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Existence, uniqueness and ergodicity for the centered
Fleming-Viot process

Nicolas Champagnat*, Vincent Hass*1

May 25, 2023

* Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

Abstract. Motivated by questions of ergodicity for shift invariant Fleming-Viot pro-
cess, we consider the centered Fleming-Viot process (Zt)t⩾0 defined by Zt := τ−⟨id,Yt⟩♯ Yt,
where (Yt)t⩾0 is the original Fleming-Viot process. Our goal is to characterise the centered
Fleming-Viot process with a martingale problem. To establish the existence of a solution to
this martingale problem, we exploit the original Fleming-Viot martingale problem and asymp-
totic expansions. The proof of uniqueness is based on a weakened version of the duality method,
allowing us to prove uniqueness for initial conditions admitting finite moments. We also provide
counter examples showing that our approach based on the duality method cannot be expected
to give uniqueness for more general initial conditions. Finally, we establish ergodicity proper-
ties with exponential convergence in total variation for the centered Fleming-Viot process and
characterise the invariant measure.

Keywords. Measure-valued diffusion processes, Fleming-Viot processes, Martingale prob-
lems, Duality method, Exponential ergodicity in total variation, Donnelly-Kurtz’s modified
look-down.

MSC subject classification. Primary 37A25, 37A30, 60G44, 60J60, 60J68; Secondary
60B10, 60G09, 60J76, 60J90, 92D10.

1 Introduction
Fleming and Viot have introduced in [27] a probability-measure-valued stochastic process
modeling the dynamics of the distribution of allelic frequencies in a selectively neutral genetic
population as influenced by mutation and random genetic drift: the original Fleming-Viot pro-
cess. The initial model of [27] was progressively enriched with further mechanisms of Darwinian
evolution: selection [27, 21, 23, 9, 18], recombination [25, 23] or the effect of an environment [28].
Fleming and Viot characterise in [27] the law of their process as a solution of a Stroock-
Varadhan measure-valued martingale problem [51] both in the selective neutral case and the
case with selection. To obtain the existence of such solution on a compact metric space, their
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method is based on discretisation of the mutation operator and tightness arguments. An alter-
native approach is used, in the studies [40, 41, 32, 31, 50] based on the Otha-Kimura model
[42, 43] and in the references [27, 10, 23, 17] based on its continuous-time version: the Moran
model (also called continuous-state stepwise mutation model). If we denote by N the population
size, these authors construct a particle process whose limiting behavior is analysed under the
assumptions that the mutation step is proportional to 1/

√
N and on the time scale (Nt)t⩾0.

In [28], another particle process, based on the lookdown construction [14] is used to show the
existence of the Fleming-Viot process in a random environment. This lookdown construction
also allows to analyse sample path properties of the process and has been used in numerous
references since then, such as [15] [17, Chapter 5].

In [27], uniqueness of the solution to the Fleming-Viot martingale problem in the selectively
neutral case, is proved using uniqueness of moments of certain finite-dimensional distributions
and arguments on semigroup. However, in the case where natural selection acts, the previous
method fails, but the result can be obtained from a version of the Cameron-Martin-Girsanov
formula [9, Chapter 10] [8, Theorem 5.1]. See also [24] for an application of this method in the
case of unbounded selection function. In most references such as [17, 10, 20, 21, 23, 24], under a
variety of assumptions, the duality method [26, Proposition 4.4.7] is used to prove the uniqueness
of the Fleming-Viot process. The idea is to relate the distribution of the original process with
that of a simple process, called dual process. This leads to a duality relation which ensures that
two solutions to the martingale problem have the same 1-dimensional marginal laws. Uniqueness
of the solution to the martingale problem then follows from Markov’s property [26, Theorem
4.4.2]. Other methods are used in some references: [11] makes use of resolvent estimates; [45, 44]
prove existence and uniqueness of Fleming-Viot processes with unbounded selection intensity
functions by using Dirichlet’s forms.

Questions of ergodicity of the Fleming-Viot process were also the subject of many works.
Let E be a Polish space and B(E) the Borel σ−field on E. Let us recall from [23, Section 5]
that an E−valued Markov process (Zt)t⩾0 with a unique stationary distribution π is weakly
ergodic if for all bounded continuous functions f on E, for all initial condition x0 ∈ E,

lim
t→+∞

Ex0 (f (Zt)) =
∫

E
f(x)π(dx) (1)

and strongly ergodic if

lim
t→+∞

sup
B∈B(E)

|Px0 (Zt ∈ B) − π(B)| = 0, x0 ∈ E. (2)

If E is compact, for mutation operators A whose closure generates a Feller semigroup on the
space of continuous functions and such that there is a unique probability measure ν0 on E sat-
isfying

∫
E Af(x)ν0(dx) = 0, some ergodicity results for the Fleming-Viot process are obtained

in [23]. More precisely, in the selectively neutral case and without recombination, a simple proof
of weak ergodicity of the Fleming-Viot process is given using duality arguments whereas cou-
pling arguments provide an approach to strong ergodicity. These results were extended in [22] to
models with recombination and in [24] to models with unbounded selection, with the additional
tool of Dawson’s Girsanov-type formula for strong ergodicity. In the special case where the
mutation operator of the Fleming-Viot process has the form

Af(x) = θ

2

∫
E

(f(y) − f(x)) P (x, dy), θ ∈ (0, +∞), f ∈ D(A), (3)
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it is proved in [23] that the Fleming-Viot process has a reversible stationary distribution if
P (x, dy) = ν(dy) for some probability measure ν on E (see [35] for a converse result). For the
mutation operator (3), it is proved in [20, 21] and [9, Theorem 8.2.1] that the Fleming-Viot
process is purely atomic for every time, in other words the solutions of the martingale problem
take values in the set of purely atomic probability measures. In [25], the ergodicity result of [22]
was extended to the weak atomic topology.

However, if we consider the case where the mutation operator is the Laplacian on Rd, there
exists no stationary distribution [23, 35], [26, Problem 11 p.450]. Instead the process exhibits
a wandering phenomenon [10, 3]. Nevertheless, [50, 23] considered the Fleming-Viot process
shifted by minus its empirical mean and established existence of a unique invariant measure and
weak ergodicity for this process using moment and duality arguments. More precisely in [23],
thanks to some estimates of the original Fleming-Viot dual process and the finiteness of all
moments of the Fleming-Viot process shifted by minus its empirical mean for any time t, the
authors obtain an expression for these in the asymptotic t → +∞. Then, by tightness arguments
and characterisation of the limit, the result follows. In [50], an analoguous approach is used for
the continuous-state stepwise mutation model.

In this paper we are interested in the Fleming-Viot process shifted by minus its empirical
mean, which we call centered Fleming-Viot process. As in previous works it is natural to ask
questions of existence, uniqueness and ergodicity when the mutation operator is the Laplacian
on R. Moreover, the study of this process was motivated by biological questions in adaptive
dynamics. The theory of adaptative dynamics [39] is based on biological assumptions of rare
and small mutations and of large population under which an ODE approximating the population
evolutionary dynamics, the Canonical Equation of Adaptive Dynamics (CEAD) was proposed
[12]. Two mathematical approaches were developed to give a proper mathematical justification of
this theory: a deterministic one [13, 47, 38], and a stochastic one [4, 7, 6]. Despite their success,
the proposed approaches are criticised by biologists [52, 48]. Among the biological assumptions
of adaptive dynamics, the assumption of rare mutations is the most critised as unrealistic. In
order to solve this problem, we propose to apply an asymptotic of small mutations and large
population, but frequent mutations. After conveniently scaling the population state, this leads to
a slow-fast dynamics [46, 34], where the fast dynamics appears to be given by a discrete version
of the centered Fleming-Viot process [5]. This explains why we are interested in ergodicity
properties of such processes.

To establish the existence of the centered Fleming-Viot process, we characterise it as a
solution of a measure-valued martingale problem that we called the centered Fleming-Viot
martingale problem. Our method is to exploit the original Fleming-Viot martingale problem
and asymptotic expansions. An additional difficulty occurs in our case since we need to apply
the original Fleming-Viot martingale problem to predictable test functions. This requires to
extend the martingale problem to such test functions using regular conditional probabilities. The
proof of uniqueness of the solution of the centered Fleming-Viot martingale problem is based
on duality methods as in the previous works. However, additional difficulties occur in our case
since bounds on the dual process are much harder to obtain and the duality identity can only be
proved in a weakened version. In particular, our uniqueness result only holds for initial conditions
admitting finite moments. We also provide a counter example showing that our uniqueness result
is optimal in the sense that we cannot expect to obtain uniqueness for more general initial condi-
tions using the duality approach. Finally, we obtain strong ergodicity properties of the centered
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Fleming-Viot process that extend the weak ergodicity results obtained in [50, 23]. To this aim,
we construct the centered version of the Moran process and we prove that it converges in law
to the centered Fleming-Viot process. Exploiting the relationship between the Moran model
and the Kingman coalescent, we obtain a result of exponential ergodicity in total variation for
the centered Moran model uniformly in the number of particles. This result is propagated to
the centered Fleming-Viot process by coupling arguments. Using another strategy proposed
by [50, 23], based on the Donnelly-Kurtz modified look-down [15] we give a characterisation
of the unique invariant measure of the centered Fleming-Viot process.

This paper is organised as follows. In Section 2 we define the martingale problem for the
centered Fleming-Viot process and establish an existence result. We give also some equiva-
lent extensions to the centered Fleming-Viot martingale problem and some properties of the
centered Fleming-Viot process. In Section 3 we prove uniqueness to the centered Fleming-
Viot martingale problem for initial conditions admitting finite moments and we discuss this
assumption. In Section 4, we establish exponential convergence in total variation for the cen-
tered Fleming-Viot process to its unique invariant measure and provide a characterisation of
this measure based on the Donnelly-Kurtz modified look-down. Finally in Sections 5 and 6,
we prove respectively the main results of existence and uniqueness of the solution of the cen-
tered Fleming-Viot martingale problem. The paper ends with an appendix gathering technical
lemmas for the existence proof.

2 Existence for the centered Fleming-Viot process
In this section, our aim is to define the martingale problem for the centered Fleming-Viot
process and to establish an existence result. This result is stated in Section 2.1. Then, we give
in Section 2.2, the framework and ideas of the proof. In Section 2.3, we give some equivalent
extensions to the centered Fleming-Viot martingale problem with different sets of test func-
tions. We end this section by giving some interesting results about the centered Fleming-Viot
process: it satisfies the Markov property (Section 2.4.1), admits finite moments (Section 2.4.2)
and has compact support (Section 2.4.3).

2.1 Centered Fleming-Viot martingale problem and main result

The original Fleming-Viot process is a measure-valued diffusion in M1(R), the set of probabil-
ity measures on R with respect to the Borel σ−field B(R), which is endowed with the topology
of weak convergence making it a Polish space [2]. If I is an interval of R, then for all ℓ ∈ N,
we denote by C ℓ(I,R) the space of functions of class C ℓ from I to R. For ℓ ∈ N, we denote by
C ℓ

b (R,R) the space of real bounded functions of class C ℓ(R,R) with bounded derivatives. We
consider the filtered probability space

(
Ω, F , (Ft)t⩾0

)
where

Ω := C 0 ([0, +∞) , M1(R))

is endowed with the Skorohod topology, F is the associated Borel σ−field and (Ft)t⩾0 is the
canonical filtration. The centered Fleming-Viot process is a measure-valued diffusion in

Mc,2
1 (R) :=

ß
µ ∈ M1(R)

∣∣∣∣ ∫
R

|x|2µ(dx) < ∞,

∫
R

xµ(dx) = 0
™
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which is endowed with the trace of the topology of weak convergence on M1(R). We consider
the filtered probability space

(
Ω̃, ‹F ,

Ä‹Ft

ä
t⩾0

)
where

Ω̃ :=
®

X ∈ C 0
Ä
[0, +∞) , Mc,2

1 (R)
ä ∣∣∣∣ ∀T > 0, sup

0⩽t⩽T

∫
R

|x|2 Xt(dx) < ∞
´

is endowed with the trace of the Skorohod topology on Ω, ‹F is the trace of the σ−field F
and

Ä‹Ft

ä
t⩾0

is the trace of the filtration (Ft)t⩾0. We introduce several notations that we use
repeatedly in the sequel. For a measurable real bounded function f and a measure ν ∈ M1(R),
we denote ⟨f, ν⟩ :=

∫
R f(x)ν(dx). We denote by id the identity function. We denote N :=

{0, 1, 2, · · · } and N⋆ := N \ {0}. For all k ∈ N and for all ν ∈ M1(R), we also denote

Mk (ν) :=
∫
R

|x − ⟨id, ν⟩|k ν(dx).

In particular, for all k ∈ N and for all µ ∈ Mc,2
1 (R), Mk(µ) =

¨
|id|k , µ

∂
. For all F ∈ C 2 (R,R)

and g ∈ C 2
b (R,R) we denote for all ν ∈ M1(R), Fg(ν) := F (⟨g, ν⟩).

Definition 2.1. A probability measure Pµ ∈ M1
Ä
Ω̃
ä

is said to solve the centered Fleming-Viot
martingale problem with resampling rate γ ∈ (0, +∞) and with initial condition µ ∈ Mc,2

1 (R)
if the canonical process (Xt)t⩾0 on Ω̃ satisfies Pµ(X0 = µ) = 1 and for each F ∈ C 2(R,R) and
g ∈ C 2

b (R,R),

M̂F
t (g) := Fg (Xt) − Fg (X0) −

∫ t

0
LFVcFg (Xs) ds (4)

with for all ϖ ∈ Mc,2
1 (R),

LFVcFg(ϖ) := F ′ (⟨g, ϖ⟩)
Å≠

g′′

2 , ϖ

∑
+ γ

[〈
g′′, ϖ

〉
M2(ϖ) − 2

〈
g′ × id, ϖ

〉]ã
+ γF ′′ (⟨g, ϖ⟩)

Ä〈
g2, ϖ

〉
− ⟨g, ϖ⟩2 +

〈
g′, ϖ

〉2
M2 (ϖ) − 2

〈
g′, ϖ

〉
⟨g × id, ϖ⟩

ä (5)

is a continuous Pµ−martingale in L2
Ä
Ω̃
ä

with quadratic variation process¨
M̂F (g)

∂
t

= 2γ

∫ t

0

[
F ′ (⟨g, Xs⟩)

]2 î〈
g2, Xs

〉
− ⟨g, Xs⟩2

+
〈
g′, Xs

〉2
M2 (Xs) − 2

〈
g′, Xs

〉
⟨g × id, Xs⟩

ó
ds.

(6)

Note that a major difficulty comes from the presence of terms in M2(µ) in (5). We will
see in particular that this leads to the creation of particles in the dual process. Note also that
the operator given by (5) is the generator (in the sense of Dynkin) of the Mc,2

1 (R)−valued
centered Fleming-Viot process. We recall that the probability measure PFV

ν ∈ M1 (Ω) is said
to solve the original Fleming-Viot martingale problem with resampling rate γ and with initial
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condition ν ∈ M1(R) if the canonical process (Yt)t⩾0 on Ω satifies PFV
ν (Y0 = ν) = 1 and for each

F ∈ C 2(R,R) and g ∈ C 2
b (R,R),

MF
t (g) := F (⟨g, Yt⟩) − F (⟨g, Y0⟩) −

∫ t

0
F ′ (⟨g, Ys⟩)

≠
g′′

2 , Ys

∑
ds

− γ

∫ t

0
F ′′ (⟨g, Ys⟩)

î〈
g2, Ys

〉
− ⟨g, Ys⟩2

ó
ds

(7)

is a continuous square integrable PFV
ν −martingale whose martingale bracket satisfies for all

G, H ∈ C 2(R,R) and for all g, h ∈ C 2
b (R,R),¨

MG(g), MH(h)
∂

t
= 2γ

∫ t

0
G′ (⟨g, Ys⟩) H ′ (⟨h, Ys⟩) [⟨gh, Ys⟩ − ⟨g, Ys⟩ ⟨h, Ys⟩] ds. (8)

In the population genetics literature, the terms involving the first order derivative F ′ describe
the effect of the mutation whereas the ones involving the second order derivative F ′′ describe the
effect of the random genetic drift. As the original Fleming-Viot process is obtained as a scaling
limit of a population genetics model, called Moran’s model (see Section 4.1), the different terms
in (7) can be interpreted as in the population genetics context. It is well-known that, for all
ν ∈ M1(R), there exists a unique probability measure PFV

ν ∈ M1 (Ω) satisfying the previous
martingale problem (7) [27, Theorem 3].

Remark 2.2. The additional terms in the martingale problem (4) with respect to the martingale
problem (7) describe the impact of centering and ensure that at all times the centered Fleming-
Viot process remains Mc,2

1 (R)−valued.

Let us define by τα the translation operator of vector α ∈ R. For all µ ∈ M1(R), for all
A ∈ B(R),

τα♯ µ(A) := µ
(
τ−1

α (A)
)

= µ

Åß
x − α

∣∣∣∣ x ∈ A

™ã
,

where ♯ is the pushforward operator (τα♯ µ is the pushforward measure of µ by τα). For all k ∈ N,
we denote

Mk
1(R) :=

®
ν ∈ M1(R)

∣∣∣∣∣¨|id|k , ν
∂

< ∞
´

.

The main result of this section is the following:

Theorem 2.3. For all µ ∈ Mc,2
1 (R), there exists a probability measure Pµ ∈ M1

Ä
Ω̃
ä

satisfying
the martingale problem of Definition 2.1, given by the law of the process (Zt)t⩾0 defined by

Zt := τ−⟨id,Yt⟩♯ Yt := Yt (· + ⟨id, Yt⟩) , t ⩾ 0 (9)

where (Yt)t⩾0 is the original Fleming-Viot process.

Note that for all µ ∈ M1
1(R), ⟨id, µ⟩ is the mean value of µ and so ⟨id, Zt⟩ = 0 for all t ⩾ 0.

As a result, the process (Zt)t⩾0 corresponds to the original Fleming-Viot process centered by
its mean value, hence its name of centered Fleming-Viot process.
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2.2 Sketch of proof of Theorem 2.3

The proof is based on the original Fleming-Viot martingale problem (7).

2.2.1 Framework and objective of the proof

Let ν ∈ M2
1(R) and PFV

ν the unique solution to the original Fleming-Viot martingale prob-
lem (7). As the support of the original Fleming-Viot process is compact at all positive
times PFV

ν −a.s. [37], PFV
ν

(
C 0 ([0, +∞) , M2

1(R)
))

= 1. Moreover, as t 7→ ⟨id, Yt⟩ is continu-
ous PFV

ν −a.s. (Lemma 5.1 (2)), we deduce that, for all t ⩾ 0, Zt given by (9), is well defined
and is a random variable on Ω̃.

When the dependency of Y and Z on the initial condition ν of Y is important, we shall use
the notation (Y ν

t )t⩾0 and (Zν
t )t⩾0 instead of (Yt)t⩾0 and (Zt)t⩾0. Our goal is to prove that the

law of the process (Zt)t⩾0 denoted by PFVc
τ−⟨id,ν⟩♯ ν solves the martingale problem of Definition 2.1

with initial condition τ−⟨id,ν⟩♯ ν. Note that the notation PFVc
τ−⟨id,ν⟩♯ ν is justified because the original

Fleming-Viot process is invariant by translation:

Proposition 2.4. Let ν ∈ M1
1(R) and a ∈ R. Then, the law of Zν

t is the same as the law of
Zτa♯ ν

t .

Proof. By translation invariance of the original Fleming-Viot process, the process
Ä
τ−a♯ Y τa♯ ν

t

ä
t⩾0

has the same law as the process (Y ν
t )t⩾0. Now,

Zτa♯ ν
t = τ−

¨
id,Y τa♯ ν

t

∂♯ Y τa♯ ν
t = τ−

¨
id,τ−a♯ Y τa♯ ν

t

∂♯ Äτ−a♯ Y τa♯ ν
t

ä
.

Thus,
Ä
Zτa♯ν

t

ä
t⩾0

has the same law as
(

τ−⟨id,Y ν
t ⟩♯ Y ν

t

)
t⩾0

= (Zν
t )t⩾0.

2.2.2 Outline of the proof

We restrict to the time interval [0, T ] for T > 0 arbitrary. By standard arguments, it is sufficient
to prove that, for all F ∈ C 2(R,R) and g ∈ C 2

b (R,R),

Fg (Zt) − Fg (Z0) −
∫ t

0
LFVcFg (Zs) ds (10)

is a continuous PFV
ν −martingale, ν ∈ M2

1(R) where LFVc is given by (5). We start by assuming
F, g ∈ C 4

b (R,R) and we seek for the Doob’s semi-martingale decomposition of

Fg(Zt) := F (⟨g, Zt⟩) = F
(〈

g ◦ τ−⟨id,Yt⟩, Yt

〉)
,

using the original Fleming-Viot martingale problem (7). However, F
(〈

g ◦ τ−⟨id,Yt⟩, Yt

〉)
does

not take the form H (⟨h, Yt⟩) with deterministic h. Therefore, we cannot apply (7) directly. To get
over this difficulty, we consider for t ∈ [0, T ], an increasing sequence 0 = tn

0 < tn
1 < · · · < tn

pn
= T
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of subdivisions of [0, T ] whose mesh tends to 0. We can observe that

Fg(Zt) − Fg(Z0) =
pn−1∑
i = 0

¶
Fg(Ztn

i+1∧t) − Fg(Ztn
i ∧t)
©

=
pn−1∑
i = 1

{
F

(〈
g ◦ τ

−
≠

id,Ytn
i+1∧t

∑, Ytn
i+1∧t

〉)
− F

(〈
g ◦ τ

−
≠

id,Ytn
i

∧t

∑, Ytn
i ∧t

〉)}
.

Using asymptotic expansions (see Lemma A.1 with p = 1) of the terms in the previous sum, we
prove that

Fg(Zt) − Fg(Z0) =
pn−1∑
i = 0

®
(A)i + (B)i + O

Å∣∣∣¨id, Ytn
i+1∧t − Ytn

i ∧t

∂∣∣∣3ã
+ O

Ç 2∑
k = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3å´ ,

(11)

where

(A)i = F ′
Å≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑ãß≠
g ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
−
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂ ï≠
g′ ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑
+
≠

g′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑ò
(12)

+ 1
2
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂2
≠

g′′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑™
,

(B)i =
F ′′
Å≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑ã
2

®≠
g ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑2

+
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂2
≠

g′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑2
(13)

− 2
≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂≠
g′ ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑´
,

and where g(j), j ∈ {0, 1, 2}, denotes the jth derivative of g. Note that the proposed decompo-
sition in (11) is intended such that each of the terms in (12) and (13) is either Ftn

i ∧t−adapted
or they exhibit increments of (Yt)t⩾0 between tn

i ∧ t and tn
i+1 ∧ t. Several steps are described in

Section 5 to obtain the semi-martingale decomposition of each term involving increments of Yt

of the previous sum. Note that the last terms of (A)i and (B)i bring out the terms in M2(µ).
By making the step of the subdivision tend towards 0, we obtain the expected result. By density
arguments, the martingale problem (7) satisfied by F, g ∈ C 4

b (R,R) is extended, in Section 5.6,
to the case where F ∈ C 2(R,R) and g ∈ C 2

b (R,R). Once we have proved that M̂F (g) is a
martingale, using Itô’s formula and the martingale problem (4) with a localisation sequence, we
deduce the value of

¨
M̂F (g)

∂
t

and by Fatou’s lemma that M̂F
t (g) ∈ L2

Ä
Ω̃
ä
.
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2.3 Some extensions to the centered Fleming-Viot martingale problem

Our goal is now to give some extensions to the martingale problem (4) which will be useful to
compute the martingale bracket between two martingales of the form (4) and prove uniqueness
of the solution of the martingale problem of the centered Fleming-Viot in Section 3. Note that
these different versions are equivalent and that it is usual to switch from one to the other.

2.3.1 Extensions to multiple variables

We firstly introduce the version of the centered Fleming-Viot martingale problem with p ∈ N⋆

variables.

Definition 2.5. The probability measure Pµ ∈ M1
Ä
Ω̃
ä

is said to solve the centered Fleming-
Viot martingale problem with p variables, with resampling rate γ and with initial condition
µ ∈ Mc,2

1 (R), if the canonical process (Xt)t⩾0 on Ω̃ satisfies Pµ(X0 = µ) = 1 and for each
F ∈ C 2(Rp,R) and g = (g1, · · · , gp) ∈ C 2

b (Rp,R),

M̂F
t (g) := F (⟨g1, Xt⟩ , · · · , ⟨gp, Xt⟩) − F (⟨g1, X0⟩ , · · · , ⟨gp, X0⟩)

−
∫ t

0

p∑
k = 1

∂kF (⟨g1, Xs⟩ , · · · , ⟨gp, Xs⟩) ×ï≠
g′′

k

2 , Xs

∑
+ γ

(〈
g′′

k , Xs

〉
M2 (Xs) − 2

〈
g′

k × id, Xs

〉)ò
ds

− γ

∫ t

0

p∑
i,j = 1

∂2
ijF (⟨g1, Xs⟩ , · · · , ⟨gp, Xs⟩) ×[

⟨gigj , Xs⟩ − ⟨gi, Xs⟩ ⟨gj , Xs⟩ +
〈
g′

i, Xs

〉 〈
g′

j , Xs

〉
M2 (Xs)

−
〈
g′

i, Xs

〉
⟨gj × id, Xs⟩ −

〈
g′

j , Xs

〉
⟨gi × id, Xs⟩

]
ds

(14)

is a continuous Pµ−martingale in L2
Ä
Ω̃
ä
.

We will see in Section 3 that this martingale problem admits a unique solution which is the
same as the solution of the martingale problem (4) if the initial condition has all its moments
finite. For the moment, we can prove:

Theorem 2.6. For all µ ∈ Mc,2
1 (R), the probability measure Pµ constructed in Theorem 2.3,

satisfies the martingale problem of Definition 2.5.

