
HAL Id: hal-03596834
https://hal.science/hal-03596834

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relationships between computational thinking and the
quality of computer programs

Kay-Dennis Boom, Matt Bower, Jens Siemon, Amaël Arguel

To cite this version:
Kay-Dennis Boom, Matt Bower, Jens Siemon, Amaël Arguel. Relationships between computational
thinking and the quality of computer programs. Education and Information Technologies, 2022, 27,
pp.8289-8310. �10.1007/s10639-022-10921-z�. �hal-03596834�

https://hal.science/hal-03596834
https://hal.archives-ouvertes.fr

1 3

Education and Information Technologies
https://doi.org/10.1007/s10639-022-10921-z

Abstract
Computational thinking – the ability to reformulate and solve problems in ways that
can be undertaken by computers – has been heralded as a foundational capability
for the 21st Century. However, there are potentially different ways to conceptualise
and measure computational thinking, for instance, as generalized problem solving
capabilities or as applied practice during computer programming tasks, and there
is little evidence to substantiate whether higher computational thinking capabilities
using either of these measures result in better quality computer programs. This
study examines the relationship between different forms of computational thinking
and two different measures of programming quality for a group of 37 pairs of pre-
service teachers. General computational thinking capabilities were measured using
Bebras tests, while applied computational thinking processes were measured using
a Computational Thinking Behavioural Scheme. The quality of computer programs
was measured using a qualitative rubric, and programs were also assessed using the
Dr Scratch auto-grading platform. The Test of Nonverbal Intelligence (3rd edition,
TONI-3) was used to test for confounding effects. While significant correlations
between both measures of computational thinking and program quality were detect-
ed, regression analysis revealed that only applied computational thinking processes
significantly predicted program quality (general computational thinking capability
and non-verbal intelligence were not significant predictors). The results highlight
the importance of students developing applied computational thinking procedural
capabilities more than generalized computational thinking capabilities in order to
improve the quality of their computer programs.

Keywords Computational thinking · Visual programming · Scratch · Program
quality

Received: 5 September 2021 / Accepted: 27 January 2022
© The Author(s) 2022

Relationships between computational thinking and the
quality of computer programs

Kay-Dennis Boom1 · Matt Bower2 · Jens Siemon1 · Amaël Arguel3

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4161-5816
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-022-10921-z&domain=pdf&date_stamp=2022-3-2

Education and Information Technologies2

1 3

1 Introduction

1.1 Context of the problem

Since its first major appearance in 2006 by Wing, computational thinking has been
intensively discussed in the field of computer science education (Tang, Chou, & Tsai,
2020). CT can be regarded as the ability to reformulate problems in ways that com-
puters can then be used to help solve those problems (International Society for Tech-
nology in Education [ISTE] & the Computer Science Teachers Association [CSTA],
2011). The value proposition of computational thinking capabilities in a digital age is
that they can help people solve a range of problems that lead to personal satisfaction
and success, not only in the technology area but also life more broadly. However, the
conjecture that possessing computational thinking knowledge, or applying computa-
tional thinking skills while solving problems, leads to higher quality solutions, has
rarely been empirically validated.

One aspect of computational thinking that is often emphasized by advocates is
that it is not simply computer programming capability. Research about the effects
of computational thinking knowledge and/or skill can be divided into the area of
effects regarding computational problem solving (e.g. computer programming) and
effects regarding diverse non-programming problems or tasks. For example, a wide
range of problems, from finding the shortest route between map locations to design-
ing an online shopping platforms, rely on people applying computational thinking
processes while they are writing computer programs to solve those problems. How-
ever, computational thinking skills (such as problem decomposition, pattern recogni-
tion, algorithmic thinking and abstraction) can also be used to solve a range problems
that do not involve computer programming, such as finding a way through a maze
or specifying the steps in a dance sequence. While learning computer programming
relies on people utilizing and applying computational thinking as part of the process
they undertake, instructional settings will often use computational thinking founda-
tions to teach subjects and ideas that do not involve computer programming (e.g.
Bull, Garofalo, & Hguyen, 2020). In fact, a literature review conducted by Tang et al.
(2020) concluded that there were far more computational thinking effects analyzed
in subject areas not related to computer science (n = 240) than for effects related to
computer science (n = 78). However, we note that while computational thinking can
be applied in a range of disciplines, it is considered absolutely essential and funda-
mental to successful computer programming (Angeli & Giannakos, 2020; Lye &
Koh, 2014). Yet, we could not find any studies amongst the literature that examined
whether or not computational thinking capabilities did in fact relate to higher quality
computer programs.

The purpose of this study is to evaluate the extent to which general computa-
tional thinking knowledge, as well as computational thinking processes applied dur-
ing problem solving tasks, influence the quality of computer-programming solutions.
This was achieved by comparing university students’ computational knowledge (as
measured by Bebras tests) and the computational thinking processes observed while
they wrote computer programs with the quality of the final computing products that

Education and Information Technologies 3

1 3

they produced. The findings of this study have implications for how computational
thinking is framed, conceptualized and emphasized within education and society.

2 Literature review

2.1 Defining computational thinking and its subcomponents

Computational thinking is generally seen as an attitude and skill for solving prob-
lems, designing complex systems, and understanding human thoughts and behav-
iors, based on concepts fundamental to computer science (Lye & Koh, 2014). Recent
reviews of computational thinking definitions and components by Shute, Sun and
Asbell-Clarke (2017) and Ezeamuzie and Leung (2021) point out the lack of consis-
tent definition regarding what is meant by computational thinking, though with some
terms being more popular (such as abstraction, algorithm design, decomposition, and
pattern recognition as generalisation), particularly when academics devise explicit
definitions with relation to their research. Some inconsistency between definitions
of components can occur, at times not because there is disagreement about what
computational thinking involves, but because other frequently used terms such as
‘sequencing’, ‘conditional logic’ and ‘loops’ can conceptually fall within overarching
categories (in this case, ‘algorithm design’).

In this study, we will draw upon generally accepted core components of compu-
tational thinking as being comprised of problem decomposition, pattern recognition
(generalisation) algorithmic thinking and abstraction, which accords with other defi-
nitional work from the research field (Angeli & Giannakos, 2020; Cansu & Cansu,
2019; Tsai, Liang, Lee, & Hsu, 2021). We acknowledge that there are other aspects
of computational thinking that are identified in some studies, such as ‘parallelism’,
‘data collection’, and ‘modelling’, as outlined by Shute et al. (2017), however, as
Ezeamuzie and Leung (2021) points out, these sorts of other terms are relatively
uncommon, and they are not processes utilised for all computational thinking prob-
lems. Selecting problem decomposition, pattern recognition (as generalisation), algo-
rithmic thinking and abstraction as the components of computational thinking in this
study also corresponds with approaches adopted in industry (for example, Csizmadia,
Curzon, Dorling, Humphreys, Ng, Selby, & Woollard, 2015; McNicholl, 2019).

One crucial part of any computational thinking task is problem decomposition, the
division of a problem into smaller chunks. Problem decomposition has been identi-
fied as a general problem solving strategy well before the advent of computational
thinking (Anderson, 2015). In computational problems, decomposition is particularly
important because of its relationship to modularity, where the complexity of a task
can be simplified by identifying smaller parts that can each be addressed separately
(Atmatzidou & Demetriadis, 2016). For example, when programming a multimedia
story, one might first identify the different scenes that occur, and then break each
scene into a series of actions by the characters.

