinewtons, resp. nanonewtons, employed in microindentation, resp. nanoindentation, typically induce penetration depth of some hundreds of nanometers or micrometers, resp. tens of nanometers, providing information about the local mechanical properties. Hardness, indentation modulus [START_REF] Oliver | An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[END_REF], and eventually parameters influencing time-dependent properties such as the creep modulus can be derived based on the indentation measurements [START_REF] Trtik | A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments[END_REF][START_REF] Němeček | Creep effects in nanoindentation of hydrated phases of cement pastes[END_REF][START_REF] Zhu | Nanoindentation mapping of mechanical properties of cement paste and natural rocks[END_REF][START_REF] Vandamme | Nanoindentation investigation of creep properties of calcium silicate hydrates[END_REF].

The grid indentation technique, consisting of performing a regular grid of hundreds or thousands of indents over of representative area of heterogeneous material, has been employed to supplement single indentation results [START_REF] Constantinides | Grid indentation analysis of composite microstructure and mechanics: Principles and validation[END_REF][START_REF] Nohava | Comparison of Isolated Indentation and Grid Indentation Methods for HVOF Sprayed Cermets[END_REF]. Grid indentation measurements usually take some tens of hours under precisely-controlled experimental conditions. Using deconvolutions techniques on the outputs such as least square optimization [START_REF] Ulm | Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale[END_REF], unsupervised clustering such as k-means [START_REF] Vignesh | Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings[END_REF], hierarchical clustering [START_REF] Hilloulin | Coupling statistical indentation and microscopy to evaluate micromechanical properties of materials: Application to viscoelastic behavior of irradiated mortars[END_REF] or Gaussian mixture models [START_REF] Luo | Applying grid nanoindentation and maximum likelihood estimation for N-A-S-H gel in geopolymer paste: Investigation and discussion[END_REF], the relative proportions of the various phases and their main mechanical properties can be inferred. The phase properties can then help monitor the material evolution during manufacturing or any eventual degradation. The elastic or viscoelastic properties of the phases also help assess the global material properties using analytical or numerical homogenization techniques [START_REF] Constantinides | The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[END_REF][START_REF] Sorelli | The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques[END_REF][START_REF] Fu | Comparison of mechanical properties of C-S-H and portlandite between nano-indentation experiments and a modelling approach using various simulation techniques[END_REF][START_REF] Zhang | Experimentally informed micromechanical modelling of cement paste : An approach coupling X-ray computed tomography and statistical nanoindentation[END_REF] or the full-field measurement approach [START_REF] Gaillard | Grid nano-indentation as full-field measurements[END_REF].