Proof. We can deduce the result from the original Fleming-Viot martingale problem with
p variables [10] given by (15) below, following exactly the same method as for the proof of
Theorem 2.3. We recall that, the probability measure PFV

ν ∈ M1 (Ω) is said to solve the original
Fleming-Viot martingale problem with p variables with resampling rate γ and with initial
condition ν ∈ M1(R), if the canonical process (Yt)t⩾0 on Ω satisfies PFV

ν (Y0 = ν) = 1 and for
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each F ∈ C 2(Rp,R) and g = (g1, · · · , gp) ∈ C 2
b (Rp,R),

MF
t (g) := F (⟨g1, Yt⟩ , · · · , ⟨gp, Yt⟩) − F (⟨g1, Y0⟩ , · · · , ⟨gp, Y0⟩)

−
∫ t

0

p∑
k = 1

∂kF (⟨g1, Ys⟩ , · · · , ⟨gp, Ys⟩)
≠

g′′
k

2 , Ys

∑
ds (15)

− γ

∫ t

0

p∑
i,j = 1

∂2
ijF (⟨g1, Ys⟩ , · · · , ⟨gp, Ys⟩) [⟨gigj , Ys⟩ − ⟨gi, Ys⟩ ⟨gj , Ys⟩] ds

is a PFV
ν −martingale. As mentionned in [10, Theorem 5.1], the solution PFV

ν of the martingale
problem (7) is the unique solution to the previous martingale problem (15). Here, (11) has to
be replaced by the general version of Lemma A.1.

This version allows us to compute the martingale bracket
¨
M̂G(g), M̂H(h)

∂
t

in a similar form
as (8).

Corollary 2.7. Let G, H ∈ C 2(R,R) and g, h ∈ C 2
b (R,R). Then,¨

M̂G(g), M̂H(h)
∂

t
= 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩

− ⟨g, Xs⟩ ⟨h, Xs⟩ +
〈
g′, Xs,

〉 〈
h′, Xs

〉
M2 (Xs)

−
〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds.

Proof. Recall that for all ν ∈ M1(R), Gg(ν) := G (⟨g, ν⟩) and Hh(ν) := H (⟨h, ν⟩). Using the
relation (4) for M̂G

t (g) and M̂H
t (h), we obtain that

M̂G
t (g)M̂H

t (h) = G (⟨g, Xt⟩) H (⟨h, Xt⟩) − G (⟨g, X0⟩) H (⟨h, X0⟩)

− G (⟨g, Xt⟩)
∫ t

0
LFVcHh (Xs) ds − H (⟨h, Xt⟩)

∫ t

0
LFVcGg (Xs) ds

+
∫ t

0
LFVcGg (Xs) ds

∫ t

0
LFVcHh (Xs) ds

− G (⟨g, X0⟩) M̂H
t (h) − H (⟨h, X0⟩) M̂G

t (g)

(16)

where LFVc is given by (5). From the martingale problem (14) with p = 2, F (x, y) = G(x)H(y)
and f = (g, h), we deduce that

G (⟨g, Xt⟩) H (⟨h, Xt⟩) − G (⟨g, X0⟩) H (⟨h, X0⟩)

=
∫ t

0
G (⟨g, Xs⟩) LFVcHh(Xs)ds +

∫ t

0
H (⟨h, Xs⟩) LFVcGg(Xs)ds

+ M̂F
t (f) + 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩ − ⟨g, Xs⟩ ⟨h, Xs⟩

+
〈
g′, Xs

〉 〈
h′, Xs

〉
M2 (Xs) −

〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds,

10/74



where
Ä
M̂F

t (f)
ä

t⩾0
is a Pµ−martingale. Using Itô’s formula for the third and fourth term

of the right hand side (16) and noting that∫ t

0
LFVcGg (Xs) ds

∫ t

0
LFVcHh (Xs) ds =

∫ t

0

ï
LFVcGg(Xs)

Å∫ s

0
LFVcHh(Xr)dr

ãò
ds

+
∫ t

0

ï
LFVcHh(Xs)

Å∫ s

0
LFVcGg(Xr)dr

ãò
ds,

we deduce the Doob-Meyer decomposition of M̂G
t (g)M̂H

t (h):

M̂G
t (g)M̂H

t (h) = M̂F
t (f) + 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩ − ⟨g, Xs⟩ ⟨h, Xs⟩

+
〈
g′, Xs

〉 〈
h′, Xs

〉
M2 (Xs) −

〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds

−
∫ t

0

Å∫ s

0
LFVcHh (Xr) dr

ã
dM̂G

s (g) −
∫ t

0

Å∫ s

0
LFVcGg (Xr) dr

ã
dM̂H

s (h)

− G (⟨g, X0⟩) M̂H
t (h) − H (⟨h, X0⟩) M̂G

t (g).

The result follows.

2.3.2 Extension to polynomials in µ

Our goal here is to study the Doob semi-martingale decomposition of polynomial functions of
the centered Fleming-Viot process of the form

Pf,n(µ) := ⟨f, µn⟩ :=
∫
R

· · ·
∫
R

f(x1, · · · , xn)µ(dx1) · · · µ(dxn) (17)

with n ∈ N⋆, µ ∈ Mc,2
1 (R) and f ∈ C 2

b (Rn,R) and µn is the n−fold product measure of µ. To
obtain the expression of LFVc for polynomial functions Pf,n with f ∈ C 2

b (Rn,R), we first look for
this expression when f has product form. The previous martingale problem (14) gives heuristics
for this issue: for the choice of F (x1, · · · , xn) :=

n∏
i = 1

xi, noting that F (⟨g1, µ⟩ , · · · , ⟨gn, µ⟩) =

Pf,n(µ) with f (x1, · · · , xn) :=
∏n

i = 1 gi(xi) and gi ∈ C 2
b (R,R), i ∈ {1, · · · , n}, we deduce that for

all µ ∈ Mc,2
1 (R),

LFVcPf,n(µ) =
n∑

i = 1

Å≠
g′′

i

2 , µ

∑
+ γ

[〈
g′′

i , µ
〉

M2(µ) − 2
〈
g′

i × id, µ
〉]ã n∏

j = 1
j ̸= i

⟨gj , µ⟩

+ γ
n∑

i = 1

n∑
j = 1
j ̸= i

[
⟨gigj , µ⟩ − ⟨gi, µ⟩ ⟨gj , µ⟩ +

〈
g′

i, µ
〉 〈

g′
j , µ
〉

M2(µ)

−
〈
g′

i, µ
〉

⟨gj × id, µ⟩ −
〈
g′

j , µ
〉

⟨gi × id, µ⟩
] n∏

k = 1
k ̸= i,j

⟨gk, µ⟩.

11/74



For all n ∈ N⋆, we denote by 1 ∈ Rn, the vector whose coordinates are all 1 and by ∆ the
Laplacian operator on Rn. The previous relation leads us to introduce, for each n ∈ N⋆ and for
all f ∈ C 2

b (Rn,R), the operator B(n) defined by

B(n)f(x) := 1
2∆f(x) − 2γ (∇f(x) · 1) (x · 1), x ∈ Rn. (18)

Indeed, again for the choice f(x1, · · · , xn) :=
∏n

i = 1 gi(xi) with gi ∈ C 2
b (R,R), i ∈ {1, · · · , n}, we

obtain

B(n)f(x1, · · · , xn) =
n∑

i = 1

ï
g′′

i (xi)
2 − 2γxig

′
i(xi)
ò n∏

j = 1
j ̸= i

gj(xj)

− γ
n∑

i = 1

n∑
j = 1
j ̸= 1

[
xjgj(xj)g′

i(xi) + xigi(xi)g′
j(xj)

] n∏
k = 1

k ̸= i,j

gk(xk).

Note that, for all µ ∈ Mc,2
1 (R),

LFVcPf,n(µ) =
¨
B(n)f, µn

∂
+

n∑
i = 1

γ
〈
g′′

i , µ
〉

M2(µ)
n∏

j = 1
j ̸= i

⟨gj , µ⟩

+ γ
n∑

i = 1

n∑
j = 1
j ̸= i

[
⟨gigj , µ⟩ − ⟨gi, µ⟩ ⟨gj , µ⟩ +

〈
g′

i, µ
〉 〈

g′
j , µ
〉

M2(µ)
] n∏

k = 1
k ̸= i,j

⟨gk, µ⟩.
(19)

This leads us to introduce another extension of the martingale problem (4) which will be
useful in Section 3 to prove uniqueness.
Definition 2.8. The probability measure Pµ ∈ M1

Ä
Ω̃
ä

is said to solve the centered Fleming-
Viot martingale problem for polynomials with resampling rate γ and with initial condition µ ∈
Mc,2

1 (R), if the canonical process (Xt)t⩾0 on Ω̃ satisfies Pµ(X0 = µ) = 1, for all n ∈ N⋆, and for
each f ∈ C 2

b (Rn,R),

M̂
(n)
t (f) := ⟨f, Xn

t ⟩ − ⟨f, Xn
0 ⟩ −

∫ t

0
LFVcPf,n (Xs)ds (20)

with for all ϖ ∈ Mc,2
1 (R) and f ∈ C 2

b (Rn,R),

LFVcPf,n(ϖ) :=
¨
B(n)f, ϖn

∂
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

[〈
Φi,jf, ϖn−1〉− ⟨f, ϖn⟩

]
+ γ

n∑
i = 1

n∑
j = 1

〈
Ki,jf, ϖn+1〉

(21)
is a continuous Pµ−martingale in L2

Ä
Ω̃
ä

where, for all i, j ∈ {1, · · · , n},

• Φi,j : C 2
b (Rn,R) −→ C 2

b (Rn−1,R), with i ̸= j, is the function obtained from f by inserting
the variable xi between xj−1 and xj when i < j and by inserting the variable xi−1 between
xj−1 and xj when i > j:

Φi,jf (x1, · · · , xn−1) = f (x1, · · · , xj−1, xi, xj , xj+1, · · · , xn−1) i < j

Φi,jf (x1, · · · , xn−1) = f (x1, · · · , xj−1, xi−1, xj , xj+1, · · · , xn−1) i > j
(22)
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• Ki,j : C 2
b (Rn,R) −→ C 2(Rn+1,R) is defined as

Ki,jf(x1, · · · , xn, xn+1) := ∂2
ijf(x1, · · · , xn)x2

n+1. (23)

We will see in Section 3 that this martingale problem admits the same unique solution as the
martingale problem (4) if the initial condition has all its moments finite. For the moment, we
can prove:

Theorem 2.9. For all µ ∈ Mc,2
1 (R), the probability measure Pµ constructed in Theorem 2.3,

satisfies the martingale problem of Definition 2.8.

Proof. We can deduce the result from the original Fleming-Viot martingale problem for polyno-
mials [23] given by (24) below, following exactly the same arguments as for the proof of Theorem
2.3. The probability measure PFV

ν ∈ M1 (Ω) is said to solve the original Fleming-Viot mar-
tingale problem for polynomials with resampling rate γ and with initial condition ν ∈ M1(R),
if the canonical process (Yt)t⩾0 on Ω satisfies PFV

ν (Y0 = ν) = 1, for all n ∈ N⋆, and for each
f ∈ C 2

b (Rn,R),

M
(n)
t (f) := ⟨f, Y n

t ⟩ − ⟨f, Y n
0 ⟩ −

∫ t

0
LFVPf,n (Ys)ds (24)

with for all ϖ ∈ M1(R)

LFVPf,n (ϖ) =
≠1

2∆f, ϖn

∑
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

(〈
Φi,jf, ϖn−1〉− ⟨f, ϖn⟩

)
is a PFV

ν −martingale. By [23, Theorem 3.2], the solution PFV
ν of the martingale problem (7) is

the unique solution to the previous martingale problem (24).

2.4 Some properties of the centered Fleming-Viot process

2.4.1 Markov’s property

Due to the translation invariance property of the original Fleming-Viot process, we can prove
that the centered Fleming-Viot process is homogeneous Markov.

Proposition 2.10. The centered Fleming-Viot process (Zt)t⩾0 defined by (9) satisfies the
homogeneous Markov property: for all measurable bounded function f ,

∀µ ∈ Mc,2
1 (R), ∀t, s > 0, Eµ

Å
f(Zt+s)

∣∣∣∣Ft

ã
= EZt (f(Zs)) Pµ−a.s.

Proof. Let µ ∈ Mc,2
1 (R) and f a measurable bounded function. Let t, s > 0. Using the Markov

property of the original Fleming-Viot process (Yt)t⩾0 we obtain Pµ−a.s.,

Eµ

Å
f(Zt+s)

∣∣∣∣Ft

ã
= Eµ

Å
f(τ−⟨id,Yt+s⟩♯ Yt+s)

∣∣∣∣Ft

ã
= Eµ

Å
g(Yt+s)

∣∣∣∣Ft

ã
= EYt (g(Ys))

where the bounded measurable map g is defined on M1
1(R) by g(ν) := f

(
τ−⟨id,ν⟩♯ ν

)
. By invari-

ance by translation of the original Fleming-Viot process (Yt)t⩾0 we obtain under the distribu-
tion Pµ:

EYt (g (Ys)) = Eτ−⟨id,Yt⟩♯ Yt

(
g
(
τ⟨id,Yt⟩♯ Ys

))
= Eτ−⟨id,Yt⟩♯ Yt (g (Ys)) = EZt (g (Ys)) = EZt (f (Zs)) .
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2.4.2 Moments and some martingales

Proposition 2.11. Let µ ∈ Mc,2
1 (R) and let Pµ be a distribution on Ω̃ satisfying (4) and such

that X0 is equal in law to µ. Let T > 0 and k ∈ N \ {0, 1} be fixed.

(1) If
¨
|id|k , µ

∂
< ∞, there exist two constants Ck,T , ‹Ck,T > 0, such that any stochastic process

(Xt)0⩽t⩽T whose law is Pµ satisfies

(a) sup
t∈[0,T ]

Eµ

Ä¨
|id|k , Xt

∂ä
⩽ Ck,T

Ä
1 +
¨
|id|k , µ

∂ä
(25)

(b) ∀α > 0, Pµ

Ç
sup

t∈[0,T ]

¨
|id|k , Xt

∂
⩾ α

å
⩽
‹Ck,T

Ä
1 +
¨
|id|k , µ

∂ä
α

.

(2) If
¨
|id|k , µ

∂
< ∞, respectively

¨
|id|k+1 , µ

∂
< ∞, the process

Ä
M̂ id

t

Ä
idk
ää

0⩽t⩽T
defined by

M̂ id
t

Ä
idk
ä

:=
¨
idk, Xt

∂
−
¨
idk, X0

∂
−

∫ t

0

≠
k(k − 1)

2 idk−2, Xs

∑
ds

− γ

∫ t

0

î¨
k(k − 1)idk−2, Xs

∂
M2(Xs) − 2k

¨
idk, Xs

∂ó
ds

is a continuous Pµ−local martingale, respectively a continuous Pµ−martingale. Moreover,
if
¨
|id|2k , µ

∂
< ∞, then

Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a martingale in L2

Ä
Ω̃
ä

whose quadratic
variation is given by¨

M̂ id
Ä
idk
ä∂

t
= 2γ

∫ t

0

[¨
id2k, Xs

∂
−
¨
idk, Xs

∂2
+ k
¨
idk−1, Xs

∂2
M2(Xs)

− 2k
¨
idk−1, Xs

∂ ¨
idk+1, Xs

∂ó
ds.

Note that the properties for k = 1 fail because of M2 in the expression of LFVc.

Proof. Step 1. Proof of (1)(a). We prove only the case k ⩾ 3: the case k = 2, which is
simpler because some terms disappear, is treated in the same way. Let t ∈ [0, T ]. We consider a
sequence of functions (gn)n∈N of class C 2(R,R) with compact support satisfying:

(i) for all n ∈ N, |gn| ⩽ |id|, (iii) gn = id on [−n, n],
(ii) lim

n→+∞

∥∥g′′
n

∥∥
∞ = 0, (iv) g′

n is uniformly bounded on R.

We consider the sequence of functions (hn)n∈N defined by hn :=
√

1 + g2
n and we deduce from

the properties of gn that for all n ∈ N, hn is a non-negative function with compact support, that
for all k ∈ N,Ä

hk
n

ä′
= kgng′

nhk−2
n and

Ä
hk

n

ä′′
= k

(
g′

n

)2
hk−4

n

(
h2

n + (k − 2)g2
n

)
+ kgng′′

nhk−2
n ,

hn = h :=
√

1 + id2 on the compact set [−n, n] and hn ⩽ h on R. We consider for all A ∈ N
and ℓ ∈ N, the stopping time τA,ℓ := inf

{
t ⩾ 0

∣∣∣ ¨|id|ℓ , Xt

∂
⩾ A

}
. Noting that for all t ∈ [0, T ],
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n ∈ N and k ⩾ 3,
〈
hk−2

n , Xt

〉
⩽
〈
hk

n, Xt

〉 k−2
k ⩽

〈
hk, Xt

〉
and

〈
hk−2

n , Xt

〉 〈
id2, Xt

〉
⩽
〈
hk, Xt

〉
from

Hölder’s inequality, we deduce from the martingale problem (4) that there exists constants
C1(k), C2(k, A) > 0 such that

Eµ

Ä¨
hk

n, Xt∧τA,k

∂ä
= Eµ

Ä¨
hk

n, X0
∂ä

+ Eµ

Ç∫ t∧τA,k

0

Æ(
hk

n

)′′

2 , Xs

∏
ds

å
+ γEµ

Å∫ t∧τA,k

0

〈Ä
hk

n

ä′′
, Xs

〉
M2(Xs)ds

ã
− 2γEµ

Å∫ t∧τA,k

0

〈Ä
hk

n

ä′
× id, Xs

〉
ds

ã
⩽
¨
hk

n, µ
∂

+ k(k − 1)
∥∥g′

n

∥∥2
∞ Eµ

Å∫ t∧τA,k

0

ï1
2 + γ

〈
id2, Xs

〉ò ¨
hk−2

n , Xs

∂
ds

ã
+ k

∥∥g′′
n

∥∥
∞ Eµ

Å∫ t∧τA,k

0

ï1
2 + γ

〈
id2, Xs

〉ò ¨
hk−1

n , Xs

∂
ds

ã
+ 2γk

∥∥g′
n

∥∥
∞ Eµ

Å∫ t∧τA,k

0

¨
hk−1

n × |id| , Xs

∂
ds

ã
⩽
¨
hk, µ

∂
+ C1(k)Eµ

Å∫ t∧τA,k

0

¨
hk, Xs

∂
ds

ã
+ C2(k, A)

∥∥g′′
n

∥∥
∞ .

By Fatou’s lemma we obtain when n → +∞,

Eµ

Ä¨
hk, Xt∧τA,k

∂ä
⩽
¨
hk, µ

∂
+ C1(k)Eµ

Å∫ t∧τA,k

0

¨
hk, Xs

∂
ds

ã
.

By Gronwall’s lemma, we deduce that

Eµ

Ä¨
|id|k , Xt∧τA,k

∂ä
⩽ Eµ

Ä¨
hk, Xt∧τA,k

∂ä
⩽
¨
hk, µ

∂
exp (C1(k)t) . (26)

In particular, this implies that the sequence (τA,k)A∈N converges Pµ−a.s. to infinity. Indeed, for
all T̃ > 0, we have

Pµ

Å
sup
A∈N

τA,k < T̃

ã
⩽

supt∈[0,T ] Eµ

(〈
|id|k , X

t∧T̃ ∧τA,k

〉)
A

which tends to 0 when A → +∞. We deduce by Fatou’s lemma, when A → +∞, the first
announced result.

Step 2. Proof of (1)(b). Let α > 0. From the martingale problem (4), we deduce that

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

¨
hk

n, Xt

∂
⩾ α

é
⩽ Pµ

(¨
hk

n, µ
∂
⩾

α

5

)
+ Pµ

Ç∫ T ∧τA,k

0

Æ(
hk

n

)′′

2 , Xs

∏
ds ⩾

α

5

å
+ Pµ

Å
γ

∫ T ∧τA,k

0

〈Ä
hk

n

ä′′
, Xs

〉
M2(Xs)ds ⩾

α

5

ã
+ Pµ

Å
2γ

∫ T ∧τA,k

0

〈Ä
hk

n

ä′
× id, Xs

〉
M2(Xs)ds ⩾

α

5

ã
+ Pµ

Ñ
sup

t∈[0,T ∧τA,k]

∣∣∣M̂ id
t

Ä
hk

n

ä∣∣∣ ⩾ α

5

é
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The Doob maximal inequality allows us to write

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

∣∣∣M̂ id
t

Ä
hk

n

ä∣∣∣ ⩾ α

5

é
⩽

5Eµ

(Ä
M̂ id

T ∧τA,k

(
hk

n

)ä
+

)
α

.

From the martingale problem (4) and the computations of Step 1, we deduce that

Eµ

(∣∣∣M̂ id
T ∧τA,k

Ä
hk

n

ä∣∣∣) ⩽ 2
¨
hk, µ

∂
+ 2C1(k)Eµ

Å∫ T ∧τA,k

0

¨
hk, Xs

∂
ds

ã
+ 2C2(k, A)

∥∥g′′
n

∥∥
∞

⩽ 2
¨
hk, µ

∂
[1 + exp (C1(k)T )] + 2C2(k, A)

∥∥g′′
n

∥∥
∞ ,

where we use the Fubini-Tonelli theorem and the relation (26). It follows, from Markov’s
inequality, that there exists a constant Ck > 0 such that

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

¨
hk

n, Xt

∂
⩾ α

é
⩽

Ck

α

î¨
hk, µ

∂
[1 + exp (C1(k)T )] + C2(k, A)

∥∥g′′
n

∥∥
∞

ó
.

By applying the dominated convergence theorem twice, successively when n → +∞ then when
A → +∞, there exists a constant ‹Ck,T > 0 such that

Pµ

Ç
sup

t∈[0,T ]

¨
hk, Xt

∂
⩾ α

å
⩽
‹Ck,T

〈
hk, µ

〉
α

,

and thus the announced result.

Step 3. M̂ id
Ä
idk
ä

is a continuous local martingale. From the properties of (gn)n∈N,

note that there exists a constant “Ck > 0 such that for all n ∈ N,
∣∣gk

n

∣∣ ⩽ |id|k and
∣∣∣(gk

n

)′′
∣∣∣ ⩽“Ck

Ä
1 + |id|k−1

ä
. It follows from the martingale problem (4), the properties of (gn)n∈N and the

dominated convergence theorem for conditional expectation that

M̂ id
t∧τA,2

Ä
idk
ä

:= lim
n→+∞

M̂ id
t∧τA,2

Ä
gk

n

ä
=
¨
idk, Xt∧τA,2

∂
−
¨
idk, X0

∂
−

∫ t∧τA,2

0

k(k − 1)
2

¨
idk−2, Xs

∂
ds

− γ

∫ t∧τA,2

0

î
k(k − 1)

¨
idk−2, Xs

∂
M2(Xs) − 2k

¨
idk, Xs

∂ó
ds

is a continuous Pµ−martingale and thus
Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a continuous Pµ−local martingale.

When
¨
|id|k+1 , µ

∂
< ∞, using the inequality for all t ∈ [0, T ],¨

|id|k−1 , Xt

∂ 〈
id2, Xt

〉
⩽
¨
|id|k+1 , Xt

∂
,

the same computation applies replacing t ∧ τA,2 by t to obtain that
Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a con-

tinuous Pµ−martingale.
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Step 4. L2−martingale and quadratic variation. As soon as
¨
|id|k+1 , µ

∂
< ∞,

M̂ id
Ä
idk
ä

∈ L2
Ä
Ω̃
ä

as a straightforward consequence of Hölder’s inequality. It follows from
(6) that for all n ∈ N, for all t ∈ [0, T ],¨

M̂ id
Ä
gk

n

ä∂
t

= 2γ

∫ t

0

Å¨
g2k

n , Xs

∂
−
¨
gk

n, Xs

∂2
+
〈Ä

gk
n

ä′
, Xs

〉2
M2(Xs)

−2
〈Ä

gk
n

ä′
, Xs

〉 ¨
gk

n × id, Xs

∂)
ds.

For all n ∈ N, the process
Nt,n :=

î
M̂ id

t

Ä
gk

n

äó2
−
¨
M̂ id
Ä
gk

n

ä∂
t

is a Pµ−local martingale. As M̂ id
Ä
idk
ä

is bounded on [0, T ∧ τA,2k] for all A ∈ N, then for all
n ∈ N,

(
Nt∧τA,2k,n

)
is a martingale. From the relation (25) with 2k, the dominated convergence

theorem for conditional expectation implies as above that Pµ−a.s.

lim
n→+∞

Nt∧τA,2k,n =
î
M̂ id

t∧τA,2k

Ä
idk
äó2

− 2γ

∫ t∧τA,2k

0

(¨
id2k, Xs

∂
−
¨
idk, Xs

∂2

+ k
¨
idk−1, Xs

∂2
M2(Xs) − 2k

¨
idk−1, Xs

∂ ¨
idk+1, Xs

∂)
ds

is a Pµ−martingale and we deduce the quadratic variation announced.

2.4.3 Compact support

For all ν ∈ M1(R), we denote by Supp ν the support of ν. The historical reference of compact
support property of the original Fleming-Viot process is [10, Theorem 7.1] where the authors
proved that Supp Yt is a.s. compact for each fixed t > 0. We will used a slightly stronger version
based on [37].

Proposition 2.12. For all µ ∈ Mc,2
1 (R), for all ε > 0,

⋃
ε⩽s⩽t Supp Zs is compact Pµ−a.s.

Further, if Supp Z0 is compact, then
⋃

0⩽s⩽t Supp Zs is compact for all t > 0, Pµ−a.s.

Proof. It is proved in [37] that the support of the Λ−Fleming-Viot process associated to a
Λ−coalescent which comes down from infinity, is compact at all positive times. Our case corre-
sponds to Kingman’s coalescent. In addition, they prove that, given that the initial condition
ν has compact support, ⋃

0⩽s<t

Supp Ys

is compact for all t > 0, PFV
ν −a.s. Markov’s property then entails that, if ν ∈ Mc,2

1 (R),⋃
ε⩽s⩽t Supp Ys is compact for all 0 < ε < t, PFV

ν −a.s. Hence, the same is true for Zt =
τ−⟨id,Yt⟩♯ Yt.

