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ABSTRACT  12 

Microindentation and nanoindentation tests are very useful to assess the micromechanical 13 

properties of materials. However, statistical indentation tests require large matrices of indents 14 

for heterogeneous materials, which can be time-consuming. Given that specific properties of 15 

only one phase of interest can be looked for, a novel procedure is proposed to locate indents 16 

automatically. The procedure uses an –greedy strategy to determine the next indents to 17 

perform. The strategy is informed by the nature of predicted indents using unsupervised 18 

clustering of the indentation curves and Gaussian Process Classification. The influence of 19 

several parameters has been assessed, and the best combination performance has been 20 

quantified in the case of the microindentation of a cementitious mortar sample (500 mN) and 21 

the nanoindentation of a cement paste (1 mN). The proportion of indents in the phase of interest 22 

increased by around 20% in both cases, paving the way for faster indentation experiments. 23 
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HIGHLIGHTS 24 

 –greedy strategies can automatically locate the next indents to perform in a phase of 25 

interest during indentation. 26 

 The technique is used for cementitious materials at the micro- and the nanoscale. 27 

 The proportion of indents in the phase of interest can increase by around 20%. 28 

 Indentation curves are interpreted by unsupervised learning and Gaussian processes. 29 

 The algorithm’s parameters can be tuned to increase the global performance. 30 

KEYWORDS  31 

Indentation; Machine Learning; Phase properties; –greedy strategy; Material Characterization; 32 

Cementitious materials 33 

1. Introduction 34 

Indentation is one of the primary techniques used to assess the mechanical properties of 35 

materials at various scales and can typically help design new materials or assess materials’ 36 

durability against degradation. Microindentation and nanoindentation have been extensively 37 

developed during the last decades to measure the elastic [1,2] and viscoelastic properties of 38 

material phases [3–5] or hardening properties [6]. Load ranges of around some millinewtons, 39 

resp. nanonewtons, employed in microindentation, resp. nanoindentation, typically induce 40 

penetration depth of some hundreds of nanometers or micrometers, resp. tens of nanometers, 41 

providing information about the local mechanical properties. Hardness, indentation modulus 42 

[7], and eventually parameters influencing time-dependent properties such as the creep modulus 43 

can be derived based on the indentation measurements [8–11]. 44 

The grid indentation technique, consisting of performing a regular grid of hundreds or 45 

thousands of indents over of representative area of heterogeneous material, has been employed 46 
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to supplement single indentation results [12,13]. Grid indentation measurements usually take 47 

some tens of hours under precisely-controlled experimental conditions. Using deconvolutions 48 

techniques on the outputs such as least square optimization [14], unsupervised clustering such 49 

as k-means [15], hierarchical clustering [16] or Gaussian mixture models [17], the relative 50 

proportions of the various phases and their main mechanical properties can be inferred. The 51 

phase properties can then help monitor the material evolution during manufacturing or any 52 

eventual degradation. The elastic or viscoelastic properties of the phases also help assess the 53 

global material properties using analytical or numerical homogenization techniques [18–21] or 54 

the full-field measurement approach [22]. 55 

Importantly, some phases in heterogeneous materials might need specific attention, as they 56 

constitute the most sensitive phase subjected to mechanical properties evolutions and 57 

alterations. For example, in cementitious materials such as concrete, the major phases at a pluri-58 

micrometric scale are aggregate, sand and cement paste. Cement paste evolution attracts most 59 

of the researchers’ attention as it might develop more of less stiffness and strength during 60 

hydration, depending on the initial mix or because of the various degradations it might face due 61 

to adverse environmental conditions such as leaching [18,23], shrinkage [24], sulfate attack 62 

[25,26], chloride ingress [27] or irradiations [28]. At the nanoscale, cement paste comprises 63 

several hydrated phases, the major ones being calcium silicate hydrates (C-S-H) gel and 64 

portlandite crystals. Depending on the nature of the phenomenon inducing mechanical 65 

properties changes, one of the two phases is generally altered first, e.g., portlandite concerning 66 

leaching for example, or, for instance, C-S-H during the initial hydration depending on the mix 67 

composition and the relative proportion of supplementary cementitious materials used to lower 68 

the environmental impact of concrete [29]. For this reason, more precise information about a 69 

phase of interest can be required. Additional tests have been coupled with indentation, such as 70 

imaging [16,30,31] or chemical analysis [32], both at a microscale [33,34] or a macroscale [35]. 71 
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Although adding experimental work, these tests provide interesting information that can help 72 

refine the deconvolution and allow the identification of a phase of interest more precisely. 73 

Besides, Bayesian approaches, based on indentation curves alone, have recently been developed 74 

to assess more precisely the mechanical properties of various phases during nanoindentation 75 