Another component of computational thinking is abstraction, in terms of ignoring
unimportant details and instead focusing on relevant information. From a psycho-
logical perspective, abstraction is a thought process that is used to achieve organised

Education and Information Technologies4

1 3

thinking (Shivhare & Kumar, 2016). In computational problems, abstraction enables
people to concentrate on the essential, relevant, and important parts of the context
and solution (Thalheim, 2009). For instance, when writing a multimedia story to
have characters dance about a screen, a person may recognise that their program only
needs to attend to the coordinates of the characters and their size, and the routines
that they write can be applied to numerous characters irrespective of their colours or
costumes.

A further critical thought process when engaging in computational thinking is
pattern recognition. Pattern recognition involves being able to infer rules based on
observations and apply these rules to instances that have never been encountered
(visa vi Posner & Keele, 1968). Pattern recognition is crucial when solving computa-
tional problems, because rules inferred based on observations can then be translated
into instructions that can be used to solve problems. For instance, when a person
realises that a square can be drawn by drawing a straight line and then turning 90
degrees four times, then they can easily and efficiently specify a set of instructions
for a computer (or human) to execute the process. It is important to note that pattern
recognition is closely related to abstraction as a form of ignoring irrelevant details,
but is generally regarded as distinct by virtue of distilling those aspects of a situation
that repeat or reoccur in certain ways.

The fourth computational thinking category in this study is algorithmic thinking.
An algorithm is a well-defined procedure or ‘recipe’ that defines how inputs can be
used to achieve a specific objective (Cormen et al, 2014; Sipser, 2013). Algorithmic
thinking has roots in cognitive psychology in the form of scripts, that help people
to know how to behave in social or behavioural contexts (for instance, going to a
restaurant or playing a game, see Schank & Abelson, 1977). When solving computa-
tional problems, algorithmic thinking enables people to translate their abstract ideas
and the patterns that they recognise into a set of procedures, for instance having a
robot trace out a square and then dance on the spot. For the purposes of this study,
algorithmic thinking also includes the thinking required to resolve errors that occur
in early versions of algorithm designs (the process known in computing as ‘debug-
ging’), thus overcoming issues associated with delineating these two intrinsically
interrelated processes.

2.2 Ways of measuring computational thinking

When defining a skill, the question arises whether it is possible to measure and differ-
entiate it from other, possibly overlapping or more general skills. For computational
thinking, the existing measurement methods that can be broadly divided into assess-
ment of computational thinking as knowledge that is applied or tested (input), the
assessment of computational thinking as a skill observed during a problem solving
activity (process) and (theoretically also) the assessment of computations thinking by
analyzing the result of a task (output). All measures are subsequently used as indica-
tors for the existence and the grade/level of the respective type of the computational
thinking competence.

The most internationally well-known instruments for measuring general computa-
tional thinking knowledge are the Bebras Challenges. The main idea behind Bebras

Education and Information Technologies 5

1 3

Challenges has been to create abstract, non-computing problems that require specific
cognitive abilities rather than technical knowledge or coding experience (Dagienė &
Sentance, 2016). Examples of Bebras tasks can be found at https://www.bebras.org/
examples.html. Different studies have shown that abilities such as breaking down
problems into parts, interpreting patterns and models, and designing and implement-
ing algorithms are needed to solve Bebras problems (Lockwood & Mooney, 2018;
Araujo, Andrade, Guerrero, & Melo, 2019). There are also other approaches to mea-
suring general computational thinking knowledge, both within computer program-
ming contexts and also other disciplinary contexts, many of which have been applied
in the training of teachers. For instance, Zha, Jin, Moore, and Gaston (2020) used
multiple choice knowledge quizzes about computational thinking and Hopscotch
coding to measure the impact of a team-based and flipped learning introduction to
the Hopscotch block coding platform. In a study exploring the effects of a 13 week
algorithm education course on 24 preservice teachers, Türker & Pala (2020) used the
“Computational Thinking Skills Scale” (CTSS, from Korucu, Gencturk & Gundogdu,
2017) comprising the computational thinking facets creativity, algorithmic thinking,
collaboration, critical thinking and problem solving. Suters and Suters (2020) report
on a paper-and-pencil based computational thinking knowledge assessment to mea-
sure the effects of an extend summer institute for middle school mathematics teach-
ers (n = 22) undertaking training in computer programming with Bootstrap Algebra
and Lego® Mindstorms® robotics. The content assessment consisted of items that
integrated mathematics common core content with facets of computational thinking,
in line with research endeavors recognizing the need to contextualize computational
thinking within specific disciplines (Gadanidis, 2017; Grover & Pea, 2013; Weintrop
et al., 2016). All of these approaches to computational thinking knowledge assess-
ment share an emphasis on short, often multiple choice, closed questioning to mea-
sure computational thinking, rather than examining the computational thinking that
arises as part of authentic and more extended problem solving contexts.

In a second variant of possible computational thinking measurement, the pro-
cess of solving a context-dependent task – mostly typically a programming task – is
observed and analyzed with regard to the abilities which are considered to be part of
computational thinking skill. Skill analysis based on observations is a comparatively
underdeveloped field. Brennan & Resnick (2012) seminally investigated the com-
putational thinking processes and practices that children undertook while designing
their programs using the visual programming platform Scratch, noting that “fram-
ing computational thinking solely around concepts insufficiently represented other
elements of students learning” (p. 6). Their qualitative observations and interviews
identified computational thinking practices such as being incremental and iterative,
testing and debugging, reusing and remixing, and abstracting and modularizing.
However, their results were not reported based on any sort of observational coding
of participants, so that there is no indication of time spent on each of these processes
while solving computing problems.

While analysis of learner pre- and/or post- interview narratives has been previ-
ously conducted to determine evidence of computational thinking (Grover, 2011;
Portelance & Bers, 2015), we were not able to find any computational thinking analy-
ses involving systematic examination of narratives emerging from participants while

https://www.bebras.org/examples.html
https://www.bebras.org/examples.html

Education and Information Technologies6

1 3

they were solving authentic programming problems. However, there are examples
of observing and thematically categorizing computer programming processes and
narratives (Bower & Hedberg, 2010; Knobelsdorf & Frede, 2016). These approaches
provide a basis for in-situ observation and subsequent qualitative analysis of pro-
gramming activity for computational thinking constructs such as problem decon-
struction, abstraction, pattern recognition and algorithmic thinking, and our study is
based on these more systematic observational approaches.

2.3 Measuring the quality of computer programs

There are a range of qualities that can be used to evaluate the quality of computer
programs, such as the extent to which the code functionally achieves its intentions,
avoids unnecessary repetition, is well organized, and so on (Martin, 2009). Much of
the research relating to evaluating the quality of computer programs examines how
to ways of auto-assessing student work (for instance, Ihantola, Ahoniemi, Karavirta,
& Seppälä, 2010; Pieterse, 2013). However, automated tools struggle to accurately
assess computational thinking (Poulakis & Politis, 2021), and recent work points
out the need to look beyond raw functionality and ‘black-box’ testing of outputs, to
examine the inner working of code and algorithms (Jin & Charpentia, 2020). Some
research also examines the extent to which computational thinking is evident with
the final programming product itself, by virtue of the code fragments that are used
and their sophistication. Brennan and Resnick (2012) examined whether aspects of
computational thinking were present in students’ block-based Scratch programs.
Grover et al. have manually evaluated computational thinking evident in students’
Scratch programs, though without providing detail of the process and rubrics (Gro-
ver, 2017; Grover, Pea, & Cooper, 2015). An increasingly renown innovation, Dr
Scratch, combines automated assessment, examination of the inner workings of pro-
grams, and analysis of computational thinking to provide a measure of program qual-
ity for Scratch programs (Moreno-León & Robles, 2015). One study has established a
strong correlation (r = 0.682) between the Dr Scratch automated assessment of com-
putational thinking evident within students’ Scratch programs and manual evaluation
of computational thinking within Scratch programs by human experts (Moreno-León
et al., 2017). However, the computational thinking within a computer program is not
necessarily a proxy for overall program quality, and the extent to which program
quality relates to the computational thinking knowledge and computational thinking
processes of program authors is an open question.