3 Uniqueness for the centered Fleming-Viot process
As for the original Fleming-Viot martingale problem, we will prove uniqueness to the martin-
gale problem (4) by relying on the duality method [17, 9, 21, 23]. Additional difficulties occur
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in our case since bounds on the dual process are much harder to obtain and the duality iden-
tity cannot be proved in its usual form. In particular, we can prove uniqueness only for initial
conditions admitting finite moments.

3.1 Main result

Theorem 3.1. The centered Fleming-Viot martingale problem (4) has a unique solution if
the initial condition has all its moments finite.

The reason why we need to assume finite initial moments will be explained at the end of
Section 3.2. In particular, we will see in Remark 6.5 that we cannot hope to prove uniqueness
for more general initial conditions using our duality method.

Corollary 3.2. Existence and uniqueness hold for all the martingale problems of Definitions
2.1, 2.5 and 2.8 and they all admit the same solution if the initial condition has all its moments
finite.

Proof of Corollary 3.2. We proved in Section 2.3 that Pµ solves the martingale problems of
Definitions 2.5 and 2.8. Since a solution to these martingale problems is of course also solution to
Definition 2.1, uniqueness for Definition 2.1 implies uniqueness for the other martingale problems.

3.2 Notations and outline of the uniqueness proof

Our proof of Theorem 3.1 is based on the duality method as proposed in [21, 23]. From (21), the
operator LFVc applied on the function Pf,n defined in (17) with fixed f and n ∈ N⋆, satisfies the
following identity:

LFVcPf,n(µ) =
¨
B(n)f, µn

∂
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

[〈
Φi,jf, µn−1〉− ⟨f, µn⟩

]

+ γ
n∑

i = 1

n∑
j = 1

[〈
Ki,jf, µn+1〉− ⟨f, µn⟩

]
+ γn2 ⟨f, µn⟩

=: L̃⋆
f Pf,n(µ) + γn2 ⟨f, µn⟩

(27)

We note that L̃⋆
f can be seen as an operator acting on the function f 7→ Pf,n(µ) with fixed µ.

The operator L̃⋆
f can be interpreted as the generator of a stochastic process on the state space⋃

n∈N⋆ C 2(Rn,R). Following Ethier-Kurtz’s works [21, 23], this suggests to introduce a dual
process (ξt)t⩾0, of generator L̃⋆

f and to prove a duality relation of the form:

∀t ⩾ 0, E
Ä¨

ξ0, X
M(0)
t

∂ä
= E
Å¨

ξt, X
M(t)
0
∂

exp
Å

γ

∫ t

0
M2(u)du

ãã
(28)

where M := (M(t))t⩾0 is a Markov’s birth and death process in N whose transition rates qi,j

from i to j are given by:

(1) qn,n+1 = γn2 (2) qn,n−1 = γn(n − 1) (3) qi,j = 0 otherwise.
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It is known that the relation (28) implies uniqueness [26, Theorem 4.4.2]. However in our situa-
tion, it is difficult to obtain the strong version (28). For technical reasons, we will obtain only a
weakened version. Therefore, the proof will be divided in two large steps.

Step 1. Construction of the dual process (ξt)t⩾0. The relation (27) suggests that the
dual process (ξt)t⩾0 jumps, for all i, j ∈ {1, · · · , n} from f ∈ C 2

b (Rn,R) to Ki,jf ∈ C 2(Rn+1,R)
at rate γ and if i ̸= j, from f ∈ C 2

b (Rn,R) to Φi,jf ∈ C 2
b (Rn−1,R) at rate γ. Moreover, note that

if n = 1, the dual process can only jump from f ∈ C 2
b (R,R) to Ki,jf . Between jumps, this dual

process evolves according to the semi-group of operator
Ä
T (n)(t)

ä
t⩾0

associated to the generator

B(n) given by (18). We will give an explicit expression of the semi-group
Ä
T (n)(t)

ä
t⩾0

defined
as an integral against Gaussian kernels. This representation will be derived from a probabilistic
interpretation of the semi-group using a Feynman-Kac’s formula. We define the dual process
as follows:

Definition 3.3. For all M(0) ∈ N⋆, for all ξ0 ∈ C 2
b

Ä
RM(0),R

ä
,

ξt := T (M(τn)) (t − τn) ΛnT (M(τn−1)) (τn − τn−1) Λn−1 · · · Λ1T (M(0)) (τ1) ξ0,

τn ⩽ t < τn+1, n ∈ N, (29)

where (τn)n∈N is the sequence of jump times of the birth-death process M with τ0 = 0 and where
(Λn)n∈N is a sequence of random operators. These are conditionally independent given M and
satisfy for all k ∈ N, n ⩾ 1 and 1 ⩽ i ̸= j ⩽ n,

P
Å

Λk = Φi,j

∣∣∣∣ {M
(
τ−

k

)
= n, M (τk) = n − 1

}ã
= 1

n(n − 1) (30)

and for all n ⩾ 1 and 1 ⩽ i, j ⩽ n,

P
Å

Λk = Ki,j

∣∣∣∣ {M
(
τ−

k

)
= n, M (τk) = n + 1

}ã
= 1

n2 . (31)

Moreover, the random times (τk − τk−1)k⩾1 are independent conditionally to M (τk−1) = n and
of exponential law of parameter γn2 + γn(n − 1).

Note that particle creation for the centered Fleming-Viot dual process is possible unlike the
original Fleming-Viot dual process. It comes from the Ki,j operator which has appeared under
the centering effect. Note that these terms are the ones with the M2(µ) factor in (5) and are
found by the heuristic computation in (19). Indeed, for the choice of n ∈ N⋆, f (x1, · · · , xn) :=∏n

i = 1 gi(xi) with gi ∈ C 2
b (R,R), i ∈ {1, · · · , n}, we have fora all µ ∈ Mc,2

1 (R) that

n∑
i = 1

n∑
j = 1

〈
Ki,jf, µn+1〉 =

Ü
n∑

i = 1

〈
g′′

i , µ
〉 n∏

j = 1
j ̸= i

⟨gj , µ⟩ +
n∑

i = 1

n∑
j = 1
j ̸= i

〈
g′

i, µ
〉 〈

g′
j , µ
〉 n∏

k = 1
k ̸= i,j

⟨gk, µ⟩

ê
M2(µ)

The terms Φi,j are present both in the original and centered Fleming-Viot. Because of the
operators Ki,j , difficulties will arise to get bounds on the dual process (see Section 6.2) contrary
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to the non-centered case. Note also that M is a non-explosive process:

∀T > 0, P
Ç

sup
t∈[0,T ]

M(t) < +∞
å

= P
Å

lim
n→+∞

τn = +∞
ã

= 1. (32)

Indeed, we note that for the choice of µi := γi(i − 1) and λi := γi2, i ⩾ 1 in [1, Theorem 2.2.],
we have

µi . . . µ2
λi . . . λ2λ1

= 1
2γi

> 0,

so that ∑
i⩾1

Å 1
λi

+ µi

λiλi−1
+ · · · + µi . . . µ2

λi . . . λ2λ1

ã
⩾

∑
i⩾1

µi . . . µ2
λi . . . λ2λ1

= +∞.

Hence, M is non-explosive.

Step 2. Weakened duality relation. We consider fixed M(0) ∈ N⋆, ξ0 ∈ C 2
b (RM(0),R)

and (Xt)t⩾0 a stochastic process whose law Pµ is a solution of the martingale problem (4) with
µ ∈ Mc,2

1 (R). We introduce a dual process (ξt)t⩾0 independent of (Xt)t⩾0 built on the same
probability space (enlarging it if necessary). We shall denote by P(µ,ξ0), the law of ((Xt, ξt))t⩾0
on this probability space. For any k ∈ N, we introduce the stopping time

θk := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, X

M(s)
t−s

∂
⩾ k

™
. (33)

Theorem 3.4. Given any (Xt)t⩾0, (ξt)t⩾0 as above, we have the weakened duality identity: for
all k ∈ N and any stopping time θ such that θ ⩽ θk,

∀t ⩾ 0, E(µ,ξ0)
Ä¨

ξ0, X
M(0)
t∧θ

∂ä
= E(µ,ξ0)

Å¨
ξt∧θ, X

M(t∧θ)
0

∂
exp
Å

γ

∫ t∧θ

0
M2(u)du

ãã
. (34)

Note that this result holds true for any initial measure µ ∈ Mc,2
1 (R). The stopping time θk

ensures that each of the quantities involved in (34) are bounded and thus that their expectations
are finite. Afterwards, we want to prove that if two solutions of the martingale problem satisfy
the weakened duality identity, then their 1−dimensional marginals coincide. This is where we
need stronger assumptions on µ.

Lemma 3.5. Assume that µ ∈ Mc,2
1 (R) has all its moments finite. Then, the stopping time θk

defined by (33) satisfies limk→+∞ θk = +∞, P(µ,ξ0) − a.s.

We will see in Remark 6.5 that the assumption on µ is optimal in the following sense: even
if ξ0 is bounded, ξt may have polynomial growth of any exponent k in some direction of RM(t)

so that
¨
|ξt| , µM(t)

∂
is infinite if µ has infinite kth moment. This shows that we cannot expect

to have θk → +∞ when k → +∞ if µ has not all its moments finite. This means that we can-
not expect that the duality method could give uniqueness for weaker assumptions on the initial
condition.

The proofs of Theorem 3.4 and Lemma 3.5 are respectively given in Sections 6.2 and 6.3.
Once they are proved, the proof of uniqueness can be completed as follows.
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3.3 Proof of Theorem 3.1 from Theorem 3.4 and Lemma 3.5

We rely on the Ethier-Kurtz’s result [26, Theorem 4.4.2]. To get the desired result, i.e. the
uniqueness of the martingale problem (4), it is sufficient to verify that if we give ourselves two
solutions to the martingale problem (4), they have the same 1−dimensional marginal laws.

Let (Xt)t⩾0 and
Ä‹Xt

ä
t⩾0

be two solutions of the martingale problem (4) with the same initial
condition µ ∈ Mc,2

1 (R) which has all its moments finite. Let (ξt)t⩾0 be the dual process with
initial condition ξ0 ∈ C 2

b (RM(0),R) with M(0) ∈ N⋆. We suppose that these three processes are
built on the same probability space and independent of each other. We denote for all k ∈ N,

θ̃k := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, ‹XM(s)

t−s

∂
⩾ k

™
.

These processes satisfy, for all k ∈ N, ξ0 ∈ C 2
b

Ä
RM(0),R

ä
the weakened duality identity (34):

∀t ⩾ 0, E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧θk∧θ̃k

〉)
= E(µ,ξ0)

Ç〈
ξ

t∧θk∧θ̃k
, µM(t∧θk∧θ̃k)

〉
exp
Ç

γ

∫ t∧θk∧θ̃k

0
M2(u)du

åå
= E(µ,ξ0)

(〈
ξ0, ‹XM(0)

t∧θk∧θ̃k

〉)
.

From Lemma 3.5, since (Xt)t⩾0 and
Ä‹Xt

ä
t⩾0

have continuous paths for the topology of weak
convergence, we have P(µ,ξ0)−a.s.,

lim
k→+∞

〈
ξ0, X

M(0)
t∧θk∧θ̃k

〉
=
¨
ξ0, X

M(0)
t

∂
and lim

k→+∞

〈
ξ0, ‹XM(0)

t∧θk∧θ̃k

〉
=
¨
ξ0, ‹XM(0)

t

∂
.

Therefore, we deduce from the dominated convergence theorem and (17), that for all ξ0 ∈
C 2

b

Ä
RM(0),R

ä
,

∀t ⩾ 0, E(µ,ξ0)
(
Pξ0,M(0) (Xt)

)
= E(µ,ξ0)

Ä
Pξ0,M(0)

Ä‹Xt

ää
.

As the set of test functions
{

Pf,n

∣∣∣ f ∈ C 2
b (Rn,R), n ∈ N⋆

}
is M1 (M1(R)) −convergence deter-

mining [9, Lemma 2.1.2], it is M1 (M1(R)) −separating [26, Chapter 3, Section 4, p.112], it
follows that for any t ⩾ 0, X

M(0)
t and ‹XM(0)

t have the same law. In particular, for the choice
M(0) := 1, [26, Theorem 4.4.2] ensures uniqueness to the martingale problem (4). □

4 Ergodicity for the centered Fleming-Viot process
In this section, we establish ergodicity properties with exponential convergence in total variation
for the centered Fleming-Viot process (Zt)t⩾0. Note that in the case of the original Fleming-
Viot process, ergodicity fails without the centering property [23, Section 9.1]. Standard duality
arguments would provide weak ergodicity estimates (see (1) and [23]). However, using a coupling
argument based on the Moran process and its relationship with the Kingman coalescent, it
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is possible to obtain strong ergodicity bounds (see (2)) as done below. In addition, this will
provide an explicit construction of the invariant probability measure from the Donnelly-Kurtz
modified look-down [14, 15]. For all µ, ν ∈ M1(R), we denote by

∥µ − ν∥T V := 1
2 sup

∥f∥∞⩽1
|⟨f, µ⟩ − ⟨f, ν⟩|,

the total variation distance between µ and ν.

Theorem 4.1. There exists a unique invariant probability measure π for (Zt)t⩾0 and constants
α, β ∈ (0, +∞) such that for all µ ∈ Mc,2

1 (R), for all T ⩾ 0,

∥Pµ (ZT ∈ ·) − π∥T V ⩽ α exp (−βT ) .

The main part of this section is devoted to the proof of this result (Sections 4.1 to 4.5) and
in Section 4.6, we characterise the invariant measure of the centered Fleming-Viot process.
In Section 4.1 we construct the centered Moran process and we establish its convergence in
law to the centered Fleming-Viot process. In Sections 4.2 and 4.3, we construct, backward in
time, the Moran process, its centered version and we exploit its relationship with the Kingman
coalescent in order to prove in Section 4.4 an exponential coupling in total variation for the
Moran process. We finally deduce, in Section 4.5, the proof of the main result announced by
letting the number of particles go to infinity.

4.1 Moran’s models and Fleming-Viot’s processes

In [17, 10, 27, 9], the authors construct the original Fleming-Viot process as a scaling limit of
a particle process: the Moran process. The aim of this section is to construct the version of the
centered Moran process and to establish its convergence in law to the centered Fleming-Viot
process.

We consider the Moran particle process Y N defined by

Y N
t := 1

N

N∑
i = 1

δXi(t)

with state space M1,N (R), the set of probability measures on R consisting of N atoms of mass
1/N . Moreover, if (Xi(0))i∈N⋆ is exchangeable, then for all t > 0, (Xi(t))i∈N⋆ is exchangeable
[23, Theorem 6.1]. The infinitesimal generator of the R−measure-valued process Y N is given for
all n ∈ N⋆, f ∈ C 2

b (Rn,R), µN ∈ M1,N (R) by

LN Pf,n (µN ) := P ∆f
2 ,n

(µN )

+ γN(N − 1)
∫
R

∫
R

ï
Pf,n

Å
µN − δx

N
+ δy

N

ã
− Pf,n (µN )

ò
µN (dx)µN (dy).
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The first term of the generator describes the effect of the mutation according to the Lapla-
cian operator. The second term describes the sampling replacement mechanism: at rate γ (the
sampling rate) an individual of type x is immediatly replaced by one of type y. Note that the
population size remains constant over time.

We recall the following convergence result [9, Theorem 2.7.1]: for all initial condition Y N
0 =

1
N

∑N
i = 1 δXi ∈ M1,N (R) with (Xi)1⩽i⩽N exchangeable R−valued random variables such that Y N

0
converges in law to µ ∈ M1(R) as N → +∞, the Moran process

(
Y N

t

)
t⩾0 converges in law

on C 0 ([0, +∞), M1(R)), as N → +∞, to the original Fleming-Viot process (Yt)t⩾0 defined as
the solution to the martingale problem (24).

We denote Mc,2
1,N (R) :=

{
µN ∈ M1,N (R)

∣∣∣ 〈id2, µN

〉
< ∞, ⟨id, µN ⟩ = 0

}
, and we define the

centered Moran process
(
ZN

t

)
t⩾0 by

ZN
t := τ−⟨id,Y N

t ⟩♯ Y N
t , t ⩾ 0.

The main result of this section is the following:

Proposition 4.2. For all initial condition ZN
0 := 1

N

∑N
i = 1 δXi ∈ Mc,2

1,N (R) with (Xi)1⩽i⩽N

exchangeable R−valued random variables such that ZN
0 converges in law to Z0 ∈ Mc,2

1 (R) as
N → +∞ and satisfying supN∈N⋆ E

(〈
id2, ZN

0
〉)

< ∞, the centered Moran process
(
ZN

t

)
t⩾0

converges in law on C 0
Ä
[0, +∞), Mc,2

1 (R)
ä
, as N → +∞, to the centered Fleming-Viot process

(Zt)t⩾0 solution of the martingale problem (20) with initial condition Z0.

A difficulty in proving this result lies in the fact that µ 7→ τ−⟨id,µ⟩♯ µ may not be continuous
on M1(R) because id is not bounded. Hence we need to carry out several approximations and be
very careful to control the approximation error on events of large probabilities. In order to prove
this proposition, we need to introduce some notations and results. For all real-valued function f
on R, the Lipschitz seminorm is defined by ∥f∥L = supx ̸=y

|f(x)−f(y)|
|x−y| . We denote by

BL1(R) :=
ß

f : R → R
∣∣∣∣ ∥f∥BL ⩽ 1

™
where ∥f∥BL := ∥f∥L + ∥f∥∞ For all µ, ν ∈ M1(R), we denote by

dF M (µ, ν) := sup
f∈BL1(R)

|⟨f, µ⟩ − ⟨f, ν⟩|,

the Fortet-Mourier distance. Recall that M1 (R) endowed with the weak topology is complete
for the distance of Fortet-Mourier [16, Corollary 11.5.5]. Let Λ denote the class of strictly
increasing, continuous mappings of [0, T ] onto itself. For given metric spaces E and ‹E, we
denote by D ([0, T ], E), the space of right continuous and left limited (càd-làg) functions from
[0, T ] to E and by C 0

b

Ä
E, ‹Eä the space of continuous bounded functions from E to ‹E. For

x, y ∈ D ([0, T ], M1(R)), we define the distance d0(x, y) by:

d0(x, y) := inf
λ∈Λ

®
sup

t∈[0,T ]
dF M (x ◦ λ(t), y(t)) + sup

s<t

∣∣∣∣log
Å

λ(t) − λ(s)
t − s

ã∣∣∣∣´ .
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From [2, Theorem 12.2 and Remark of page 121], (D ([0, T ], M1(R)) , d0) is a Polish space and
the topology induced by the distance d0 is the Skorohod topology. Let us consider the following
lemma whose proof is similar to that of Proposition 2.11 and left to the reader:

Lemma 4.3. Let T > 0 and k ∈ N fixed. There exists a constant Ck,T > 0 independent of N

such that for all Y N
0 ∈ M1,N (R) satisfying supN∈N E

Ä¨
|id|k , Y N

0
∂ä

< ∞, the Moran process(
Y N

t

)
0⩽t⩽T

satisfies

∀α > 0, PY N
0

Ç
sup

t∈[0,T ]

¨
|id|k , Y N

t

∂
⩾ α

å
⩽

Ck,T supN∈N⋆ E
Ä¨

|id|k , Y N
0
∂ä

α
.

Proof of Proposition 4.2. We want to establish that

∀g ∈ C 0
b (D ([0, T ], M1(R)) ,R) , lim

N→+∞
E
Ä
g
Ä
ZN
ää

= E (g (Z)) .

Let ε > 0. We consider the two following maps F and Fε from D
(
[0, T ], M1

1(R)
)

to D ([0, T ], M1(R))
defined by F (y)(t) := τ−⟨id,y(t)⟩ ♯ y(t) and Fε(y)(t) := τ−⟨hε,y(t)⟩ ♯ y(t) where hε is a map from R
to R defined by

hε(x) :=


x if |x| ⩽ 1

ε
1
ε if x > 1

ε
−1

ε if x < −1
ε

.

Step 1. Continuity of Fε. In this step, we want to establish that

Fε ∈ C 0
b (D ([0, T ], M1(R)) ,D ([0, T ], M1(R))) .

To obtain this, it is equivalent to prove that if for all n ∈ N, yn, y ∈ D ([0, T ], M1(R)) and
limn→+∞ d0(yn, y) = 0, we have limn→+∞ d0 (Fε(yn), Fε(y)) = 0. As, limn→+∞ d0(yn, y) = 0,
there exists n0 ∈ N such that for all n ⩾ n0, there exists λn ∈ Λ satisfying

sup
t∈[0,T ]

dF M (yn ◦ λn(t), y(t)) + sup
s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣ ⩽ ε2

2 . (35)

Note that

d0 (Fε(yn), Fε(y)) ⩽ sup
t∈[0,T ]

dF M (Fε (yn) (λn(t)) , Fε(y)(t)) + sup
s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣ .
Now, for all t ∈ [0, T ],

dF M (Fε(yn)(λn(t)), Fε(y)(t)) = sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t)
〉

−
〈
f ◦ τ−⟨hε,y(t)⟩, y(t)

〉∣∣
⩽ sup

f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t) − y(t)
〉∣∣

+ sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩ − f ◦ τ−⟨hε,y(t)⟩, y(t)
〉∣∣.
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On the one hand, as f ∈ BL1(R), it follows that f ◦ τ−⟨hε,yn◦λn(t)⟩ ∈ BL1(R) and thus

sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t) − y(t)
〉∣∣ ⩽ dF M (yn ◦ λn(t), y(t)) .

On the other hand, as f and εhε are in BL1(R), we have∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩ − f ◦ τ−⟨hε,y(t)⟩, y(t)
〉∣∣ ⩽ |− ⟨hε, yn ◦ λn(t)⟩ + ⟨hε, y(t)⟩|

= 1
ε

|⟨εhε, yn ◦ λn(t) − y(t)⟩|

⩽
1
ε

dF M (yn ◦ λn(t), y(t)) .

It follows from (35) that,

d0 (Fε(yn), Fε(y)) ⩽
Å

1 + 1
ε

ã
sup

t∈[0,T ]
dF M (yn ◦ λn(t), y(t)) + sup

s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣
⩽ ε.

Step 2. Control in distance d0 of the difference between F
(
Y N
)

and Fε

(
Y N
)
. We

consider the Moran process
(
Y N

t

)
0⩽t⩽T

started from Y N
0 = ZN

0 and the original Fleming-Viot
process (Yt)0⩽t⩽T started from Y0 = Z0. In this step, we consider the events

Ωε,N :=
®

sup
t∈[0,T ]

¨
id2, Y N

t

∂
⩽

2√
ε

´
and Ωε,∞ :=

®
sup

t∈[0,T ]

〈
id2, Yt

〉
⩽

2√
ε

´
.

As supN∈N E
(〈

id2, ZN
0
〉)

< ∞, it follows from Lemma 4.3 (respectively Proposition 2.11), there
exists a constant ‹CT > 0, independent of N , such that PY N

0
(Ωε,N ) ⩾ 1 − ‹CT

√
ε (respectively

PY0 (Ωε,∞) ⩾ 1 − ‹CT
√

ε). Moreover, on Ωε,N , for all t ∈ [0, T ],

d0
Ä
F
Ä
Y N
ä

, Fε

Ä
Y N
ää

⩽ sup
t∈[0,T ]

dF M

Ä
F
Ä
Y N
ä

(t), Fε

Ä
Y N
ä

(t)
ä

⩽ sup
t∈[0,T ]

sup
f∈BL1(R)

∥∥∥f ◦ τ−⟨id,Y N
t ⟩ − f ◦ τ−⟨hε,Y N

t ⟩
∥∥∥

∞

⩽ sup
t∈[0,T ]

∥∥∥¨|hε − id| , Y N
t

∂∥∥∥
∞

⩽
ε

2 sup
t∈[0,T ]

∥∥∥¨id2, Y N
t

∂∥∥∥
∞

⩽
√

ε,

where we used the inequality |hε − id| ⩽ ε
2 id2. Similarly on Ωε,∞,

d0 (F (Y ) , Fε (Y )) ⩽
√

ε.

Step 3. Conclusion. We want to prove that for all g ∈ C 0
b (D ([0, T ], M1(R)) ,R),

limN→+∞ E
(
g
(
ZN
))

= E (g(Z)). Thanks to the Portmanteau theorem [2, Theorem 2.1],
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then it is sufficient to prove this for all g 1−Lipschitz. As
(
Y N
)

N∈N⋆ converges in law to Y ,
we deduce that, for N large enough,∣∣∣E Äg ◦ Fε

Ä
Y N
ää

− E (g ◦ Fε (Y ))
∣∣∣ ⩽ √

ε.

Using that g is 1−Lipschitz, and the inequalities of Step 2, it follows that∣∣∣E Äg ÄZN
ää

− E (g (Z))
∣∣∣ =

∣∣∣E Äg ◦ F
Ä
Y N
ää

− E (g ◦ F (Y ))
∣∣∣

⩽
∣∣∣E Äg ◦ Fε

Ä
Y N
ää

− E (g ◦ Fε (Y ))
∣∣∣

+
∣∣∣E Äg ◦ F

Ä
Y N
ää

− E
Ä
g ◦ Fε

Ä
Y N
ää∣∣∣

+ |E (g ◦ Fε (Y )) − E (g ◦ F (Y ))|

⩽
√

ε + 2 ∥g∥∞

î
PY N

0

(
Ωc

ε,N

)
+ PY0

(
Ωc

ε,∞
)ó

+
√

ε
î
PY N

0
(Ωε,N ) + PY0 (Ωε,∞)

ó
⩽
Ä
3 + 2 ∥g∥∞

‹CT

ä√
ε.

The announced result follows and completes the proof.