[36]. 76 

To circumvent the drawbacks of grid indentation to assess the properties of one particular phase 77 

of interest in a heterogeneous material, the possibility of locating indents in a phase of interest 78 

during the indentation process, i.e., online, is investigated herein. Innovative online algorithms 79 

and, more particularly, exploration-exploitation strategies are being developed for some years 80 

for automating the speeding of specific tasks. Map exploration problems can be tackled without 81 

particular initial knowledge, for example, to guide robots exploration effectively [37,38]. Using 82 

artificial intelligence techniques and increasing machine knowledge during exploration [39], 83 

objectives, such as finding specific objects in a map or exploring this map, can be fulfilled in 84 

several environments such as households [40] or industrial sites [41].  85 

In this study, an exploration–exploitation strategy, namely, –greedy, has been developed to 86 

locate the highest number of indents in a phase of interest during the microindentation or 87 

nanoindentation process of typical heterogeneous materials, e.g., mortar and cement paste. 88 

According to the strategy, after a rather loose initial grid indentation test, some specific indents 89 

were gradually selected among the remaining potential indent locations. To determine those 90 

locations, the proposed algorithm is based on an –greedy strategy informed by a Gaussian 91 

process classification to determine the nature of unknown indents, and unsupervised clustering 92 

to separate the performed indents into groups related to the phases in the material. The proposed 93 

method is satisfactorily compared to grid indentation performance, e.g., the random selection 94 

of the indents.  95 
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The article is structured as follows: the first section describes the two materials used in the 96 

study, e.g., cementitious mortar and cement paste, and the numerical methods are then 97 

explained. Two versions of the algorithm are detailed to decouple the relative influence of the 98 

input parameters: one offline algorithm that can regularly check the indents nature based on 99 

microscopic information, and one online algorithm only informed by indentation curves. The 100 

results are presented in the following section. First, the convergence of the algorithm, the main 101 

parameters of the GPC and the –greedy strategy are discussed using the ‘offline’ algorithm. 102 

Secondly, the efficiency of the online algorithm that considers only the unsupervised clustering 103 

of the indentation curves is then evaluated. Conclusions are finally drawn concerning the 104 

interest of these methods, and future research directions are proposed. 105 

2. Materials and methods 106 

2.1 Experimental methods 107 

2.1.1 Preparation of cement paste and mortar samples 108 

Mortar specimens and cement paste specimens were prepared using CEM I 52.5 cement and 109 

0/4 mm calcareous sand. The mortar formulation was determined to be as representative as 110 

possible of high-performance concrete. Both formulations are reported in Table 1.  111 

 112 

Table 1. Mortar and cement paste compositions (kg / m3) 113 

Specimen Cement 0/4 Sand  Water  w/c ratio 

Mortar 566 1344 270 0.43 

Cement paste 1338 0 575 0.43 

 114 

One mortar and one cement paste prisms with dimensions 4 × 4 × 16 cm3 were cast in 115 

polypropylene molds to avoid any presence of metallic compounds from the molds. After one 116 
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day of curing under sealed conditions in an air-conditioned room at a temperature of 20°C and 117 

90% RH, the specimens were unmolded and further cured in lime-saturated water until the age 118 

of 28 days. 119 

After 28 days, a 1.5 cm-thick 4 × 4 cm2 slice was cut in the center of the specimen using a 120 

precision saw. The samples were cut again to obtain a 1.5 × 2.0 × 2.0 cm3 cubic specimen. 121 

These two specimens were embedded in resin and automatically polished before the indentation 122 

measurements. Mortar specimen and cement paste samples were polished with Si-C paper with 123 

decreasing particle size (500, 1200, 2000, 4000 grit) using alcohol-based polishing liquid to 124 

avoid any reaction with unhydrated cement particles. Polishing times were selected from some 125 

seconds (500 paper) to around some minutes per paper (4000 paper) to limit the risk of 126 

aggregate cracking. Finally, the samples were polished using 1 µm diamond paste for 15 127 

minutes. A root mean square of the surface roughness (Rq) of around 200 nm, resp. 80 nm, was 128 

measured for the mortar, resp. cement paste sample.  129 

 130 

2.1.2 Grid indentation tests 131 

To investigate representative surfaces of the mortar sample and the cement paste sample resp., 132 

microindentation and nanoindentation tests were performed using a Berkovitch indenter 133 

(Bruker TS 77) probe over a grid of 40 x 40 points (1600 indents), evenly spaced by 500 µm, 134 

2 µm resp. For each indent, the load was increased linearly over time in 5 s up to 500 mN, resp. 135 

1 mN, kept constant during the 100 s holding phase, and decreased linearly over time in 5 s. 136 

The short loading time was selected to limit creep during this period and did not damage the 137 

sample (as checked under a microscope of an SEM after indentation). In total, the test lasted 138 

around four days to perform the entire grid, which motivates the development of a faster yet 139 

reliable method to assess the mechanical behavior of heterogeneous materials. Typical 140 
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indentation curves of the two major phases in the mortar sample and the cement paste samples 141 

are represented in Fig. 1. 142 

 143 

a) 

 

b) 

 

Fig. 1. Typical indentation curves: a) cement paste and sand phases in the mortar specimen, b) 144 

hydrate and unhydrated particle in the cement paste.. 145 

 146 

Reduced modulus Er and indentation hardness HIT were calculated according to equations (1) 147 

and (2): 148 
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 𝐸𝑟 =
1
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√

𝜋

𝐴𝑐
𝑆  (1) 

 149 

 𝐻𝐼𝑇 =
𝑃𝑚𝑎𝑥

𝐴𝑐
  (2) 