2.4 Research question

Thus, having established the lack of empirical evidence to suggest that general com-
putational thinking knowledge or in-situ computational thinking processes is related
to computing performance, and armed with potential ways to operationalize and
measure computational thinking knowledge, computational thinking processes, and
quality of computer programs, this study examines the following research questions:

Education and Information Technologies 7

1 3

1. Is the quality of computer programming solutions that people produce related to
their general computational thinking knowledge?

2. Is the quality of computer programming solutions that people produce related to
the applied computational thinking processes that they undertake?

3 Method

3.1 Participants

The sample for this study was drawn from 74 pre-service teachers completing a digi-
tal creativity and learning course at an Australian university. Among them 68% were
female, 30% male and 2% preferred not to say. On average, participants were 23.9
years old (SD = 5.2). In terms of language proficiency, 97% indicated that they spoke
English fluently or were native speakers. In terms of prior knowledge, 97% had no or
only little prior programming experience and none of the participants were familiar
with the Scratch programming environment that was used for the study.

3.2 Instruments

3.2.1 Measuring computational thinking knowledge

To measure computational thinking knowledge as it arises in general problem solv-
ing contexts, participants solved an online version of adapted Bebras tasks. All tasks
were chosen from the Australian versions of the Bebras contests from 2014 (Schulz
& Hobson, 2015) and 2015 (Schulz, Hobson, & Zagami, 2016). Only tasks from
the oldest available age group were selected (i.e., for adolescents 16 to 18 years
of age and school levels 11 and 12, respectively). The tasks were slightly revised
and presented without any iconic beavers or other comical pictures in order to be
more appropriate for the university participants in this study. Although there is still a
considerably age gap between the targeted age group of the tasks and the actual age
of participants, it was not expected that this difference would cause any problems
(e.g., ceiling effects) because pre-service teachers on the whole were not expected
to be familiar with or particularly adept at computational thinking tasks. The scor-
ing of participant performance was based on the recommended scoring system of
the founder of the Australian version of the Bebras tasks (Schulz et al., 2016). There
were eight tasks considered as easy level (worth two points), seven medium (three
points), and five hard tasks (four points) resulting in 20 tasks in total with a maximum
achievable score of 57.

3.2.2 Observing computational thinking processes

To enable participants to demonstrate how much time they spent on computational
thinking-relevant processes while programming, participants were set a Scratch pro-
gramming task. Scratch itself was developed in 2003 at MIT Media Laboratory and
publicly launched in 2007 (Resnick et al., 2009). It is one the first and one of the

Education and Information Technologies8

1 3

most popular open-source visual programming environments. In visual programming
environments, users connects code blocks with each other instead of actual writing a
code as common in real programming languages.

To prepare students for the task, they were given 45 min to review the Scratch tuto-
rials available from within the Scratch platform. They were also allowed to access
these tutorials during the programming task. The task itself was defined as follows:
“Program a story or a game where a hero has to overcome a challenge in order to
defeat the villain(s).”

This task was chosen because it is somewhat open-ended and can be solved in the
chosen Scratch development framework without prior programming knowledge. Fur-
thermore, computational thinking subskills (problem decomposition, pattern recogni-
tion, abstraction, algorithm design) would most likely have to be used to solve the
task. The way in which the Scratch programming environment, task, and participants
may influence the generalizability of results is considered in the Discussion section
of this paper.

To reliably assess the amount of time they spent on computational thinking pro-
cesses during their Scratch programming session, a computational thinking behavior
scheme (CTBS) was developed. The CTBS was based on event sampling, involving
analysis of how often and for how long specific behavioral cues occur. Based on the
literature review, four components were identified as main features of computational
thinking and which are the latent constructs in the CTBS: decomposition, abstraction
(as in ignoring unimportant details), pattern recognition, and designing and apply-
ing algorithms (see operationalization of these constructs in Table 1 below). Two

Computational think-
ing components (latent
variables)

Behavioural indicator (manifest variables)

Decomposition Put problem into pieces / building sub
tasks or problems
Identifying the immediate next step
Discussing if then relations of the story or
game (is related to programming elements)

Abstraction Focusing on important information; ne-
glecting unimportant details
Simplifying anything (problem, sub prob-
lem, functions, code bocks, etc.)

Pattern recognition Identifying similar characteristics (sub
problems, functions, code blocks, etc.)
Use of copy-paste
Aha moments (must be related to an event
when student understood relationship
between things)

Algorithm design Putting code chunks together
Testing and judging algorithm (i.e., click-
ing on run or double click on sequence or
actively observing a running sequence)
Debugging - try to find error and adjust
algorithm

Table 1 Operationalization of
computational thinking con-
structs in the Computational
Thinking Behavioural Scheme
(CTBS)

Education and Information Technologies 9

1 3

researchers coded five entire videos independently to assess inter-rater reliability. As
a result, at least two third of the events were identified by both raters. The range of
the frequency of agreement for the five videos laid between 66.67% and 72.50% and
the κ coefficients ranged from 0.58 to 0.67. Overall, the reliability can be interpreted
as moderate (Landis & Koch, 1977). Note that the CTBS measured the time spent on
computational thinking components, not the correctness of the computational think-
ing processes. It is to be expected that during the process of solving computational
problems that people may not always immediately have correct thoughts about the
right course of action, and this study sought to examine relationship between the time
spent on computational thinking processes and the quality of programming products.

3.2.3 Measuring program quality

To measure participants’ program quality, two measures were used. For one, a rubric
scheme loosely based on “Clean code” of Martin (2009) was developed specially for
this study. The program quality criteria were based on five categories: richness of
project, variety of code usage, organization and tidiness, functionality of code and
coding efficiency. Richness of project described how much was happening in the
Scratch project. Lower scores were given when only one element was programmed to
perform only one behaviour, while Scratch projects consisting of several programmed
elements that were related to each other received higher scores. The variety of code
usage depended on the kinds of code blocks were used. Scratch projects were rated
lower when they mainly consisted of simple code chunks such as motion or looks and
high when more advanced chunks like control or sensing were used. The category
organization and tidiness took into account the extent to which the control section in
Scratch was organized, with more organized Scratch projects receiving higher scores.
Functionality was assessed based on whether the intention of the Scratch project
was clear and whether it worked as intended. Projects received higher scores when
they ran smoothly and the intention was easy to understand. The category efficiency

Figure 1 Two examples of the same function but coded differently. An example with unnecessary dupli-
cates is shown on the left and a more efficient version is seen on the right

Education and Information Technologies10

1 3

described the usage of code controlling the flow of execution, and the number unnec-
essary duplications. Lower scores were given to projects having many such dupli-
cates, while more generalized and more abstract code scripts received higher scores.
An example of a program with unnecessary duplication is shown in Fig. 1 (left),
compared to a more efficiently represented code block in Fig. 1 (right).