Importantly, some phases in heterogeneous materials might need specific attention, as they constitute the most sensitive phase subjected to mechanical properties evolutions and alterations. For example, in cementitious materials such as concrete, the major phases at a plurimicrometric scale are aggregate, sand and cement paste. Cement paste evolution attracts most of the researchers' attention as it might develop more of less stiffness and strength during hydration, depending on the initial mix or because of the various degradations it might face due to adverse environmental conditions such as leaching [START_REF] Constantinides | The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[END_REF][START_REF] Brown | Use of nanoindentation phase characterization and homogenization to estimate the elastic modulus of heterogeneously decalcified cement pastes[END_REF], shrinkage [START_REF] Hilloulin | Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials[END_REF], sulfate attack [START_REF] Zhang | Performance evolution of the interfacial transition zone (ITZ) in recycled aggregate concrete under external sulfate attacks and dry-wet cycling[END_REF][START_REF] Sotiriadis | Physical-chemicalmechanical quantitative assessment of the microstructural evolution in Portland-limestone cement pastes exposed to magnesium sulfate attack at low temperature[END_REF], chloride ingress [START_REF] Chu | Vickers hardness distribution and prediction model of cement pastes corroded by sulfate under the coexistence of electric field and chloride[END_REF] or irradiations [START_REF] Robira | Multi-scale investigation of the effect of γ irradiations on the mechanical properties of cementitious materials[END_REF]. At the nanoscale, cement paste comprises several hydrated phases, the major ones being calcium silicate hydrates (C-S-H) gel and portlandite crystals. Depending on the nature of the phenomenon inducing mechanical properties changes, one of the two phases is generally altered first, e.g., portlandite concerning leaching for example, or, for instance, C-S-H during the initial hydration depending on the mix composition and the relative proportion of supplementary cementitious materials used to lower the environmental impact of concrete [START_REF] Youssef Namnoum | Determination of the origin of the strength regain after self-healing of binary and ternary cementitious materials including slag and metakaolin[END_REF]. For this reason, more precise information about a phase of interest can be required. Additional tests have been coupled with indentation, such as imaging [START_REF] Hilloulin | Coupling statistical indentation and microscopy to evaluate micromechanical properties of materials: Application to viscoelastic behavior of irradiated mortars[END_REF][START_REF] Voltolini | Coupling dynamic in situ X-ray micro-imaging and indentation: A novel approach to evaluate micromechanics applied to oil shale[END_REF][START_REF] Chang | Revealing the relation between microstructural heterogeneities and local mechanical properties of complex-phase steel by correlative electron microscopy and nanoindentation characterization[END_REF] or chemical analysis [START_REF] Krakowiak | Inference of the phase-tomechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials[END_REF], both at a microscale [START_REF] Wilson | The micromechanical signature of high-volume natural pozzolan concrete by combined statistical nanoindentation and SEM-EDS analyses[END_REF][START_REF] Wei | A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes[END_REF] or a macroscale [START_REF] Ying | On Phase Identification of Hardened Cement Pastes by Combined Nanoindentation and Mercury Intrusion Method[END_REF].

Although adding experimental work, these tests provide interesting information that can help refine the deconvolution and allow the identification of a phase of interest more precisely.

Besides, Bayesian approaches, based on indentation curves alone, have recently been developed to assess more precisely the mechanical properties of various phases during nanoindentation [START_REF] Fernandez-Zelaia | Estimating mechanical properties from spherical indentation using Bayesian approaches[END_REF].

To circumvent the drawbacks of grid indentation to assess the properties of one particular phase of interest in a heterogeneous material, the possibility of locating indents in a phase of interest during the indentation process, i.e., online, is investigated herein. Innovative online algorithms and, more particularly, exploration-exploitation strategies are being developed for some years for automating the speeding of specific tasks. Map exploration problems can be tackled without particular initial knowledge, for example, to guide robots exploration effectively [START_REF] Kollar | Trajectory Optimization using Reinforcement Learning for Map Exploration[END_REF][START_REF] Tai | Towards Cognitive Exploration through Deep Reinforcement Learning for Mobile Robots[END_REF]. Using artificial intelligence techniques and increasing machine knowledge during exploration [START_REF] Li | Random curiosity-driven exploration in deep reinforcement learning[END_REF], objectives, such as finding specific objects in a map or exploring this map, can be fulfilled in several environments such as households [START_REF] Li | Deep Reinforcement Learning based Automatic Exploration for Navigation in Unknown Environment[END_REF] or industrial sites [START_REF] Andersen | Towards safe reinforcement-learning in industrial grid-warehousing[END_REF].

In this study, an exploration-exploitation strategy, namely, -greedy, has been developed to locate the highest number of indents in a phase of interest during the microindentation or nanoindentation process of typical heterogeneous materials, e.g., mortar and cement paste.

According to the strategy, after a rather loose initial grid indentation test, some specific indents were gradually selected among the remaining potential indent locations. To determine those locations, the proposed algorithm is based on an -greedy strategy informed by a Gaussian process classification to determine the nature of unknown indents, and unsupervised clustering to separate the performed indents into groups related to the phases in the material. The proposed method is satisfactorily compared to grid indentation performance, e.g., the random selection of the indents.

The article is structured as follows: the first section describes the two materials used in the study, e.g., cementitious mortar and cement paste, and the numerical methods are then explained. Two versions of the algorithm are detailed to decouple the relative influence of the input parameters: one offline algorithm that can regularly check the indents nature based on microscopic information, and one online algorithm only informed by indentation curves. The results are presented in the following section. First, the convergence of the algorithm, the main parameters of the GPC and the -greedy strategy are discussed using the 'offline' algorithm.