Where Ac is the projected contact area and S the slope of the unloading curve using Oliver and 150 

Pharr approach [7]. No specific filtering was performed on the indentation curves to represent 151 

a general indentation acquisition. 152 

 153 

2.1.3 Acquisition  of indented area image and generation of representative artificial images 154 

Photographs of the indented zone were acquired after indentation to visually identify indent 155 

location or, resp., deduce indent location, in the case of the mortar and cement paste specimens 156 

resp.  157 

As illustrated in Fig. 2 (a), a picture of the indented zone on the mortar sample has been obtained 158 

using a Hirox RH-2000 3D microscope by merging around 200 3D reconstructed images evenly 159 

spaced along the indented area using a 140× magnification leading to a final horizontal 160 

resolution of the 2D projected image of 1.5 µm / pix that is adequate to locate the indents and 161 

assess their nature. The high proportion of sand particles of various sizes, creating an optimized 162 

granular skeleton typical of high-performance concrete, is worth noting. 163 

As illustrated in Fig. 2 (b), a SEM image of the cement paste sample was obtained using an 164 

acceleration voltage of 15 kV and a working distance of 7 mm and a low vacuum pressure of 165 

60 Pa to limit the risk of cracking. A relatively large light gray unhydrated particles was found 166 

in the left part of the indented zone, while four smaller unhydrated particles were located in the 167 

right part of the image. Most of the indents were not visible due to the relatively small load 168 
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compared to the roughness of the sample, except some small imprints on the unhydrated 169 

particles.  170 

 171 

 172 

a) 

 

 

b) 
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Fig. 2. Microscopic image of the samples: a) 2D optical microscopic image of mortar sample 173 

with one sand particle labeled 1 (1cm × 1cm zone indented using a 40 × 40 matrix of 500mN 174 

indents), b) SEM image of cement paste sample with one unhydrated particle labeled 2 175 

(80µm × 80µm zone indented using a 40 × 40 matrix of 1 mN indents (indents are not visible)). 176 

 177 

2.2 Numerical methods  178 

2.2.1 Kriging 179 

Initial values, either indent nature based on the microscopic images or indentation curves, were 180 

acquired initially before running the -greedy procedure in order to gain initial knowledge 181 

before inferring the unknown indent nature using Gaussian Process Classification. To this end, 182 

an initial regular Kriging stage has been performed with various Kriging parameters from K=2 183 

(half of the indents were initially artificially performed) to K=20 (1/20th of the indents were 184 

selected). The initial sampling sets for the different Kriging parameters are illustrated in Fig. 3. 185 

Considering the maximum possible number of indents being 1600 (40 x 40), the initial number 186 

of indents after the initial Kriging stage ranged from 80 (K=20) to 800 (K=2). 187 

a) K=2 

 

b) K=3 

 

c) K=4 d) K=6 
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e) K=8 

 

f) K=12 

 

g) K=16 

 

h) K=20 

 

Fig. 3. Initial sampling sets of indents performed on the sample using various Kriging 188 

parameters (dense to loose Kriging): a) K=2, b) K=3, c) K=4, d) K=6, e) K=8, f) K=12, g) 189 

K=16, h) K=20. 190 

 191 

2.2.2 Gaussian Process Classifier  192 

After the initial Kriging stage, and regularly during the algorithm iterations, Gaussian Process 193 

(GP) classifiers were used to infer the nature of unknown indents based on the knowledge of 194 

the nature of the surrounding indents. GP classifiers [42] are non-parametric classifiers, relevant 195 

to the resent problem as they require few examples to perform correctly. Given data points 𝑥𝑖 196 
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from a domain X with corresponding class labels 𝑦𝑖 in [−1; +1], one would like to predict the 197 

class membership probability for a test point x. This is achieved using a latent function 𝑓 whose 198 

value is mapped into the unit interval employing a sigmoid function 𝜎 ∶ ℝ ⟶  [0; 1], used 199 

because of its desirable mathematical properties, such that the class membership probability 200 

𝑃(𝑦 = +1 |𝑥) can be written as σ(𝑓(𝑥)). Under some conditions , the likelihood can be written 201 

as 𝑃(𝑦 |𝑥) = σ(𝑦𝑓(𝑥)). 202 

A GP [42] is a stochastic process fully specified by a mean function 𝑚(𝑥) = 𝐸[𝑓(𝑥)] and a 203 

positive definite covariance function 𝑘(𝑥, 𝑥′) = 𝑉[𝑓(𝑥), 𝑓(𝑥′)]. This means that a random 204 

variable 𝑓(𝑥) is associated with every 𝑥 in X , such that for any set of inputs X, the joint 205 

distribution 𝑃(𝑓 |𝑥) = 𝒩(𝑓|𝑚0, 𝐾) is Gaussian with mean vector 𝑚0 and covariance matrix 206 

𝐾, conveniently termed kernel. 207 

The factorial likelihood being non Gaussian, the posterior over the latent values is also not 208 