4.2 Backward construction of Moran’s process and Kingman’s coalescent

In this section, we exploit the relationship between the Moran model and the Kingman coa-
lescent to obtain in Proposition 4.7 a result of exponential ergodicity in total variation for the
centered Moran model uniformly in N . The genealogy of a sample from a population evolving
according to the Moran model of Section 4.1 is exactly determined by Kingman’s coalescent
with coalescence rate 2γ. The state of the population at the final time is constructed from the
ancestral positions by following the genealogy and adding mutations on the genealogical tree of
the sample according to a standard Brownian motion. Therefore, at the final time T , the position
of each individual of the sample is equal to the sum of the position of its ancestor at time 0 and
the Brownian mutation steps that occured during its ancestral branches in the coalescent. We
formalise this construction below by giving some notations and illustrations of the latter ones.

Let be fixed the time T > 0 and the number of particles N ∈ N⋆. We consider the probability
space

Ä
Ω̂, “F , P̂

ä
where Ω̂ := KN,T × Mut2N −1

N,T × AµN
N , “F := FKN,T

⊗ FMutN,T
⊗ FAµN

N
and

P̂ := KN,T ⊗ L⊗2N −1
Mut ⊗

⊗N
i = 1 EchµN

i with the following notations.
We denote by KN,T the state space of the Kingman N−coalescent with coalescence rate 2γ

on [0, T ]:
KN,T := D ([0, T ], ΠN )

with ΠN the set of partitions of {1, · · · , N}. We denote by KN,T the law of the Kingman
N−coalescent with coalescence rate 2γ on [0, T ] and FKN,T

the Skorohod σ−field on KN,T .
In the following, in order to simplify the names, the precision “at coalescence rate 2γ” will be
omitted.

We denote by AµN
N :=

∏N
i = 1 Ri the state space of the possible ancestral positions in the King-

man N−coalescent at time 0. We denote by EchµN
i with µN := 1

N

∑N
j = 1 δxj ∈ M1,N (R), the law

of a i−sample where we select i elements randomly and without replacement in {x1, · · · , xN }
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according to µN and by FAµN
N

the Borel σ−field on AµN
N .

We denote by MutN,T the set of Brownian trajectories of C 0 ([0, T ],R). We denote by LMut
the law of a 1−standard Brownian motion and FMutN,T

the Borel σ−field on MutN,T .

Finally, we denote an element ω̂ of Ω̂ as:

ω̂ :=
{

(kN,t)0⩽t⩽T ;
Ä
W (B)

ä
B⊂{1,··· ,N} \∅

; x(1), · · · , x(N)
}

,

where we denote x(k) :=
Ä
x

(1)
1 , x

(k)
2 , · · · , x

(k)
k

ä
. Note that (kN,t)0⩽t⩽T is an increasing process

in KN,T representing the genealogy. In addition, we denote by kN,T := {L1, · · · , Ln} with
n := |kN,T |. In other words, Kingman’s N−coalescent contains n distinct lineages where Li is
a subset of {1, · · · , N} at the final time T . For each individual i ∈ {1, · · · , N}, we denote by
a(i) ∈ {1, · · · , n}, the index such that i ∈ La(i). In other words, La(i) is the ancestral lineage of i.
For each individual i ∈ {1, · · · , N}, we denote by B(s, i) the block of the partition kN,s at time
s and containing the individual i. We denote by x(n) =

Ä
x

(n)
1 , · · · , x

(n)
n

ä
the ancestral positions

at the final time T so that for all i ∈ {1, · · · , N}, x
(n)
a(i) ∈ R is the position of the ancestor of the

individual i, at time T , in the genealogical tree. Each process W (B) =
Ä
W

(B)
t

ä
0⩽t⩽T

governs the
dynamics of mutations occuring on the interval time where B ⊂ kN,T .

x1

x2

x3

x4

x5

u1

u2

u3

u4

u5

0 Tt1 t2 t3 t4 t5 t6

Figure 4.1: Graphical representation of the
Moran model with N = 5.

w1

w2

w3

w4

w5

u1 u2 u4 u3 u5
T

t6

t5

t4

t3

t2

t1

0
x

(2)
1 = x1 x

(2)
2 = x5

Figure 4.2: Kingman’s genealogy
(k5,T −t)0⩽t⩽T under the Moran model
on the left, tracing back from time T to
time 0.

Let us recall the link between the Moran model and the previous stochastic objects. At
each reproduction event tk in the Moran model, illustrated on Figure 4.1, an ordered pair of
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individuals (i, j) is sampled uniformly at random from the population: one of the two individuals
dies and the other reproduces with equal probabilities. In Figure 4.1, we draw an arrow between
lines: the arrow i → j indicates that i reproduced and j died. We can recover the ancestry
of the sample by tracing backwards in time from the right to the left in Figure 4.1 to obtain
Figure 4.2. We coalesce any pair of individuals whenever they find a common ancestor which is
represented by the bold blue arrows. The other arrows do not modify the genealogical tree. The
ancestral positions in Figure 4.1 are given by (xi)1⩽i⩽5 where µ5 = 1

5
∑5

i = 1 δxi and the ancestral
positions in Figure 4.2 are distributed as x(2). Note that x

(2)
a(1) = x

(2)
a(2) = x

(2)
a(4) = x

(2)
1 = x1 and

x
(2)
a(1) = x

(2)
a(1) = x

(2)
2 = x5. Then, we add the mutations, denoted by “ ”. Not all of them

are shown in Figures 4.1 and 4.2 for the sake of clarity: the ones which are represented are w1 :=
W

({3})
T −t6

− W
({3})
0 , w2 := W

({2})
T −t4

− W
({2})
0 , w3 := W

({1,2})
T −t3

− W
({1,2})
T −t4

, w4 := W
({1,2,4})
T − W

({1,2,4})
T −t3

and w5 := W
({3,5})
T − W

({3,5})
T −t6

. Then the position ui of the individual i ∈ {1, · · · , 5} at time T in
Figure 4.2, are

u1 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({1,2})
T −t3

− W
({1,2})
T −t4

+ W
({1})
T −t4

− W
({1})
0 ,

u2 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({1,2})
T −t3

− W
({1,2})
T −t4

+ W
({2})
T −t4

− W
({2})
0 ,

u3 = x2 + W
({3,5})
T − W

({3,5})
T −t6

+ W
({3})
T −t6

− W
({3})
0 ,

u4 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({4})
T −t3

− W
({4})
0 ,

u5 = x2 + W
({3,5})
T − W

({3,5})
T −t6

+ W
({5})
T −t6

− W
({5})
0 .

Putting everything together, we define in the general case the random variable“Y N,µN
T := 1

N

N∑
i = 1

δui ,

where, for all i ∈ {1, · · · , N},

ui := uµN
i := x

(n)
a(i) +

∫ T

0
dW

(B(s−,i))
s . (36)

The well-known backward construction of the Moran model [19, Section 1.2], [18, Section
2.8] entails the following result.

Proposition 4.4. For all initial condition µN ∈ M1,N (R), Y N
T

law= “Y N,µN
T where Y N

0 = µN .

4.3 Centered variables and centering effects

We construct the centered version of the random variables “Y N,µN
T . We define the random variable

ẐN,µN
T as follows:

ẐN,µN
T := τ

−
〈

id,“Y N,µN
T

〉♯“Y N,µN
T .

Corollary 4.5. For all initial condition µN ∈ Mc,2
1,N (R), ZN

T
law= ẐN,µN

T = 1
N

∑N
i = 1 δvi where,

for all i ∈ {1, · · · , N}, vi := vµN
i := ui − 1

N

∑N
j = 1 uj and ZN

0 = µN .
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w1 w2

w3 w4

w5

w6

w7

x(1)

v1 v2 v3 v4
0

T

Figure 4.3: Illustration of the centered
Moran process where |k4,T | = 1.

w1 w2

w3 w4

w5

w6

x
(2)
1 x

(2)
2

v1 v2 v3 v4
0

T

Figure 4.4: Illustration of the centered
Moran process where |k4,T | = 2.

In the example of Figure 4.3, we can observe that u1 = x(1) + w1 + w5 + w7, u2 = x(1) + w2 +
w5 + w7, u3 = x(1) + w3 + w6 + w7, u4 = x(1) + w4 + w6 + w7, so that

• v1 = 1
2 [w5 − w6] + 3

4w1 − 1
4 [w2 + w3 + w4], • v2 = 1

2 [w5 − w6] + 3
4w2 − 1

4 [w1 + w3 + w4],
• v3 = −1

2 [w5 − w6] + 3
4w3 − 1

4 [w1 + w2 + w4], • v4 = −1
2 [w5 − w6] + 3

4w4 − 1
4 [w1 + w2 + w3],

and for Figure 4.4 that u1 = x
(2)
1 + w1 + w5, u2 = x

(2)
1 + w2 + w5, u3 = x

(2)
2 + w3 + w6,

u4 = x
(2)
2 + w4 + w6 so that

• v1 = 1
2
î
x

(2)
1 − x

(2)
2 + w5 − w6

ó
+ 3

4w1 − 1
4 [w2 + w3 + w4] ,

• v2 = 1
2
î
x

(2)
1 − x

(2)
2 + w5 − w6

ó
+ 3

4w2 − 1
4 [w1 + w3 + w4] ,

• v3 = −1
2
î
x

(2)
1 − x

(2)
2 + w5 − w6

ó
+ 3

4w3 − 1
4 [w1 + w2 + w4] ,

• v4 = −1
2
î
x

(2)
1 − x

(2)
2 + w5 − w6

ó
+ 3

4w4 − 1
4 [w1 + w2 + w3] .

In other words, when there is just one ancestral lineage as in Figure 4.3, the random variable
ẐN,µ4

T does not depend on the ancestral position x(1): this is the centering effect. In general,
when n = |kN,T | = 1,

vi =
∫ T

0
dW

(B(s−,i))
s − 1

N

N∑
j = 1

∫ T

0
dW

(B(s−,j))
s . (37)

This property is fundamental to implement coupling arguments leading to strong ergodicity (see
Section 4.4).

For any fixed T > 0, for all i, j ∈ {1, · · · , N}, let us consider Tij the coalescence time between
the individuals i and j at time T in the process (kN,t)0⩽t⩽T . In the following proposition we
establish that (vi)1⩽i⩽N is a centered Gaussian vector whose covariance matrix is an explicit
function of Tij .
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Proposition 4.6. (1) For any fixed T > 0, for all µN ∈ Mc,2
1,N (R), conditionally to kN :=

(kN,t)0⩽t⩽T , on the event {|kN,T | = 1}, we have for all i, j ∈ {1, · · · , N}, Cov (ui, uj | kN ) =
T − Tij.

(2) Conditionally to kN , on the event {|kN,T | = 1}, (vi)1⩽i⩽N ∼ N (N) (0RN , Σ) where Σ :=
(Σij)1⩽i,j⩽N is define by

∀i, j ∈ {1, · · · , N} , Σij := Cov (vi, vj | kN ) = 1
N

N∑
k = 1

(Tik + Tjk) −

(
Tij + 1

N2

N∑
k,ℓ = 1

Tkℓ

)
.

Proof. (1) It is a straightforward computation from (36).

(2) Noting that for all i, j ∈ {1, · · · , N}, Tij = Tji and Tii = 0 and from (37), we deduce the
announced result by a straightforward computation.

4.4 Coupling arguments with two distincts initial conditions

In this section, we want to couple centered Moran’s processes from different initial conditions
but with the same Kingman genealogy and the same mutations in order to establish the following
exponential ergodicity result.

Proposition 4.7. For all µN , νN ∈ Mc,2
1,N (R), for all T ⩾ 0, there exist constants α, β ∈

(0, +∞), independent of µN , νN , T and N such that∥∥∥P̂ ÄẐN,µN
T ∈ ·

ä
− P̂
Ä
ẐN,νN

T ∈ ·
ä∥∥∥

T V
⩽ α exp (−βT ) .

In particular, for all N ∈ N⋆ there exists a unique invariant probability measure πN for the
centered Moran process

(
ZN

t

)
t⩾0 such that for all µN ∈ Mc,2

1,N (R), for all T ⩾ 0,∥∥∥PµN

Ä
ZN

T ∈ ·
ä

− πN

∥∥∥
T V

⩽ α exp (−βT ) .

Remark 4.8. The previous result is true for all deterministic initial conditions, so also for any
random initial conditions.

Proof. Step 1. Coupling. Let ω̂µN and ω̂νN be two elements of Ω̂ which have the same
Kingman genealogy (kN,t)0⩽t⩽T and the same mutation but whose initial conditions µN :=
1
N

∑N
i = 1 δ

x
(n)
a(i)

and νN := 1
N

∑N
i = 1 δ

y
(n)
a(i)

are different where n = |kN,T |. We assume that the x
(n)
a(i)

respectively y
(n)
a(i) are selected randomly and without replacement in {x1, · · · , xN } respectively

{y1, · · · , yN }, independently. This allows us to construct, on the same probability space, two
random variables

ẐN,µN
T := 1

N

N∑
i = 1

δv
µN
i

and ẐN,νN
T := 1

N

N∑
i = 1

δv
νN
i
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such that ZN,µN
T

law= ẐN,µN
T and ZN,νN

T
law= ẐN,νN

T .

Step 2. Control in total variation. From (37), on the event {|kN,T | = 1}, we have that
for all i ∈ {1, · · · , N}, vµN

i = vνN
i a.s. and from [36] we deduce that∥∥∥P̂ ÄẐN,µN

T ∈ ·
ä

− P̂
Ä
ẐN,νN

T ∈ ·
ä∥∥∥

T V
⩽ P̂
Ä
ẐN,µN

T ̸= ẐN,νN
T

ä
= 1 − KN,T (|kN,T | = 1) .

We denote by HN :=
∑N

k = 2 Tk the height of the Kingman N−coalescent where (Tk)2⩽k⩽N

are independent random variables such that Tk follows an exponential law of parameter 2γ
(k

2
)

[18, Lemma 2.20]. Now, KN,T (|kN,T | = 1) ⩾ K∞,T (|k∞,T | = 1) = K∞,T (H∞ ⩽ T ) and by the
exponential Tchebychev inequality we have

K∞,T (H∞ > T ) ⩽ inf
λ ∈ (0,2γ)

E (exp (λH∞))
exp (λT ) .

Note that for all λ ∈ (0, 2γ),

E (exp (λH∞)) =
+∞∏
k = 2

E (exp (λTk)) = 2γ

2γ − λ

+∞∏
k = 3

1
1 − λ

γk(k−1)
,

where the last product is convergent. We deduce that

K∞,T (H∞ > T ) ⩽ C inf
λ ∈ (0,2γ)

1
(2γ − λ) exp(λT ) = 2Cγ exp(1)T exp(−2γT ),

where C :=
∏+∞

k = 3
1

1− 1
γk(k−1)

. The result follows for α = 2Cγ exp(1)T and β = 2γ.

4.5 Proof of Theorem 4.1

Classically, it is sufficient to check that there exists constants α, β ∈ R+ such that for all µ, ν ∈
Mc,2

1 (R), for all T ⩾ 0,

∥Pµ (ZT ∈ ·) − Pν (ZT ∈ ·)∥T V ⩽ α exp (−βT ) .

From Lusin’s theorem [49, Corollary of Theorem 2.24], Proposition 4.7 and Corollary 4.5 there
exists two constants α, β ∈ (0, +∞) such that for all µN , νN ∈ Mc,2

1,N (R), for all T ⩾ 0,

sup
∥f∥∞⩽1

f continuous

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣ = sup
∥f∥∞⩽1

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣
⩽ α exp(−βT ).

Now, let be fixed two deterministic initial conditions µ, ν ∈ Mc,2
1 (R) and consider an i.i.d. sample

(Xi)1⩽i⩽N of distribution µ and an i.i.d. sample
Ä‹Xi

ä
1⩽i⩽N

of distribution ν. Then, we construct
two initial conditions µN := 1

N

∑N
i = 1 δXi and νN := 1

N

∑N
i = 1 δ‹Xi

such that µN and νN converge
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in law respectively to µ and ν. We define µ̃N := τ−⟨id,µN ⟩♯ µN and ν̃N := τ−⟨id,νN ⟩♯ νN such
that µ̃N , ν̃N ∈ Mc,2

1,N (R). By construction, the assumptions of exchangeability of the random
variables (Xi)1⩽i⩽N and

Ä‹Xi

ä
1⩽i⩽N

are satisfied, µ̃N and ν̃N converge in law respectively to µ

and ν and we have

E
(〈

id2, µ̃N

〉)
= E
Ä〈

id2, µN

〉
− ⟨id, µN ⟩2

ä
=
Å

1 − 1
N

ã
Var(X1) < ∞.

Then, we deduce from Proposition 4.2 that for all f ∈ C 0
b (R,R) satisfying ∥f∥∞ ⩽ 1, for all

T ⩾ 0,

|Eµf (ZT ) − Eνf (ZT )| = lim
N→+∞

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣ ⩽ α exp(−βT )

which concludes the proof. □

4.6 Characterisation of the invariant probability measure

In this section, we characterise the invariant probability measure of the centered Fleming-Viot
process π thanks to an adaptation of Donnelly-Kurtz’s modified look-down construction
presented in Section 4.6.1. We give in Section 4.6.2 an explicit characterisation of the invariant
probability measure π. Let us begin by giving a convergence result of the invariant probability
measure πN to the invariant probability measure π.

Lemma 4.9. The sequence of laws (πN )N∈N⋆ converges in law to π in M1 (M1(R)).

Proof. Let T ⩾ 0, µN ∈ Mc,2
1,N (R) and µ ∈ Mc,2

1 (R) such that µN converges in law to µ. From
Proposition 4.7 and Theorem 4.1, we have for all f ∈ C 0

b (M1(R),R),

|⟨f, πN ⟩ − ⟨f, π⟩| ⩽
∣∣∣⟨f, πN ⟩ − EµN

Ä
f
Ä
ẐN,µN

T

ää∣∣∣+
∣∣∣EµN

Ä
f
Ä
ẐN,µN

T

ää
− Eµ (f (ZT ))

∣∣∣
+ |Eµ (f (ZT )) − ⟨f, π⟩|

⩽ 2 ∥f∥∞ α exp (−βT ) +
∣∣∣EµN

Ä
f
Ä
ẐN,µN

T

ää
− Eµ (f (ZT ))

∣∣∣ .
The announced result follows from Proposition 4.2.

4.6.1 Construction of exchangeable random variables allowing to characterise πN

and π

We consider the probability space
Ä
Ω̌, F̌ , P̌

ä
where we define the modified look-down process

on (−∞, 0] as a population dynamics on the set N of levels where one individual is assigned to
each level. To each pair of levels (i, j) ∈ N2 with 1 ⩽ i < j, we assign an independent Poisson
processes (Nij(t))t⩾0 with intensity 2γ and to each level i ∈ N⋆, we assign an independent
standard Brownian motion (Bi(t))t⩽0 on R−. Jointly with the modified look-down is constructed
for all N ∈ N⋆, the so-called N−look-down process whose evolution is given as follows:

(1) Birth/Death rule. Each jump time tk of one of the Poisson process (Nij)1⩽i<j⩽N
corresponds to a reproduction event at backward time −tk. When the time tk is the jump
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B1(t)

B2 (t)

B3 (t)

B4 (t)

B5 (t)

ǔ1

ǔ2

ǔ3

ǔ4

ǔ5

1

2

3

4

5

0−t1−t2−t3−t4−T

Figure 4.5: Graphical representation of the mod-
ified look-down process with N = 5.

ǔ1 ǔ3 ǔ4 ǔ2 ǔ5
0

−t1

−t2

−t3

−Ť 5
coal = −t4

−T

Figure 4.6: Kingman’s genealogyÄ
ǩ5,t

ä
0⩽t⩽T

under the modified look-
down model on the left, tracing back
from time 0 to time −T .

time of the Poisson process Nij , we put an arrow from i to j as illustrated in Figure 4.5
which means that the individual at level i puts a child at level j. The offspring at level j
adopts the current spatial position of its parent at level i. The parent level and position
do not change. Individuals previously at level ℓ ∈ {j, · · · , N − 1} are shifted one level up
to ℓ + 1 and the individual at level N dies.

(2) Spatial motion. Between reproduction events, individuals’ spatial positions at each level
i evolve according to the standard Brownian motion Bi(−t). As explain below, we will fix
the position of the individual at level 1 at coalescence time to 0.

Note that the N−modified look-down process is simply the first N levels of the (N +k)−modified
look-down for any k ∈ N⋆. In other words, the modified look-down construction can be done
with an infinite population as a projective limit of the so-called (infinite) modified look-down.
From [14, 15], the genealogy

Ä
ǩN,t

ä
t⩾0

in backward time since time 0 of a sample from a pop-
ulation evolving according to the N−modified look-down is exactly determined by Kingman’s
N−coalescent with coalescence rate 2γ. In Figure 4.6 we give the Kingman genealogy associated
to the 5−modified look-down of the Figure 4.5.

We denote by a(i, t), i ∈ {1, · · · , N}, t ∈ (−∞, 0], the ancestor level of the individual at level
i at time t. For example, in Figure 4.5, for all t ∈ ]− t3, −t4], a(5, t) = 2 and for all t ∈ ]− t2, −t4],
a(3, t) = 1. Let us consider the random variables

Ť N
coal := inf

ß
T ⩾ 0

∣∣∣∣ a(i, −T ) = 1, ∀i ∈ {1, · · · , N}
™

,

Ť ∞
coal := inf

ß
T ⩾ 0

∣∣∣∣ a(i, −T ) = 1, ∀i ∈ N⋆

™
,
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which can be interpreted respectively as the coalescence time (i.e. the first time where |ǩN,t| = 1)
of the Kingman N−coalescent

Ä
ǩN,t

ä
t⩾0

and the Kingman coalescent
Ä
ǩ∞,t

ä
t⩾0

. Note that,
for all N ∈ N⋆, Ť N

coal ⩽ Ť ∞
coal P̌−a.s. In Proposition 4.10 below, we establish that Ť ∞

coal admits
moments of any order. We shall be interested in the spatial position ǔi of the individual at level
i ∈ N⋆ at time 0 assuming that the position of its ancestor at backward time −Ť ∞

coal is 0. For
example, if we assume that, in Figure 4.6, Ť ∞

coal = Ť 5
coal = t4, then the spatial position of the

individual at level 5 at backward time −Ť ∞
coal, represented by the curve in bold in Figures 4.5

and 4.6, is

ǔ5 := B2(−t4) − B2(−t3) + B3(−t3) − B3(−t2) + B4(−t2) − B4(−t1) + B5(−t1).

Similarly, ǔ1 := B1(−t4), ǔ2 := B2 (−t4) , ǔ3 := B1(−t4) − B1(−t2) + B3 (−t2) , ǔ4 := B1 (−t4) −
B1 (−t2) + B3 (−t2) − B3 (−t1) + B4 (−t1). In general, we define for all i ∈ N⋆, the random
variable

ǔi :=
∫ 0

−Ť ∞
coal

dBa(i,t)(t).

Proposition 4.10. For all k ∈ N, there exists a constant Ck > 0 such that E
(Ä

Ť ∞
coal

äk
)
⩽ Ck.

Proof. Note that Ť ∞
coal =

∑+∞
k = 2 Tk where (Tk)k⩾2 are independent random variables such that Tk

follows an exponential law of parameter 2γ
(k

2
)
. As previously in Step 2 of the proof of Proposition

4.7, there exists a constant C > 0 such that for all λ ∈ (0, 2γ),

E
Ä
exp
Ä
λŤ ∞

coal

ää
=

+∞∏
k = 2

1
1 − λ

γk(k−1)
⩽ exp (Cλ) .

From the inequality: for all x ∈ R+, xk ⩽
Ä

k
γ exp(1)

äk
exp (γx), we deduce that

E
(Ä

Ť ∞
coal

äk
)
⩽
Å

k

γ exp(1)

ãk

E
Ä
exp
Ä
γŤ ∞

coal

ää
⩽ Ck

where Ck :=
Ä

k
γ exp(1)

äk
exp (Cγ) which ends the proof.

In view of (37), it is natural to introduce for all N, i ∈ N⋆, v̌N
i := ǔi − 1

N

N∑
j = 1

ǔj . In the

following proposition, we give analogous results to those of Proposition 4.6.

Proposition 4.11. (1) Conditionally to ǩN :=
Ä
ǩN,t

ä
t⩾0

, on the event
{∣∣∣ǩN,T

∣∣∣ = 1
}

, we have

for all i, j ∈ {1, · · · , N}, Cov
(

ǔi, ǔj

∣∣∣ ǩN

)
= Ť ∞

coal − Ťij, where Ťij is the coalescence time
between individuals at level i and j at time 0.

(2) Conditionally to ǩN , on the event
{∣∣∣ǩN,T

∣∣∣ = 1
}

,
(
v̌N

i

)
1⩽i⩽N

∼ N (N)
Ä
0RN , Σ̌

ä
where Σ̌ :=Ä

Σ̌ij

ä
1⩽i,j⩽N

is define by

∀i, j ∈ {1, · · · , N} , Σ̌ij := Cov
(

v̌N
i , v̌N

j

∣∣∣ ǩN

)
= 1

N

N∑
k = 1

Ä
Ťik + Ťjk

ä
−

(
Ťij + 1

N2

N∑
k,ℓ = 1

Ťkℓ

)
.

34/74



Proof. The proof is similar to that of Proposition 4.6.

Let us define respectively the empirical distribution of (ǔi)1⩽i⩽N and its centered version by

Y̌ N
coal := 1

N

N∑
i = 1

δǔi and ŽN
coal := 1

N

N∑
i = 1

δv̌N
i

.

Proposition 4.12. The measure-valued random variable ŽN
coal has the law πN .

Proof. The proof consists in establishing for all f : Mc,2
1 (R) → R measurable real bounded

function, E
Ä
f
Ä
ŽN

coal

ää
=

∫
Mc,2

1 (R) f(µ)πN (dµ). From Proposition 4.7, it is sufficient to establish

for all µN ∈ Mc,2
1,N (R), that limT →+∞

∣∣∣E Äf ÄŽN
coal

ää
− E
Ä
f
Ä
ẐN,µN

T

ää∣∣∣ = 0.
Let f : Mc,2

1 (R) → R be a measurable real bounded function. Note that,∣∣∣E Äf ÄŽN
coal

ää
− E
Ä
f
Ä
ẐN,µN

T

ää∣∣∣ ⩽ ∣∣∣E(f
Ä
ŽN

coal

ä
1{|ǩN,T |=1}

)
− E

(
f
Ä
ẐN,µN

T

ä
1{|kN,T |=1}

)∣∣∣
+ ∥f∥∞

[
P̌
(∣∣∣ǩN,T

∣∣∣ > 1
)

+ P̂ (|kN,T | > 1)
]

.