The five code quality categories were all rated on a scale including 0 (not evident),
1 (poor), 2 (satisfactory), 3 (good), up to 4 (excellent). A weighted mean over all cat-
egories was calculated to provide a general assessment. The weight for each category
was based on their importance for program quality, resulting in extent and richness,
variety, and functionality being weighted 20% each, efficiency 30%, and organization
and tidiness 10% to the weighted mean. Quality criteria and the (weighted) scoring
system of the scheme were discussed with two computer science education profes-
sionals to uphold the content validity of the measure. In addition, one of the CS
education professionals rated the Scratch projects to obtain reliability assessment.
Inter-rater reliability was high with ICC(3,1), 95% CI [0.87, 0.96].

The second measure for program quality was based on Dr Scratch (Moreno-León
& Robles, 2015). Dr Scratch provides a measure of program quality based on seven
dimensions relevant to CS: abstraction and problem decomposition, parallelism,
logical thinking, synchronization, algorithmic notions of flow control, user interac-
tivity and data representation. Dimensions are judged as 0 (not evident), 1 (Basic), 2
(Developing), and 3 (Proficient). Scores are aggregated over all dimensions resulting
in a total evaluation score (mastery score) from 0 to 21. Mastery scores between 8
and 14 are regarded as general developing; lower than 8 is regarded as generally
basic, and more than 14 as general proficient. High correlations between Dr Scratch
mastery scores and experts judgments of program quality can be used as an indica-
tor of satisfactory criterion validity (Moreno-León, Román-González, Harteveld, &
Robles, 2017). While Dr Scratch focuses primarily on computational thinking ele-
ments as opposed to other aspects of computer programming (e.g. organization of
code, efficiency), it is based on the final computer programming solution that is pro-
duced, and thus provides an interesting alternative measure of program quality for
this computational thinking study.

3.2.4 Test of nonverbal intelligence

To take account for potential confounding effect, participants’ nonverbal intelligence
was also measured. For this the Test of Nonverbal Intelligence (3rd edition; TONI-3,
Brown, Sherbeernou, & Johnson, 1997) was used. The TONI-3 is a classic culture
fair test (i.e., minimally linguistically demanding) and as in many of them partici-
pants need to recognize a correct figure in a set of abstract and geometrical pictures.
The test consists of 45 items and has an average testing time of 15 min and has a
satisfactory level of psychometrical properties (Banks & Franzen, 2010).

3.3 Procedure

Initially, participants completed the Bebras Computational Thinking Knowledge test
and the test of nonverbal intelligence (TONI-3 online). One week later, the second

Education and Information Technologies 11

1 3

phase took place at university’s classrooms and participants attempted the task in
Scratch. To collect rich video material with many verbal and nonverbal indicators for
the research team to analyze, participants were organized in pairs. It was hoped that
working in pairs would encourage participants to talk and engage more with each
other. The pairs were formed based on similar Bebras scores to minimize any effects
due to large differences in competences. In total, 37 pairs were formed and filmed
while working on the task, forming the corpus for the analysis.

3.4 Analysis

All statistical analysis was conducted using the R statistics programming environ-
ment. In order to acquire a sense of the data, basic descriptive statistics including
means and standard deviations were calculated for all five measures (Bebras scores,
time spent on different computational thinking processes, program quality rubric
score, Dr Scratch score, TONI-3 non-verbal intelligence score). Because participants
worked on the programming task in pairs, all programming assessments based on the
rubric scheme, the additional Scratch evaluation assessment based on Dr Scratch,
and the assessment of how much time participants spent on computational think-
ing behavior based on CTBS, were paired values. Scores on the Bebras tasks and
TONI-3 test were averaged for each pair. Of the 37 pairs of participants who agreed
to complete the Bebras test and have their final programs used in the study, 27 agreed
to be video recorded for the purposes of the CTBS analysis, and 32 pairs agreed to
complete the TONI-3 test.

Spearman’s ρ were computed between all five measures using all available data,
to determine whether the underlying variables were directly correlated. Finally, in
order to account for the possibility of moderating variables, two regression models
were estimated with the two program quality measures as outcomes (program quality
rubric score and Dr Scratch score). These two regression models used the Bebras task
scores, the CTBS, and the TONI-3 IQ scores as predictors, so that it was possible to
detect if any of these were moderating variables.

4 Results

4.1 Descriptive statistics and measurement outcomes

The average score for the measure of general computational thinking capability
(Bebras task) was 57.03% (SD = 18.6%). The range was from 21% to one participant
who achieved 100%. Results indicated a medium level of test difficulty, with no
serious problems due to ceiling or floor effects. In TONI-3-IQ, participants achieved
an average intelligence score of 113.12 (SD = 14.17). The mean of this sample was
slightly higher than the expected value of the population (µ = 100, see, for example,
Sternberg, 2017), which can be explained by the fact the sample was drawn from
university students. The time participants needed to complete the Bebras tasks (Md
= 55 min) and the TONI-3-IQ (Md = 22 min) roughly aligned with the expected time
of 60 min (Dagienė & Futschek, 2008) and 15 min (Brown et al., 1997), respectively.

Education and Information Technologies12

1 3

Table 2 shows that while writing their programs, coded participants spent nearly
half of their time on computational thinking behaviors, with algorithmic design hav-
ing the largest contribution and little time spent on decomposition and pattern rec-
ognition. Pattern recognition was observed in less than half of all pairs. No sign of
abstraction in the sense of neglecting information was observed for any pair.

Table 3 contains an overview of scores achieved by the pairs of participants in
the rubric scheme for program quality. The full range of the rating scales (0 to 4)
was used. The distributions of all five dimensions had their center at around 2 (i.e.,
satisfactory level).

Computational thinking
component

Pairs events % of time spent on CT-
relevant behavior
M (SD) Max - Min

Decomposition 27 310 7.77 (5.35) 22.61
– 1.03

Abstraction - - - -
Pattern recognition 17 53 1.43 (1.05) 3.75

– 0.18
Algorithmic design 27 1,072 37.46

(12.26)
61.06
– 10.39

Computational thinking
overall

27 1435 46.66
(14.96)

70.42
– 15.74

Table 2 Overview of Coded
Events and Time Spent on
Computational Thinking
Behavior

Programming dimensions M (SD)
Extension 1.86 (0.89)
Variety 2.19 (1.02)
Organization 1.84 (0.87)
Functionality 1.92 (0.95)
Efficiency 2.08 (1.21)
Weighted mean 2.00 (0.91)

Table 3 Overview of Rubric
Scheme for Programming
Quality

Note: pairs = 37

Table 4 Overview of Dr Scratch Project Scores
Dr Scratch dimension Absolute frequency of level M (SD) Mdn

0 1 2 3
Abstraction and problem decomposition 2 35 - - 0.95 (0.23) 1
Parallelism 5 21 4 7 1.35 (0.95) 1
Logical thinking 15 20 2 - 0.65 (0.59) 1
Synchronization 14 11 1 11 1.24 (1.26) 1
Flow control - 9 28 - 1.76 (0.43) 2
User interactivity - 11 25 1 1.73 (0.51) 2
Data representation 1 22 14 - 1.35 (0.54) 1

Education and Information Technologies 13

1 3

In comparison, participants’ Scratch projects typically only achieved a basic rating
according to Dr Scratch, with only two dimensions rated as developing (See Table 4).

4.2 Correlations between variables

As a first step towards analyzing which of the two computational thinking measures
(general computational thinking knowledge as measured by Bebras versus compu-
tational thinking processes as observed in practice) have a greater relationship to
program quality, Spearman’s ρ were computed (see Table 4). Correlation between
the two measures of program quality (weighted means based on the developed rubric
scheme and Dr Scratch mastery scores) revealed a significant relationship, ρ = 0.61,
p < .001. Based on common interpretation of effect sizes (Cohen, 1988), this cor-
relation can be interpreted as large. The large correlation between the two measures
of program quality reveals a degree of consistency in their assessment of student
programs.