Gaussian. In this paper, the Laplace approximation is used for approximating the non-Gaussian 209 

posterior by a Gaussian. 210 

Assuming without loss of generality 𝑚0 = 0, one still has to define 𝐾, whose design will 211 

enforce specific properties of the metric space of X. Kernels encode the assumptions on the 212 

function being learned by defining the ‘similarity’ of two 𝑥𝑖 combined with the assumption that 213 

similar 𝑥𝑖 should have similar target values.  214 

Among the wide range of kernels available, the most common stationary and non-stationary 215 

kernels with a small number of parameters have been tested in this paper: the Radial Basis 216 

Function (RBF) kernel with its rational quadratic extension, the Matern one and the Dot Product 217 

kernel. The combination of Matern and Dot Product kernels, and Matern and Dot Product 218 

squared have been also evaluated. 219 

The RBF kernel is the most commonly used kernel and also known as the ‘squared exponential’ 220 

kernel and is given by the following: 221 
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 𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
𝑑(𝑥𝑖, 𝑥𝑗)2

2𝑙2
) (3) 

Where 𝑑(∙,∙) is the Euclidean distance and 𝑙 a length-scale parameter. 222 

The matern kernel is a generalization of the RBF. It has an additional parameter that controls 223 

the smoothness of the resulting function. When set to 3/2 it ensures that the functional function 224 

is differentiable at least once, and gives: 225 

 

 
𝑘(𝑥𝑖, 𝑥𝑗) = (1 +

√3

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)) exp (−

√3

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)) (4) 

 226 

The RationalQuadratic kernel is given by the following: 227 

 𝑘(𝑥𝑖 , 𝑥𝑗) = (1 +
𝑑(𝑥𝑖, 𝑥𝑗)2

2𝛼𝑙2
)

−𝛼

 (5) 

Where 𝛼 is a scale mixture parameter. 228 

 229 

This kernel can be seen as a scale mixture of RBF kernels with different characteristic length-230 

scales. It is parameterized by a length-scale parameter 𝑙 and a scale mixture parameter 𝛼 that 231 

must both be positive.Those kernels are termed stationary because they depend solely on the 232 

radial distance between 𝑥𝑖.  233 

The last kernel evaluated in this study was the dot product kernel. Conversely, the dot product 234 

is a non-stationary kernel as it depends on the value of the input coordinates themselves: 235 

 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎0
2 + 𝑥𝑖 ∙ 𝑥𝑗 (6) 

This kernel is parameterized by the 𝜎0 parameter. The dot product kernel is commonly conbined 236 

with exponentiation. For this reason, Matern + Dot Product and Matern + Dot Product2 have 237 

been studied herein. For all tested configurations, kernel parameters were optimized during the 238 

training procedure. 239 

 240 
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2.2.3 –greedy algorithm for indents location selection 241 

2.2.3.1 Prediction using indents nature identified by microscopic images as priors 242 

The methodology diagram reported in Fig. 4 describes the algorithm that considers the indents 243 

nature identified by microscopic images (offline algorithm) as priors to predict the next indent 244 

to be performed. After an initial Kriging step, the nature of the selected indents, either the phase 245 

of interest or not, was obtained based on microscopic image analysis through greyscale 246 

thresholding in the case of the cement paste or manual annotation in the case of the mortar 247 

specimen (due to the low contrast between cement paste and sand particles). Using this 248 

information, a GP classifier was then used to infer the nature of the other indents in the 249 

indentation map. Based on this inference, the next indents to perform were selected following 250 

an –greedy strategy, i.e., 80% of the indents was selected greedily where the GPC predicted 251 

the highest probability of finding the phase of interest and 20% of indents was selected 252 

according to an exploration strategy whose influence will be discussed in the results. The nature 253 

of these indents has been assessed using microscopic images and the sequence ‘indents nature 254 

verification – GPC – -greedy strategy’ process has been repeated during tens of steps to 255 

perform as many indents as possible in the phase of interest given the indentation zone. The 256 

main goal of this algorithm was to independently study as many parameters as possible from 257 

GPC and the -greedy strategy. The influence of these parameters will be discussed in section 258 

3.1. 259 
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 260 

Fig. 4. Flowchart of the –greedy algorithm for indents location selection using geometrical 261 

information. 262 

2.2.3.2 Algorithm using indentation curves without geometrical information 263 

The methodology diagram reported in Fig. 5 shows the principle of the full-fledged algorithm 264 

that performs online estimation of phase of interest. This algorithm could be implemented on 265 
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indenters to locate as many indents as possible in a phase of interest during the indentation of a 266 

heterogeneous material. After an initial rather loose Kriging step, the nature of the selected 267 

indents was inferred using unsupervised clustering (k-means) performed on the calculated 268 

micro-mechanical properties The unsupervised algorithm inputs were Er and hmax, the 269 

maximum penetration depth for the mortar specimen and Er and HIT in the case of the mortar, 270 

resp. cement paste specimen to guarantee the convergence of the overall procedure in both 271 

cases. k-means algorithm has been randomly initialized ten times, and convergence has been 272 

obtained during the first 300 runs with a relative tolerance of 1e-4 with regards to Frobenius 273 

norm. Three classes were estimated corresponding to indents in a) the phase of interest, b) 274 

indents in the other phase and c) indents with intermediate properties, likely located at 275 

interfaces. The latter two classes were grouped considering indents should not be similar to 276 

these indents. Based on this information, a GP classifier was then used to infer the nature of all 277 

the indents in the indentation map. From this inference, the next indents to perform were 278 

selected following the same –greedy strategy as described in the previous section, i.e., 80% of 279 

the indents were selected greedily where the GPC predicted the highest probability of finding 280 

the phase of interest and 20% of indents were selected according to an exploration strategy. The 281 

nature of these indents has then been assessed using unsupervised clustering, and the overall 282 

