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Abstract
Computational thinking – the ability to reformulate and solve problems in ways that 
can be undertaken by computers – has been heralded as a foundational capability 
for the 21st Century. However, there are potentially different ways to conceptualise 
and measure computational thinking, for instance, as generalized problem solving 
capabilities or as applied practice during computer programming tasks, and there 
is little evidence to substantiate whether higher computational thinking capabilities 
using either of these measures result in better quality computer programs. This 
study examines the relationship between different forms of computational thinking 
and two different measures of programming quality for a group of 37 pairs of pre-
service teachers. General computational thinking capabilities were measured using 
Bebras tests, while applied computational thinking processes were measured using 
a Computational Thinking Behavioural Scheme. The quality of computer programs 
was measured using a qualitative rubric, and programs were also assessed using the 
Dr Scratch auto-grading platform. The Test of Nonverbal Intelligence (3rd edition, 
TONI-3) was used to test for confounding effects. While significant correlations 
between both measures of computational thinking and program quality were detect-
ed, regression analysis revealed that only applied computational thinking processes 
significantly predicted program quality (general computational thinking capability 
and non-verbal intelligence were not significant predictors). The results highlight 
the importance of students developing applied computational thinking procedural 
capabilities more than generalized computational thinking capabilities in order to 
improve the quality of their computer programs.
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1  Introduction

1.1  Context of the problem

Since its first major appearance in 2006 by Wing, computational thinking has been 
intensively discussed in the field of computer science education (Tang, Chou, & Tsai, 
2020). CT can be regarded as the ability to reformulate problems in ways that com-
puters can then be used to help solve those problems (International Society for Tech-
nology in Education [ISTE] & the Computer Science Teachers Association [CSTA], 
2011). The value proposition of computational thinking capabilities in a digital age is 
that they can help people solve a range of problems that lead to personal satisfaction 
and success, not only in the technology area but also life more broadly. However, the 
conjecture that possessing computational thinking knowledge, or applying computa-
tional thinking skills while solving problems, leads to higher quality solutions, has 
rarely been empirically validated.

One aspect of computational thinking that is often emphasized by advocates is 
that it is not simply computer programming capability. Research about the effects 
of computational thinking knowledge and/or skill can be divided into the area of 
effects regarding computational problem solving (e.g. computer programming) and 
effects regarding diverse non-programming problems or tasks. For example, a wide 
range of problems, from finding the shortest route between map locations to design-
ing an online shopping platforms, rely on people applying computational thinking 
processes while they are writing computer programs to solve those problems. How-
ever, computational thinking skills (such as problem decomposition, pattern recogni-
tion, algorithmic thinking and abstraction) can also be used to solve a range problems 
that do not involve computer programming, such as finding a way through a maze 
or specifying the steps in a dance sequence. While learning computer programming 
relies on people utilizing and applying computational thinking as part of the process 
they undertake, instructional settings will often use computational thinking founda-
tions to teach subjects and ideas that do not involve computer programming (e.g. 
Bull, Garofalo, & Hguyen, 2020). In fact, a literature review conducted by Tang et al. 
(2020) concluded that there were far more computational thinking effects analyzed 
in subject areas not related to computer science (n = 240) than for effects related to 
computer science (n = 78). However, we note that while computational thinking can 
be applied in a range of disciplines, it is considered absolutely essential and funda-
mental to successful computer programming (Angeli & Giannakos, 2020; Lye & 
Koh, 2014). Yet, we could not find any studies amongst the literature that examined 
whether or not computational thinking capabilities did in fact relate to higher quality 
computer programs.

The purpose of this study is to evaluate the extent to which general computa-
tional thinking knowledge, as well as computational thinking processes applied dur-
ing problem solving tasks, influence the quality of computer-programming solutions. 
This was achieved by comparing university students’ computational knowledge (as 
measured by Bebras tests) and the computational thinking processes observed while 
they wrote computer programs with the quality of the final computing products that 
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they produced. The findings of this study have implications for how computational 
thinking is framed, conceptualized and emphasized within education and society.

2  Literature review

2.1  Defining computational thinking and its subcomponents

Computational thinking is generally seen as an attitude and skill for solving prob-
lems, designing complex systems, and understanding human thoughts and behav-
iors, based on concepts fundamental to computer science (Lye & Koh, 2014). Recent 
reviews of computational thinking definitions and components by Shute, Sun and 
Asbell-Clarke (2017) and Ezeamuzie and Leung (2021) point out the lack of consis-
tent definition regarding what is meant by computational thinking, though with some 
terms being more popular (such as abstraction, algorithm design, decomposition, and 
pattern recognition as generalisation), particularly when academics devise explicit 
definitions with relation to their research. Some inconsistency between definitions 
of components can occur, at times not because there is disagreement about what 
computational thinking involves, but because other frequently used terms such as 
‘sequencing’, ‘conditional logic’ and ‘loops’ can conceptually fall within overarching 
categories (in this case, ‘algorithm design’).