Significant positive correlations were found between general computational think-
ing knowledge (Bebras scores) and both measures of program quality, with a bor-
derline small to medium effect sizes (see Table 5). Significant positive correlations
between time spent on computational thinking processes while programming and
both measures of program quality, with quite large effects.

Because of some potential (partial) conceptual overlaps between nonverbal intel-
ligence and computational thinking, the correlations between the TONI-3 IQ and
computational thinking measures were calculated as well. On one hand, the correla-
tion between the TONI-3 IQ and the Bebras scores was significant and positive with
a medium to large effect size, ρ = 0.49, p = 0.002. On the other hand, correlation
between TONI-3-IQ and time spent on computational thinking processes while pro-
gramming was not statistically significant, ρ = 0.09, p = 0.346

4.3 Regression analysis

As explained in the Methodology section, two regression models were estimated with
both program quality measures as outcomes and the both computational thinking
measures and the TONI-3 IQ scores as predictors. Standardized parameter estima-
tions and tests of significance of the regression model are shown in Table 6. The
regression models only partly supported the findings from the correlations. The pos-

Program-
ming rubric
scheme

Dr Scratch
mastery
score

N
(pairs)

ρ p ρ p
Bebras score 0.32 0.027 0.29 0.041 37
Time of computational think-
ing behavior

0.65 <
0.001

0.57 0.001 27

IQ based on TONI-3 0.29 0.055 0.19 0.149 32

Table 5 Spearman’ ρ Correla-
tions Between Programming
Quality, Dr Scratch and Differ-
ent Measures

Note: one-sided p-values

Education and Information Technologies14

1 3

itive correlation between the Bebras score and both measures of program quality
vanished when taking into account the effect of TONI-3 IQ. The only significant
predictor for both measures of programming quality was the computational thinking
process scores.

Post hoc analyses for both regression models were performed for power estima-
tion. Based on the given parameters (N = 24, number of predictors = 3, effect size =
R2

pro.qual = 0.50, R2
DrScratch = 0.44, and α = 0.05), a power of > 0.99 for both models

was achieved. Because of the small sample size, assumptions about linear multiple
regressions such as homoscedasticity, multicollinearity, and residuals were rigor-
ously checked. No serious violations of any assumption could be found, though it
should be noted that the residuals when the outcome was programming quality were
not normally distributed, based on Shapiro-Francias test, with W’ = 0.88, p = 0.011.
In conclusion, the power of both regression models were sufficiently high enough and
the regression coefficients can be interpreted as “best linear regression estimations”.

5 Discussion

The general computational thinking knowledge scores (Bebras) and the computational
thinking procedural performance (as indicated by the CTBS), were both positively
correlated with both program quality measures (the rubric scheme and Dr Scratch
mastery score). Therefore, a general interpretation could be that the higher the level
of both general computational thinking knowledge and applied computational think-
ing in practice, the better the program quality. However, this interpretation would be
premature because regression analyses revealed that only one — the applied compu-
tational thinking in practice — was a significant predictor of program quality when
controlling for other variables such as the level of nonverbal intelligence and general
computational thinking knowledge. The reason why the two different computational
thinking measures predict programming differently might lie in different perspec-
tives underlying the two different measures of computational thinking, and how these
might mediate the relationship with program quality.

The Bebras tasks focus on general and conceptual aspects of computational think-
ing. Correlations between the Bebras score and the TONI-3-IQ were between mod-
erate and strong. As for the most instruments for nonverbal intelligence, TONI-3 is
based on pictures in which participants need to identify similar instances and recog-

Table 6 Regression Models
Program quality Dr Scratch mastery score

Predictors β t-value (SE) p β t-value (SE) p
Bebras score −0.41 −1.95 (1.24) 0.066 −0.14 −0.62 (4.27) 0.542
Time on computation-
al thinking behavior
(overall)

0.74 4.31 (0.01) < 0.001 0.70 3.86 (0.03) <
0.001

TONI-3 IQ 0.36 1.82 (0.01) 0.084 0.11 0.53 (0.05) 0.599
R² (R²adj) 0.50 (0.42) 0.44 (0.36)
F(3,20) 6.60 0.003 5.29 0.008
Note: N = 24. The intercept is omitted for better overview

Education and Information Technologies 15

1 3

nize patterns. Many of the Bebras tasks are designed in a similar fashion. The original
idea behind the Bebras tasks was to create a test about CS concepts “independent
from specific systems” to avoid contestants being dependent on prior knowledge of
any specific IT system (Dagienė & Futschek, 2008, p. 22). This may have led to some
items being similar to those of nonverbal intelligence tests.

As found in some prior studies, this also caused confusion for some Bebras con-
testants. Vaníček (2014) asked participants for their opinions about the Bebras tasks.
Some questioned the purpose and validity of the test, stating “I wonder what the con-
test questions have to do with informatics. Maybe nothing at all?”. If (at least some)
Bebras tasks are similar to those of nonverbal intelligence tests and there is a high
and significant positive correlation between both measures, it is possible that both
tests measure similar constructs. This would explain why the relationship between
the Bebras scores and program quality vanished when controlled for TONI-3-IQ.
The Bebras tasks are validated by several studies (Dagienė & Stupuriene, 2016; Dol-
gopolovas, Jevsikova, Savulionienė, & Dagienė, 2015; Lockwood & Mooney, 2018)
but none of these studies controlled for any potential confounding effects on simi-
lar psychological constructs such as nonverbal intelligence. We could only find one
study in which the potential relationship between the Bebras tasks and nonverbal
intelligence has been discussed, with similar findings to our study (Román-González,
Pérez-González, & Jiménez-Fernández, 2017). Thus, it is possible that the Bebras
tasks indeed measure computational thinking but mainly the facet of abstract think-
ing and pattern recognition.

It is possible that these abstract parts of computational thinking alone are not a
good predictor of programming quality because extensive cognitive effort is required
to transfer the skills for application in different situations and settings. Even though
some similar skills are required to solve both kinds of tasks (the Bebras tasks as well
as the programming task in this study), it would require a high level of transfer-
ability from these abstract logical quizzes to real applied programming situations.
Moreover, according to the authors of the Bebras tasks, participants need to apply
the same cognitive abilities as needed for programming tasks such as problem decon-
struction, thinking abstractly, recognizing patterns, and being able to understand,
design, and evaluate algorithms (Dagienė & Sentance, 2016). However, the content
of the Bebras tasks (as for many ‘unplugged’ methods) is very different from real
programming tasks. This may lead to general computational thinking as measured
by Bebras tasks not providing a good predictor of program quality above and beyond
that which is captured and controlled for by general measures of intelligence (such
as the TONI-3-IQ).

In our opinion, the results can be well explained in terms of the thesis of dispropor-
tion between application extensity and intensity of use (Weinert, 1994). This theory
asserts that, the more general a rule or strategy is, the more minor its contribution to
solving challenging, content-specific problems. This could also apply to the com-
putational thinking skills of the Bebras tasks. The measured skills are very general
and partly overlap with general facets of intelligence. Their contribution to solving
a challenging, content-specific problem might therefore be rather small and statisti-
cally hard to detect. At least, this would be one possible interpretation of the rather

Education and Information Technologies16

1 3

weak correlation and the lost connection in the regression analysis with regard to
general computational thinking knowledge and program quality.