‘indents nature verification – GPC – -greedy strategy’ process has been repeated during tens 283 

of steps to perform as many indents as possible in the phase of interest in the indentation zone. 284 
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 285 

Fig. 5. Flowchart of the –greedy algorithm for indents location selection using indentation 286 

curves. 287 

 288 
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3. Results and discussion 289 

3.1 Algorithm using geometrical information only 290 

3.1.1 Convergence of the algorithm 291 

The efficiency of the -greedy algorithm using indent nature given by a microscopic image has 292 

been validated for the microindentation test of the mortar sample and the nanoindentation test 293 

of the cement paste sample. As illustrated in Fig. 6, after the first initial Kriging stage that 294 

provides information about the nature of about 100 indents located on the area of interest, the 295 

proposed algorithm was able to detect zones with higher probabilities of finding indents of 296 

interest. The exploration-exploitation strategy automatically then selected the next indents to 297 

perform. The algorithm has been run during several steps, typically from 20 to 50 steps, 298 

selecting 20 indents (1.25% of the total number of indents) greedily at each step. Those indents 299 

are selected as the ones with the highest probability of locating paste or hydrates areas in the 300 

case of the mortar sample, cement paste sample, resp. Additionally, 5 indents have been selected 301 

according to the exploration strategy.  302 

a) 

Step 1 

40% in POI 

 

Step 10 

58.8% in POI 
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Step 20 

56.1% in POI 

 

  

Step 30 

56.2% in POI 

 

Step 40 

56.0% in POI 

 

Step 50 

55.6% in POI 

 

b) 

Step 1 

69.0% in POI 
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Step 10 

84.9% in POI 

 

Step 20 

87.8% in POI 

 

Step 30 

86.5% in POI 

 

Step 40 

86.5% in POI 

 

Step 50 

84.6% in POI 

 

Legend:  

 
indent in the phase of interest 
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indent in the other phase 

 
indents in the POI selected by the greedy strategy at a given step 

 
indents in the POI selected by the exploration strategy at a given step 

 
indents out of the POI selected by the greedy strategy at a given step 

 
indents out of the POI selected by the exploration strategy at a given step 

Fig. 6. Maps of the selected indents over time with Kriging parameter equal to 16, GPC kernel 303 

Matern + DotProduct: a) mortar sample, b) cement paste sample. Proportion of indents in the 304 

phase of interest (POI) is reported at each step. 305 

 306 

More specifically, in the case of the mortar sample illustrated in Fig. 6 (a), an initial Kriging 307 

stage with a sampling parameter equal to 16 leads to. 100 indents to be performed on the surface 308 

out of the 1600 possible indents. Then, the GP classifier predicted paste indents in the left part 309 

of the area, notwithstanding the relative lack of precision in the prediction (even if GPC training 310 

accuracy was around 0.850 to 0.910). The relative lack of precision of the initial prediction, 311 

which was a result of a tradeoff chosen to increase execution speed, was not found to limit the 312 

overall capability of the model to find zones in the phase of interest. The algorithm then greedily 313 

located the next indents in this zone. Most of these first indents corresponded to paste indents 314 

according to the microscopic images, GPC predictions were then refined using these indents 315 

nature and more indents were performed in the uncovered area during the first iterations of the 316 

algorithm. Due to the appropriate exploration strategy, whose influence will be discussed in the 317 

next section, some indents were performed in the bottom part of the area between steps 5 and 318 

10, and in the top part of the area between 10 and 15. Because some of these exploratory indents 319 

corresponded to paste zones, GPC predictions were revised with new information and high 320 
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probabilities of finding paste indents were found in some of these specific zones, leading to the 321 

testing of close areas according to the greedy strategy. Therefore, new areas containing paste 322 

were found using the exploratory strategy. Several paste zones could be found on the sample 323 

even though the maximum ‘resolution’ of the indented map was relatively poor and the overall 324 

area contained a small proportion of the phase of interest, e.g., cement paste, as opposed to the 325 

other phase sand aggregates (around 40% and 60% resp.). 326 

In the case of the cement paste sample, the overall area contained a higher proportion of 327 

hydrates, the phase of interest, as opposed to the other phase, the clinker particles, 328 

corresponding to regularly spaced particles (69% and 31% resp.). For this reason, the algorithm 329 

effectively found where to locate indents corresponding to the phase of interest and a relatively 330 

good initial prediction of the position of clinker particles was made by GPC after the initial 331 