Now, from Propositions 4.6 and 4.11, it follows that for all µN ∈ Mc,2
1,N (R),

ẐN,µN
T 1{|kN,T |=1}

law= ŽN
coal1{|ǩN,T |=1}.

As established in Step 2 of the proof of Proposition 4.7,

lim
T →+∞

P̌
(∣∣∣ǩN,T

∣∣∣ > 1
)

= lim
T →+∞

P̂ (|kN,T | > 1) = 0,

which concludes the proof.

In the next proposition, we establish the exchangeability property of the family (ǔi)i∈N⋆ which
will allow to apply the De Finetti representation theorem.

Proposition 4.13. (1) The family (ǔi)i∈N⋆ is exchangeable.

(2) There exists a random variable measure-valued Y̌ ∞
coal : Ω̌ → M1(R) such that

Ä
Y̌ N

coal

ä
N∈N⋆

converges P̌−a.s. when N → +∞ to Y̌ ∞
coal in M1(R) which is equipped with the weak

topology. Moreover, given Y̌ ∞
coal, (ǔi)i∈N⋆ is i.i.d. of law Y̌ ∞

coal.

Proof. (1) From [14, Proof of Theorem 2.2], it is enough to show for each N ∈ N⋆, (ǔi)1⩽i⩽N is
exchangeable. Let σ : N⋆ → N⋆ be a finite permutation, that is to say a bijection that leaves all
but finitely many points unchanged. The well-known backward construction of the modified look-
down process [14, 15] entails that

Ä
ǩ∞,t

ä
t⩾0

law=
Ä
ǩσ

∞,t

ä
t⩾0

where ǩσ
∞,t is the partition obtained by

applying the permutation σ to ǩ∞,t. Therefore, for any permutation σ : {1, · · · , N} → {1, · · · , N}
extended by id to N⋆, it is sufficient to prove that

(
(ǔi)1⩽i⩽N

∣∣∣ ǩ∞

)
law=
((

ǔσ(i)
)

1⩽i⩽N

∣∣∣ ǩσ
∞

)
to

obtain the announced result.
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We define Ť ∞,σ
coal := Ť ∞

coal

Ä
ǩσ

∞
ä

and for all i, j ∈ {1, · · · , N}, Ť σ
ij := Ťij

Ä
ǩσ

∞
ä
. Note that

Ť ∞,σ
coal = Ť ∞

coal P̌−a.s. and it follows from the fact
Ä
ǩ∞,t

ä
t⩾0

law=
Ä
ǩσ

∞,t

ä
t⩾0

thatÄÄ
Ť σ

ij , Ť ∞,σ
coal

ää
1⩽i,j⩽N

law=
ÄÄ

Ťij , Ť ∞
coal

ää
1⩽i,j⩽N

.

From Proposition 4.11, for all f : RN → R measurable real bounded function,

E
(

f (ǔ1, · · · , ǔN )
∣∣∣ ǩ∞

)
= F

(Ä
Ťij

ä
1⩽i<j⩽N

, Ť ∞
coal

)
.

for a certain function F . So, in particular

E
(

f
(
ǔσ(1), · · · , ǔσ(N)

) ∣∣∣ ǩσ
∞

)
= F

(Ä
Ť σ

ij

ä
1⩽i<j⩽N

, Ť ∞,σ
coal

)
.

By taking the expectation in the previous expressions, we deduce that E
(
f
(
ǔσ(1), · · · , ǔσ(N)

))
=

E (f (ǔ1, · · · , ǔN )) which completes the proof.

(2) As the family (ǔi)i∈N⋆ is exchangeable, the announced result follows from De Finetti’s
representation theorem [33, Theorem 12.26 and Remark 12.27].

We conclude this section with a corollary which will be useful to characterise the probability
measure π.

Corollary 4.14. (1) For all k ∈ N, the random variable Y̌ ∞
coal satisfies

¨
|id|k , Y̌ ∞

coal

∂
< ∞

P̌−a.s.

(2) The limit ǔ∞ := limN→+∞
1
N

∑N
j = 1 ǔj exists P̌−a.s. and satisfies ǔ∞ =

¨
id, Y̌ ∞

coal

∂
.

Proof. (1) For all M ∈ (0, +∞), let us consider |id|M the truncation function of id at level M
defined by |id|M = |id| on [−M, M ] and |id|M = M on R \ [−M, M ]. By Fatou’s lemma, we
obtain that

E
Ä¨

|id|kM , Y̌ ∞
coal

∂ä
⩽ lim

N→+∞
E
Ä¨

|id|kM , Y̌ N
coal

∂ä
⩽ lim

N→+∞

1
N

N∑
i = 1

Ä
1 + E

Ä
ǔ2k

i

ää
.

Now, classical moment results for Gaussian random variables show that for all n ∈ N, E
(
G2n

)
=

(2n)!
2nn! σ

2n for G ∼ N (0, σ2). From Proposition 4.11,

E
Ä
ǔ2k

i

ä
= E

(
E
(

ǔ2k
i

∣∣∣ ǩN

))
= (2k)!

2kk! E
(Ä

Ť ∞
coal

äk
)

.

Therefore, from Proposition 4.10, we deduce that there exists a constant Ck > 0 such that
E
Ä¨

|id|kM , Y̌ ∞
coal

∂ä
⩽ 1 + (2k)!

2kk! Ck and by the dominated convergence theorem when M → +∞,
the announced result follows.

(2) From Proposition 4.13, given Y̌ ∞
coal, (ǔi)i∈N⋆ is i.i.d. Therefore, the announced almost

surely existence limit follows from the Strong Law of Large Numbers. Moreover,¨
id, Y̌ ∞

coal

∂
= lim

N→+∞

¨
id, Y̌ N

coal

∂
= lim

N→+∞

1
N

N∑
j = 1

ǔj = ǔ∞, P̌ − a.s.
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4.6.2 Characterisation of the invariant probability measure π

Now we define the random variable Ž∞
coal ∈ M1(R) as

Ž∞
coal := τ−⟨id,Y̌ ∞

coal⟩ ♯Y̌ ∞
coal.

The following proposition establishes the convergence of
Ä
ŽN

coal

ä
N∈N⋆

to Ž∞
coal. Recall from (17)

that for all n ∈ N⋆, µ ∈ M1(R), Pf,n(µ) := ⟨f, µn⟩. Let us recall the following well-known fact
useful for the proof below: a straightforward adaptation of the proof of [9, Lemma 2.1.2] allows
us to obtain that for all n ∈ N⋆, the algebra of polynomials

Span
Åß

Pf,n(µ)
∣∣∣∣ f : Rn → R uniformly continuous, µ ∈ M1(R)

™ã
is convergence determining in M1 (M1(R)).

Proposition 4.15. (1) The sequence of random variables
Ä
ŽN

coal

ä
N∈N⋆

converges P̌−a.s. when
N → +∞ to Ž∞

coal in M1(R) for the weak convergence topology.

(2) The random variable Ž∞
coal has the law π.

Proof. (1) From the previous reminder, it is sufficient to prove that for all n ∈ N⋆, for all
f : Rn → R uniformly continuous, limN→+∞ Pf,n

Ä
ŽN

coal

ä
= Pf,n

Ä
Ž∞

coal

ä
. With an argument

similar to the proof of Proposition 4.2, we obtain that for all n ∈ N⋆, for all f : Rn → R
uniformly continuous, Pf◦τ−⟨id,·⟩,n from M1

1(R) to R is continuous. Let n ∈ N⋆ and f : Rn → R
uniformly continuous. Now, Y̌ ∞

coal ∈ M1
1(R) from Corollary 4.14 and

Pf◦τ
−⟨id,Y̌ N

coal⟩
,n

Ä
Y̌ N

coal

ä
= Pf,n

Ä
ŽN

coal

ä
and Pf◦τ

−⟨id,Y̌ ∞
coal⟩

,n

Ä
Y̌ ∞

coal

ä
= Pf,n

Ä
Ž∞

coal

ä
From Proposition 4.13, limN→+∞ Pf◦τ

−⟨id,Y̌ N
coal⟩

,n

Ä
Y̌ N

coal

ä
= Pf◦τ

−⟨id,Y̌ ∞
coal⟩

,n

Ä
Y̌ ∞

coal

ä
P̌−a.s. which

concludes the proof.

(2) Let n ∈ N⋆. As for all N ∈ N⋆ and f : Rd → R uniformly continuous,∣∣∣∣E ÄPf,n

Ä
Ž∞

coal

ää
−

∫
M1(R)

Pf,n(µ)π(dµ)
∣∣∣∣

⩽ E
(∣∣∣Pf,n

Ä
Ž∞

coal

ä
− Pf,n

Ä
ŽN

coal

ä∣∣∣)+
∣∣∣∣E ÄPf,n

Ä
ŽN

coal

ää
−

∫
M1(R)

Pf,n (µ) πN (dµ)
∣∣∣∣

+
∣∣∣∣∫M1(R)

Pf,n (µ) [π(dµ) − πN (dµ)]
∣∣∣∣ ,

the announced result follows from Propositions 4.15 (1), and 4.12 and Lemma 4.9 when
N → +∞.

The last characterisation of the probability measure π is suitable to make explicit computa-
tions. The next corollary gives an expression of the second moment under π.
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Corollary 4.16. We have
∫

Mc,2
1 (R) M2 (µ) π (dµ) = 1/2γ.

Proof. Step 1. Uniform bound in N of E
Ä
M2k

Ä
ŽN

coal

ää
, k ∈ N⋆. In this step, we want to

establish
sup

N∈N⋆
E
Ä¨

|id|2k , ŽN
coal

∂ä
< ∞.

Let N ∈ N⋆. From Proposition 4.13 (1),

E
Ä¨

|id|2k , ŽN
coal

∂ä
= E

Ñ
E

Ñ
1
N

N∑
i = 1

∣∣∣∣∣ǔi − 1
N

N∑
j = 1

ǔj

∣∣∣∣∣
2k
∣∣∣∣∣∣
Ä
Ťmℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

éé
= E
Å
E
Å∣∣∣v̌N

1

∣∣∣2k ∣∣∣ÄŤmℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

ãã
.

From Propositions 4.11 and 4.10, we obtain that

E
Å
E
Å∣∣∣v̌N

1

∣∣∣2k ∣∣∣ÄŤm,ℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

ãã
= (2k)!

2kk! E
Ä
Σ̌2k

ii

ä
⩽

(2k)!
k! E

(Ä
Ť ∞

coal

ä2k
)

< ∞,

and the announced result follows.

Step 2. Convergence result of E
Ä
M2
Ä
ŽN

coal

ää
to E

Ä
M2
Ä
ŽN

coal

ää
. Note that for all

N ∈ N⋆, M ∈ (0, +∞),∣∣∣E ÄM2
Ä
ŽN

coal

ää
− E
Ä
M2
Ä
Ž∞

coal

ää∣∣∣ ⩽ (A)N,M + (B)N,M + (C)N,M ,

where

(A)N,M :=
∣∣∣E ÄM2

Ä
ŽN

coal

ää
− E
Ä¨

|id|2M , ŽN
coal

∂ä∣∣∣ ,
(B)N,M :=

∣∣∣E Ä¨|id|2M , ŽN
coal

∂ä
− E
Ä¨

|id|2M , Ž∞
coal

∂ä∣∣∣ ,
(C)N,M :=

∣∣∣E Ä¨|id|2M , Ž∞
coal

∂ä
− E
Ä
M2
Ä
Ž∞

coal

ää∣∣∣ .
From the inequality

∣∣id2 − id2
M

∣∣ ⩽ 2
3
√

3M
|id|3, then the Hölder inequality, we obtain that

(A)N,M ⩽ E
Ä¨∣∣id2 − id2

M

∣∣ , ŽN
coal

∂ä
⩽

2
3
√

3M
E
Ä¨

|id|3 , ŽN
coal

∂ä
⩽

2
3
√

3M
E
Å¨

id4, ŽN
coal

∂ 3
4
ã

.

From Step 1, we deduce that for all N ∈ N⋆,

(A)N,M ⩽
2

3
√

3M

Å
1 + sup

N∈N⋆
E
Ä¨

id4, ŽN
coal

∂äã
< ∞.

In similar way, we obtain that for all N ∈ N⋆, (C)N,M ⩽ 2
3
√

3M

Ä
1 + E

Ä¨
id4, Ž∞

coal

∂ää
where

E
Ä¨

id4, Ž∞
coal

∂ä
< ∞ from Corollary 4.14 (1). By the monotone convergence theorem, we de-

duce that for all N ∈ N⋆, E
Ä
M2
Ä
ŽN

coal

ää
= limM→+∞ E

Ä¨
|id|2M , ŽN

coal

∂ä
and E

Ä
M2
Ä
Ž∞

coal

ää
=
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limM→+∞ E
Ä¨

|id|2M , Ž∞
coal

∂ä
. From Proposition 4.15, for all M ∈ (0, +∞), limN→+∞ (B)N,M =

0. From classical analysis techniques, we deduce that limN→+∞ E
Ä
M2
Ä
ŽN

coal

ää
= E
Ä
M2
Ä
Ž∞

coal

ää
.

Step 3. Conclusion. Note that for all N ∈ N⋆,

M2
Ä
ŽN

coal

ä
=
¨
id2, ŽN

coal

∂
= 1

N

N∑
i = 1

ǔ2
i − 1

N2

[
N∑

i = 1
ǔ2

i + 2
∑

1⩽i<j⩽N

ǔiǔj

]
.

From Proposition 4.11, we have for all i, j ∈ {1, · · · , N}, E (ǔiǔj) = E
(
E
(

ǔiǔj

∣∣∣ ǩN

))
=

E
Ä
Ť ∞

coal − Ťij

ä
where Ťij is an exponential random variable with parameter 2γ if i ̸= j. Therefore

E
Ä
M2
Ä
ŽN

coal

ää
= N−1

N × 1
2γ . By Step 2, we deduce that E

Ä
M2
Ä
Ž∞

coal

ää
= 1/2γ which completes

the proof.

5 Proof of Theorem 2.3
We divide the proof of the main result into 7 steps, each of which will constitute a section
(Sections 5.1 to 5.7). We recall that the aim of this proof is to prove that the law PFVc

τ−⟨id,ν⟩♯ ν of
the process (Zt)0⩽t⩽T defined by

∀t ⩾ 0, Zt := τ−⟨id,Yt⟩♯ Yt,

under PFV
ν for ν ∈ M2

1(R) is solution of the martingale problem (4). We will start by considering
the case with test functions F, g ∈ C 4

b (R,R) and we will prove the extension to F ∈ C 2(R,R)
and g ∈ C 2

b (R,R) in Section 5.6. In (11) there are essentially two types of terms: ⟨id, Yt − Ys⟩
and
¨
g(j) ◦ τ−⟨id,Ys⟩, Yt − Ys

∂
, j ∈ {0, 1, 2}, s ⩽ t. In Sections 5.1 and 5.2, we prove that the two

previous quantities admit a Doob’s semi-martingale decomposition. In Sections 5.3 and 5.4,
we handle all the terms in (11) involving respectively the first and second derivative of F . In
Section 5.5, we deal with the different error terms involved in (11). Finally, in Section 5.7, we
prove that the martingale involved in (4) is square integrable and we establish the relation (6).
We conclude in Sections 5.8 and 5.9 by proving a technical lemma used in Section 5.2.

5.1 Doob’s semi-martingale decomposition of ⟨id, Yt − Ys⟩, s ⩽ t

In (7), M id(g) is well-defined only for g ∈ C 2
b (R,R). The expression makes sense for more general

functions g. The goal of this section is to prove that, for any k ∈ N, M id
Ä
idk
ä

is the martingale
part in the Doob semi-martingale decomposition of

¨
idk, Yt

∂
. In particular,¨

id, Ys − Ytn
i ∧t

∂
= M id

s (id) − M id
tn
i ∧t(id), s ⩾ tn

i ∧ t

is a PFV
ν −martingale.

Lemma 5.1. Let ν ∈ M1(R) and let Pν be a distribution on Ω satisfying (7) and such that Y0
is equal in law to ν. Let T > 0 and k ∈ N⋆ be fixed.
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(1) If
¨
|id|k , ν

∂
< ∞, then there exist two constants Ck,T , ‹Ck,T > 0, such that any stochastic

process (Yt)0⩽t⩽T whose law is Pν satisfies

(a) sup
t∈[0,T ]

Eν

Ä¨
|id|k , Yt

∂ä
⩽ Ck,T

Ä
1 +
¨
|id|k , ν

∂ä
,

(b) ∀α > 0, Pν

Ç
sup

t∈[0,T ]

¨
|id|k , Yt

∂
⩾ α

å
⩽
‹Ck,T

Ä
1 +
¨
|id|k , ν

∂ä
α

.

(2) If
¨
|id|k , ν

∂
< ∞, then the process

Ä
M id

t

Ä
idk
ää

0⩽t⩽T
defined by

M id
t

Ä
idk
ä

:=
¨
idk, Yt

∂
−
¨
idk, Y0

∂
−

∫ t

0

≠
k(k − 1)

2 idk−2, Ys

∑
ds,

is a continuous Pν−martingale. Moreover, if
¨
|id|2k , ν

∂
< ∞, then

Ä
M id
Ä
idk
ää

0⩽t⩽T
is a

martingale in L2 (Ω) whose quadratic variation is given by¨
M id
Ä
idk
ä∂

t
= 2γ

∫ t

0

[¨
id2k, Ys

∂
−
¨
idk, Ys

∂2]
ds.

Proof. The proof is similar to that of Proposition 2.11.

5.2 Doob’s semi-martingale decomposition of
〈
g(j) ◦ τ−⟨id,Ys⟩, Yt − Ys

〉
, s ⩽ t, j ∈

{0, 1, 2}

Equation (11) involves terms of the form
≠

g(j) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
with j ∈ {0, 1, 2}.

We wish to express, each of these terms using the martingale problem (7). However, this leads
us to consider quantities of the form

M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã (38)

with j ∈ {0, 1, 2}, which are not well defined at the moment. Indeed, in (38) the input argument is
a predictable random function of the process (Yt)0⩽t⩽T while the martingale problem (7) defines
M id

t (g) only for deterministic functions g. Lemma 5.2 hereafter, allows us to give a precise
meaning to (38) by extending the well-defined character of the martingales of (7) to predictable
input arguments. The proof of this technical lemma, given in Section 5.9, is based on regular
conditional probabilities.

Lemma 5.2. Let t⋆ ∈ R+ be a deterministic time and h : Ω → C 2
b (R,R) be a measurable

function satisfying the following property:

∀ ω, ω′ ∈ Ω, h(ω) = h(ω′) if ω|[0,t⋆] = ω′
|[0,t⋆]

.

Then, the following process defined, for all t ∈ [0, T ], by

Mt (ω̃) := M id
t (h (ω̃)) (ω̃) − M id

t∧t⋆ (h (ω̃)) (ω̃)
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is a PFV
ν (dω̃) square integrable martingale whose quadratic variation is given by

⟨M (ω̃)⟩t = 2γ

∫ t

t∧t⋆

î〈
h2 (ω̃s) , ω̃s

〉
− ⟨h (ω̃s) , ω̃s⟩2

ó
ds.

Lemma 5.2 with t⋆ = t allows us to assert that (38) is a PFV
ν (dY )−martingale increment.

Thus, we obtain for j ∈ {0, 1, 2}:≠
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
=

∫ tn
i+1∧t

tn
i ∧t

1
2

≠
g(j+2) ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ys

∑
ds (39)

+ M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã
where

Å
M id

s∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ãã
s⩾tn

i

is a PFV
ν square integrable

martingale satisfying for all s ⩾ tn
i ,≠

M id
·∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∑
s

= 2γ

∫ s∧t

tn
i ∧t

ñÆÅ
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã2
, Yu

∏
−
≠

g(j) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Yu

∑2ô
du.

(40)

5.3 Expressions of the terms of (11) involving F ′

In the rest of this proof, we use the following notations to simplify the writing. We denote for
all s ⩾ 0, R(s) := ⟨id, Ys⟩. We assume that F, g ∈ C 4

b (R,R). Our goal is to prove the following
lemma:

Lemma 5.3. When the mesh of the subdivision 0 = tn
0 < tn

1 < · · · < tn
pn

= T of [0, T ] tends to 0
when n → +∞, we have the following convergence in probability

lim
n→+∞

pn−1∑
i = 0

(A)i =
∫ t

0
F ′ (⟨g, Zs⟩)

Å≠
g′′

2 , Zs

∑
+ γ

〈
g′′, Zs

〉
M2(Zs) − 2γ

〈
g′ × id, Zs

〉ã
+ Martt,

where (Martt)0⩽t⩽T is a PFV
ν −martingale.

The proof of Lemma 5.3 is based on the following decomposition of (A)i (given by the
expression (12)) and using the Doob semi-martingale decomposition of Sections 5.1 and 5.2. We
have

(A)i =
6∑

k = 1
F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i
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where

(A)1
i =

∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds,

(A)2
i = M id

tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)

,

(A)3
i = −

î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(A)4
i = −

î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó [
M id

tn
i+1∧t

(
g′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′ ◦ τ−R(tn

i ∧t)
)]

,

(A)5
i = 1

2
î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó2 〈
g′′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(A)6
i = O

(∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ ∣∣∣M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣) .

Note that we used the following inequality∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g(3) ◦ τ−R(tn

i ∧t), Ys

〉
ds ⩽

∥∥∥g(3)
∥∥∥

∞

(
tn
i+1 ∧ t − tn

i ∧ t
)

PFV
ν − a.s.

to bound the term
[
M id

tn
i+1

(id) − M id
tn
i
(id)

] ∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g(3) ◦ τ−R(tn

i ∧t), Ys

〉
ds by (A)6

i . Our goal in
the sequel is to write each of these six quantities as sums of finite variation terms, martingale
terms and negligible terms and to study the limit of each of them.

5.3.1 Decomposition and study of (A)1
i

Note that, for any i ∈ {0, · · · , pn − 1},

(A)1
i =

∫ tn
i+1∧t

tn
i ∧t

1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds +

∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t) − g′′ ◦ τ−R(s), Ys

〉
ds.

As a consequence of Riemann’s sum convergences and using that s 7→
〈
g′′ ◦ τ−R(s), Ys

〉
is con-

tinuous, we obtain PFV
ν −a.s., and therefore in probability that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∫ tn
i+1∧t

tn
i ∧t

1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds

=
∫ t

0
F ′ (〈g ◦ τ−R(s), Ys

〉) 1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds

=
∫ t

0
F ′ (⟨g, Zs⟩)

≠
g′′

2 , Zs

∑
ds.

From Lemma A.2 (2), we deduce that, in probability,

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t) − g′′ ◦ τ−R(s), Ys

〉
ds = 0.
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5.3.2 Martingale contribution of (A)2
i and (A)3

i

Note that
pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)3

i ,

is a stochastic integral with respect to the square integrable martingale
(
M id

s (id)
)

0⩽s⩽T
. Since

F ′ and s 7→
〈
g′ ◦ τ−R(s), Ys

〉
are bounded, we deduce that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)3

i

is PFV
ν −martingale. The term

Mn
t :=

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)2

i

is a stochastic integral with respect to a martingale which depends on n. However, the same
argument as above applies because (Mn

t )0⩽t⩽T is bounded in L2 (Ω), hence uniformly integrable.
This can proved as follows: as F ′ is bounded and from Lemma 5.2, there exists two constant
C1, C2 > 0 such that

E
Ä
[Mn

t ]2
ä

=
pn−1∑
i = 0

E
Å[

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)2

i

]2ã
⩽ C1

pn−1∑
i = 0

〈
M id

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)〉

tn
i+1∧t

⩽ 4γC1C2

pn−1∑
i = 0

(
tn
i+1 ∧ t − tn

i ∧ t
)

= 4γC1C2t < ∞.

5.3.3 Contributions of (A)4
i and (A)5

i

The contribution of the next two terms corresponds to the terms due to the centering effect in
the martingale problem (4).

Study of the term (A)4
i . Using Itô’s formula and the relation (8), we obtain that

(A)4
i = (A)41

i + (A)42
i + (A)43

i

where

(A)41
i = −

∫ tn
i+1∧t

tn
i ∧t

î
M id

s (id) − M id
tn
i ∧t(id)

ó
dM id

s

(
g′ ◦ τ−R(tn

i ∧t)
)

,

(A)42
i = −

∫ tn
i+1∧t

tn
i ∧t

[
M id

s

(
g′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′ ◦ τ−R(tn

i ∧t)
)]

dM id
s (id),

(A)43
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

[〈
id × g′ ◦ τ−R(tn

i ∧t), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(tn

i ∧t), Ys

〉]
ds.
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Using the same arguments as for (A)2
i , we deduce, in probability, that for k ∈ {41, 42},

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i

is a PFV
ν −martingale. Moreover, we decompose the integral of (A)43

i in the following way:

(A)43
i = (A)431

i + (A)432
i + (A)433

i

where

(A)431
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

〈
id × g′ ◦ τ−R(tn

i ∧t) − id × g′ ◦ τ−R(s), Ys

〉
ds,

(A)432
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

⟨id, Ys⟩
〈

g′ ◦ τ−R(s) − g′ ◦ τ−R(tn
i ∧t), Ys

〉
ds,

(A)433
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

[〈
id × g′ ◦ τ−R(s), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(s), Ys

〉]
ds.

Using Lemma A.2, we deduce, in probability, that for k ∈ {431, 432},

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i = 0,

and we deduce from the convergence of Riemann’s sums that, PFV
ν −a.s. and hence in probability,

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)433

i

= −2γ

∫ t

0
F ′ (〈g ◦ τ−R(s), Ys

〉) [〈
id × g′ ◦ τ−R(s), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(s), Ys

〉]
ds

= −2γ

∫ t

0
F ′ (⟨g, Zs⟩)

〈
g′ × id, Zs

〉
ds.