Secondly, the efficiency of the online algorithm that considers only the unsupervised clustering of the indentation curves is then evaluated. Conclusions are finally drawn concerning the interest of these methods, and future research directions are proposed.

Materials and methods

Experimental methods

Preparation of cement paste and mortar samples

Mortar specimens and cement paste specimens were prepared using CEM I 52.5 cement and 0/4 mm calcareous sand. The mortar formulation was determined to be as representative as possible of high-performance concrete. Both formulations are reported in Table 1. After 28 days, a 1.5 cm-thick 4 × 4 cm 2 slice was cut in the center of the specimen using a precision saw. The samples were cut again to obtain a 1.5 × 2.0 × 2.0 cm 3 cubic specimen.

These two specimens were embedded in resin and automatically polished before the indentation measurements. Mortar specimen and cement paste samples were polished with Si-C paper with decreasing particle size (500, 1200, 2000, 4000 grit) using alcohol-based polishing liquid to avoid any reaction with unhydrated cement particles. Polishing times were selected from some seconds (500 paper) to around some minutes per paper (4000 paper) to limit the risk of aggregate cracking. Finally, the samples were polished using 1 µm diamond paste for 15 minutes. A root mean square of the surface roughness (Rq) of around 200 nm, resp. 80 nm, was measured for the mortar, resp. cement paste sample.

Grid indentation tests

To investigate representative surfaces of the mortar sample and the cement paste sample resp., microindentation and nanoindentation tests were performed using a Berkovitch indenter (Bruker TS 77) probe over a grid of 40 x 40 points (1600 indents), evenly spaced by 500 µm, 2 µm resp. For each indent, the load was increased linearly over time in 5 s up to 500 mN, resp.

1 mN, kept constant during the 100 s holding phase, and decreased linearly over time in 5 s.

The short loading time was selected to limit creep during this period and did not damage the sample (as checked under a microscope of an SEM after indentation). In total, the test lasted around four days to perform the entire grid, which motivates the development of a faster yet reliable method to assess the mechanical behavior of heterogeneous materials. Typical 

𝐸 𝑟 = 1 2 √ 𝜋 𝐴 𝑐 𝑆 (1) 
𝐻 𝐼𝑇 = 𝑃 𝑚𝑎𝑥 𝐴 𝑐 ( 2 
)
Where Ac is the projected contact area and S the slope of the unloading curve using Oliver and

Pharr approach [START_REF] Oliver | An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[END_REF]. No specific filtering was performed on the indentation curves to represent a general indentation acquisition.

Acquisition of indented area image and generation of representative artificial images

Photographs of the indented zone were acquired after indentation to visually identify indent location or, resp., deduce indent location, in the case of the mortar and cement paste specimens resp.

As illustrated in Fig. 2 (a), a picture of the indented zone on the mortar sample has been obtained using a Hirox RH-2000 3D microscope by merging around 200 3D reconstructed images evenly spaced along the indented area using a 140× magnification leading to a final horizontal resolution of the 2D projected image of 1.5 µm / pix that is adequate to locate the indents and assess their nature. The high proportion of sand particles of various sizes, creating an optimized granular skeleton typical of high-performance concrete, is worth noting.

As illustrated in Fig. (80µm × 80µm zone indented using a 40 × 40 matrix of 1 mN indents (indents are not visible)).

Numerical methods

Kriging

Initial values, either indent nature based on the microscopic images or indentation curves, were acquired initially before running the -greedy procedure in order to gain initial knowledge before inferring the unknown indent nature using Gaussian Process Classification. To this end, an initial regular Kriging stage has been performed with various Kriging parameters from K=2

(half of the indents were initially artificially performed) to K=20 (1/20th of the indents were selected). The initial sampling sets for the different Kriging parameters are illustrated in Fig. 3.