Kriging stage, as illustrated in Fig. 6 (b). The locations selected by the greedy strategy to 332 

perform indents corresponded to hydrate areas located far away from the clinker phases leading 333 

to a good efficiency during the first steps. Due to the exploration strategy, several initial 334 

positions were found to generate kernels of indents in the phase of interest as in the previous 335 

case. Therefore, between strep 5 and 30, three clusters containing a high proportion of the phase 336 

of interest were found, one in the top right part of the area, one in the middle left part, and one 337 

in the bottom part. Then, it was observed that the greedy exploitation strategy recommended 338 

performing indentations at the borders of these clusters leading to their extension as long as 339 

indents were performed in the phase of interest. Finally, the algorithm found most of the phase 340 

of interest and indents location was selected by the algorithm around the clinker particles, as it 341 

can be seen at steps 40 and 50. 342 

The algorithm’s efficiency has been evaluated by measuring the proportion of indents in the 343 

phase of interest relative to the ratio of indents tested in the area. As illustrated in Fig. 7, in both 344 

the mortar and cement paste cases, the proportion of indents located in the phase of interest 345 
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quickly increased from the value obtained after the initial random Kriging (40% and 69% for 346 

mortar and cement paste sample, resp.) to around 58% and 88% for the mortar and cement paste 347 

samples, resp. At each step, the proportion of indents in the phase of interest, 58% and 87% on 348 

average for the mortar and cement paste resp. (for proportions of tested indents smaller than 349 

40% and 70% resp.), was higher than the random proportion of the phase of interest in the entire 350 

area, 42% and 71% for the mortar and the cement paste, resp., as illustrated in the right-side 351 

figures. After around 60% of the indents location in the cement paste (Fig. 7 b) were tested, a 352 

drop in the overall efficiency associated with highly variable instantaneous precision can be 353 

observed in the case of the cement paste (Fig. 7 b). This drop can be explained because most 354 

indents in the face of interest have been found (and the global objective fulfilled). 355 

a) 

 

b)  

 



 

24 

 

Fig. 7. Typical evolution of indents in the phase of interest over time: a) mortar, b) cement paste 356 

 357 

3.1.2 Influence of initial Kriging parameters. 358 

The influence of the initial Kriging parameters has been assessed by running the algorithm 359 

using several Kriging parameters (K) from K=2 to K=20 in the two cases. As illustrated in Fig. 360 

8, in both cases, the maximum proportion of indents in the phase of interest globally increased 361 

with increasing K values. This observation can be explained because random initial Kriging 362 

relative importance decrease with increasing K values. For example, in the case K=2, half of 363 

the possible indents (800/1600) were performed randomly during the initial Kriging phase, 364 

explaining the relatively small room for improvement when the -greedy algorithm is then 365 

activated. However, it is worth noting that the exploration-exploitation algorithm could select 366 

indents in the phase of interest in both the mortar and the cement paste cases after an initial 367 

Kriging stage with K=2, because of the information gathered during the Kriging stage.  368 
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Fig. 8. Evolution of indents in the phase of interest over time for several initial Kriging 369 

parameters : a) mortar specimen, b) cement paste specimen. 370 

 371 

The maximum proportion of indents in the phase of interest increased from K=2 to K=12 and 372 

from K=2 to K=16 in the case of the mortar specimen, resp., cement paste specimen, while the 373 

performance curves were similar for higher values of K. This highlights the increasing 374 

algorithm’s efficiency, and optimal K values of around 16 can be selected. With K=16, only 375 

6.25% of the indents were performed during the initial random Kriging stage. Then, the 376 

exploration-exploitation algorithm determines where to perform the next indents, and the 377 

proportion of the indents in the phase of interest quickly grew and remained relatively stable 378 

even though only 20 to 40% of the indents were performed (320 to 640 indents over 1600 379 

possible indents, corresponding to a standard number of indents in statistical nanoindentation 380 

of heterogeneous materials). In the case of the mortar (Fig. 8 a), the performance of the 381 

algorithm with an initially loose Kriging (K=20) is decreased compared to K=16. There is not 382 

enough information to infer the indents' nature to start the exploration of the regions with the 383 

highest proportions of the phase of interest, and auxiliary inputs such as the phase proportion 384 

could help the algorithm initiation. 385 
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3.1.3 Exploration strategy adaptation 387 

The exploration strategy is an essential factor affecting -greedy algorithms’ performance. For 388 

this reason, three strategies have been evaluated with the ratio between exploration and 389 

exploitation being constant equal to 20% (5 and 20 indents resp.):  390 

i) strategy 1: most uncertain not-of-interest phase positions (sand or clinker particles) 391 

were selected to perform indents to obtain information at the boundary between the 392 

phase of interest and the other phase,  393 

ii) strategy 2: most uncertain phase of interest positions were selected to obtain a 394 

similar kind of information but with a higher probability of selecting positions of 395 

the phase of interest and,  396 

iii) strategy 3: particular phase of interest positions, i.e., positions where the probability 397 

of finding the phase of interest was higher than 75% or higher than 55% if no 398 

position associated with probability >75% was found, were tested randomly 399 

(conservative exploration strategy). 400 

Strategy n°3 was considered an intermediate option between strategies 1 and 2, specifying 401 

probabilities of finding the phase of interest though keeping some randomness aspect. Recent 402 

works suggest promising exploration strategies optimization during the learning process, which 403 

would be relevant to implement in future studies [43,44]. As illustrated in Fig. 9 (a), the 404 

exploration strategy did not influence the algorithm’s performance in the case of the mortar 405 

sample. This could be due to the relatively small number of positions with probabilities of 406 

finding the phase of interest higher than 75%. Therefore, the three exploration strategies 407 

selected similar indents. Conversely, in the case of the cement paste sample, exploration 408 

strategy 3 performed better than the other strategies as illustrated in Fig. 9 (b). This can be 409 

attributed to the effective selection of the locations to explore. They mostly corresponded to the 410 

phase of interest located relatively to positions tested by the greedy algorithm. Then, new 411 
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‘seeds’ can be selected on the indentation map to find new positions where the phase of interest 412 

was located, as illustrated in Fig. 6 (b).  413 

a) 