Study of the term (A)5
i . As (A)5

i satisfies the following decomposition:

(A)5
i =
Ç∫ tn

i+1∧t

tn
i ∧t

î
M id

s (id) − M id
tn
i ∧t(id)

ó
dM id

s (id)

+ γ

∫ tn
i+1∧t

tn
i ∧t

î〈
id2, Ys

〉
− ⟨id, Ys⟩2

ó
ds

å〈
g′′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
and proceeding as for (A)4

i above, we obtain, in probability, that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)5

i = γ

∫ T

0
F ′ (⟨g, Zs∧t⟩)

〈
g′′, Zs∧t

〉
M2 (Zs∧t) ds+Mart(1)

t

where
Ä
Mart(1)

t

ä
0⩽t⩽T

is a PFV
ν −martingale.

44/74



5.3.4 Study of the error term (A)6
i

From the inequality: for all x, y ∈ R+, xy ⩽ 2
3

Ä
x

3
2 + y3

ä
and Lemma A.3, we deduce, in

probability, that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ ∣∣∣M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣
⩽ lim

n→+∞

2 ∥F ′∥∞
3

(
pn−1∑
i = 0

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ 3

2 +
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3) = 0

and this completes the proof of Lemma 5.3. □

5.4 Expressions of terms of (11) involving F ′′

From the expression (13) of (B)i, we have

(B)i =
5∑

k = 1

1
2F ′′

(〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉)
(B)k

i ,

where

(B)1
i =

〈
g ◦ τ−R(tn

i ∧t), Ytn
i+1∧t

〉2
−
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉2
,

(B)2
i = −2

〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉 [〈
g ◦ τ−R(tn

i ∧t), Ytn
i+1∧t

〉
−
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉]
,

(B)3
i =
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó2 〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉2
,

(B)4
i = −

∫ tn
i+1∧t

tn
i ∧t

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(B)5
i = −2

[
M id

tn
i+1∧t

(
g′′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′′ ◦ τ−R(tn

i ∧t)
)]

×
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
.

As in Section 5.3, we treat each of the previous terms successively to prove the following lemma:

Lemma 5.4. When the mesh of the subdivision 0 = tn
0 < tn

1 < · · · < tn
pn

= T of [0, T ] tends to 0
when n → +∞, we obtain in probability that

lim
n→+∞

pn−1∑
i = 0

(B)i = γ

∫ t

0
F ′′ (⟨g, Zs⟩)

î〈
g2, Zs

〉
− ⟨g, Zs⟩2 +

〈
g′, Zs

〉2
M2 (Zs)

− 2
〈
g′, Zs

〉
⟨g × id, Zs⟩

ó
ds +’Martt

where
Ä’Martt

ä
0⩽t⩽T

is a PFV
ν −martingale.
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The proof is similar to Lemma 5.3: we use the martingale problem (7) to write

(B)1
i = 2

∫ tn
i+1∧t

tn
i ∧t

〈
g ◦ τ−R(tn

i ∧t), Ys

〉 1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds

+ 2γ

∫ tn
i+1∧t

tn
i ∧t

ï〈
g2 ◦ τ−R(tn

i ∧t), Ys

〉
−
〈

g ◦ τ−R(tn
i ∧t), Ys

〉2ò
ds

+ M id2
tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id2
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)

,

(B)2
i = −2

〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉 ∫ tn
i+1∧t

ti∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds

− 2
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉 [
M id

tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)]

,

and we obtain that, in probability,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(B)1

i

= γ

∫ t

0
F ′′ (⟨g, Zs⟩)

ß
⟨g, Zs⟩

≠
g′′

2 , Zs

∑
+ γ
î〈

g2, Zs

〉
− ⟨g, Zs⟩2

ó™
ds +’Mart

(1)
t ,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(B)2

i

= −
∫ t

0
F ′′ (⟨g, Zs⟩) ⟨g, Zs⟩

≠
g′′

2 , Zs

∑
ds +’Mart

(2)
t ,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) Ä
(B)3

i + (B)4
i + (B)5

i

ä
= γ

∫ t

0
F ′′ (⟨g, Zs⟩)

Ä〈
g′, Zs

〉2
M2(Zs) +

〈
g′, Zs

〉
⟨g × id, Zs⟩

ä
ds +’Mart

(3)
t ,

where
Å’Mart

(j)
t

ã
0⩽t⩽T

, j ∈ {1, 2, 3} are PFV
ν −martingales.

5.5 Error terms

In this section, we examine the different error terms involved in the approximation (11). From
Lemma A.3, we deduce that, in probability,

lim
n→+∞

pn−1∑
i = 0

∣∣∣¨id, Ytn
i+1∧t − Ytn

i ∧t

∂∣∣∣3 = lim
n→+∞

pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 = 0.
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Using the relations (39) and (40), we deduce for any k ∈ {0, 1, 2},

pn−1∑
i = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3
⩽ max

ß1
2

∥∥∥g(k)
∥∥∥3

∞
, 4
™ pn−1∑

i = 0

Å∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣3

+
∣∣∣M id

tn
i+1∧t

(
g(k) ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g(k) ◦ τ−R(tn

i ∧t)
)∣∣∣3ã .

Hence,

lim
n→+∞

pn−1∑
i = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3 = 0

in probability. Combining all the previous results, we deduce that (10) is a martingale for all
F, g ∈ C 4

b (R,R).

5.6 Extension to test functions F ∈ C 2(R,R) and g ∈ C 2
b (R,R)

For all g ∈ C 2
b (R,R) and for all t ⩾ 0, we have ⟨g, Yt⟩ ∈ [− ∥g∥∞ , ∥g∥∞], so we can assume

without loss of generality that F ∈ C 2
b (R,R) in the martingale problem (4) with Xt replaced by

Zt. Let F, g ∈ C 2
b (R,R). Then, by density arguments, there exists (Fn)n∈N , (gn)n∈N ∈ C 4

b (R,R)N
such that for all t ⩾ 0, for all i ∈ {0, 1, 2}, we have Pµ−a.s.

g(i)
n

∥.∥∞−−−−−→
n→+∞

g(i) and F (i)
n

∥.∥∞−−−−−→
n→+∞

F (i). (41)

For all n ∈ N, for all t ⩾ 0, M̂Fn
t (gn) given by the martingale problem (4) is a Pµ−martingale.

Let T > 0. Note that, there exists a constant C for all n ∈ N, for all t ∈ [0, T ] such that∣∣∣M̂Fn
t (gn) − M̂F

t (g)
∣∣∣ ⩽ C

Å
1 +

∫ T

0
M2(Zs)ds

ã
.

Thanks to Proposition 2.11, (41) and the dominated convergence theorem, we have for all t ∈
[0, T ],

lim
n→+∞

E
(∣∣∣M̂Fn

t (gn) − M̂F
t (g)

∣∣∣) = 0,

and M̂F
t (g) ∈ L1

Ä
Ω̃
ä
. Then, using the dominated convergence theorem for conditional expecta-

tion, we obtain that
Ä
M̂F

t (g)
ä

0⩽t⩽T
is a Pµ−martingale.

5.7 L2−martingale and quadratic variation

As
Ä
M̂F

t (g)
ä

0⩽t⩽T
is a Pµ−martingale for F ∈ C 2(R,R) and g ∈ C 2

b (R,R) we deduce thatÄ
M̂F

t (g)2 −
¨
M̂F (g)

∂
t

ä
0⩽t⩽T

is a Pµ−local martingale. In consequence, there exists a increasing
sequence of stopping times (τn)n∈N satisfying limn→+∞ τn = +∞ such that for all n ∈ N,

E
Ä
M̂F

t∧τn
(g)2
ä

= E
(¨

M̂F (g)
∂

t∧τn

)
.
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We apply Itô’s formula to compute F 2 (⟨g, Xt∧τn⟩) from Doob’s semi-martingale decomposition
of F (⟨g, Xt∧τn⟩) and apply the martingale problem (4) to test functions F 2 and g to deduce (6)
at time t ∧ τn. By Fatou’s lemma, letting n → +∞, we deduce that

E
Ä
M̂F

t (g)2
ä
⩽ E
Ä¨

M̂F (g)
∂

t

ä
< ∞.

This ends the proof of Theorem 2.3.

5.8 Technical result for Lemma 5.2

As the filtered probability space
(
Ω, F , (Ft)t⩾0

)
is Polish (see Section 2.1), we deduce from [30,

Theorem 3.18 of Section 5.3 (p 307)] there exists, for all ν ∈ M1(R), a unique family (Qω)ω∈Ω
of regular conditional probability of PFV

ν given Ft⋆ and a PFV
ν −null event N ∈ Ft⋆ such that for

all ω ∈ Ω \ N ,

Qω

Åß
ω̃ ∈ Ω

∣∣∣∣ ω̃t⋆ = ωt⋆

™ã
= 1. (42)

The following Theorem 5.5 ensures that time shifts of regular conditional probabilities of PFV
ν

remain solutions to the Fleming-Viot martingale problem (7). The proof of this result is given
hereafter and is based on the proof of [30, Lemma 4.19 of Section 5.4 (p 321)]. We introduce,
for ω ∈ Ω, the time-shift operator θ defined by

[θsω]t := ωs+t, 0 ⩽ t < +∞, s ⩾ 0.

Theorem 5.5. Let t⋆ ∈ R+ be a deterministic time. Then there exists a PFV
ν −null event N ∈ Ft⋆

such that, for every ω ∈ Ω \ N , the probability measure

Pω (dω̃) := θt⋆♯Qω (dω̃) (43)

solves the martingale problem (7) with ν := ωt⋆.

Proof. Step 0. Preliminary results. We denote by C 2
K(R,R) the space of real functions of

class C 2(R,R) with compact support. It is well-known that the formulation of the martingale
problem (7) for F, g ∈ C 2

b (R,R) is equivalent to the one for F, g ∈ C 2
K(R,R) [10]. The space

C 2
K(R,R) equipped with the norm ∥f∥

W 2,∞
0

:= ∥f∥∞ + ∥f ′∥∞ + ∥f ′′∥∞ is separable. So, we can
choose a dense countable family B ⊂ C 2

K(R,R), for the topology associated to the norm, that is
to say

∀F, g ∈ C 2
K(R,R), ∃ (Fn)n∈N , (gn)n∈N ∈ BN, Fn

∥·∥
W

2,∞
0−−−−−→

n→+∞
F, gn

∥·∥
W

2,∞
0−−−−−→

n→+∞
g.

Hence, if we denote by LFV the generator of the original Fleming-Viot process, we deduce that
LFV(Fn)gn

∥.∥∞−−−−−→
n→+∞

LFVFg.

Step 1. Reformulation of the goal. Let ν ∈ M1(R). From (42), it follows that
Pω (ω̃0 = ν) = 1 is satisfied with ν := ωt⋆ . The rest of the proof is devoted to construct a
PFV

ν −null event N4 such that

EPFV
ν

ñ
Fg (ωt) − Fg (ωs) −

∫ t

s
LFVFg(ωr)dr

∣∣∣∣∣ Fs

ô
= 0,
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is satisfied for all ω ∈ Ω \ N4. This means that for all 0 ⩽ s < t < ∞, A ∈ Fs, F, g ∈ C 2
K(R,R),

∀w ∈ Ω \ N4,

∫
Ω

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
1A (ω̃)Pω (dω̃) = 0, (44)

where
M

Fg

t (ω̃) := Fg (ω̃t) − Fg (ω̃0) −
∫ t

0
LFVFg (ω̃r) dr.

Let ω ∈ Ω, 0 ⩽ s < t < ∞, A ∈ Fs, F, g ∈ C 2
K(R,R) be fixed.

Step 2. Property (44) satisfied except on a PFV
ν −null event N1(s, t, A, F, g) ∈ Ft⋆.

As LFVFg ∈ C 2
b (R,R), the random variable M

Fg

t − M
Fg
s is bounded. Note that,∫

Ω

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
1A (ω̃)Pω (dω̃) = EQω(dω̂)

(î
M

Fg

t − MFg
s

ó
◦ θt⋆ (ω̂)1θ−1

t⋆ A (ω̂)
)

= EPFV
ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆1θ−1

t⋆ A

∣∣∣∣Ft⋆

ã
(ω)

= EPFV
ν

ñ
EPFV

ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆1θ−1

t⋆ A

∣∣∣∣Ft⋆+s

ã ∣∣∣∣∣Ft⋆

ô
(ω)

= EPFV
ν

ñ
1θ−1

t⋆ AEPFV
ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆

∣∣∣∣Ft⋆+s

ã ∣∣∣∣∣Ft⋆

ô
(ω)

= 0,

where the last equality follows from martingale property (7). This chain of equalities shows that
the random variable ω 7→

∫
A

î
M

Fg

t (ω̃) − M
Fg
s (ω̃)

ó
Pω (dω̃) is null except on a PFV

ν −null event
N1(s, t, A, F, g) ∈ Ft⋆ which depends on s, t, A, F and g.

Step 3. Property (44) satisfied except on a PFV
ν −null event N2(s, t, F, g) ∈ Ft⋆. We

consider a countable subcollection E of Fs which generates Fs [30, Definition 3.17 of Section 5.3
(p 306)] and a Pν−null event N2(s, t, F, g) ∈ Ft⋆ such that for ω ∈ Ω \ N2(s, t, F, g),

∀A ∈ E ,

∫
A

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
Pω (dω̃) = 0.

Therefore, the two measures

v+
ω (A) :=

∫
A

î
M

Fg

t − MFg
s

ó+
(ω̃)Pω (dω̃) and v−

ω (A) :=
∫

A

î
M

Fg

t − MFg
s

ó−
(ω̃)Pω (dω̃),

coincide on E , hence on Fs. Therefore, for ω ∈ Ω \ N2(s, t, F, g), we have proved that for all
A ∈ Fs, EPω

Ä
1A

î
M

Fg

t − M
Fg
s

óä
= 0.

Step 4. Property (44) satisfied except on a PFV
ν −null event N3(F, g) ∈ Ft⋆. We may

set now, the PFV
ν −null event

N3(F, g) :=
⋃

s,t ∈Q
0⩽s<t<∞

N2(s, t, F, g).
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Due to the boundedness and continuity of t 7→ M
Fg

t , it follows from the dominated convergence
theorem that for ω ∈ Ω \ N3(F, g)

∀s < t, ∀A ∈ Fs, EPω

Ä
1A

î
M

Fg

t − MFg
s

óä
= 0,

in other words, for all ω ∈ Ω \ N3(F, g),
Ä
M

Fg

t (ω̃)
ä

t⩾0
is a (Fs,Pω (dω̃)) −martingale.

Step 5. Conclusion. Now we define the PFV
ν −null event

N4 :=
⋃

F,g ∈ B
N3(F, g)

From the Step 4, we have for all s ⩽ t,

∀ω ∈ Ω \ N4, ∀A ∈ Fs, ∀F, g ∈ B, EPω

î
1A

Ä
M

Fg

t − MFg
s

äó
= 0.

From Step 0, for all F, g ∈ C 2
K(R,R), there exist two sequences (Fn)n∈N , (gn)n∈N ∈ BN such that

Fn

∥.∥
W

2,∞
0−−−−−→

n→+∞
F, gn

∥.∥
W

2,∞
0−−−−−→

n→+∞
g, and LFV(Fn)gn

∥.∥∞−−−−−→
n→+∞

AFg.

By the dominated convergence theorem, we deduce that for all ω ∈ Ω, s ⩽ t, and A ∈ Fs,

EPω

î
1A

Ä
M

Fg

t − MFg
s

äó
= lim

n→+∞
EPω

[
1A

(
M

(Fn)gn
t − M

(Fn)gn
s

)]
= 0.

which concludes the proof. □

5.9 Proof of Lemma 5.2

By abuse of notation, we note h
Ä
ω|[0,t⋆]

ä
= h(ω). We want to prove that for all 0 ⩽ s ⩽ t, for all

Fs−measurable bounded random variable Z,

EPFV
ν (dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃)) = 0.

Using [29, Definition 3.2 (iii)’ of Section 1] we deduce that

EPFV
ν (dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃)) = EPν(dω)

[
EQω(dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃))

]
.

Thus, it is sufficient to prove that for PFV
ν −almost every ω ∈ Ω, (Mt (ω̃))0⩽t⩽T is a Qω (dω̃) −

martingale and this is what we propose to establish in the rest of this proof.

For fixed ω, the function h(ω) ∈ C 2
b (R,R) can be considered as deterministic. We deduce

from Theorem 5.5 that there exists a PFV
ν −null event N ∈ Ft⋆ such that for all ω ∈ Ω \ N ,(

M id
t (h(ω)) (ω̃)

)
0⩽t⩽T

is a Pω (dω̃) −martingale. We deduce from [30, Theorem 3.18 of Section
5.3 (p 307)] that PFV

ν −almost every ω ∈ Ω,

ω̃|[0,t⋆] = ω|[0,t⋆] , Qω (dω̃)−a.s. (45)
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This implies that, Qω (dω̃) −almost surely,

Mt (ω̃) = M id
t (h(ω)) (ω̃) − M id

t∧t⋆ (h(ω)) (ω̃) =
ß

M id
t−t⋆ (h (ω)) (θt⋆ (ω̃)) if t > t⋆

0 if t ⩽ t⋆

= M id
(t−t⋆)+ (h (ω)) (θt⋆ (ω̃))

where (a)+ designates the non-negative part of a ∈ R. Let n ∈ N⋆ and 0 ⩽ s ⩽ T . To prove the
martingale property for all Fs−measurable bounded random variable Z, it is sufficient to prove
it on elementary events. Then, we consider a random variable Z of the form

Z(ω) := 1{ωt1 ∈Γ1,··· ,ωtn ∈Γn}

where for all i ∈ {1, · · · , n}, ti ⩽ s and Γi ⊂ M1(R) measurable. We define

Z̃ (ω, ω̃) := 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}1{ω̃tj ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆}.

By (45), Z̃ (ω, ω̃) = Z (ω), Qω (dω̃) − a.s. Therefore, for PFV
ν −almost every ω ∈ Ω,

EQω ([Mt − Ms] Z)

= EQω(dω̃)
Äî

M id
(t−t⋆)+ (h (ω)) (θt⋆ (ω̃)) − M id

(s−t⋆)+ (h (ω)) (θt⋆ (ω̃))
ó

Z̃ (ω, ω̃)
ä

= 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}×

EQω(dω̃)

(î
M id

t−t⋆ (h (ω)) (θt⋆ (ω̃)) − M id
s−t⋆ (h (ω)) (θt⋆ (ω̃))

ó
× 1{[θt⋆ (ω̃)]tj −t⋆ ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆

}ã
(43)= 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}EPω(dω̂)

(î
M id

t−t⋆ (h (ω)) (ω̂) − M id
s−t⋆ (h (ω)) (ω̂)

ó
× 1{

ω̂tj −t⋆ ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆
}ã

= 0,

using that
(
M id

t−t⋆ (h (ω)) (ω̂)
)

t⋆⩽t⩽T +t⋆ is a Pω (dω̂) −martingale if the internal indicator is non
zero. Thus, for PFV

ν −almost every ω ∈ Ω, (Mt (ω̃))0⩽t⩽T is a Qω (dω̃) −martingale which com-
pletes the first part of this proof. In similar way, we can prove

M id2
t (h (ω̃)) (ω̃) − M id2

t∧t⋆ (h (ω̃)) (ω̃)

is a PFV
ν −martingale. Applying Itô’s formula to compute ⟨h (ω̃t) , ω̃t⟩2 and comparing it to the

previous result, we obtain the announced result. □

6 Proof of the results of Section 3

6.1 Study of a semi-group

In this section, we devote a specific study to the semi-group
Ä
T (n)(t)

ä
t⩾0

generated by the
operator B(n). In Section 6.1.1, we provide an explicit expression of (t, x) 7→ T (n)(t)f(x) and

51/74



prove that it is a strong solution to the semi-group PDE associated with B(n), by means of
Feynman-Kac’s formula. With the aim of subsequently obtaining fairly fine bounds on this
operator (see Corollary 6.2), we give all the necessary details. In Section ??, we give a MILD
formulation of the martingale problem (20) using the semigroup

Ä
T (n)(t)

ä
t⩾0

in Proposition 6.3.

6.1.1 Construction of the semi-group

Recall that we denote by 1 ∈ Rn, the vector whose coordinates are all 1. For any real vector-
valued function f and g of L1(Rn), we denote by (f ∗ g)(x) :=

∫
Rn f(t)g(x − t)dt the convolution

product of f and g. For any function f whose second partial derivatives exist, we denote by
Hess(f) :=

Ä
∂2

ijf
ä

1⩽i,j⩽n
the Hessian matrix of f . We denote by C 1,2

b (R+ × Rn,R) the space
of real functions on R+ × Rn of class C 1(R+,R) with respect to the first variable and of class
C 2

b (Rn,R) to the second variable.

Theorem 6.1. The family of operators
Ä
T (n)(t)

ä
t⩾0

defined as:

∀t > 0, ∀x ∈ Rn, T (n)(t)f(x) :=
∫
Rn

f(u)gX
t,x(u)du, (46)

∀x ∈ Rn, T (n)(0)f(x) := f(x),

where gX
t,x is a density of the Gaussian distribution N (n) (mt,x, Σt) where Σt := PσtP

−1 and
mt,x := Pµt,P −1x = x − (1−exp(−2γnt))

n (x · 1)1 with

µt,y :=

á
y1 exp (−2γnt)

y2
...

yn

ë
and σt :=


e4(t) 0 . . . . . . 0

0 t 0 . . . 0
... 0 . . . . . . ...
...

... . . . . . . 0
0 0 . . . 0 t

 ,

where e4(t) := 1−exp(−4γnt)
4γn and P is an explicit change of orthonormal basis matrix defined in the

proof below, is a semi-group of bounded operators on L∞ (Rn). In addition, for all f ∈ C 2
b (Rn,R),

(1) The application (t, x) 7→ T (n)(t)f(x) is of class C 1,2(R+ × Rn,R) and is a strong solution
of the PDE

∀t ⩾ 0, ∀x ∈ Rn, ∂tu(t, x) = 1
2∆u(t, x) − 2γ (∇u(t, x) · 1) (x · 1) (47)

∀x ∈ Rn, u(0, x) = f(x), (48)

and

(2) ∇T (n)(t)f(x) =
(
∂ximt,x ·

(
∇f ∗ gX

t,0
)

(mt,x)
)t

1⩽i⩽n

(3) ∀i, j ∈ {1, · · · , n} , ∂2
xixj

T (n)(t)f(x) =
(
∂xj mt,x

)t [(
f ∗ Hess

(
gX

t,0
))

(mt,x)∂ximt,x

]
where ∂ximt,x = ϵi − 1−exp(−2γnt)

n 1 with (ϵ1, · · · , ϵn) the canonical basis of Rn.
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As we will see in the proof, everything follows quite directly from the Feynman-Kac formula,
except the fact that (t, x) 7→ T (n)(t)f(x) is a strong solution of the PDE up to time t = 0. This
technical point will be useful for the MILD formulation and this is why we make a detailed proof.

Proof. In view of the operator B(n) given by (18), it is natural to define the semi-group T (n)(t)
using the Feynman-Kac formula: for any f ∈ C 2

b (Rn,R),

T (n)(t)f(x) := Exf(Xt)

where (Xt)t⩾0 is solution to the following SDE:

X0 = x, dXt = dBt − 2γ (Xt · 1)1dt, Xt ∈ Rn, t > 0 (49)

where (Bt)t⩾0 is a n−standard Brownian motion and x ∈ Rn.

In Step 1, we check that this definition of T (n)(t) coincides with the one given in the statement
of Theorem 6.1. In Step 2, we verify that (x, t) 7→ Exf(Xt) is indeed a solution of the PDE (47)
for all t > 0. In Step 3, we treat the case t = 0. In Step 4, we prove the announced expressions
of the derivatives of T (n)(t)f(x).

Step 1. Change of basis in the SDE (49). We consider the orthonormal basis (v1, · · · , vn)
of Rn defined by v1 := 1√

n
(1 · · · 1)t and for 2 ⩽ i ⩽ n,

vi :=
…

i − 1
i

Ü
1

i − 1 , · · · ,
1

i − 1︸ ︷︷ ︸
i−1 terms

, −1, 0, · · · , 0

êt

.

We denote by P the change of basis matrix from the canonical basis to the orthonormal basis
(v1, · · · , vn). We define for all t ⩾ 0, Zt = P −1Xt, i.e. Zt :=

Ä
Z

(1)
t , · · · , Z

(n)
t

ä
where for all

i ∈ {1, · · · , n}, Z
(i)
t := (Xt · vi). It is standard to check that Wt :=

Ä
W

(1)
t , · · · , W

(n)
t

ä
where

for all i ∈ {1, · · · , n}, W
(i)
t := (Bt · vi) is a n−standard Brownian motion and that (Zt)t⩾0 is

solution to the SDE

Z0 = y = P −1x,

®
dZ

(1)
t = dW

(1)
t − 2γnZ

(1)
t dt,

dZ
(j)
t = dW

(j)
t , j ∈ {2, · · · , n}

. (50)

All coordinates in (50) are independent and solve a one-dimensional SDE whose solution is
explicit (Ornstein-Uhlenbeck for Z(1), standard Brownian motion for Z(i), i ⩾ 2). It follows
that Zt is a Gaussian vector of law N (n) (µt,y, σt). Therefore, for any t > 0 and all y ∈ Rn, PZt

has a density with respect to the Lebesgue measure on Rn given by:

gZ
t,y(z1, · · · , zn) = 1

(2π)
n
2
√

det(σt)
exp

(
− [z1 − y1 exp (−2γnt)]2

2e4(t) − 1
2t

n∑
j = 2

(zj − yj)2

)
. (51)
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Since, Xt = PZt, we deduce that for all x ∈ Rn and for all t > 0, Xt follows the normal
distribution N (n) (mt,x, Σt), with density

gX
t,x(r) := gZ

t,P −1x

(
P −1r

)
= 1

(2π)
n
2
√

det(Σt)
exp
Ç

−(r − mt,x)tΣ−1
t (r − mt,x)
2

å
. (52)

Hence, Exf (Xt) coincides with (46).