Considering the maximum possible number of indents being 1600 (40 x 40), the initial number of indents after the initial Kriging stage ranged from 80 (K=20) to 800 (K=2). 

a) K=2 b) K=3 c) K=4 d) K=6 e) K=8 f) K=12 g) K=16 h) K=20

Gaussian Process Classifier

After the initial Kriging stage, and regularly during the algorithm iterations, Gaussian Process (GP) classifiers were used to infer the nature of unknown indents based on the knowledge of the nature of the surrounding indents. GP classifiers [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF] are non-parametric classifiers, relevant to the resent problem as they require few examples to perform correctly. Given data points 𝑥 𝑖 from a domain X with corresponding class labels 𝑦 𝑖 in [-1; +1], one would like to predict the class membership probability for a test point x. This is achieved using a latent function 𝑓 whose value is mapped into the unit interval employing a sigmoid function 𝜎 ∶ ℝ ⟶ [0; 1], used because of its desirable mathematical properties, such that the class membership probability 𝑃(𝑦 = +1 |𝑥) can be written as σ(𝑓(𝑥)). Under some conditions , the likelihood can be written as 𝑃(𝑦 |𝑥) = σ(𝑦𝑓(𝑥)).

A GP [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF] is a stochastic process fully specified by a mean function 𝑚(𝑥) = 𝐸[𝑓(𝑥)] and a positive definite covariance function 𝑘(𝑥, 𝑥 ′ ) = 𝑉[𝑓(𝑥), 𝑓(𝑥 ′ )]. This means that a random variable 𝑓(𝑥) is associated with every 𝑥 in X , such that for any set of inputs X, the joint distribution 𝑃(𝑓 |𝑥) = 𝒩(𝑓|𝑚 0 , 𝐾) is Gaussian with mean vector 𝑚 0 and covariance matrix 𝐾, conveniently termed kernel.

The factorial likelihood being non Gaussian, the posterior over the latent values is also not Gaussian. In this paper, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian.

Assuming without loss of generality 𝑚 0 = 0, one still has to define 𝐾, whose design will enforce specific properties of the metric space of X. Kernels encode the assumptions on the function being learned by defining the 'similarity' of two 𝑥 𝑖 combined with the assumption that similar 𝑥 𝑖 should have similar target values.

Among the wide range of kernels available, the most common stationary and non-stationary kernels with a small number of parameters have been tested in this paper: the Radial Basis Function (RBF) kernel with its rational quadratic extension, the Matern one and the Dot Product kernel. The combination of Matern and Dot Product kernels, and Matern and Dot Product squared have been also evaluated.

The RBF kernel is the most commonly used kernel and also known as the 'squared exponential' kernel and is given by the following:

𝑘(𝑥 𝑖 , 𝑥 𝑗 ) = exp (- 𝑑(𝑥 𝑖 , 𝑥 𝑗 ) 2 2𝑙 2 ) (3) 
Where 𝑑(•,•) is the Euclidean distance and 𝑙 a length-scale parameter.

The matern kernel is a generalization of the RBF. It has an additional parameter that controls the smoothness of the resulting function. When set to 3/2 it ensures that the functional function is differentiable at least once, and gives:

𝑘(𝑥 𝑖 , 𝑥 𝑗 ) = (1 + √3 𝑙 𝑑(𝑥 𝑖 , 𝑥 𝑗 )) exp (- √3 𝑙 𝑑(𝑥 𝑖 , 𝑥 𝑗 )) (4) 
The RationalQuadratic kernel is given by the following:

𝑘(𝑥 𝑖 , 𝑥 𝑗 ) = (1 + 𝑑(𝑥 𝑖 , 𝑥 𝑗 ) 2 2𝛼𝑙 2 ) -𝛼 (5) 
Where 𝛼 is a scale mixture parameter.

This kernel can be seen as a scale mixture of RBF kernels with different characteristic lengthscales. It is parameterized by a length-scale parameter 𝑙 and a scale mixture parameter 𝛼 that must both be positive.Those kernels are termed stationary because they depend solely on the radial distance between 𝑥 𝑖 .