In this study, we will draw upon generally accepted core components of compu-
tational thinking as being comprised of problem decomposition, pattern recognition 
(generalisation) algorithmic thinking and abstraction, which accords with other defi-
nitional work from the research field (Angeli & Giannakos, 2020; Cansu & Cansu, 
2019; Tsai, Liang, Lee, & Hsu, 2021). We acknowledge that there are other aspects 
of computational thinking that are identified in some studies, such as ‘parallelism’, 
‘data collection’, and ‘modelling’, as outlined by Shute et al. (2017), however, as 
Ezeamuzie and Leung (2021) points out, these sorts of other terms are relatively 
uncommon, and they are not processes utilised for all computational thinking prob-
lems. Selecting problem decomposition, pattern recognition (as generalisation), algo-
rithmic thinking and abstraction as the components of computational thinking in this 
study also corresponds with approaches adopted in industry (for example, Csizmadia, 
Curzon, Dorling, Humphreys, Ng, Selby, & Woollard, 2015; McNicholl, 2019).

One crucial part of any computational thinking task is problem decomposition, the 
division of a problem into smaller chunks. Problem decomposition has been identi-
fied as a general problem solving strategy well before the advent of computational 
thinking (Anderson, 2015). In computational problems, decomposition is particularly 
important because of its relationship to modularity, where the complexity of a task 
can be simplified by identifying smaller parts that can each be addressed separately 
(Atmatzidou & Demetriadis, 2016). For example, when programming a multimedia 
story, one might first identify the different scenes that occur, and then break each 
scene into a series of actions by the characters.

Another component of computational thinking is abstraction, in terms of ignoring 
unimportant details and instead focusing on relevant information. From a psycho-
logical perspective, abstraction is a thought process that is used to achieve organised 
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thinking (Shivhare & Kumar, 2016). In computational problems, abstraction enables 
people to concentrate on the essential, relevant, and important parts of the context 
and solution (Thalheim, 2009). For instance, when writing a multimedia story to 
have characters dance about a screen, a person may recognise that their program only 
needs to attend to the coordinates of the characters and their size, and the routines 
that they write can be applied to numerous characters irrespective of their colours or 
costumes.

A further critical thought process when engaging in computational thinking is 
pattern recognition. Pattern recognition involves being able to infer rules based on 
observations and apply these rules to instances that have never been encountered 
(visa vi Posner & Keele, 1968). Pattern recognition is crucial when solving computa-
tional problems, because rules inferred based on observations can then be translated 
into instructions that can be used to solve problems. For instance, when a person 
realises that a square can be drawn by drawing a straight line and then turning 90 
degrees four times, then they can easily and efficiently specify a set of instructions 
for a computer (or human) to execute the process. It is important to note that pattern 
recognition is closely related to abstraction as a form of ignoring irrelevant details, 
but is generally regarded as distinct by virtue of distilling those aspects of a situation 
that repeat or reoccur in certain ways.

The fourth computational thinking category in this study is algorithmic thinking. 
An algorithm is a well-defined procedure or ‘recipe’ that defines how inputs can be 
used to achieve a specific objective (Cormen et al, 2014; Sipser, 2013). Algorithmic 
thinking has roots in cognitive psychology in the form of scripts, that help people 
to know how to behave in social or behavioural contexts (for instance, going to a 
restaurant or playing a game, see Schank & Abelson, 1977). When solving computa-
tional problems, algorithmic thinking enables people to translate their abstract ideas 
and the patterns that they recognise into a set of procedures, for instance having a 
robot trace out a square and then dance on the spot. For the purposes of this study, 
algorithmic thinking also includes the thinking required to resolve errors that occur 
in early versions of algorithm designs (the process known in computing as ‘debug-
ging’), thus overcoming issues associated with delineating these two intrinsically 
interrelated processes.

2.2  Ways of measuring computational thinking

When defining a skill, the question arises whether it is possible to measure and differ-
entiate it from other, possibly overlapping or more general skills. For computational 
thinking, the existing measurement methods that can be broadly divided into assess-
ment of computational thinking as knowledge that is applied or tested (input), the 
assessment of computational thinking as a skill observed during a problem solving 
activity (process) and (theoretically also) the assessment of computations thinking by 
analyzing the result of a task (output). All measures are subsequently used as indica-
tors for the existence and the grade/level of the respective type of the computational 
thinking competence.

The most internationally well-known instruments for measuring general computa-
tional thinking knowledge are the Bebras Challenges. The main idea behind Bebras 
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Challenges has been to create abstract, non-computing problems that require specific 
cognitive abilities rather than technical knowledge or coding experience (Dagienė & 
Sentance, 2016). Examples of Bebras tasks can be found at https://www.bebras.org/
examples.html. Different studies have shown that abilities such as breaking down 
problems into parts, interpreting patterns and models, and designing and implement-
ing algorithms are needed to solve Bebras problems (Lockwood & Mooney, 2018; 
Araujo, Andrade, Guerrero, & Melo, 2019). There are also other approaches to mea-
suring general computational thinking knowledge, both within computer program-
ming contexts and also other disciplinary contexts, many of which have been applied 
in the training of teachers. For instance, Zha, Jin, Moore, and Gaston (2020) used 
multiple choice knowledge quizzes about computational thinking and Hopscotch 
coding to measure the impact of a team-based and flipped learning introduction to 
the Hopscotch block coding platform. In a study exploring the effects of a 13 week 
algorithm education course on 24 preservice teachers, Türker & Pala (2020) used the 
“Computational Thinking Skills Scale” (CTSS, from Korucu, Gencturk & Gundogdu, 
2017) comprising the computational thinking facets creativity, algorithmic thinking, 
collaboration, critical thinking and problem solving. Suters and Suters (2020) report 
on a paper-and-pencil based computational thinking knowledge assessment to mea-
sure the effects of an extend summer institute for middle school mathematics teach-
ers (n = 22) undertaking training in computer programming with Bootstrap Algebra 
and Lego® Mindstorms® robotics. The content assessment consisted of items that 
integrated mathematics common core content with facets of computational thinking, 
in line with research endeavors recognizing the need to contextualize computational 
thinking within specific disciplines (Gadanidis, 2017; Grover & Pea, 2013; Weintrop 
et al., 2016). All of these approaches to computational thinking knowledge assess-
ment share an emphasis on short, often multiple choice, closed questioning to mea-
sure computational thinking, rather than examining the computational thinking that 
arises as part of authentic and more extended problem solving contexts.