 

b) 

 

Fig. 9. Evolution of indents in the phase of interest over time for several initial Kriging 414 

parameters : a) mortar sample, b) cement paste sample. 415 

 416 

3.1.4 Kernel selection  417 

The influence of the kernel used with the GP Classifier has been assessed. As illustrated in Fig. 418 

10, most of the tested kernels performed well except the DotProduct kernel that did not lead to 419 
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satisfactorily convergence in the cement paste case and led to a smaller maximum proportion 420 

of indents in the phase of interest and a slower increase of this proportion in the mortar case. 421 

Some kernels did show promising results in both cases, e.g., Matern + DotProduct and, with 422 

slightly more variable results, Matern + DotProduct2 and RationalQuadratic. For this reason, 423 

most of the simulations reported in this manuscript were performed using Matern + DotProduct 424 

or Matern + DotProduct2 kernels.  425 

 426 

a) 

 

b) 
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Fig. 10. Evolution of indents in the phase of interest over time for several kernel natures and 427 

parameters: a) mortar sample, b) cement paste sample. 428 

 429 

3.2 –greedy algorithm using priors from indentation curves only 430 

3.2.1 Deconvolution of indentation curves 431 

The effectiveness of deconvolution after the initial Kriging step has been evaluated to build an 432 

algorithm that considered indentation curves to get rid of the need of geometrical information 433 

as defined in section 2.2.3.2 to predict the prior information regarding the phase of the existing 434 

indents. As illustrated in Fig. 11, the indentation curves can be correctly clustered into three 435 

groups by an unsupervised algorithm in the case where K=16 whatever the micro-mechanical 436 

properties used as inputs (Er and hmax, the maximum penetration depth for the mortar specimen 437 

and Er and HIT in the case of the mortar, resp. cement paste specimen). The clusters obtained 438 

using 100 curves (1/16th of the 1600 curves) illustrated in Fig. 11 (b) and (d) were very similar 439 

to the clusters obtained using half of the curves in both the mortar and the cement paste cases 440 

(K=2). The reduced modulus cluster center value of the phase of interest was 30.4 GPa and 441 

30.0 GPa in the case of the mortar specimen with K=16 and K=2 resp., which corresponds to 442 

broadly reported values of cement paste properties [16] and 43.3 GPa and 43 GPa in the case 443 

of the hydrates properties in the cement paste for K=16 and K=2 resp. Although slightly 444 

elevated, these last two values were very close to each other and are in the order of magnitude 445 

of the reported values for the cement paste hydrates (high-density CSH with indentation 446 

modulus values close to 30 GPa and portlandite with values close to 42 - 44 GPa [45]). 447 

Therefore, clustering of initial curves obtained through Kriging can provide sufficient 448 

information, and the same algorithm trained once can be used for the entire -greedy procedure. 449 

In case of a very loose initial Kriging or an important number of phases, the clustering algorithm 450 
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could be trained several times during the algorithm or consider information from similar 451 

materials. 452 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 11. Deconvolution results of the indentation curves after the initial Kriging step: a) mortar 453 

sample with K=2, b) mortar sample with K=16, c) cement paste sample with K=2, d mortar 454 

sample with K=16 455 

3.2.2 Convergence of the algorithm 456 

The online algorithm, using indentation curves only, showed excellent convergence results with 457 

the aforementioned optimized parameters. After unsupervised clustering using the indentation 458 

curves as detailed in the previous paragraph, the GP classifier has been used to infer the indents’ 459 

nature based on the clustering results and the -greedy procedure has been applied to select the 460 
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next indents. As illustrated in Fig. 12, the algorithm was able to find the zones with the highest 461 

probabilities of finding indents in the phase of interest during 30 to 50 steps.  462 

a) 

Step 1 

41.0% in POI 

 

Step 10 

51.7% in POI 

 

Step 20 

54.4% in POI 

 

Step 30 

56.0% in POI 

 

Step 35 

55.8% in POI 
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b) 

Step 1 

75.0% in POI 

 

Step 10 

88.5% in POI 

 

Step 20 

87.9% in POI 

 

Step 30 

89.0% in POI 

 

Step 40 

87.4% in POI 
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Step 50 

85.7% in POI 

 

Legend:  

 

indent in the phase of interest 

 

indent in the other phase 

 

indents in the POI selected by the greedy strategy at a given step 

 

indents in the POI selected by the exploration strategy at a given step 

 

indents out of the POI selected by the greedy strategy at a given step 

 

indents out of the POI selected by the exploration strategy at a given step 

Fig. 12. Maps of the selected indents over time: a) mortar sample, b) cement paste sample. 463 