The last kernel evaluated in this study was the dot product kernel. Conversely, the dot product is a non-stationary kernel as it depends on the value of the input coordinates themselves:

𝑘(𝑥 𝑖 , 𝑥 𝑗 ) = 𝜎 0 2 + 𝑥 𝑖 • 𝑥 𝑗 ( 6 
)
This kernel is parameterized by the 𝜎 0 parameter. The dot product kernel is commonly conbined with exponentiation. For this reason, Matern + Dot Product and Matern + Dot Product 2 have been studied herein. For all tested configurations, kernel parameters were optimized during the training procedure.

-greedy algorithm for indents location selection

Prediction using indents nature identified by microscopic images as priors

The methodology diagram reported in Fig. 4 describes the algorithm that considers the indents nature identified by microscopic images (offline algorithm) as priors to predict the next indent to be performed. After an initial Kriging step, the nature of the selected indents, either the phase of interest or not, was obtained based on microscopic image analysis through greyscale thresholding in the case of the cement paste or manual annotation in the case of the mortar specimen (due to the low contrast between cement paste and sand particles). Using this information, a GP classifier was then used to infer the nature of the other indents in the indentation map. Based on this inference, the next indents to perform were selected following an -greedy strategy, i.e., 80% of the indents was selected greedily where the GPC predicted the highest probability of finding the phase of interest and 20% of indents was selected according to an exploration strategy whose influence will be discussed in the results. The nature of these indents has been assessed using microscopic images and the sequence 'indents nature verification -GPC --greedy strategy' process has been repeated during tens of steps to perform as many indents as possible in the phase of interest given the indentation zone. The main goal of this algorithm was to independently study as many parameters as possible from GPC and the -greedy strategy. The influence of these parameters will be discussed in section 3.1.

Fig. 4.

Flowchart of the -greedy algorithm for indents location selection using geometrical information.

Algorithm using indentation curves without geometrical information

The methodology diagram reported in Fig. 5 shows the principle of the full-fledged algorithm that performs online estimation of phase of interest. This algorithm could be implemented on indenters to locate as many indents as possible in a phase of interest during the indentation of a heterogeneous material. After an initial rather loose Kriging step, the nature of the selected indents was inferred using unsupervised clustering (k-means) performed on the calculated micro-mechanical properties The unsupervised algorithm inputs were Er and hmax, the maximum penetration depth for the mortar specimen and Er and HIT in the case of the mortar, resp. cement paste specimen to guarantee the convergence of the overall procedure in both cases. k-means algorithm has been randomly initialized ten times, and convergence has been obtained during the first 300 runs with a relative tolerance of 1e-4 with regards to Frobenius norm. Three classes were estimated corresponding to indents in a) the phase of interest, b) indents in the other phase and c) indents with intermediate properties, likely located at interfaces. The latter two classes were grouped considering indents should not be similar to these indents. Based on this information, a GP classifier was then used to infer the nature of all the indents in the indentation map. From this inference, the next indents to perform were selected following the same -greedy strategy as described in the previous section, i.e., 80% of the indents were selected greedily where the GPC predicted the highest probability of finding the phase of interest and 20% of indents were selected according to an exploration strategy. The nature of these indents has then been assessed using unsupervised clustering, and the overall 'indents nature verification -GPC --greedy strategy' process has been repeated during tens of steps to perform as many indents as possible in the phase of interest in the indentation zone. 