In a second variant of possible computational thinking measurement, the pro-
cess of solving a context-dependent task – mostly typically a programming task – is 
observed and analyzed with regard to the abilities which are considered to be part of 
computational thinking skill. Skill analysis based on observations is a comparatively 
underdeveloped field. Brennan & Resnick (2012) seminally investigated the com-
putational thinking processes and practices that children undertook while designing 
their programs using the visual programming platform Scratch, noting that “fram-
ing computational thinking solely around concepts insufficiently represented other 
elements of students learning” (p. 6). Their qualitative observations and interviews 
identified computational thinking practices such as being incremental and iterative, 
testing and debugging, reusing and remixing, and abstracting and modularizing. 
However, their results were not reported based on any sort of observational coding 
of participants, so that there is no indication of time spent on each of these processes 
while solving computing problems.

While analysis of learner pre- and/or post- interview narratives has been previ-
ously conducted to determine evidence of computational thinking (Grover, 2011; 
Portelance & Bers, 2015), we were not able to find any computational thinking analy-
ses involving systematic examination of narratives emerging from participants while 

https://www.bebras.org/examples.html
https://www.bebras.org/examples.html
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they were solving authentic programming problems. However, there are examples 
of observing and thematically categorizing computer programming processes and 
narratives (Bower & Hedberg, 2010; Knobelsdorf & Frede, 2016). These approaches 
provide a basis for in-situ observation and subsequent qualitative analysis of pro-
gramming activity for computational thinking constructs such as problem decon-
struction, abstraction, pattern recognition and algorithmic thinking, and our study is 
based on these more systematic observational approaches.

2.3  Measuring the quality of computer programs

There are a range of qualities that can be used to evaluate the quality of computer 
programs, such as the extent to which the code functionally achieves its intentions, 
avoids unnecessary repetition, is well organized, and so on (Martin, 2009). Much of 
the research relating to evaluating the quality of computer programs examines how 
to ways of auto-assessing student work (for instance, Ihantola, Ahoniemi, Karavirta, 
& Seppälä, 2010; Pieterse, 2013). However, automated tools struggle to accurately 
assess computational thinking (Poulakis & Politis, 2021), and recent work points 
out the need to look beyond raw functionality and ‘black-box’ testing of outputs, to 
examine the inner working of code and algorithms (Jin & Charpentia, 2020). Some 
research also examines the extent to which computational thinking is evident with 
the final programming product itself, by virtue of the code fragments that are used 
and their sophistication. Brennan and Resnick (2012) examined whether aspects of 
computational thinking were present in students’ block-based Scratch programs. 
Grover et al. have manually evaluated computational thinking evident in students’ 
Scratch programs, though without providing detail of the process and rubrics (Gro-
ver, 2017; Grover, Pea, & Cooper, 2015). An increasingly renown innovation, Dr 
Scratch, combines automated assessment, examination of the inner workings of pro-
grams, and analysis of computational thinking to provide a measure of program qual-
ity for Scratch programs (Moreno-León & Robles, 2015). One study has established a 
strong correlation (r = 0.682) between the Dr Scratch automated assessment of com-
putational thinking evident within students’ Scratch programs and manual evaluation 
of computational thinking within Scratch programs by human experts (Moreno-León 
et al., 2017). However, the computational thinking within a computer program is not 
necessarily a proxy for overall program quality, and the extent to which program 
quality relates to the computational thinking knowledge and computational thinking 
processes of program authors is an open question.

2.4  Research question

Thus, having established the lack of empirical evidence to suggest that general com-
putational thinking knowledge or in-situ computational thinking processes is related 
to computing performance, and armed with potential ways to operationalize and 
measure computational thinking knowledge, computational thinking processes, and 
quality of computer programs, this study examines the following research questions:
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1.	 Is the quality of computer programming solutions that people produce related to 
their general computational thinking knowledge?

2.	 Is the quality of computer programming solutions that people produce related to 
the applied computational thinking processes that they undertake?

3  Method

3.1  Participants

The sample for this study was drawn from 74 pre-service teachers completing a digi-
tal creativity and learning course at an Australian university. Among them 68% were 
female, 30% male and 2% preferred not to say. On average, participants were 23.9 
years old (SD = 5.2). In terms of language proficiency, 97% indicated that they spoke 
English fluently or were native speakers. In terms of prior knowledge, 97% had no or 
only little prior programming experience and none of the participants were familiar 
with the Scratch programming environment that was used for the study.