In contrast to the Bebras tasks, the focus of the CTBS lies on participants’ applied
computational thinking processes in practice. Correlations indicated that the more
participants spent on applied computational thinking processes, the better the pro-
gramming quality of their Scratch project. It must be pointed that this was mostly
due to algorithmic design, with algorithmic design being the most frequently applied
computational thinking activity measured. As stated before, participants were work-
ing on their code from the start of the session and so there is a logical interpretation
that the longer and the more participants spent on algorithmic design, the better the
quality of their programs. Even after controlling for other measures, this relationship
was still significant and persisted in both regression models with the programming
quality rubric and Dr Scratch project evaluation as outcome, respectively. What is
even more remarkable is that computational thinking processes were significantly
correlated with program quality even though the correctness of the computational
thinking processes was not assessed in this study. That is to say, that the more time
spent thinking about computational thinking components while solving the comput-
ing problem led to better quality programming solutions, even when at times that
computational thinking may not have necessarily been ‘right’. This is in line with the
learning concept of ‘productive failure’, where thinking deeply about problems and
exploring incorrect solutions can ultimately lead to greater learning overall (Kafai,
De Liema, Fields, Lewandowski & Lewis, 2019).

These results indicate that the computational thinking process capabilities observed
by the CTBS are more strongly related to program quality than computational think-
ing knowledge as measured by Bebras. While the Bebras Challenge is undoubtedly
a valuable competition for students worldwide, the results from this study indicate
the ability to solve Bebras problems may not be a good indicator of the ability to
solve authentic informatics problems that involve computer programming. In fact,
the result challenges the premise that generalised computational thinking knowledge
underpins the ability to solve authentic programming problems to any substantial
extent. The capacity to apply computational thinking processes in-situ has been
shown in this study to be far more relevant and influential in terms of being able to
derive high quality programming solutions than solving general computational think-
ing knowledge problems. To this extent, from a pedagogical perspective, educators
who wish to use computational thinking as a basis for improving the ability of their
students to solve programming problems should focus on developing students’ abili-
ties to apply computational thinking processes in practice (algorithm design, prob-
lem decomposition, pattern recognition, abstraction) rather than their computational
thinking knowledge in a more detached and decontextualized sense.

5.1 Limitations of the Study

In this study, students worked together in pairs as a naturalistic way to provoke social
interaction and make otherwise unobservable thoughts accessible. This contributed
to the authenticity of the study, with pair programming often occurring in industry
and education. Moreover, pair-programming settings have been used in prior stud-

Education and Information Technologies 17

1 3

ies in terms of measuring computational thinking and programming knowledge for
novices (Denner, Werner, Campe, & Ortiz, 2014; Wu, Hu, Ruis, & Wang, 2019).
However, this approach involved some inherent challenges. It was not possible to
perfectly group pairs according to identical levels of computational thinking, intelli-
gence, or programming quality. Some might argue that the results and overall conclu-
sion might have been different if all measures were obtained and analyzed solely on
an individual basis. However, gauging individual measures of computational think-
ing programming skills from a behavioral perspective also involves challenges, as
it is difficult to encourage individual participants to verbalize their thinking for the
entire duration of the programming process. We believe that the benefits of analyz-
ing computational thinking arising from a more naturalistic setting outweigh those
from measuring the computational thinking of individuals, in terms of the validity of
results.

It is also worth mentioning that the CTBS and the programming quality instrument
were designed specifically for the purpose of this study. That means these instruments
have not been tested in other studies yet. Interrater reliability assessments indicated
a satisfactory level of agreement, but the results based on CTBS and programming
quality rubric scheme deserve to be interpreted with caution. Some indicators of
the computational thinking behavior are dependent on the environment used. For
instance, the computational thinking component algorithmic design category of the
scheme and encompasses all utterance and actions with the purpose of designing an
algorithmic solution to a problem. The programming task in this study was designed
in Scratch, for which the only way to create algorithmic solutions was to drag and
drop code chunks together. If another programming environment were used, or
indeed different programming problems, or even other cohorts of participants, other
indicators may be identified. This potentially limits the generalization of the results
of the study.

6 Conclusion and future work

Computational thinking is promoted as the literacy of the 21st century and is already
implemented in various curricula all over the world. Some refer to computational
thinking even as the foundation of programming and CS (Lu & Fletcher, 2009). Thus,
the goal of this study was to analyses the role of computational thinking in promoting
high quality programming products. Results showed that the answer to the question
of how computational thinking is related to program quality depends on whether
computational thinking is seen as a set of general conceptual understandings or a set
of procedural skills in use. The results of our study found that computational thinking
as general conceptual knowledge (such as that used to solve Bebras challenges) was
not significantly related to program quality. On the other hand, we found that com-
putational thinking as a set of procedural skills applied in practice was significantly
related to programming quality, even when controlling for general intelligence. Thus,
when discussing the role of computational thinking in developing computer program-
ming capacity, we suggest that educators and policy makers focus on the importance

Education and Information Technologies18

1 3

of cultivating computational thinking procedural capabilities rather than in more
abstract, knowledge-based and context free forms.

There are several potential avenues for research to build upon the results of
this study. Visual programming environments such as Scratch are usually used to
introduce computational thinking or programming concepts to people who have no
knowledge about programming, as was the case in this study. In future, researchers
could analyse how computational thinking is applied when experienced program-
mers solve a programming task in a programming language such as Java or C++. The
way programmers approach problems develops over time as they gain more knowl-
edge (Teague & Lister, 2014). It is possible that the level of computational thinking
for experienced programmers differs from the level of novices, which might mediate
the relationship between both concepts. A range of different tasks could be examined,
for instance, to gauge differences in computational thinking prevalence and relation-
ships to program quality for tasks with more closed solutions as opposed to being
more open-ended in nature. Future research could attempt to analyze all concepts
individually rather than in pairs as an alternative way to examine the relationship
between the constructs in question. In any case, it is intended that the frameworks and
methods presented in this paper provide a strong foundation for these future analyses.

Acknowledgements None.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

Declarations

None.

Conflict of interest None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Anderson, J. R. (2015). Cognitive psychology and its implications (8th.). New York, NY: Worth Publishers
Angeli, & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in

Human Behavior, 105, 106185. https://doi.org/10.1016/j.chb.2019.106185
Araujo, A. L. S. O., Andrade, W. L., Guerrero, D. D. S., & Melo, M. R. A. (2019). How many abili-

ties can we measure in computational thinking? A study on Bebras challenge. Proceedings of the
50th ACM Technical Symposium on Computer Science Education (pp. 545–551). https://doi.
org/10.1145/3287324#issue-downloads

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.chb.2019.106185
http://dx.doi.org/10.1145/3287324#issue-downloads
http://dx.doi.org/10.1145/3287324#issue-downloads

Education and Information Technologies 19

1 3

Atmatzidou, & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educa-
tional robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems,
75, 661–670. https://doi.org/10.1016/j.robot.2015.10.008

Banks, S. H., & Franzen, M. D. (2010). Concurrent validity of the TONI-3. Journal of Psychoeducational
Assessment, 28(1), 70–79. https://doi.org/10.1177/0734282909336935

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational
Research Association, Vancouver, Canada

Bower, M., & Hedberg, J. G. (2010). A quantitative multimodal discourse analysis of teaching and learning
in a web-conferencing environment–the efficacy of student-centred learning designs. Computers &
Education, 54(2), 462–478