Step 2. T (n)(t)f is solution to (47) on (0, +∞) × Rn. Without difficulty we verify that
for any y ∈ Rn, gZ

t,y satifies the following Fokker-Planck PDE:

∀t > 0, ∀z ∈ Rn, ∂tg
Z
t,y(z) = 1

2∆ygZ
t,y(z) − 2γn∂y1gZ

t,y(z). (53)

We deduce from (52) that

∀y ∈ Rn, ∀r ∈ Rn, ∂tg
Z
t,y

(
P −1r

)
= ∂tg

X
t,P y(r),

and, for all y, r ∈ Rn, ∂yig
Z
t,y(P −1r) =

n∑
k = 1

Pki∂xk
gX

t,P y(r). In particular,

∂y1gZ
t,y(P −1r) = 1√

n

Ä
∇xgX

t,P y(r) · 1
ä

.

In an analogous way, we deduce that

∆ygZ
t,y(P −1r) =

n∑
i = 1

n∑
k,ℓ = 1

PkiPℓi∂
2
xℓ,xk

gX
t,P y(r) = ∆xgX

t,P y(r),

because P is an orthonormal matrix. From (53) and since
(
P −1x

)
1 = (x·1)√

n
, we deduce that the

density gX
t,x satisfies:

∀t > 0, ∀x ∈ Rn, ∀r ∈ Rn, ∂tg
X
t,x(r) − 1

2∆xgX
t,x(r) + 2γ(x · 1)∇xgt,x(r) = 0.

Now, the fact that for all f ∈ L∞(Rn,R),

T (n)(t)f(x) =
∫
Rn

f(r)gX
t,x(r)dr

is C 1,2
b ((0, +∞) × Rn,R) and is a solution of (47) on (0, +∞) × Rn follows from the theorem of

differentiation under the integral sign. Note that, if f is continuous,

T (n)(t)f(x) = Exf (Xt) −−→
t→0

f(x)

by the dominated convergence theorem which leads to (48).
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Step 3. Verification of (47) up to t = 0. Assume that f ∈ C 2
b (Rn,R). This is equivalent

to prove that for all x ∈ Rn,

lim
t→0

∫
Rn f(u)gX

t,x(u)du − f(x)
t

= 1
2∆f(x) − 2γ (∇f(x) · 1) (x · 1) .

Let be x ∈ Rn fixed. Using Taylor’s formula we obtain that∫
Rn

f(u)gX
t,x(u)du − f(x) = (A)t + (B)t + (C)t,

where

(A)t :=
∫
Rn

([u − x] · ∇f(x)) gX
t,x(u)du, (B)t := 1

2

∫
Rn

(u − x)tHess(f)(x)(u − x)gX
t,x(u)du,

(C)t :=
∫
Rn

Rx(u)gX
t,x(u)du,

where Rx(u) := o
Ä
∥x − u∥2

2

ä
. As gX

t,x is a Gaussian density of N (n) (mt,x, Σt), where

x − mt,x = (1 − exp (−2γnt)) (x · 1)√
n

× 1√
n

∼
t→0

−2γ(x · 1)t,

∀i ∈ {1, · · · , n}, (Σt)ii ∼
t→0

t,
(54)

it follows that

(A)t = (∇f(x) · [mt,x − x]) = −(1 − exp (−2γnt))
n

(∇f(x) · 1) (x · 1) .

(B)t = 1
2

∫
Rn

(u − mt,x)t Hess(f)(x) (u − mt,x) gX
t,x(u)du

+ 1
2 (x − mt,x)t Hess(f)(x) (x − mt,x)

= 1
2

n∑
i,j = 1

∂2
xixj

f(x) (Σt)ij + (1 − exp(−2γnt))2 (x · 1)2

2n2 1tHess(f)(x)1.

Therefore,
lim
t→0

(A)t + (B)t

t
= −2γ (∇f(x) · 1) (x · 1) + 1

2∆f(x).

Now, it remains to manage the (C)t error term. Note that,

∀ε > 0, ∃α > 0, ∀u ∈ B(x, α), |Rx(u)| ⩽ ε ∥u − x∥2
2 .

∀u ∈ Rn \ B(x, α), |Rx(u)| ⩽ 2 ∥f∥∞ + ∥∇f∥∞ ∥u − x∥2

+ 1
2 ∥Hessf(x)∥∞ ∥u − x∥2 .

Let ε > 0, α > 0 and t0 ⩾ 0 such that for all t ∈ [0, t0], ∥x − mt,x∥2 ⩽ α
2 . Let t ∈ [0, t0].

Separating the domain of integration of the integral of (C)t into B(x, α) and Rn \ B(x, α), it
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follows from the Young and previous inequalities that there exists a constant C > 0 such that

(C)t ⩽ ε

∫
Rn

∥u − x∥2
2 gX

t,x(u)du + C

∫
Rn \ B(x,α)

Ä
1 + ∥u − x∥2

2

ä
gX

t,x(u)du

⩽ 2ε
n∑

i = 1
(Σt)ii + 2(ε + C) ∥x − mt,x∥2

2 + 2C

∫
Rn \ B(x,α)

Ä
1 + ∥u − mt,x∥2

2

ä
gX

t,x(u)du

Now, for the choice of α and then the Markov inequality, we obtain that∫
Rn \ B(x,α)

Ä
1 + ∥u − mt,x∥2

2

ä
gX

t,x(u)du ⩽
Å

1 + 4
α2

ã ∫
Rn \ B(mt,x, α

2 )
∥u − mt,x∥2

2 gX
t,x(u)du

⩽
Å

1 + 4
α2

ã ∫
Rn ∥u − mt,x∥4

2 gX
t,x(u)du(

α
2
)4

⩽
16n

α4

Å
1 + 4

α2

ã n∑
i = 1

∫
Rn

(
ui − (mt,x)i

)4
gX

t,x(u)du.

As for all i ∈ {1, · · · , n}, the fourth moment of a random variable of law N (0, (Σt)ii) is smaller
than 3 (Σt)2

ii, it follows from (54) that there exists a constant ‹C > 0 such that

(C)t

t
⩽ 2εn + ε‹C

for t small enough and then the conclusion.

Step 4. Expression of the derivatives of T (n)(t)f . Noting that for all u ∈ Rn, gX
t,x(u) =

gX
t,0(u − mt,x) and using the symmetry property of this density, we obtain that

T (n)(t)f(x) =
Ä
f ∗ gX

t,0
ä

(mt,x).

By the chain rule formula, we deduce the properties (2) and for all i, j ∈ {1, · · · , n},

∂2
xixj

T (n)(t)f(x) =
(
∂xj mt,x

)t
îÄ

f ∗ Hess
Ä
gX

t,0
ää

(mt,x)∂ximt,x

ó
+
Ä
∂2

xixj
mt,x ·

Ä
f ∗ ∇gX

t,0
ä

(mt,x)
ä

.

Now,

∂ximt,x = ∂xiPµt,P −1x = ϵi − (1 − exp (−2γnt))
(
P −1)

1i
Pϵ1.

The property (3) follows.

The following corollary is useful for bounding the dual process in Section 6.2.

Corollary 6.2. Let f ∈ C 2(Rn,R). We assume that there exists a constant C1 > 0 such that
for all x ∈ Rn,

|f(x)| ⩽ C1
Ä
1 + ∥x∥2n

2

ä
.

Then, for all t > 0 and x ∈ Rn, there exists two constants C2(t, n) > 0 locally bounded on
R+ ×N such that t 7→ C2(t, n) is non-decreasing and C3(t, n) > 0 locally bounded on (0, +∞)×N
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satisfying

(1)
∣∣∣T (n)(t)f(x)

∣∣∣ ⩽ C2(t, n)
Ä
1 + ∥x∥2n

2

ä
(2)

∥∥∥(Hess
(
gX

t,0
)

∗ f
)

(mt,x)
∥∥∥ ⩽ C3(t, n)

Ä
1 + ∥x∥2n

2

ä
Proof. Step 1. Proof of (1). From (51) and (52), note that for all x, r ∈ Rn, t ⩾ 0, gX

t,x(r) =∏n
j = 1 g

Zj

t,[P −1x]j

Ä[
P −1r

]
j

ä
, where

gZ(1)
t,y1 (z1) := 1√

2πe4(t)
exp
Ç

− [z1 − y1 exp (−2γnt)]2

2e4(t)

å
,

gZ(j)
t,yj

(zj) := 1√
2πt

exp
Ç

− [zj − yj ]2

2t

å
, j ∈ {2, · · · , n}.

(55)

Since ∥Pz∥2 = ∥z∥2 for all z ∈ Rn, we also have∫
Rn

∥u∥2n
2 gX

t,x(u)du =
∫
Rn

∥z∥2n
2 gZ

t,P −1x(z)dz.

Hence,∫
Rn

∥u∥2n
2 gX

t,x(u)du ⩽ nn−1
n∑

i = 1

∫
Rn

z2n
i

n∏
j = 1

gZ(j)

t,[P −1x]j
(zj)dz = nn−1

n∑
i = 1

E
(î

Z(i)
ó2n
)

.

Classical moment bounds for Gaussian random variables show that E
(
G2n

)
⩽ C(n)t2n for G ∼

N (0, t) and C(n) > 0. Since e4(t) ⩽ t and using (55), we deduce that there exists two constants‹C1(n) and ‹C2(t, n) such that for all i ∈ {1, · · · , n}

E
(î

Z(i)
ó2n
)
⩽ ‹C1(n)

Ä(
P −1x

)2n

i
+ t2n

ä
⩽ ‹C2(t, n)

(
1 +

∥∥∥P −1x
∥∥∥2n

2

)
.

The result (1) follows.

Step 2. Proof of (2). Now, we want to control, for all i, j ∈ {1, · · · , n},∣∣∣ÄÄHess
Ä
gX

t,0
ä

∗ f
ä

(mt,x)
ä

ij

∣∣∣ ⩽ C1(n)
∫
Rn

∣∣∣∂2
rirj

gX
t,0(r)

∣∣∣ Ä1 + ∥mt,x − r∥2n
2

ä
dr.

For all k ∈ {1, · · · , n}, we consider:

Vk(t) :=
ß

e4(t) if k = 1
t if k ̸= 1 .

From (55), we deduce that for all i, j, k ∈ {1, · · · , n}, for all t > 0,

∂rig
Z(k)
t,0

((
P −1r

)
k

)
= −

(
P −1)

ki

(
P −1r

)
k

Vk(t) gZ(k)
t,0

((
P −1r

)
k

)
,

∂2
rjri

gZ(k)
t,0

((
P −1r

)
k

)
=
(
P −1)

kj

(
P −1)

ki

Vk(t)

((
P −1r

)2
k

Vk(t) − 1
)

gZ(k)
t,0

((
P −1r

)
k

)
.

57/74



Hence, for all i, j ∈ {1, · · · , n}, for all t > 0,

∂2
rjri

gX
t,0 (r) =

n∑
k = 1

(
P −1)

kj

(
P −1)

ki

Vk(t)

((
P −1r

)2
k

Vk(t) − 1
)

gX
t,0 (r)

+
n∑

k = 1

n∑
ℓ = 1
ℓ ̸= k

(
P −1)

kj

(
P −1)

ℓj

Vk(t)Vℓ(t)
(
P −1r

)
k

(
P −1r

)
ℓ
gX

t,0 (r)

Noting that for all i, j, k ∈ {1, · · · , n},
∣∣∣(P −1)

ij

∣∣∣ ⩽ 1 and
∣∣(P −1r

)
k

∣∣ ⩽ n ∥r∥2,

∥mt,x − r∥2n
2 ⩽ 22n−1

Ä
∥r∥2n

2 + 22n−1nn (2 − exp (−2γnt)) ∥x∥2n
2

ä
,

we deduce that for all i, j ∈ {1, · · · , n}, there exists a constant ‹C3(t, n) > 0 locally bounded on
(0, +∞) × N such that∫

Rn

∣∣∣∂2
rirj

gX
t,0(r)

∣∣∣ ∥mt,x − r∥2n
2 dr

⩽
∫
Rn

ñ
1

e4(t)

Ç
n2 ∥r∥2

2
e4(t) + 1

å
+ n − 1

t

Ç
n2 ∥r∥2

2
t

+ 1
å

+ n3
Å 1

e4(t) + n − 1
t

ã
∥r∥2

2

ô
× gX

t,0(r) ∥mt,x − r∥2n
2 dr

⩽ ‹C3(t, n)
Ä
1 + ∥x∥2n

2

ä
.

The announced result (2) follows.

6.1.2 MILD formulation

In this section, we establish the MILD formulation associated with the martingale problem (20).

Proposition 6.3. Let (Xt)t⩾0 be a stochastic process whose law Pµ is solution to the martingale
problem (4) with initial value µ. Then, for all f ∈ C 2

b (Rn,R),¨
T (n)(t0 − t)f, Xn

t

∂
− γ

∫ t

0

n∑
i = 1

n∑
j = 1
j ̸= i

î¨
Φi,jT (n)(t0 − s)f, Xn−1

s

∂
−
¨
T (n)(t0 − s)f, Xn

s

∂ó
ds

− γ

∫ t

0

n∑
i = 1

n∑
j = 1

¨
Ki,jT (n)(t0 − s)f, Xn+1

s

∂
ds

is a Pµ− martingale for 0 ⩽ t ⩽ t0.

Proof. Let t0 ⩾ 0. Using (17), let u, v, w : [0, t0]×Mc,2
1 (R)×Ω̃ → R be B([0, t0])⊗B

Ä
Mc,2

1 (R)
ä

⊗‹F−measurable defined by

• u(r, µ) :=
¨
T (n) (t0 − r) f, µn

∂
, • v(r, µ) := −

¨
∂tT

(n)(t0 − r)f, µn
∂
,

• w(r, µ) := LFVcPT (n)(t0−r)f,n (µ).
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The expected result is a direct consequence of a version of [26, Lemma 4.3.4] where we replace
the assumption of boundedness on w by an assumption of domination. Hence, we need to check
the following assumptions of this lemma:

(i) The process (u(t, Xt))t⩾0 is
Ä‹Ft

ä
t⩾0

−adapted and the processes (v(t, Xt))t⩾0 and (w(t, Xt))t⩾0

are
Ä‹Ft

ä
t⩾0

−progressive. These properties are standard in our case.

(ii) The functions u, v are bounded on [0, t0] × Mc,2
1 (R) and there exists C > 0 such that for

all t ∈ [0, t0], for all µ ∈ Mc,2
1 (R), w(t, µ) ⩽ C (1 + M2 (µ)) where we recall that M2(µ) =

〈
id2, µ

〉
.

(iii) The function µ 7→ v (t, µ, ω̃) is continuous for fixed t and ω̃.

(iv) For all t0 ⩾ t2 > t1 ⩾ 0,

E
Å

u(t2, Xt2) − u(t1, Xt2)
∣∣∣∣ ‹Ft1

ã
= E
Å∫ t2

t1
v(s, Xt2)ds

∣∣∣∣ ‹Ft1

ã
, (56)

and
E
Å

u(t1, Xt2) − u(t1, Xt1)
∣∣∣∣ ‹Ft1

ã
= E
Å∫ t2

t1
w(t1, Xs)ds

∣∣∣∣ ‹Ft1

ã
. (57)

(v) The process (Xt)t⩾0 is right continuous (here, it is continuous) and

lim
δ→0+

E (|w(t − δ, Xt) − w(t, Xt)|) = 0, t0 > t > 0. (58)

Step 1. Verification of Assumptions (ii) and (iii). From Theorem 6.1, for all f ∈
C 2

b (Rn,R), (t, x) 7→ T (n)(t)f(x) is bounded on [0, t0] × Rn. The boundedness of u follows.
Moreover, as (t, x) 7→ T (n)(t)f(x) is solution of the PDE (47), we obtain for all r ∈ [0, t0] and
µ ∈ Mc,2

1 (R) that

v(r, µ) = −1
2
¨
∆T (n)(t0 − r)f, µn

∂
+ 2γ

¨Ä
∇T (n)(t0 − r)f · 1

ä
(id · 1), µn

∂
.

Since µ ∈ Mc,2
1 (R), the second term of the right hand side is well-defined. Using the properties

(2) and (3) of Theorem 6.1, we deduce that v is bounded on [0, t0] × Mc,2
1 (R). In addition,

∆T (n)(t0−r)f and
Ä
∇T (n)(t0 − r)f · 1

ä
are continuous bounded, hence µ 7→ v(r, µ) is continuous

on M1(R) for the topology of weak convergence. Now, using (18), (21), (22), (23) and Theorem
6.1 (2) and (3), note that for all r ∈ [0, t0] and µ ∈ Mc,2

1 (R), there exists a constant Cf > 0
such that,

w(r, µ) =
¨
∂tT

(n)(t0 − r)f, µn
∂

+ γ
n∑

i,j = 1

¨
KijT (n)(t0 − r)f, µn+1

∂
+ γ

n∑
i,j = 1
j ̸= i

î¨
ΦijT (n)(t0 − r)f, µn−1

∂
−
¨
T (n)(t0 − r)f, µn

∂ó
⩽ Cf (1 + M2 (µ)) ,

(59)
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where the bound M2(µ) comes from Kij .

Step 2. Verification of Assumptions (iv) and (v). Let t2 > t1 ⩾ 0. On the one hand,

u (t2, Xt2) − u (t1, Xt2) =
≠

−
∫ t2

t1
∂tT

(n)(t0 − s)fds, Xn
t2

∑
=

∫ t2

t1
v (s, Xt2) ds

and the relation (56) follows. On the other hand, as the martingale problem (4) classically
involves the martingale problem (20) [23], we obtain that

u(t1, Xt2) − u(t1, Xt1) =
¨
T (n)(t0 − t1)f, Xn

t2 − Xn
t1

ä
=

∫ t2

t1
LFVcPT (n)(t0−t1)f,n (Xs)ds

+ M̂
(n)
t2

Ä
T (n)(t0 − t1)f

ä
− M̂

(n)
t1

Ä
T (n)(t0 − t1)f

ä
.

The relation (57) follows. Finally, from (59), Proposition 2.11 and the Lebesgue dominated
convergence theorem, we deduce the relation (58).

6.2 Proof of Lemma 3.5

Recall that, our goal is to prove that the stopping time θk, defined by

∀k ∈ N, θk := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, X

M(s)
t−s

∂
⩾ k

™
,

satisfies limk→+∞ θk = +∞, P(µ,ξ0)−a.s. with µ ∈ Mc,2
1 (R) and ξ0 ∈ C 2

b

Ä
RM(0),R

ä
. Before to

prove Lemma 3.5, we introduce the following lemma, whose proof will be given at Section 6.2.2.
We denote by St the number of jumps of the process M on the time interval [0, t].

Lemma 6.4. If ξ0 ∈ C 2
b (Rn,R) then there exists a function C0 on

⋃
k∈N (0, +∞)k × {k} to R+,

locally bounded, such that for all (tj)j∈N ∈ (0, +∞)N, k 7→ C0
(
(ti)0⩽i⩽k , k

)
is non-decreasing

and satisfying

∀t ∈ [0, T ], ∀x ∈ RM(t), |ξt(x)| ⩽ C0 (τ1, τ2 − τ1, · · · , τST +1 − τST
, ST )

Ä
1 + ∥x∥2ST

2

ä
.

The bound obtained above will only allow us to show that θk → +∞ P(µ,ξ0)−a.s. under the
assumption that the initial condition X0 has all its finite moments. The following remark shows
that we cannot expect that θk → +∞ under weaker assumptions on the initial condition.

Remark 6.5. Let ξ0 : x 7→ sin(x) ∈ C 2
b (R,R). Let us assume that

¨
|id|4 , µ

∂
= +∞ and ξt

successively jumps at times τ1, τ2 and τ3 with respective jump operator K11, K11 and Φ13. If we
denote by τ1,2 := τ2 − τ1, straightforward but tedious computations give

ξτ1(x, y) = K11T (1)(τ1)ξ0(x, y) = − exp
Å

−e4(τ1)
2 − 4γτ1

ã
sin (x exp (−2γτ1)) y2
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and

ξτ2(x, y, z) = K11T (2) (τ1,2) ξτ1(x, y, z)

= 1
4 exp

Ç
−e4 (τ1)

2 − 4γτ1 − exp (−4γτ1) − exp (−4γτ1) (e4(τ1,2) − τ1,2)2

4 (e4(τ1,2) + τ1,2)

å
×
ïßexp (−4γτ1)

4 (1 + exp (−4γτ1,2))2
î
2 (e4(τ1,2) + τ1,2) − exp (−4γτ1) (e4(τ1,2) − τ1,2)2

+
(
x [1 − exp(−4γτ1,2)] − y [1 + exp(−4γτ1,2)]

)2
]

− 2 (1 + exp (−8γτ1) − exp (−4γτ1))

− 2 exp (−4γτ1) (1 − exp (−8γτ1,2)) (e4(τ1,2) − τ1,2)
™

× sin
Åexp (−2γτ1)

2 [x − y + (x + y) exp (−4γτ1,2)]
ã

− 2 exp (−2γτ1) (1 + exp (−4γτ1,2))
ß

x − y + (x + y) exp (−8γτ1,2) − x exp (−4γτ1,2)

− exp (−4γτ1,2)
2 (e4(τ1,2) − τ1,2) [−(x − y) + (x + y) exp (−4γτ1,2)]

™
× cos

Åexp (−2γτ1)
2 [x − y + (x + y) exp (−4γτ1,2)]

ãò
z2.

Note that the leading order term in ξτ2(x, y, z) is of the form (ax − by)2 z2 sin (cx + dy). Now,

ξτ3(x, y) = Φ13T (3) (τ3 − τ2) ξτ2(x, y).

If τ3 = τ2, we obtain as leading order term in ξτ3(x, y) the term (ax − by)2 x2 sin (cx + dy),
which is not integrable with respect to µ2(dx, dy). If τ3 > τ2, one can check that the leading order
term in T (3)(τ3 − τ2)ξτ2(x, y, z) is of the form P4(x, y, z) sin

Ä
c̃x + d̃y + ẽz

ä
where P4(X, Y, Z)

is a homogeneous polynomial of degree 4 such that P4(X, Y, Z) → (aX − bY )2 Z2, c̃ → c, d̃ →
d and ẽ → 0 when τ3 → τ2. Therefore, for τ3 close enough to τ2, ξτ3(x, y) has a non-zero
term proportional to x4 sin

Ä
[c̃ + ẽ] x + d̃y

ä
which is not compensated by another term. Hence,〈

|ξτ3 | , µ2〉 = +∞ if τ3 − τ2 is small enough, for any values of τ1 and τ2. Given T large enough,
we have proved that θk ⩽ τ3 ⩽ T with positive probability.

6.2.1 Proof that Lemma 6.4 implies Lemma 3.5

Note that θk = θ̂k ∧ θ̃k where

θ̂k := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k

™
and θ̃k := inf

ß
t ⩾ 0

∣∣∣∣ ∃s ∈ [0, t],
¨
ξs, X

M(s)
t−s

∂
⩾ k

™
.

Thanks to (32) it follows that θ̂k → +∞ when k → +∞. In order to prove that θ̃k → +∞ when
k → +∞, we rely on the control of the dual process obtained in Lemma 6.4. So we need to
control

¨
∥·∥2ST

2 , X
M(s)
t−s

∂
. Let T > 0 and ε > 0 be arbitrary. From (32), we choose A(T, ε) > 0

such that P(µ,ξ0) (ST ⩽ A) ⩾ 1 − ε/3. Then, using Proposition 2.11, we choose B(T, ε, A) > 0
such that P(µ,ξ0)

Ä
∀k ⩽ 2A, ∀t ⩽ T,

¨
|id|k , Xt

∂
⩽ B
ä
⩾ 1 − ε/3. Finally, from Lemma 6.4 we
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choose C0 (T, ε, A) > 0 such that P(µ,ξ0)
(
C0
(
(τi+1 − τi)0⩽i⩽A , A

)
⩽ C0

)
⩾ 1 − ε/3. We recall

that for any m ∈ N⋆, for all x ∈ Rm, (
∑m

i = 1 xi)n ⩽ mn−1 ∑m
i = 1 xn

i . Thus, the following inequality¨
∥·∥2ST

2 , X
M(s)
t−s

∂
⩽ M(s)ST −1

M(s)∑
i = 1

∫
RM(s)

x2ST
i X

M(s)
t−s (dx) = M(s)ST

¨
id2ST , Xt−s

∂
⩽ (M(0) + A)A B,

takes place with probability 1−2ε/3. Therefore, we deduce from Lemma 6.4 that for all s ⩽ t ⩽ T ,¨
ξs, X

M(s)
t−s

∂
⩽ C0 (M(0) + A)A B

In particular, for k ⩾ C0
Ä
1 + (M(0) + A)A B

ä
, it follows that

P(µ,ξ0)
Ä
θ̃k ⩾ T

ä
⩾ P(µ,ξ0)

Ä
{ST ⩽ A} ∩

¶
∀k ⩽ 2A, ∀t ⩽ T,

¨
idk, Xt

∂
⩽ B
©

∩
{

C0
(
(τi+1 − τi)0⩽i⩽A , A

)})
⩾ 1 − ε.

The conclusion follows. □

6.2.2 Proof of Lemma 6.4

By mathematical induction on k ∈ N, we prove the property

(Pk) : ∀t ∈ [τk, τk+1[ , ∀x ∈ RM(t), |ξt(x)| ⩽ C0((τi+1 − τi)0⩽i⩽k , k)
Ä
1 + ∥x∥2k

2

ä
,

where C0 is locally bounded on
⋃

k∈N (0, +∞)k × {k}.

Initial case. For k = 0, S0 = 0 and ξ0 ∈ C 2
b (Rn,R). Hence, the property (P0) is satisfied.

Inductive step. We assume that, for k ∈ N⋆, the property (Pk−1) is satisfied and prove that
(Pk) is also. Let t ∈ [τk, τk+1[ and note that M(t) = M (τk). We make a partition of cases
according to whether the dual process loses or gains a variable. Let i, j ∈ {1, · · · , M (τk−1)} be
fixed.