3.2  Instruments

3.2.1  Measuring computational thinking knowledge

To measure computational thinking knowledge as it arises in general problem solv-
ing contexts, participants solved an online version of adapted Bebras tasks. All tasks 
were chosen from the Australian versions of the Bebras contests from 2014 (Schulz 
& Hobson, 2015) and 2015 (Schulz, Hobson, & Zagami, 2016). Only tasks from 
the oldest available age group were selected (i.e., for adolescents 16 to 18 years 
of age and school levels 11 and 12, respectively). The tasks were slightly revised 
and presented without any iconic beavers or other comical pictures in order to be 
more appropriate for the university participants in this study. Although there is still a 
considerably age gap between the targeted age group of the tasks and the actual age 
of participants, it was not expected that this difference would cause any problems 
(e.g., ceiling effects) because pre-service teachers on the whole were not expected 
to be familiar with or particularly adept at computational thinking tasks. The scor-
ing of participant performance was based on the recommended scoring system of 
the founder of the Australian version of the Bebras tasks (Schulz et al., 2016). There 
were eight tasks considered as easy level (worth two points), seven medium (three 
points), and five hard tasks (four points) resulting in 20 tasks in total with a maximum 
achievable score of 57.

3.2.2  Observing computational thinking processes

To enable participants to demonstrate how much time they spent on computational 
thinking-relevant processes while programming, participants were set a Scratch pro-
gramming task. Scratch itself was developed in 2003 at MIT Media Laboratory and 
publicly launched in 2007 (Resnick et al., 2009). It is one the first and one of the 
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most popular open-source visual programming environments. In visual programming 
environments, users connects code blocks with each other instead of actual writing a 
code as common in real programming languages.

To prepare students for the task, they were given 45 min to review the Scratch tuto-
rials available from within the Scratch platform. They were also allowed to access 
these tutorials during the programming task. The task itself was defined as follows: 
“Program a story or a game where a hero has to overcome a challenge in order to 
defeat the villain(s).”

This task was chosen because it is somewhat open-ended and can be solved in the 
chosen Scratch development framework without prior programming knowledge. Fur-
thermore, computational thinking subskills (problem decomposition, pattern recogni-
tion, abstraction, algorithm design) would most likely have to be used to solve the 
task. The way in which the Scratch programming environment, task, and participants 
may influence the generalizability of results is considered in the Discussion section 
of this paper.

To reliably assess the amount of time they spent on computational thinking pro-
cesses during their Scratch programming session, a computational thinking behavior 
scheme (CTBS) was developed. The CTBS was based on event sampling, involving 
analysis of how often and for how long specific behavioral cues occur. Based on the 
literature review, four components were identified as main features of computational 
thinking and which are the latent constructs in the CTBS: decomposition, abstraction 
(as in ignoring unimportant details), pattern recognition, and designing and apply-
ing algorithms (see operationalization of these constructs in Table  1 below). Two 

Computational think-
ing components (latent 
variables)

Behavioural indicator (manifest variables)

Decomposition Put problem into pieces / building sub 
tasks or problems
Identifying the immediate next step
Discussing if then relations of the story or 
game (is related to programming elements)

Abstraction Focusing on important information; ne-
glecting unimportant details
Simplifying anything (problem, sub prob-
lem, functions, code bocks, etc.)

Pattern recognition Identifying similar characteristics (sub 
problems, functions, code blocks, etc.)
Use of copy-paste
Aha moments (must be related to an event 
when student understood relationship 
between things)

Algorithm design Putting code chunks together
Testing and judging algorithm (i.e., click-
ing on run or double click on sequence or 
actively observing a running sequence)
Debugging - try to find error and adjust 
algorithm

Table 1  Operationalization of 
computational thinking con-
structs in the Computational 
Thinking Behavioural Scheme 
(CTBS)
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researchers coded five entire videos independently to assess inter-rater reliability. As 
a result, at least two third of the events were identified by both raters. The range of 
the frequency of agreement for the five videos laid between 66.67% and 72.50% and 
the κ coefficients ranged from 0.58 to 0.67. Overall, the reliability can be interpreted 
as moderate (Landis & Koch, 1977). Note that the CTBS measured the time spent on 
computational thinking components, not the correctness of the computational think-
ing processes. It is to be expected that during the process of solving computational 
problems that people may not always immediately have correct thoughts about the 
right course of action, and this study sought to examine relationship between the time 
spent on computational thinking processes and the quality of programming products.

3.2.3  Measuring program quality

To measure participants’ program quality, two measures were used. For one, a rubric 
scheme loosely based on “Clean code” of Martin (2009) was developed specially for 
this study. The program quality criteria were based on five categories: richness of 
project, variety of code usage, organization and tidiness, functionality of code and 
coding efficiency. Richness of project described how much was happening in the 
Scratch project. Lower scores were given when only one element was programmed to 
perform only one behaviour, while Scratch projects consisting of several programmed 
elements that were related to each other received higher scores. The variety of code 
usage depended on the kinds of code blocks were used. Scratch projects were rated 
lower when they mainly consisted of simple code chunks such as motion or looks and 
high when more advanced chunks like control or sensing were used. The category 
organization and tidiness took into account the extent to which the control section in 
Scratch was organized, with more organized Scratch projects receiving higher scores. 
Functionality was assessed based on whether the intention of the Scratch project 
was clear and whether it worked as intended. Projects received higher scores when 
they ran smoothly and the intention was easy to understand. The category efficiency 

Figure 1  Two examples of the same function but coded differently. An example with unnecessary dupli-
cates is shown on the left and a more efficient version is seen on the right

 



Education and Information Technologies10

1 3

described the usage of code controlling the flow of execution, and the number unnec-
essary duplications. Lower scores were given to projects having many such dupli-
cates, while more generalized and more abstract code scripts received higher scores. 
An example of a program with unnecessary duplication is shown in Fig.  1 (left), 
compared to a more efficiently represented code block in Fig. 1 (right).