Brown, L., Sherbeernou, R. J., & Johnson, S. K. (1997). Test of nonverbal intelligence-3. Austin, TX:
PRO-ED

Bull, G., Garofalo, J., & Hguyen, N. R. (2020). Thinking about computational thinking. Journal of Digital
Learning in Teacher Education, 36(1), 6–18. https://doi.org/10.1080/21532974.2019.1694381

Cansu, F. K., & Cansu, S. K. (2019). An overview of computational thinking. International Journal of
Computer Science Education in Schools, 3(1), 17–30. https://doi.org/10.21585/ijcses.v3i1.53

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: L. Erl-
baum Associates

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2014). Introduction to algorithms (3rd ed.).
Cambridge, MA, London: MIT Press

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Compu-
tational thinking - A guide for teachers. Swindon: Computing at School. http://eprints.soton.ac.uk/
id/eprint/424545

Dagienė, V., & Futschek, G. (2008). Bebras international contest on informatics and computer literacy:
Criteria for good tasks. In R. T. Mittermeir & M. M. Sysło (Eds.), Informatics Education - Support-
ing Computational Thinking: Third International Conference on Informatics in Secondary Schools
- Evolution and Perspectives, ISSEP 2008 Torun Poland, July 1-4, 2008 Proceedings (pp. 19–30).
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69924-8_2

Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. In A.
Brodnik & F. Tort (Eds.), Lecture Notes in Computer Science. Informatics in Schools: 9th Interna-
tional Conference on Informatics in Schools: Situation, Evolution, and Perspectives, Proceedings
(Vol. 9973, pp. 28–39). Cham: Springer Verlag. https://doi.org/10.1007/978-3-319-46747-4_3

Dagienė, V., & Stupuriene, G. (2016). Bebras - A sustainable community building model for the concept
based learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.
https://doi.org/10.15388/infedu.2016.02

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it
advantageous for middle school students? Journal of Research on Technology in Education, 46(3),
277–296. https://doi.org/10.1080/15391523.2014.888272

Dolgopolovas, V., Jevsikova, T., Savulionienė, L., & Dagienė, V. (2015). On evaluation of computational
thinking of software engineering novice students. In A. Brodnik & C. Lewin (Eds.), IFIP TC3 Work-
ing Conference “A New Culture of Learning: Computing and next Generations”. Vilnius, Lithuania:
Vilnius University

Ezeamuzie, & Leung, J. S. C. (2021). Computational thinking through an empirical lens: A sys-
tematic review of literature. Journal of Educational Computing Research, Vol. 59, https://doi.
org/10.1177/07356331211033158

Gadanidis, G. (2017). Five affordances of computational thinking to support elementary mathematics edu-
cation. Journal of Computers in Mathematics and Science Teaching, 36(2), 143–151

Grover, S. (2011). Robotics and engineering for middle and high school students to develop computational
thinking. In Annual Meeting of the American Educational Research Association, New Orleans, LA

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a Middle
School Classroom. In P. J. Rich, & C. B. Hodges (Eds.), Emerging Research, Practice, and Policy
on Computational Thinking (31 vol., pp. 269–288). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-319-52691-1_17

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educa-
tional Researcher, 42(1), 38–43

http://dx.doi.org/10.1016/j.robot.2015.10.008
http://dx.doi.org/10.1177/0734282909336935
http://dx.doi.org/10.1080/21532974.2019.1694381
http://dx.doi.org/10.21585/ijcses.v3i1.53
http://eprints.soton.ac.uk/id/eprint/424545
http://eprints.soton.ac.uk/id/eprint/424545
http://dx.doi.org/10.1007/978-3-540-69924-8_2
http://dx.doi.org/10.1007/978-3-319-46747-4_3
http://dx.doi.org/10.15388/infedu.2016.02
http://dx.doi.org/10.1080/15391523.2014.888272
http://dx.doi.org/10.1177/07356331211033158
http://dx.doi.org/10.1177/07356331211033158
http://dx.doi.org/10.1007/978-3-319-52691-1_17
http://dx.doi.org/10.1007/978-3-319-52691-1_17

Education and Information Technologies20

1 3

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education, 25(2), 199–237. https://doi.org/10.
1080/08993408.2015.1033142

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic
assessment of programming assignments. Proceedings of the 10th Koli Calling International Confer-
ence on Computing Education Research, 86–93. https://doi.org/10.1145/1930464.1930480

International Society for Technology in Education [ISTE] & the Computer Science Teachers Association
[CSTA] (2011). Operational definition of computational thinking for K–12 education. Retrieved from
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Jin, K. H., & Charpentier, M. (2020). Automatic programming assignment assessment beyond black-box
testing. Journal of Computing Sciences in Colleges, 35(8), 116–125

Kafai, Y. B., De Liema, D., Fields, D. A., Lewandowski, G., & Lewis, C. (2019). Rethinking debugging as
productive failure for CS Education. In S. Heckman & J. Zhang (Eds.), Proceedings of the 50th ACM
technical symposium on Computer Science Education. New York, NY: ACM

Knobelsdorf, M., & Frede, C. (2016, August). Analyzing student practices in theory of computation in
light ofdistributed cognition theory. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (pp. 73–81).

Korucu, A. T., Gencturk, A. T., & Gundogdu, M. M. (2017). Examination of the computational thinking
skills of students. Journal of Learning and Teaching in Digital Age, 2(1), 11–19. Retrieved from
https://eric.ed.gov/?id=ED572684

Landis, R., & Koch, G. G. (1977). The measurement of observer agreement for categorial data. Biometrics,
33, 159–174

Lockwood, J., & Mooney, A. (2018). Computational thinking in secondary education: Where does it fit?
A systematic literary review. International Journal of Computer Science Education in Schools, 2(1),
pp. 1–20. https://doi.org/10.21585/ijcses.v2i1.26

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. In S. Fitzgerald (Ed.),
Proceedings of the 40th ACM technical symposium on Computer science education. New York, NY:
ACM

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.
org/10.1016/j.chb.2014.09.012

Martin, R. C. (2009). Clean code: A handbook of agile software craftsmanship. Pearson Prentice Hall
McNicholl, R. (2019). Computational thinking using Code.org. Hello World, 4, 36–37. https://issuu.com/

raspberry314/docs/helloworld04
Moreno-León, J., & Robles, G. (2015). Dr. Scratch: a web tool to automatically evaluate scratch projects.

In J. Gal-Ezer, S. Sentance, & J. Vahrenhold (Eds.), Proceedings of the Workshop in Primary and
Secondary Computing Education, London, United Kingdom, November 09 - 11, 2015 (pp. 132–133).
New York: ACM. https://doi.org/10.1145/2818314.2818338

Moreno-León, J., Román-González, M., Harteveld, C., & Robles, G. (2017). On the automatic assess-
ment of computational thinking skills. In G. Mark, S. Fussell, C. Lampe, m. schraefel, J. P. Hour-
cade, C. Appert, & D. Wigdor (Eds.), CHI’17: Extended abstracts: proceedings of the 2017 ACM
SIGCHI Conference on Human Factors in Computing Systems : May 6-11, 2017, Denver, CO, USA
(pp. 2788–2795). New York, New York: The Association for Computing Machinery. https://doi.
org/10.1145/3027063.3053216

Pieterse, V. (2013). Automated assessment of programming assignments. Proceedings of the 3rd Computer
Science Education Research Conference, 13, 4–5. https://doi.org/10.5555/2541917.2541921