Results and discussion

3.1 Algorithm using geometrical information only

Convergence of the algorithm

The efficiency of the -greedy algorithm using indent nature given by a microscopic image has been validated for the microindentation test of the mortar sample and the nanoindentation test of the cement paste sample. As illustrated in Fig. 6, after the first initial Kriging stage that provides information about the nature of about 100 indents located on the area of interest, the proposed algorithm was able to detect zones with higher probabilities of finding indents of More specifically, in the case of the mortar sample illustrated in Fig. 6 (a), an initial Kriging stage with a sampling parameter equal to 16 leads to. 100 indents to be performed on the surface out of the 1600 possible indents. Then, the GP classifier predicted paste indents in the left part of the area, notwithstanding the relative lack of precision in the prediction (even if GPC training accuracy was around 0.850 to 0.910). The relative lack of precision of the initial prediction, which was a result of a tradeoff chosen to increase execution speed, was not found to limit the overall capability of the model to find zones in the phase of interest. The algorithm then greedily located the next indents in this zone. Most of these first indents corresponded to paste indents according to the microscopic images, GPC predictions were then refined using these indents nature and more indents were performed in the uncovered area during the first iterations of the algorithm. Due to the appropriate exploration strategy, whose influence will be discussed in the next section, some indents were performed in the bottom part of the area between steps 5 and 10, and in the top part of the area between 10 and 15. Because some of these exploratory indents corresponded to paste zones, GPC predictions were revised with new information and high probabilities of finding paste indents were found in some of these specific zones, leading to the testing of close areas according to the greedy strategy. Therefore, new areas containing paste were found using the exploratory strategy. Several paste zones could be found on the sample even though the maximum 'resolution' of the indented map was relatively poor and the overall area contained a small proportion of the phase of interest, e.g., cement paste, as opposed to the other phase sand aggregates (around 40% and 60% resp.).

In the case of the cement paste sample, the overall area contained a higher proportion of hydrates, the phase of interest, as opposed to the other phase, the clinker particles, corresponding to regularly spaced particles (69% and 31% resp.). For this reason, the algorithm effectively found where to locate indents corresponding to the phase of interest and a relatively good initial prediction of the position of clinker particles was made by GPC after the initial Kriging stage, as illustrated in Fig. 6 (b). The locations selected by the greedy strategy to perform indents corresponded to hydrate areas located far away from the clinker phases leading to a good efficiency during the first steps. Due to the exploration strategy, several initial positions were found to generate kernels of indents in the phase of interest as in the previous case. Therefore, between strep 5 and 30, three clusters containing a high proportion of the phase of interest were found, one in the top right part of the area, one in the middle left part, and one in the bottom part. Then, it was observed that the greedy exploitation strategy recommended performing indentations at the borders of these clusters leading to their extension as long as indents were performed in the phase of interest. Finally, the algorithm found most of the phase of interest and indents location was selected by the algorithm around the clinker particles, as it can be seen at steps 40 and 50.

The algorithm's efficiency has been evaluated by measuring the proportion of indents in the phase of interest relative to the ratio of indents tested in the area. As illustrated in Fig. 7, in both the mortar and cement paste cases, the proportion of indents located in the phase of interest quickly increased from the value obtained after the initial random Kriging (40% and 69% for mortar and cement paste sample, resp.) to around 58% and 88% for the mortar and cement paste samples, resp. At each step, the proportion of indents in the phase of interest, 58% and 87% on average for the mortar and cement paste resp. (for proportions of tested indents smaller than 40% and 70% resp.), was higher than the random proportion of the phase of interest in the entire area, 42% and 71% for the mortar and the cement paste, resp., as illustrated in the right-side figures. After around 60% of the indents location in the cement paste (Fig. 7 The influence of the initial Kriging parameters has been assessed by running the algorithm using several Kriging parameters (K) from K=2 to K=20 in the two cases. As illustrated in Fig. 8, in both cases, the maximum proportion of indents in the phase of interest globally increased with increasing K values. This observation can be explained because random initial Kriging relative importance decrease with increasing K values. For example, in the case K=2, half of the possible indents (800/1600) were performed randomly during the initial Kriging phase, explaining the relatively small room for improvement when the -greedy algorithm is then activated. However, it is worth noting that the exploration-exploitation algorithm could select indents in the phase of interest in both the mortar and the cement paste cases after an initial Kriging stage with K=2, because of the information gathered during the Kriging stage. The maximum proportion of indents in the phase of interest increased from K=2 to K=12 and from K=2 to K=16 in the case of the mortar specimen, resp., cement paste specimen, while the performance curves were similar for higher values of K. This highlights the increasing algorithm's efficiency, and optimal K values of around 16 can be selected. With K=16, only 6.25% of the indents were performed during the initial random Kriging stage. Then, the exploration-exploitation algorithm determines where to perform the next indents, and the proportion of the indents in the phase of interest quickly grew and remained relatively stable even though only 20 to 40% of the indents were performed (320 to 640 indents over 1600 possible indents, corresponding to a standard number of indents in statistical nanoindentation of heterogeneous materials). In the case of the mortar (Fig. 8 a), the performance of the algorithm with an initially loose Kriging (K=20) is decreased compared to K=16. There is not enough information to infer the indents' nature to start the exploration of the regions with the highest proportions of the phase of interest, and auxiliary inputs such as the phase proportion could help the algorithm initiation. 