Proportion of indents in the phase of interest (POI) is reported at each step. 464 

 465 

In the case of the mortar specimen (Fig. 12 (a)), the initial inference of the GP classifier based 466 

on the indentation curves corresponded well with the microscopic observations obtained after 467 

the indentation tests. Using the inference, the -greedy procedure could find potential positions 468 

of the phase of interest within the indented map. Several potential positions of the phase of 469 

interest were selected during the first 10 iterations, then some of these zones were extended 470 

performing new indents (top right part, middle left part and bottom part), and after 35 steps, 471 

most of the largest zones including the phase of interest were found. Therefore, even though 472 

the clustering predictions did not coincide with the nature of the indents inferred from 473 
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microscopic observation, the zones investigated by the algorithm corresponded well with zones 474 

with a higher proportion of the phase of interest. 475 

In the case of the cement paste specimen, as illustrated in Fig. 12 (b), the number of indents 476 

performed in the phase of interest quickly increased. Similar to the case where the microscopic 477 

nature of the indents was checked during the algorithm, the algorithm using the indentation 478 

curves only correctly advised to perform indents around the clinker particles. This performance 479 

could be explained by the distinct mechanical parameters derived from the indentation curves, 480 

which can be attributed to the different phases. 481 

The algorithm’s efficiency has been reported in Fig. 13. In both the mortar and cement paste 482 

cases, the proportion of indents located in the phase of interest quickly increased from the value 483 

obtained after the initial random Kriging (41% and 70% for mortar and cement paste sample, 484 

resp.) to around 58% and 88% for the mortar and cement paste samples, resp. At any step, the 485 

proportion of indents in the phase of interest, 56% and 89% on average for the mortar and 486 

cement paste resp. (for proportions of tested indents smaller than 45% and 22 to 60% resp.), 487 

was higher than the random proportion of the phase of interest in the entire area 42% and 71% 488 

for the mortar and the cement paste resp. The drop in efficiency occurring when most indents 489 

in the phase of interest have been found was confirmed by the decrease in the proportion of 490 

indents in the phase of interest. In the cement paste case, almost all the points in the phase of 491 

interest can be found (1055 / 1137) though only 75% of the positions have been tested. 492 

Interestingly, as illustrated in Fig. 13, the proportion of indents in the phase of interest, was 493 

almost always higher than the random proportion of the phase of interest in the indented area. 494 

This observation highlights the performance of the proposed algorithm. 495 
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a)

 

b) 

 

Fig. 13. Evolution of indents in the phase of interest over time using the online algorithm: a) 496 

mortar sample, b) cement paste sample. 497 

4. Conclusions 498 

The main objective of the present work was to demonstrate the interest of –greedy strategies 499 

to automatically select the location of indents to perform during a microindentation or 500 

nanoindentation process. Two strategies have been tested: i) an offline algorithm using 501 

geometrical information only to infer the next indent location using microscopically identified 502 

indents nature and ii) an online algorithm based only on available indentation curves to infer 503 

indents nature using unsupervised clustering to feed the –greedy algorithm that selects the next 504 
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indents to perform. Both algorithms have been tested on cementitious materials, namely, a 505 

mortar specimen composed of two major phases, e.g. cement paste and sand, indented with a 506 

500 mN load, and a cement paste specimen composed of hydrates and anhydrous clinker 507 

particles indented with a 1 mN load. The main results can be summarized as follows: 508 

- After an initial random Kriging stage giving information about the nature of around 100 509 

indents, –greedy strategy led to the selection of indents mostly located in the phase of 510 

interest during tens of iterations. 511 

- The proportion of indents in the phase of interest considerably increased with the use of 512 

–greedy strategies. In the case of the mortar specimen, it increased from 40% to 60% 513 

(considering the cement paste as the phase of interest). In the case of the cement paste 514 

specimen, the proportion of hydrates within the indents rose from 70% to almost 90%. 515 

- The best parameters associated with the algorithm were found for both samples, and 516 

both the exploration strategy and the Gaussian process (GP) classifier kernel’s nature 517 

can impact the algorithm’s efficiency. 518 

- Optimal initial Kriging parameters leading to the best convergence of the algorithm 519 

equal to 16, i.e., 1/16th of the possible indents are performed initially, provided sufficient 520 

information to deconvolve the indentation curves using an unsupervised clustering 521 

algorithm. 522 

- The algorithm’s efficiency is only slightly affected by using indentation curves only 523 

compared to using geometrical information. 524 

Therefore, the proposed method can be successfully applied to select indents in a phase of 525 

interest during indentation experiments. By allowing the indentation procedure to be more 526 

effective, the proposed approach may open up novel research paths regarding the fast and 527 

accurate assessment of the mechanical properties of particular phases of interest in 528 

heterogeneous materials during, for example, time-dependant evolutions or after degradation. 529 
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Several research paths might be investigated to increase the algorithm performance, like initial 530 

knowledge usage (phase proportions) that could help decrease the need for initial Kriging, 531 

enhance initial GPC predictions and adapt the stategy to refine the mechanical properties of the 532 

phases. 533 
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