The five code quality categories were all rated on a scale including 0 (not evident), 
1 (poor), 2 (satisfactory), 3 (good), up to 4 (excellent). A weighted mean over all cat-
egories was calculated to provide a general assessment. The weight for each category 
was based on their importance for program quality, resulting in extent and richness, 
variety, and functionality being weighted 20% each, efficiency 30%, and organization 
and tidiness 10% to the weighted mean. Quality criteria and the (weighted) scoring 
system of the scheme were discussed with two computer science education profes-
sionals to uphold the content validity of the measure. In addition, one of the CS 
education professionals rated the Scratch projects to obtain reliability assessment. 
Inter-rater reliability was high with ICC(3,1), 95% CI [0.87, 0.96].

The second measure for program quality was based on Dr Scratch (Moreno-León 
& Robles, 2015). Dr Scratch provides a measure of program quality based on seven 
dimensions relevant to CS: abstraction and problem decomposition, parallelism, 
logical thinking, synchronization, algorithmic notions of flow control, user interac-
tivity and data representation. Dimensions are judged as 0 (not evident), 1 (Basic), 2 
(Developing), and 3 (Proficient). Scores are aggregated over all dimensions resulting 
in a total evaluation score (mastery score) from 0 to 21. Mastery scores between 8 
and 14 are regarded as general developing; lower than 8 is regarded as generally 
basic, and more than 14 as general proficient. High correlations between Dr Scratch 
mastery scores and experts judgments of program quality can be used as an indica-
tor of satisfactory criterion validity (Moreno-León, Román-González, Harteveld, & 
Robles, 2017). While Dr Scratch focuses primarily on computational thinking ele-
ments as opposed to other aspects of computer programming (e.g. organization of 
code, efficiency), it is based on the final computer programming solution that is pro-
duced, and thus provides an interesting alternative measure of program quality for 
this computational thinking study.

3.2.4  Test of nonverbal intelligence

To take account for potential confounding effect, participants’ nonverbal intelligence 
was also measured. For this the Test of Nonverbal Intelligence (3rd edition; TONI-3, 
Brown, Sherbeernou, & Johnson, 1997) was used. The TONI-3 is a classic culture 
fair test (i.e., minimally linguistically demanding) and as in many of them partici-
pants need to recognize a correct figure in a set of abstract and geometrical pictures. 
The test consists of 45 items and has an average testing time of 15 min and has a 
satisfactory level of psychometrical properties (Banks & Franzen, 2010).

3.3  Procedure

Initially, participants completed the Bebras Computational Thinking Knowledge test 
and the test of nonverbal intelligence (TONI-3 online). One week later, the second 
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phase took place at university’s classrooms and participants attempted the task in 
Scratch. To collect rich video material with many verbal and nonverbal indicators for 
the research team to analyze, participants were organized in pairs. It was hoped that 
working in pairs would encourage participants to talk and engage more with each 
other. The pairs were formed based on similar Bebras scores to minimize any effects 
due to large differences in competences. In total, 37 pairs were formed and filmed 
while working on the task, forming the corpus for the analysis.

3.4  Analysis

All statistical analysis was conducted using the R statistics programming environ-
ment. In order to acquire a sense of the data, basic descriptive statistics including 
means and standard deviations were calculated for all five measures (Bebras scores, 
time spent on different computational thinking processes, program quality rubric 
score, Dr Scratch score, TONI-3 non-verbal intelligence score). Because participants 
worked on the programming task in pairs, all programming assessments based on the 
rubric scheme, the additional Scratch evaluation assessment based on Dr Scratch, 
and the assessment of how much time participants spent on computational think-
ing behavior based on CTBS, were paired values. Scores on the Bebras tasks and 
TONI-3 test were averaged for each pair. Of the 37 pairs of participants who agreed 
to complete the Bebras test and have their final programs used in the study, 27 agreed 
to be video recorded for the purposes of the CTBS analysis, and 32 pairs agreed to 
complete the TONI-3 test.

Spearman’s ρ were computed between all five measures using all available data, 
to determine whether the underlying variables were directly correlated. Finally, in 
order to account for the possibility of moderating variables, two regression models 
were estimated with the two program quality measures as outcomes (program quality 
rubric score and Dr Scratch score). These two regression models used the Bebras task 
scores, the CTBS, and the TONI-3 IQ scores as predictors, so that it was possible to 
detect if any of these were moderating variables.

4  Results

4.1  Descriptive statistics and measurement outcomes

The average score for the measure of general computational thinking capability 
(Bebras task) was 57.03% (SD = 18.6%). The range was from 21% to one participant 
who achieved 100%. Results indicated a medium level of test difficulty, with no 
serious problems due to ceiling or floor effects. In TONI-3-IQ, participants achieved 
an average intelligence score of 113.12 (SD = 14.17). The mean of this sample was 
slightly higher than the expected value of the population (µ = 100, see, for example, 
Sternberg, 2017), which can be explained by the fact the sample was drawn from 
university students. The time participants needed to complete the Bebras tasks (Md 
= 55 min) and the TONI-3-IQ (Md = 22 min) roughly aligned with the expected time 
of 60 min (Dagienė & Futschek, 2008) and 15 min (Brown et al., 1997), respectively.
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Table 2 shows that while writing their programs, coded participants spent nearly 
half of their time on computational thinking behaviors, with algorithmic design hav-
ing the largest contribution and little time spent on decomposition and pattern rec-
ognition. Pattern recognition was observed in less than half of all pairs. No sign of 
abstraction in the sense of neglecting information was observed for any pair.