Exploration strategy adaptation

The exploration strategy is an essential factor affecting -greedy algorithms' performance. For this reason, three strategies have been evaluated with the ratio between exploration and exploitation being constant equal to 20% (5 and 20 indents resp.): i) strategy 1: most uncertain not-of-interest phase positions (sand or clinker particles)

were selected to perform indents to obtain information at the boundary between the phase of interest and the other phase, ii) strategy 2: most uncertain phase of interest positions were selected to obtain a similar kind of information but with a higher probability of selecting positions of the phase of interest and, iii) strategy 3: particular phase of interest positions, i.e., positions where the probability of finding the phase of interest was higher than 75% or higher than 55% if no position associated with probability >75% was found, were tested randomly (conservative exploration strategy).

Strategy n°3 was considered an intermediate option between strategies 1 and 2, specifying probabilities of finding the phase of interest though keeping some randomness aspect. Recent works suggest promising exploration strategies optimization during the learning process, which would be relevant to implement in future studies [START_REF] Dabney | Temporally-Extended {\epsilon}-Greedy Exploration[END_REF][START_REF] Liu | A novel adaptive greedy strategy based on Gaussian mixture clustering for multiobjective optimization[END_REF]. As illustrated in Fig. 9 (a), the exploration strategy did not influence the algorithm's performance in the case of the mortar sample. This could be due to the relatively small number of positions with probabilities of finding the phase of interest higher than 75%. Therefore, the three exploration strategies selected similar indents. Conversely, in the case of the cement paste sample, exploration strategy 3 performed better than the other strategies as illustrated in Fig. 9 (b). This can be attributed to the effective selection of the locations to explore. They mostly corresponded to the phase of interest located relatively to positions tested by the greedy algorithm. Then, new 'seeds' can be selected on the indentation map to find new positions where the phase of interest was located, as illustrated in Fig. 6 

Kernel selection

The influence of the kernel used with the GP Classifier has been assessed. As illustrated in Fig. 10, most of the tested kernels performed well except the DotProduct kernel that did not lead to 3.2 -greedy algorithm using priors from indentation curves only

Deconvolution of indentation curves

The effectiveness of deconvolution after the initial Kriging step has been evaluated to build an algorithm that considered indentation curves to get rid of the need of geometrical information as defined in section 2.2.3.2 to predict the prior information regarding the phase of the existing indents. As illustrated in Fig. 11, the indentation curves can be correctly clustered into three groups by an unsupervised algorithm in the case where K=16 whatever the micro-mechanical properties used as inputs (Er and hmax, the maximum penetration depth for the mortar specimen and Er and HIT in the case of the mortar, resp. cement paste specimen). The clusters obtained using 100 curves (1/16 th of the 1600 curves) illustrated in Fig. 11 In the case of the cement paste specimen, as illustrated in Fig. 12 (b), the number of indents performed in the phase of interest quickly increased. Similar to the case where the microscopic nature of the indents was checked during the algorithm, the algorithm using the indentation curves only correctly advised to perform indents around the clinker particles. This performance could be explained by the distinct mechanical parameters derived from the indentation curves, which can be attributed to the different phases. The algorithm's efficiency has been reported in Fig. 13. In both the mortar and cement paste cases, the proportion of indents located in the phase of interest quickly increased from the value obtained after the initial random Kriging (41% and 70% for mortar and cement paste sample, resp.) to around 58% and 88% for the mortar and cement paste samples, resp. At any step, the proportion of indents in the phase of interest, 56% and 89% on average for the mortar and cement paste resp. (for proportions of tested indents smaller than 45% and 22 to 60% resp.), was higher than the random proportion of the phase of interest in the entire area 42% and 71% for the mortar and the cement paste resp. The drop in efficiency occurring when most indents in the phase of interest have been found was confirmed by the decrease in the proportion of indents in the phase of interest. In the cement paste case, almost all the points in the phase of interest can be found (1055 / 1137) though only 75% of the positions have been tested. Interestingly, as illustrated in Fig. 13, the proportion of indents in the phase of interest, was almost always higher than the random proportion of the phase of interest in the indented area. This observation highlights the performance of the proposed algorithm. 