Portelance, D. J., & Bers, M. U. (2015). Code and tell: Assessing young Children’s learning of computa-
tional thinking using peer video interviews with ScratchJr. In M. U. Bers & G. L. Revelle (Eds.), IDC
‘15: Proceedings of the 14th international conference on interaction design and children (pp. 271–
274). New York: ACM

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychol-
ogy, 77, 353–363. https://doi.org/10.1037/h0025953

Poulakis, E., & Politis, P. (2021). Computational Thinking Assessment: Literature Review. Research
on E-Learning and ICT in Education: Technological, Pedagogical and Instructional Perspectives,
111–128

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., & Silver, J.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60. https://doi.
org/10.1145/1592761.1592779

http://dx.doi.org/10.1080/08993408.2015.1033142
http://dx.doi.org/10.1080/08993408.2015.1033142
http://dx.doi.org/10.1145/1930464.1930480
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
https://eric.ed.gov/?id=ED572684
http://dx.doi.org/10.21585/ijcses.v2i1.26
http://dx.doi.org/10.1016/j.chb.2014.09.012
http://dx.doi.org/10.1016/j.chb.2014.09.012
https://issuu.com/raspberry314/docs/helloworld04
https://issuu.com/raspberry314/docs/helloworld04
http://dx.doi.org/10.1145/2818314.2818338
http://dx.doi.org/10.1145/3027063.3053216
http://dx.doi.org/10.1145/3027063.3053216
http://dx.doi.org/10.5555/2541917.2541921
http://dx.doi.org/10.1037/h0025953
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779

Education and Information Technologies 21

1 3

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking?: Criterion validity of the Computational Thinking Test. Computers
in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An inquiry into human
knowledge structures. Hillsdale, NJ: L. Erlbaum Associates. Artificial intelligence series

Schulz, K., & Hobson, S. (2015). Bebras Australia computational thinking challenge tasks and solutions
2014. Brisbane, Australia: Digital Careers

Schulz, K., Hobson, S., & Zagami, J. (2016). Bebras Austrlia computational thinking challenge - tasks and
solution 2016. Brisbane, Australia: Digital Careers

Shivhare, & Kumar, C. A. (2016). On the Cognitive process of abstraction. Procedia Computer Science,
89, 243–252. https://doi.org/10.1016/j.procs.2016.06.051

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Boston: Cengage Learning
Sternberg, R. J. (2017). Human intelligence. Encyclopaedia Britannica. Retrieved from https://www.bri-

tannica.com/topic/human-intelligence-psychology/Development-of-intelligence#ref13354
Suters, L., & Suters, H. (2020). Coding for the core: Computational thinking and middle grades

mathematics. Contemporary Issues in Technology and Teacher Education (CITE Jour-
nal), 20(3). Retrieved from https://citejournal.org/volume-20/issue-3-20/mathematics/
coding-for-the-core-computational-thinking-and-middle-grades-mathematics/

Tang, K. Y., Chou, T. L., & Tsai, C. C. (2020). A content analysis of computational thinking research: An
international publication trends and research typology. Asia-Pacific Education Researcher, 29(1),
9–19. https://doi.org/10.1007/s40299-019-00442-8

Teague, D., & Lister, R. (2014). Longitudinal think aloud study of a novice programmer. In J. Whalley
(Ed.), Proceedings of the Sixteenth Australasian Computing Education Conference - Volume 148.
Darlinghurst, Australia: Australian Computer Society, Inc

Thalheim, B. (2009). Abstraction. In L. Liu, & M. T. Özsu (Eds.), Springer reference. Encyclopedia of
database systems, 1–3. New York, NY: Springer

Tsai, Liang, J. C., Lee, S. W. Y., & Hsu, C. Y. (2021). Structural validation for the developmental model
of computational thinking. Journal of Educational Computing Research, Vol. 59, https://doi.
org/10.1177/07356331211017794

Türker, P. M., & Pala, F. K. (2020). A Study on students’ computational thinking skills and self-efficacy
of block-based programming. Journal on School Educational Technology, 15(3), 18–31 (14 Seiten).
Retrieved from https://imanagerpublications.com/article/16669/

Vaníček, J. (2014). Bebras informatics contest: Criteria for good tasks revised. In Y. Gülbahar & E. Karataş
(Eds.), Informatics in Schools. Teaching and Learning Perspectives: 7th International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2014, Istanbul, Turkey,
September 22-25, 2014. Proceedings (pp. 17–28). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-319-09958-3_3

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127–147

Weinert, F. E. (1994). Lernen lernen und das eigene Lernen verstehen. [Learning how to learn and under-
standing the own learning]. In K. Reusser, & M. Reusser-Weyeneth (Eds.), Verstehen. Psycholo-
gischer Prozess und didaktische Aufgabe [Understanding. Psychological processes and didactical
tasks.] (pp. 183–205). Bern: Huber

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative pro-
gramming: A quantitative ethnography approach. Journal of Computer Assisted Learning, 35(3),
421–434. https://doi.org/10.1111/jcal.12348

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020). Hopscotch into Coding: introducing pre-service teachers
computational thinking. TechTrends, 64(1), 17–28. https://doi.org/10.1007/s11528-019-00423-0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://dx.doi.org/10.1016/j.chb.2016.08.047
http://dx.doi.org/10.1016/j.procs.2016.06.051
http://dx.doi.org/10.1016/j.edurev.2017.09.003
https://www.britannica.com/topic/human-intelligence-psychology/Development-of-intelligence#ref13354
https://www.britannica.com/topic/human-intelligence-psychology/Development-of-intelligence#ref13354
https://citejournal.org/volume-20/issue-3-20/mathematics/coding-for-the-core-computational-thinking-and-middle-grades-mathematics/
https://citejournal.org/volume-20/issue-3-20/mathematics/coding-for-the-core-computational-thinking-and-middle-grades-mathematics/
http://dx.doi.org/10.1007/s40299-019-00442-8
http://dx.doi.org/10.1177/07356331211017794
http://dx.doi.org/10.1177/07356331211017794
https://imanagerpublications.com/article/16669/
http://dx.doi.org/10.1007/978-3-319-09958-3_3
http://dx.doi.org/10.1007/978-3-319-09958-3_3
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1111/jcal.12348
http://dx.doi.org/10.1007/s11528-019-00423-0

Education and Information Technologies22

1 3

Authors and Affiliations

Kay-Dennis Boom1 · Matt Bower2 · Jens Siemon1 · Amaël Arguel3

 Matt Bower
matt.bower@mq.edu.au

1 Department of Vocational and Business Education, University of Hamburg, Hamburg,
Germany

2 School of Education, Macquarie University, Building 29WW Room 238, Balaclava Rd
North Ryde, 2109, NSWSydney, Australia

3 CLLE, University of Toulouse, CNRS, Toulouse, France

	Relationships between computational thinking and the quality of computer programs
	Abstract
	1 Introduction
	1.1 Context of the problem

	2 Literature review
	2.1 Defining computational thinking and its subcomponents
	2.2 Ways of measuring computational thinking
	2.3 Measuring the quality of computer programs
	2.4 Research question

	3 Method
	3.1 Participants
	3.2 Instruments
	3.2.1 Measuring computational thinking knowledge
	3.2.2 Observing computational thinking processes
	3.2.3 Measuring program quality
	3.2.4 Test of nonverbal intelligence

	3.3 Procedure
	3.4 Analysis
	4 Results
	4.1 Descriptive statistics and measurement outcomes
	4.2 Correlations between variables
	4.3 Regression analysis

	5 Discussion
	5.1 Limitations of the Study

	6 Conclusion and future work
	References