Table 3 contains an overview of scores achieved by the pairs of participants in 
the rubric scheme for program quality. The full range of the rating scales (0 to 4) 
was used. The distributions of all five dimensions had their center at around 2 (i.e., 
satisfactory level).

Computational thinking 
component

Pairs events % of time spent on CT-
relevant behavior
M (SD) Max - Min

Decomposition 27 310 7.77 (5.35) 22.61 
– 1.03

Abstraction - - - -
Pattern recognition 17 53 1.43 (1.05) 3.75 

– 0.18
Algorithmic design 27 1,072 37.46 

(12.26)
61.06 
– 10.39

Computational thinking 
overall

27 1435 46.66 
(14.96)

70.42 
– 15.74

Table 2  Overview of Coded 
Events and Time Spent on 
Computational Thinking 
Behavior

Programming dimensions M (SD)
Extension 1.86 (0.89)
Variety 2.19 (1.02)
Organization 1.84 (0.87)
Functionality 1.92 (0.95)
Efficiency 2.08 (1.21)
Weighted mean 2.00 (0.91)

Table 3  Overview of Rubric 
Scheme for Programming 
Quality

Note: pairs = 37

Table 4  Overview of Dr Scratch Project Scores
Dr Scratch dimension Absolute frequency of level M (SD) Mdn

0 1 2 3
Abstraction and problem decomposition 2 35 - - 0.95 (0.23) 1
Parallelism 5 21 4 7 1.35 (0.95) 1
Logical thinking 15 20 2 - 0.65 (0.59) 1
Synchronization 14 11 1 11 1.24 (1.26) 1
Flow control - 9 28 - 1.76 (0.43) 2
User interactivity - 11 25 1 1.73 (0.51) 2
Data representation 1 22 14 - 1.35 (0.54) 1
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In comparison, participants’ Scratch projects typically only achieved a basic rating 
according to Dr Scratch, with only two dimensions rated as developing (See Table 4).

4.2  Correlations between variables

As a first step towards analyzing which of the two computational thinking measures 
(general computational thinking knowledge as measured by Bebras versus compu-
tational thinking processes as observed in practice) have a greater relationship to 
program quality, Spearman’s ρ were computed (see Table 4). Correlation between 
the two measures of program quality (weighted means based on the developed rubric 
scheme and Dr Scratch mastery scores) revealed a significant relationship, ρ = 0.61, 
p < .001. Based on common interpretation of effect sizes (Cohen, 1988), this cor-
relation can be interpreted as large. The large correlation between the two measures 
of program quality reveals a degree of consistency in their assessment of student 
programs.

Significant positive correlations were found between general computational think-
ing knowledge (Bebras scores) and both measures of program quality, with a bor-
derline small to medium effect sizes (see Table 5). Significant positive correlations 
between time spent on computational thinking processes while programming and 
both measures of program quality, with quite large effects.

Because of some potential (partial) conceptual overlaps between nonverbal intel-
ligence and computational thinking, the correlations between the TONI-3 IQ and 
computational thinking measures were calculated as well. On one hand, the correla-
tion between the TONI-3 IQ and the Bebras scores was significant and positive with 
a medium to large effect size, ρ = 0.49, p = 0.002. On the other hand, correlation 
between TONI-3-IQ and time spent on computational thinking processes while pro-
gramming was not statistically significant, ρ = 0.09, p = 0.346

4.3  Regression analysis

As explained in the Methodology section, two regression models were estimated with 
both program quality measures as outcomes and the both computational thinking 
measures and the TONI-3 IQ scores as predictors. Standardized parameter estima-
tions and tests of significance of the regression model are shown in Table 6. The 
regression models only partly supported the findings from the correlations. The pos-

Program-
ming rubric 
scheme

Dr Scratch 
mastery 
score

N 
(pairs)

ρ p ρ p
Bebras score 0.32 0.027 0.29 0.041 37
Time of computational think-
ing behavior

0.65 < 
0.001

0.57 0.001 27

IQ based on TONI-3 0.29 0.055 0.19 0.149 32

Table 5  Spearman’ ρ Correla-
tions Between Programming 
Quality, Dr Scratch and Differ-
ent Measures

Note: one-sided p-values
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itive correlation between the Bebras score and both measures of program quality 
vanished when taking into account the effect of TONI-3 IQ. The only significant 
predictor for both measures of programming quality was the computational thinking 
process scores.

Post hoc analyses for both regression models were performed for power estima-
tion. Based on the given parameters (N = 24, number of predictors = 3, effect size = 
R2

pro.qual = 0.50, R2
DrScratch = 0.44, and α = 0.05), a power of > 0.99 for both models 

was achieved. Because of the small sample size, assumptions about linear multiple 
regressions such as homoscedasticity, multicollinearity, and residuals were rigor-
ously checked. No serious violations of any assumption could be found, though it 
should be noted that the residuals when the outcome was programming quality were 
not normally distributed, based on Shapiro-Francias test, with W’ = 0.88, p = 0.011. 
In conclusion, the power of both regression models were sufficiently high enough and 
the regression coefficients can be interpreted as “best linear regression estimations”.