Conclusions

The main objective of the present work was to demonstrate the interest of -greedy strategies to automatically select the location of indents to perform during a microindentation or nanoindentation process. Two strategies have been tested: i) an offline algorithm using geometrical information only to infer the next indent location using microscopically identified indents nature and ii) an online algorithm based only on available indentation curves to infer indents nature using unsupervised clustering to feed the -greedy algorithm that selects the next indents to perform. Both algorithms have been tested on cementitious materials, namely, a mortar specimen composed of two major phases, e.g. cement paste and sand, indented with a 500 mN load, and a cement paste specimen composed of hydrates and anhydrous clinker particles indented with a 1 mN load. The main results can be summarized as follows:

-After an initial random Kriging stage giving information about the nature of around 100 indents, -greedy strategy led to the selection of indents mostly located in the phase of interest during tens of iterations.

-The proportion of indents in the phase of interest considerably increased with the use of -greedy strategies. In the case of the mortar specimen, it increased from 40% to 60% (considering the cement paste as the phase of interest). In the case of the cement paste specimen, the proportion of hydrates within the indents rose from 70% to almost 90%.

-The best parameters associated with the algorithm were found for both samples, and both the exploration strategy and the Gaussian process (GP) classifier kernel's nature can impact the algorithm's efficiency.

-Optimal initial Kriging parameters leading to the best convergence of the algorithm equal to 16, i.e., 1/16 th of the possible indents are performed initially, provided sufficient information to deconvolve the indentation curves using an unsupervised clustering algorithm.

-The algorithm's efficiency is only slightly affected by using indentation curves only compared to using geometrical information.

Therefore, the proposed method can be successfully applied to select indents in a phase of interest during indentation experiments. By allowing the indentation procedure to be more effective, the proposed approach may open up novel research paths regarding the fast and accurate assessment of the mechanical properties of particular phases of interest in heterogeneous materials during, for example, time-dependant evolutions or after degradation.

Several research paths might be investigated to increase the algorithm performance, like initial knowledge usage (phase proportions) that could help decrease the need for initial Kriging, enhance initial GPC predictions and adapt the stategy to refine the mechanical properties of the phases.
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 11 Fig. 11. Deconvolution results of the indentation curves after the initial Kriging step: a) mortar
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 13 Fig. 13. Evolution of indents in the phase of interest over time using the online algorithm: a)

  

  

  

Table 1 .

 1 Mortar and cement paste compositions (kg / m 3 )

	Specimen	Cement 0/4 Sand Water	w/c ratio
	Mortar	566	1344	270	0.43
	Cement paste 1338	0	575	0.43
	One mortar and one cement paste prisms with dimensions 4 × 4 × 16 cm 3 were cast in
	polypropylene molds to avoid any presence of metallic compounds from the molds. After one
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Proportion of indents in the phase of interest (POI) is reported at each step.

In the case of the mortar specimen (Fig. 12 (a)), the initial inference of the GP classifier based on the indentation curves corresponded well with the microscopic observations obtained after the indentation tests. Using the inference, the -greedy procedure could find potential positions of the phase of interest within the indented map. Several potential positions of the phase of interest were selected during the first 10 iterations, then some of these zones were extended performing new indents (top right part, middle left part and bottom part), and after 35 steps, most of the largest zones including the phase of interest were found. Therefore, even though the clustering predictions did not coincide with the nature of the indents inferred from