Step 1. Case Λk = Φi,j at the kth jump. In this case, M(τk) = M(τk−1) − 1 and we
deduce from the explicit expression (29) of the dual process that for all x ∈ RM(τk−1)−1,

ξt(x) = T (M(τk−1)−1)(t − τk)Φi,jT (M(τk−1))(τk − τk−1)ξτk−1(x).

By using expression (22) of Φi,j and the property (Pk−1), we deduce from Corollary 6.2 (1) that
for all x ∈ RM(τk−1)−1,∣∣∣Φi,jT (M(τk−1)) (τk − τk−1) ξτk−1(x)

∣∣∣
⩽ C2 (τk − τk−1, M (τk−1)) C0

(
(τi+1 − τi)0⩽i⩽k−1 , k − 1

) Ä
1 + ∥x∥2(k−1)

2
ä

,
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where C2C0 is locally bounded. Using again Corollary 6.2 (1) and the fact that t 7→ C2 (t, M (τk−1))
is non-decreasing, we deduce the property (Pk).

Step 2. Case Λk = Ki,j at the kth jump. In this case, M(τk) = M(τk−1) + 1 and the
explicit expression (29) of dual process that for all x ∈ RM(τk−1)+1,

ξt(x) = T (M(τk−1)+1)(t − τk)Ki,jT (M(τk−1))(τk − τk−1)ξτk−1(x).

From the expression (23) of Ki,j and Theorem 6.1 (3), we have for all x ∈ RM(τk−1)+1,∣∣∣Ki,jT (M(τk−1)+1) (τk − τk−1) ξτk−1(x)
∣∣∣

=
∣∣∣(∂xj mτk−τk−1,x̃

)t
îÄ

ξτk−1 ∗ Hess
Ä
gX

τk−τk−1,0
ää

(mτk−τk−1,x̃)∂ximτk−τk−1,x̃

ó∣∣∣x2
M(τk−1)+1,

where x̃ =
Ä
x1, · · · , xM(τk−1)

ät
∈ RM(τk−1). From the property (Pk−1) and Corollary 6.2 (2), we

deduce that∣∣∣Ki,jT (M(τk−1)+1) (τk − τk−1) ξτk−1(x)
∣∣∣

⩽ C3 (τk − τk−1, M (τk−1)) C0
(
(τi+1 − τi)0⩽i⩽k−1 , k − 1

) Ä
1 + ∥x∥2k

2

ä
,

where C3C0 is locally bounded. Using Corollary 6.2 (1), we deduce the property (Pk). We
conclude by the principle of induction. □

6.3 Proof of Theorem 3.4

Recall that (Xt)t⩾0 is a stochastic process whose law Pµ is a solution of the martingale prob-
lem (4) with µ ∈ Mc,2

1 (R) and (ξt)t⩾0 a dual process independent of (Xt)t⩾0 built on the same
probability space. To simplify, we will note P = P(µ,ξ0) the distribution of ((Xt, ξt))t⩾0. As
ξ0 ∈ C 2

b (RM(0),R) and for the choice of the stopping time θk given by (33), the set of quantities,
involved in the expectations of the weakened duality identity (34), are bounded.

Step 1. Approximation reasoning. To establish the relation (34) we introduce a increas-
ing sequence 0 = tn

0 < tn
1 < · · · < tn

pn
= t of subdivisions of [0, t] such that tn

i+1 = tn
i + h with h

tending to 0. Note that

E
Å¨

ξt∧θk
, X

M(t∧θk)
0

∂
exp
Å

γ

∫ t∧θk

0
M2(u)du

ãã
− E
Ä¨

ξ0, X
M(0)
t∧θk

∂ä
=

pn−1∑
i = 0

ï
E
Å≠

ξtn
i+1∧θk

, X
M(tn

i+1∧θk)
t∧θk−tn

i+1∧θk

∑
exp
Å

γ

∫ tn
i+1∧θk

0
M2(u)du

ãã
− E
Å≠

ξtn
i ∧θk

, X
M(tn

i ∧θk)
t∧θk−tn

i ∧θk

∑
exp
Å

γ

∫ tn
i ∧θk

0
M2(u)du

ããò
.

We are therefore interested in terms of the form

E
Ç¨

ξ(s+h)∧θk
, X

M((s+h)∧θk)
t∧θk−(s+h)∧θk

∂
exp
Ç

γ

∫ (s+h)∧θk

0
M2(u)du

åå
− E
Å¨

ξs∧θk
, X

M(s∧θk)
t∧θk−s∧θk

∂
exp
Å

γ

∫ s∧θk

0
M2(u)du

ãã
, for s ∈ [0, t − h] .

(60)
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It is sufficient to prove that these quantities are O
(
h2). The procedure to be adopted is as

follows. First of all, we consider separately the two terms which constitute (60) in Steps 2 and 3.
Then, we prove that the sum of these terms is O

(
h2) in Steps 4 and 5. Throughout this section,

in order to simplify the writing, the following notations are introduced:

tk := t ∧ θk, sk := s ∧ θk, and sh
k := (s + h) ∧ θk.

We note respectively τ1, τ2 the first and second jump times after sk for the process M . We
denote by τ1,k := τ1 ∧ θk and τ2,k := τ2 ∧ θk.

Step 2. First term of (60). We exploit the explicit expression (29) of the dual process
and make the following partition:

(a) If there has been no jump of M on the interval
[
sk, sh

k

]
.

(b) If there was only one jump of M on the interval
[
sk, sh

k

]
and distinguish according to the

events {Λ = Φi,j} and {Λ = Ki,j} where Λ is the first Λk defined by (30) and (31) after sk.

(c) If there are two or more than two jumps of M on the interval
[
sk, sh

k

]
.

Then

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å ∣∣∣∣∣ ‹Fsk

å
= E
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ξsh
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, X

M(sh
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tk−sh
k

∑
exp
Ç

γ
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k

0
M2(u)du

å
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k}

∣∣∣∣∣ ‹Fsk

å
+

M(sk)∑
i,j = 1
i ̸= j

E
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ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Λ=Φi,j}

∣∣∣∣∣ ‹Fsk

å
+

M(sk)∑
i,j = 1

E
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k
, X
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k)

tk−sh
k

∑
exp
Ç

γ
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k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Λ=Ki,j}
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ξsh
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, X
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exp
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0
M2(u)du

å
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k}

∣∣∣∣∣ ‹Fsk

å
.

We consider successively each term in the right-hand side.

Firts term: no jump. As there is no jump on [sk, sh
k ], we have M

(
sh

k

)
= M(sk) and

ξsh
k

= T (M(sk)) (sh
k − sk

)
ξsk

. Thus,
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Ä
sh

k − sk

ä
M(sk)(M(sk) − 1)

óã
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where we used the fact that τ1,k−sk given ‹Fsk
follows an exponential law of parameter γM2 (sk)+

γM (sk) (M (sk) − 1).

Second and third terms : only one jump. These terms are treated in an analogous way,
so we only give the details for the first one.

If there is a jump on [sk, sh
k ] and for i ̸= j ∈ {1, 2, · · · , M (sk)} fixed, Λ = Φi,j , then M

(
sh

k

)
=

M(sk) − 1 and ξsh
k

= T (M(sk)−1) (sh
k − τ1,k

)
Φi,jT (M(sk)) (τ1,k − sk) ξsk

. Thus,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Λ=Φi,j}

∣∣∣∣∣ ‹Fsk

å
=
〈

T (M(sk)−1)
Ä
sh

k − τ1,k

ä
Φi,jT (M(sk)) (τ1,k − sk) ξsk

, X
M(sk)−1
tk−sh

k

〉
× exp

Å
γ

∫ sk

0
M2(u)du + γ [τ1,k − sk] M2(sk) + γ

î
sh

k − τ1,k

ó
(M(sk) − 1)2

ã
× 1{τ1,k−sk⩽sh

k
−sk}E

[
1{Λ=Φi,j}1{τ2,k−τ1,k>sh

k
−τ1,k}

∣∣∣σ (τ1,k) ∨ ‹Fsk

]
.

Now, using that, given Λ = Φi,j and σ (τ1,k) ∨ ‹Fsk
, τ2,k − τ1,k follows an exponential law of

parameter γ (M (sk) − 1)2 + γ (M (sk) − 1) (M (sk) − 2), we deduce that

P
Å

{Λ = Φi,j} ∩
¶

τ2,k − τ1,k > sh
k − τ1,k

© ∣∣∣∣σ (τ1,k) ∨ ‹Fsk

ã
=

exp
Ä
−γ
î
(M (sk) − 1)2 + (M (sk) − 1) (M (sk) − 2)

ó [
sh

k − τ1,k

]ä
M2 (sk) + M (sk) (M (sk) − 1) .

Then using that, given σ (τ1,k)∨‹Fsk
, τ1,k −sk follows an exponential law of parameter γM2 (sk)+

γM (sk) (M (sk) − 1), we deduce that

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Λ=Φi,j}

∣∣∣∣∣ ‹Fsk

å
= γ

∫ sh
k

sk

®〈
T (M(sk)−1)

Ä
sh

k − r
ä

Φi,jT (M(sk)) (r − sk) ξsk
, X

M(sk)−1
tk−sh

k

〉
exp
Å

γ

∫ sk

0
M2(u)du

ã
× exp

Ç
−2γ (r − sk) (M(sk) − 1) − γ

Ä
sh

k − sk

ä
(M(sk) − 1) (M(sk) − 2)

å´
dr.

Similarly,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Λ=Ki,j}

∣∣∣∣∣ ‹Fsk

å
= γ

∫ sh
k

sk

ß〈
T (M(sk)+1)

Ä
sh

k − r
ä

Ki,jT (M(sk)) (r − sk) ξsk
, X

M(sk)+1
tk−sh

k

〉
× exp

Å
γ

∫ sk

0
M2(u)du − 2γ(r − sk)M(sk) − γ

Ä
sh

k − sk

ä
M(sk) (M(sk) + 1)

ã™
dr.
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Fourth term : at least two jumps. Note that, P
(

·
∣∣∣ ‹Fsk

)
−a.s., τ2,k − τ1,k ⩾ Esk

where Esk
is an exponential random variable with parameter λ2 (sk) := γ (M (sk) + 1)2 +

γ (M (sk) + 1) M (sk). We denote by λ1 (sk) := γ (M (sk) + 1)2 + γ (M (sk) + 1) M (sk). Us-
ing the strong Markov property at time τ1,k, we obtain that

P
(

τ2,k ⩽ sh
k

∣∣∣ ‹Fsk

)
⩽ P

(¶
τ1,k ⩽ sh

k

©
∩
¶

τ2,k − τ1,k ⩽ sh
k

© ∣∣∣ ‹Fsk

)
⩽ λ1(sk)λ2(sk)

î
sh

k − sk

ó2
.

It follows that there exists a constant C(k) such that,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ2,k⩽sh

k}

∣∣∣∣∣ ‹Fsk

å
⩽ C(k)h2.

Step 3. Second term of (60). It follows from the MILD formulation of Proposition 6.3
that

E
Ç¨

ξsk
, X

M(sk)
tk−sk

∂
exp
Å

γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
= E
Ç〈

T (M(sk))(sh
k − sk)ξsk

, X
M(sk)
tk−sh

k

〉
exp
Å

γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
+ γ

M(sk)∑
i,j = 1
i ̸= j

E
Ç∫ sh

k−sk

0

Ä¨
Φi,jT (M(sk))(r)ξsk

, X
M(sk)−1
tk−sk−r

∂
−
¨
T (M(sk))(r)ξsk

, X
M(sk)
tk−sk−r

∂ä
dr exp

Å
γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
+ γ

M(sk)∑
i,j = 1

E

(∫ sh
k−sk

0

¨
Ki,jT (M(sk))(r)ξsk

, X
M(sk)+1
tk−sk−r

∂
dr exp

Å
γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

)
.

Step 4. Conclusion. Putting together all the previous equations, we deduce that

E
Ç¨

ξ(s+h)∧θk
, X

M([s+h]∧θk)
t∧θk−(s+h)∧θk

∂
exp
Ç

γ

∫ [s+h]∧θk

0
M2(u)du

åå
− E
Å¨

ξs∧θk
, X

M(s∧θk)
t∧θk−s∧θk

∂
exp
Å

γ

∫ s∧θk

0
M2(u)du

ãã
= (A) + (B) + (C) + (D) + (E) + O(h2),

where

(A) = E
(〈

T (M(sk))
Ä
sh

k − sk

ä
ξsk

, X
M(sk)
tk−sh

k

〉
× exp

Å
γ

∫ sk

0
M2(u)du − γ

î
sh

k − sk

ó
M (sk) (M(sk) − 1)

ãã
+ γE

Ü∫ sh
k−sk

0

M(sk)∑
i,j = 1
i ̸= j

¨
T (M(sk))(r)ξsk

, X
M(sk)
tk−sk−r

∂
dr exp

Å
γ

∫ sk

0
M2(u)du

ãê
,
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(B) = γE

Ü
M(sk)∑
i,j = 1
i ̸= j

∫ sh
k−sk

0

{〈
T (M(sk)−1)

Ä
sh

k − sk − r
ä

Φi,jT (M(sk))(r)ξsk
, X

M(sk)−1
tk−sh

k

〉

−
¨
T (M(sk)−1) (0) Φi,jT (M(sk))(r)ξsk

, X
M(sk)−1
tk−sk−r

∂©
exp
Å

γ

∫ sk

0
M2(u)du

ãê
,

(C) = γE

(
M(sk)∑
i,j = 1

∫ sh
k−sk

0

{〈
T (M(sk)+1)

Ä
sh

k − sk − r
ä

Ki,jT (M(sk))(r)ξsk
, X

M(sk)+1
tk−sh

k

〉

−
¨
T (M(sk)+1) (0) Ki,jT (M(sk))(r)ξsk

, X
M(sk)+1
tk−sk−r

∂©
exp
Å

γ

∫ sk

0
M2(u)du

ã)
,

(D) = γE

Ü
M(sk)∑
i,j = 1
i ̸= j

∫ sh
k−sk

0

{〈
T (M(sk)−1)

Ä
sh

k − sk − r
ä

Φi,jT (M(sk))(r)ξsk
, X

M(sk)−1
tk−sh

k

〉

× exp
Ä
−2γr [M(sk) − 1] − γ

Ä
sh

k − sk

ä
[M(sk) − 1] [M(sk) − 2]

ä™
dr

ã
,

(E) = γE

(
M(sk)∑
i,j = 1

∫ sh
k−sk

0

{〈
T (M(sk)+1)

Ä
sh

k − sk − r
ä

Ki,jT (M(sk))(r)ξsk
, X

M(sk)+1
tk−sh

k

〉
× exp

Ä
−2γrM(sk) − γ

Ä
sh

k − sk

ä
M(sk) [M(sk) − 1]

ä ©
dr

ã
.

All these terms are O
(
h2) uniformly with respect to the other parameters which is sufficient

to conclude the proof. This can be proved similarly for each term, so we only give the details for
(A). We first notice that when h → 0,

(A) = E
Ç

M(sk) (M(sk) − 1)
∫ sh

k−sk

0

{〈
T (M(sk))

Ä
sh

k − sk

ä
ξsk

, X
M(sk)
tk−sh

k

〉
−
〈

T (M(sk))(r)ξsk
, X

M(sk)
tk−s

k
−r

〉}
dr exp

Å
γ

∫ sk

0
M2(u)du

ãã
+ O

(
h2) .

By conditioning with respect to ‹Fsk
in the previous expression and using the MILD formulation

of the Proposition 6.3 again we obtain that

(A) = γE
Ç

exp
Å

γ

∫ sk

0
M2(u)du

ã
M(sk) (M(sk) − 1)

∫ sh
k−sk

0

ñ∫ tk−sh
k

tk−sk−r

®
M(sk)∑
i,j = 1
i ̸= j

î¨
Φi,jT (M(sk)) (tk − sk − v) ξsk

, XM(sk)−1
v

∂
−
¨
T (M(sk)) (tk − sk − v) ξsk

, XM(sk)
v

∂ó
+

M(sk)∑
i,j = 1

¨
Ki,jT (M(sk))(tk − sk − v)ξsk

, XM(sk)+1
v

∂}
dv

]
dr

)
+ O

(
h2) .
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Both integrals are on intervals of length at most h. Since all the quantities in the integrals are
bounded by definition of the stopping time θk, we deduce that (A) =

h→0
O(h2). □

A Technical lemmas involved in the existence proof

A.1 Approximation lemma

Lemma A.1. Let p ∈ N⋆, µ, ν ∈ M1(R), F ∈ C 3
b (Rp,R) and g = (g1, · · · , gp) where for each

i ∈ {1, · · · , p}, gi ∈ C 3
b (R,R). Then,

F
(〈

g1 ◦ τ−⟨id,µ⟩, µ
〉

, · · · ,
〈
gp ◦ τ−⟨id,µ⟩, µ

〉)
− F

(〈
g1 ◦ τ−⟨id,ν⟩, ν

〉
, · · · ,

〈
gp ◦ τ−⟨id,ν⟩, ν

〉)
=

p∑
k = 1

ß
∂kF

(〈
g1 ◦ τ−⟨id,ν⟩, ν

〉
, · · · ,

〈
gp ◦ τ−⟨id,ν⟩, ν

〉)Å〈
gk ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

[〈
g′

k ◦ τ−⟨id,ν⟩, ν
〉

+
〈
g′

k ◦ τ−⟨id,ν⟩, µ − ν
〉]

+ 1
2 ⟨id, µ − ν⟩2 〈g′′

k ◦ τ−⟨id,ν⟩, ν
〉ã™

+ 1
2

p∑
i,j = 1

ß
∂2

ijF
(〈

g1 ◦ τ−⟨id,ν⟩, ν
〉

, · · · ,
〈
gp ◦ τ−⟨id,ν⟩, ν

〉)Å〈
gi ◦ τ−⟨id,ν⟩, µ − ν

〉
×
〈
gj ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

ï〈
g′

j ◦ τ−⟨id,ν⟩, ν
〉 〈

gi ◦ τ−⟨id,ν⟩, µ − ν
〉

+
〈
g′

i ◦ τ−⟨id,ν⟩, ν
〉 〈

gj ◦ τ−⟨id,ν⟩, µ − ν
〉

−
〈
g′

i ◦ τ−⟨id,ν⟩, ν
〉 〈

g′
j ◦ τ−⟨id,ν⟩, ν

〉
⟨id, µ − ν⟩

òã™
+ O

Ç
|⟨id, µ − ν⟩|3 +

p∑
k = 1

2∑
ℓ = 0

∣∣∣¨g(ℓ)
k ◦ τ−⟨id,ν⟩, µ − ν

∂∣∣∣3å
Proof. The general case p ∈ N⋆ can be proved by a straightforward extension of the proof of the
case p = 1 which is the only case that we prove. Applying Taylor’s formula to g ◦ τ−⟨id,µ⟩ =
g (· − ⟨id, µ⟩), we obtain that〈

g ◦ τ−⟨id,µ⟩ − g ◦ τ−⟨id,ν⟩, µ
〉

=
∫
R

µ(dx)
ï
g′ (x − ⟨id, ν⟩) ⟨id, ν − µ⟩ + 1

2g′′ (x − ⟨id, ν⟩) ⟨id, ν − µ⟩2 + O
Ä
⟨id, ν − µ⟩3

äò
= − ⟨id, µ − ν⟩

[〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+
〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
+ 1

2 ⟨id, µ − ν⟩2 [〈g′′ ◦ τ−⟨id,ν⟩, ν
〉

+
〈
g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
+ O
Ä
⟨id, µ − ν⟩3

ä
.

68/74



Therefore, we deduce the following approximation:〈
g ◦ τ−⟨id,µ⟩, µ

〉
−
〈
g ◦ τ−⟨id,ν⟩, ν

〉
=
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

[〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+
〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
(A.1)

+ 1
2 ⟨id, µ − ν⟩2 〈g′′ ◦ τ−⟨id,ν⟩, ν

〉
+ O
Ä
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2 ∣∣〈g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ä .

Applying Taylor’s formula to F
(〈

g ◦ τ−⟨id,µ⟩, µ
〉)

, we obtain that

F
(〈

g ◦ τ−⟨id,µ⟩, µ
〉)

− F
(〈

g ◦ τ−⟨id,ν⟩, ν
〉)

= F ′ (〈g ◦ τ−⟨id,ν⟩, ν
〉)

×
[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]
+

F ′′ (〈g ◦ τ−⟨id,ν⟩, ν
〉)

2 ×
[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]2
+ O
Ä[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]3ä
.

Using (A.1), we deduce that[〈
g ◦ τ−⟨id,µ⟩, µ

〉
−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]2
=
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉2 + ⟨id, µ − ν⟩2 〈g′ ◦ τ−⟨id,ν⟩, ν
〉2

− 2
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉
⟨id, µ − ν⟩

〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+ O

Å
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2

ï∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣

+
∣∣〈g′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣+
∣∣〈g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ò
+
∣∣⟨id, µ − ν⟩

〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉 〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ã ,

and

O
Ä[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]3ä
= O

Å
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2

ï∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣+

∣∣〈g′ ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣ò

+ |⟨id, µ − ν⟩|
î〈

g ◦ τ−⟨id,ν⟩, µ − ν
〉2 +

〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉2ó+
∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣3ä .

The announced result follows from Young’s inequalities.

A.2 Lemma of convergence

Lemma A.2. Let k ∈ N⋆. We assume that
¨
idk, ν

∂
< ∞. We consider for t ∈ [0, T ], an

increasing sequence 0 = tn
0 < tn

1 < · · · < tn
pn

= T of subdivisions of [0, T ] whose mesh tends to 0.
Then, for all h1 ∈ {1, id} and h2 ∈ C 2

b (R,R), we obtain that, in PFV
ν −probability,

(1) lim
n→+∞

pn−1∑
i = 0

∫ tn
i+1∧t

tn
i ∧t

∣∣∣∣≠h1 ×
ï
h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩

ò
, Ys

∑∣∣∣∣kds = 0,

(2) lim
n→+∞

pn−1∑
i = 0

∫ tn
i+1∧t

tn
i ∧t

|⟨h1, Ys⟩|k
∣∣∣∣≠h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩, Ys

∑∣∣∣∣kds = 0.
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Proof. The two properties can be proved similarly. We only prove the first one. Thanks to
Lemma 5.1 (1)(a) and using that h2 is Lipschitz, there exists a constant CLip such that

∫ tn
i+1∧t

tn
i ∧t

∣∣∣∣≠h1 ×
ï
h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩

ò
, Ys

∑∣∣∣∣k ds

⩽
∫ tn

i+1∧t

tn
i ∧t

|⟨h1, Ys⟩|k
[
Ck

Lip

∣∣∣M id
s (id) − M id

tn
i ∧t(id)

∣∣∣ ∧ (2 ∥h2∥∞)k
]

ds.

If h1 = 1, the dominated convergence theorem allows us to conclude the proof. If h1 = id, using
that supt∈[0,T ] |⟨id, Yt⟩| < ∞ PFV

ν −a.s. by Lemma 5.1 (1)(b), we can also apply the dominated
convergence.

A.3 Control of error terms

Lemma A.3. Let t > 0 be fixed and assume that
〈
id2, ν

〉
< ∞. Let j ∈ {0, 1, 2} and g ∈ C 4

b (R,R)
fixed. The sequences

(1)
(

pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t (id) − M id

tn
i ∧t (id)

∣∣∣3)
n∈N

(2)
(

pn−1∑
i = 0

∣∣∣∣M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3)
n∈N

converge to 0 in PFV
ν −probability.

Proof. Step 1. Proof of (1). Let ε > 0 and t ⩾ 0 fixed. Let A > 0 to be determined later. We
introduce the stopping time

τA := inf
ß

t ⩾ 0
∣∣∣∣ 〈id2, Yt

〉
− ⟨id, Yt⟩2 ⩾ A

™
which satisfies almost surely limA→+∞ τA = +∞ by Lemma 5.1. Then, using Markov’s in-
equality, we obtain that

PFV
ν

(
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

)

⩽ PFV
ν (τA ⩽ t) + PFV

ν

(
{τA > t} ∩

{
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

})

⩽ PFV
ν (τA ⩽ t) + 1

ε

pn−1∑
i = 0

E
Å∣∣∣M id

tn
i+1∧t∧τA

(id) − M id
tn
i ∧t(id)

∣∣∣3ã.

From the definition of τA, we obtain for all s ∈
[
tn
i ∧ t, tn

i+1 ∧ t
]
,
∣∣∣M id

s∧τA
(id) − M id

tn
i ∧t(id)

∣∣∣3 is
bounded and

〈
M id(id)

〉
t∧τA

is 2γA2-Lipschitz. Thanks to the Burkolder-Davis-Gundy
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inequality and Lemma 5.1 (2), there exists a constant C1 such that

E
Å∣∣∣M id

tn
i+1∧t∧τA

(id) − M id
tn
i ∧t(id)

∣∣∣3ã ⩽ C1E

(ï¨
M id(id)

∂
tn
i+1∧t∧τA

−
¨
M id(id)

∂
tn
i ∧t

ò 3
2
)

⩽ C1
(
2γA2) 3

2
(
tn
i+1 ∧ t − tn

i ∧ t
) 3

2 .

Therefore, if we choose A such that PFV
ν (τA ⩽ t) ⩽ ε

2 , and n0 ∈ N such that for all n ⩾ n0,…
sup

i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn0

i ∧ t
∣∣ ⩽ ε2

2C1 (2γA2)
3
2 t

,

we obtain that

PFV
ν

(
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

)

⩽ PFV
ν (τA ⩽ t) +

C1
(
2γA2) 3

2

ε
t
…

sup
i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣

⩽ ε,

and the first announced result follows.

Step 2. Proof of (2). In similar way as previously, we obtain that

PFV
ν

(
pn−1∑
i = 0

∣∣∣∣M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3 > ε

)

⩽
1
ε

pn−1∑
i = 0

E
Ç∣∣∣∣M id

tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3å
⩽

C1

(
2γ

∥∥∥g(j)
∥∥∥2

∞

) 3
2

ε
t
…

sup
i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣,

which converges to 0 when n → +∞.
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