5  Discussion

The general computational thinking knowledge scores (Bebras) and the computational 
thinking procedural performance (as indicated by the CTBS), were both positively 
correlated with both program quality measures (the rubric scheme and Dr Scratch 
mastery score). Therefore, a general interpretation could be that the higher the level 
of both general computational thinking knowledge and applied computational think-
ing in practice, the better the program quality. However, this interpretation would be 
premature because regression analyses revealed that only one — the applied compu-
tational thinking in practice — was a significant predictor of program quality when 
controlling for other variables such as the level of nonverbal intelligence and general 
computational thinking knowledge. The reason why the two different computational 
thinking measures predict programming differently might lie in different perspec-
tives underlying the two different measures of computational thinking, and how these 
might mediate the relationship with program quality.

The Bebras tasks focus on general and conceptual aspects of computational think-
ing. Correlations between the Bebras score and the TONI-3-IQ were between mod-
erate and strong. As for the most instruments for nonverbal intelligence, TONI-3 is 
based on pictures in which participants need to identify similar instances and recog-

Table 6  Regression Models
Program quality Dr Scratch mastery score

Predictors β t-value (SE) p β t-value (SE) p
Bebras score −0.41 −1.95 (1.24) 0.066 −0.14 −0.62 (4.27) 0.542
Time on computation-
al thinking behavior 
(overall)

0.74 4.31 (0.01) < 0.001 0.70 3.86 (0.03) < 
0.001

TONI-3 IQ 0.36 1.82 (0.01) 0.084 0.11 0.53 (0.05) 0.599
R² (R²adj) 0.50 (0.42) 0.44 (0.36)
F(3,20) 6.60 0.003 5.29 0.008
Note: N = 24. The intercept is omitted for better overview
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nize patterns. Many of the Bebras tasks are designed in a similar fashion. The original 
idea behind the Bebras tasks was to create a test about CS concepts “independent 
from specific systems” to avoid contestants being dependent on prior knowledge of 
any specific IT system (Dagienė & Futschek, 2008, p. 22). This may have led to some 
items being similar to those of nonverbal intelligence tests.

As found in some prior studies, this also caused confusion for some Bebras con-
testants. Vaníček (2014) asked participants for their opinions about the Bebras tasks. 
Some questioned the purpose and validity of the test, stating “I wonder what the con-
test questions have to do with informatics. Maybe nothing at all?”. If (at least some) 
Bebras tasks are similar to those of nonverbal intelligence tests and there is a high 
and significant positive correlation between both measures, it is possible that both 
tests measure similar constructs. This would explain why the relationship between 
the Bebras scores and program quality vanished when controlled for TONI-3-IQ. 
The Bebras tasks are validated by several studies (Dagienė & Stupuriene, 2016; Dol-
gopolovas, Jevsikova, Savulionienė, & Dagienė, 2015; Lockwood & Mooney, 2018) 
but none of these studies controlled for any potential confounding effects on simi-
lar psychological constructs such as nonverbal intelligence. We could only find one 
study in which the potential relationship between the Bebras tasks and nonverbal 
intelligence has been discussed, with similar findings to our study (Román-González, 
Pérez-González, & Jiménez-Fernández, 2017). Thus, it is possible that the Bebras 
tasks indeed measure computational thinking but mainly the facet of abstract think-
ing and pattern recognition.

It is possible that these abstract parts of computational thinking alone are not a 
good predictor of programming quality because extensive cognitive effort is required 
to transfer the skills for application in different situations and settings. Even though 
some similar skills are required to solve both kinds of tasks (the Bebras tasks as well 
as the programming task in this study), it would require a high level of transfer-
ability from these abstract logical quizzes to real applied programming situations. 
Moreover, according to the authors of the Bebras tasks, participants need to apply 
the same cognitive abilities as needed for programming tasks such as problem decon-
struction, thinking abstractly, recognizing patterns, and being able to understand, 
design, and evaluate algorithms (Dagienė & Sentance, 2016). However, the content 
of the Bebras tasks (as for many ‘unplugged’ methods) is very different from real 
programming tasks. This may lead to general computational thinking as measured 
by Bebras tasks not providing a good predictor of program quality above and beyond 
that which is captured and controlled for by general measures of intelligence (such 
as the TONI-3-IQ).

In our opinion, the results can be well explained in terms of the thesis of dispropor-
tion between application extensity and intensity of use (Weinert, 1994). This theory 
asserts that, the more general a rule or strategy is, the more minor its contribution to 
solving challenging, content-specific problems. This could also apply to the com-
putational thinking skills of the Bebras tasks. The measured skills are very general 
and partly overlap with general facets of intelligence. Their contribution to solving 
a challenging, content-specific problem might therefore be rather small and statisti-
cally hard to detect. At least, this would be one possible interpretation of the rather 
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weak correlation and the lost connection in the regression analysis with regard to 
general computational thinking knowledge and program quality.

In contrast to the Bebras tasks, the focus of the CTBS lies on participants’ applied 
computational thinking processes in practice. Correlations indicated that the more 
participants spent on applied computational thinking processes, the better the pro-
gramming quality of their Scratch project. It must be pointed that this was mostly 
due to algorithmic design, with algorithmic design being the most frequently applied 
computational thinking activity measured. As stated before, participants were work-
ing on their code from the start of the session and so there is a logical interpretation 
that the longer and the more participants spent on algorithmic design, the better the 
quality of their programs. Even after controlling for other measures, this relationship 
was still significant and persisted in both regression models with the programming 
quality rubric and Dr Scratch project evaluation as outcome, respectively. What is 
even more remarkable is that computational thinking processes were significantly 
correlated with program quality even though the correctness of the computational 
thinking processes was not assessed in this study. That is to say, that the more time 
spent thinking about computational thinking components while solving the comput-
ing problem led to better quality programming solutions, even when at times that 
computational thinking may not have necessarily been ‘right’. This is in line with the 
learning concept of ‘productive failure’, where thinking deeply about problems and 
exploring incorrect solutions can ultimately lead to greater learning overall (Kafai, 
De Liema, Fields, Lewandowski & Lewis, 2019).

These results indicate that the computational thinking process capabilities observed 
by the CTBS are more strongly related to program quality than computational think-
ing knowledge as measured by Bebras. While the Bebras Challenge is undoubtedly 
a valuable competition for students worldwide, the results from this study indicate 
the ability to solve Bebras problems may not be a good indicator of the ability to 
solve authentic informatics problems that involve computer programming. In fact, 
the result challenges the premise that generalised computational thinking knowledge 
underpins the ability to solve authentic programming problems to any substantial 
extent. The capacity to apply computational thinking processes in-situ has been 
shown in this study to be far more relevant and influential in terms of being able to 
derive high quality programming solutions than solving general computational think-
ing knowledge problems. To this extent, from a pedagogical perspective, educators 
who wish to use computational thinking as a basis for improving the ability of their 
students to solve programming problems should focus on developing students’ abili-
ties to apply computational thinking processes in practice (algorithm design, prob-
lem decomposition, pattern recognition, abstraction) rather than their computational 
thinking knowledge in a more detached and decontextualized sense.

5.1  Limitations of the Study

In this study, students worked together in pairs as a naturalistic way to provoke social 
interaction and make otherwise unobservable thoughts accessible. This contributed 
to the authenticity of the study, with pair programming often occurring in industry 
and education. Moreover, pair-programming settings have been used in prior stud-
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ies in terms of measuring computational thinking and programming knowledge for 
novices (Denner, Werner, Campe, & Ortiz, 2014; Wu, Hu, Ruis, & Wang, 2019). 
However, this approach involved some inherent challenges. It was not possible to 
perfectly group pairs according to identical levels of computational thinking, intelli-
gence, or programming quality. Some might argue that the results and overall conclu-
sion might have been different if all measures were obtained and analyzed solely on 
an individual basis. However, gauging individual measures of computational think-
ing programming skills from a behavioral perspective also involves challenges, as 
it is difficult to encourage individual participants to verbalize their thinking for the 
entire duration of the programming process. We believe that the benefits of analyz-
ing computational thinking arising from a more naturalistic setting outweigh those 
from measuring the computational thinking of individuals, in terms of the validity of 
results.

It is also worth mentioning that the CTBS and the programming quality instrument 
were designed specifically for the purpose of this study. That means these instruments 
have not been tested in other studies yet. Interrater reliability assessments indicated 
a satisfactory level of agreement, but the results based on CTBS and programming 
quality rubric scheme deserve to be interpreted with caution. Some indicators of 
the computational thinking behavior are dependent on the environment used. For 
instance, the computational thinking component algorithmic design category of the 
scheme and encompasses all utterance and actions with the purpose of designing an 
algorithmic solution to a problem. The programming task in this study was designed 
in Scratch, for which the only way to create algorithmic solutions was to drag and 
drop code chunks together. If another programming environment were used, or 
indeed different programming problems, or even other cohorts of participants, other 
indicators may be identified. This potentially limits the generalization of the results 
of the study.

6  Conclusion and future work

Computational thinking is promoted as the literacy of the 21st century and is already 
implemented in various curricula all over the world. Some refer to computational 
thinking even as the foundation of programming and CS (Lu & Fletcher, 2009). Thus, 
the goal of this study was to analyses the role of computational thinking in promoting 
high quality programming products. Results showed that the answer to the question 
of how computational thinking is related to program quality depends on whether 
computational thinking is seen as a set of general conceptual understandings or a set 
of procedural skills in use. The results of our study found that computational thinking 
as general conceptual knowledge (such as that used to solve Bebras challenges) was 
not significantly related to program quality. On the other hand, we found that com-
putational thinking as a set of procedural skills applied in practice was significantly 
related to programming quality, even when controlling for general intelligence. Thus, 
when discussing the role of computational thinking in developing computer program-
ming capacity, we suggest that educators and policy makers focus on the importance 
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of cultivating computational thinking procedural capabilities rather than in more 
abstract, knowledge-based and context free forms.

There are several potential avenues for research to build upon the results of 
this study. Visual programming environments such as Scratch are usually used to 
introduce computational thinking or programming concepts to people who have no 
knowledge about programming, as was the case in this study. In future, researchers 
could analyse how computational thinking is applied when experienced program-
mers solve a programming task in a programming language such as Java or C++. The 
way programmers approach problems develops over time as they gain more knowl-
edge (Teague & Lister, 2014). It is possible that the level of computational thinking 
for experienced programmers differs from the level of novices, which might mediate 
the relationship between both concepts. A range of different tasks could be examined, 
for instance, to gauge differences in computational thinking prevalence and relation-
ships to program quality for tasks with more closed solutions as opposed to being 
more open-ended in nature. Future research could attempt to analyze all concepts 
individually rather than in pairs as an alternative way to examine the relationship 
between the constructs in question. In any case, it is intended that the frameworks and 
methods presented in this paper provide a strong foundation for these future analyses.
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