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Existence, uniqueness and ergodicity for the centered
Fleming-Viot process

N1cOLAS CHAMPAGNAT VINCENT HassT]
MAy 25, 2023

* Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

Abstract. Motivated by questions of ergodicity for shift invariant FLEMING-VIOT pro-
cess, we consider the centered FLEMING-VIOT process (Zt)t>0 defined by Z; := 7_4qyv,)i Y,
where (V7). is the original FLEMING-VIOT process. Our goal is to characterise the centered
FLEMING-VIOT process with a martingale problem. To establish the existence of a solution to
this martingale problem, we exploit the original FLEMING-VIOT martingale problem and asymp-
totic expansions. The proof of uniqueness is based on a weakened version of the duality method,
allowing us to prove uniqueness for initial conditions admitting finite moments. We also provide
counter examples showing that our approach based on the duality method cannot be expected
to give uniqueness for more general initial conditions. Finally, we establish ergodicity proper-
ties with exponential convergence in total variation for the centered FLEMING-VIOT process and
characterise the invariant measure.

Keywords. Measure-valued diffusion processes, FLEMING-VIOT processes, Martingale prob-
lems, Duality method, Exponential ergodicity in total variation, DONNELLY-KURTZ’s modified
look-down.

MSC subject classification. Primary 37A25, 37A30, 60G44, 60J60, 60J68; Secondary
60B10, 60G09, 60J76, 60J90, 92D10.

1 Introduction

FLEMING and VIOT have introduced in [27] a probability-measure-valued stochastic process
modeling the dynamics of the distribution of allelic frequencies in a selectively neutral genetic
population as influenced by mutation and random genetic drift: the original FLEMING-VIOT pro-
cess. The initial model of [27] was progressively enriched with further mechanisms of Darwinian
evolution: selection [27] [21], 23] 9] 18], recombination [25] 23] or the effect of an environment [28].
FLEMING and VIOT characterise in [27] the law of their process as a solution of a STROOCK-
VARADHAN measure-valued martingale problem [5I] both in the selective neutral case and the
case with selection. To obtain the existence of such solution on a compact metric space, their
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E-mail addresses: nicolas.champagnat@inria.fr (Nicolas Champagnat), vincent.hassQinria.fr (Vincent Hass).
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method is based on discretisation of the mutation operator and tightness arguments. An alter-
native approach is used, in the studies [40, 41}, [32] 31} 50] based on the OTHA-KIMURA model
[42, [43] and in the references [27) [10} 23], [I7] based on its continuous-time version: the MORAN
model (also called continuous-state stepwise mutation model). If we denote by N the population
size, these authors construct a particle process whose limiting behavior is analysed under the
assumptions that the mutation step is proportional to 1/ V/N and on the time scale (Nt)i>0.
In [28], another particle process, based on the lookdown construction [I4] is used to show the
existence of the FLEMING-VIOT process in a random environment. This lookdown construction
also allows to analyse sample path properties of the process and has been used in numerous
references since then, such as [15] [I7, Chapter 5].

In [27], uniqueness of the solution to the FLEMING-VIOT martingale problem in the selectively
neutral case, is proved using uniqueness of moments of certain finite-dimensional distributions
and arguments on semigroup. However, in the case where natural selection acts, the previous
method fails, but the result can be obtained from a version of the CAMERON-MARTIN-GIRSANOV
formula [9, Chapter 10] [8, Theorem 5.1]. See also [24] for an application of this method in the
case of unbounded selection function. In most references such as [17, 10} 20, 2], 23] 24], under a
variety of assumptions, the duality method [26, Proposition 4.4.7] is used to prove the uniqueness
of the FLEMING-VIOT process. The idea is to relate the distribution of the original process with
that of a simple process, called dual process. This leads to a duality relation which ensures that
two solutions to the martingale problem have the same 1-dimensional marginal laws. Uniqueness
of the solution to the martingale problem then follows from MARKOV’s property [26, Theorem
4.4.2]. Other methods are used in some references: [I1] makes use of resolvent estimates; [45)], [44]
prove existence and uniqueness of FLEMING-VIOT processes with unbounded selection intensity
functions by using DIRICHLET’s forms.

Questions of ergodicity of the FLEMING-VIOT process were also the subject of many works.
Let E be a Polish space and B(E) the BOREL o—field on E. Let us recall from [23 Section 5]
that an E—valued MARKOV process (Z;);-, with a unique stationary distribution 7 is weakly
ergodic if for all bounded continuous functions f on FE, for all initial condition x( € E,

Jdim Es, (/(2) = [ f@yr(d) M
and strongly ergodic if
lim sup |Py (Zt€ B)—7(B)|=0, x€kE. (2)
t——+o0 BeB(E)

If F is compact, for mutation operators A whose closure generates a FELLER semigroup on the
space of continuous functions and such that there is a unique probability measure vy on E sat-
isfying [ Af(x)vo(dx) = 0, some ergodicity results for the FLEMING-VIOT process are obtained
in [23]. More precisely, in the selectively neutral case and without recombination, a simple proof
of weak ergodicity of the FLEMING-VIOT process is given using duality arguments whereas cou-
pling arguments provide an approach to strong ergodicity. These results were extended in [22] to
models with recombination and in [24] to models with unbounded selection, with the additional
tool of DAWSON’s GIRSANOV-type formula for strong ergodicity. In the special case where the
mutation operator of the FLEMING-VIOT process has the form

Af@) = 5 [ ()~ F@) Plady), 0 (0,+00), € D(A), ®
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it is proved in [23] that the FLEMING-VIOT process has a reversible stationary distribution if
P(z,dy) = v(dy) for some probability measure v on E (see [35] for a converse result). For the
mutation operator (3)), it is proved in [20, 21] and [9, Theorem 8.2.1] that the FLEMING-VIOT
process is purely atomic for every time, in other words the solutions of the martingale problem
take values in the set of purely atomic probability measures. In [25], the ergodicity result of [22]
was extended to the weak atomic topology.

However, if we consider the case where the mutation operator is the Laplacian on R, there
exists no stationary distribution [23] B5], [26, Problem 11 p.450]. Instead the process exhibits
a wandering phenomenon [I0, [3]. Nevertheless, [50, 23] considered the FLEMING-VIOT process
shifted by minus its empirical mean and established existence of a unique invariant measure and
weak ergodicity for this process using moment and duality arguments. More precisely in [23],
thanks to some estimates of the original FLEMING-VIOT dual process and the finiteness of all
moments of the FLEMING-VIOT process shifted by minus its empirical mean for any time ¢, the
authors obtain an expression for these in the asymptotic t — 4+o00. Then, by tightness arguments
and characterisation of the limit, the result follows. In [50], an analoguous approach is used for
the continuous-state stepwise mutation model.

In this paper we are interested in the FLEMING-VIOT process shifted by minus its empirical
mean, which we call centered FLEMING-VIOT process. As in previous works it is natural to ask
questions of existence, uniqueness and ergodicity when the mutation operator is the Laplacian
on R. Moreover, the study of this process was motivated by biological questions in adaptive
dynamics. The theory of adaptative dynamics [39] is based on biological assumptions of rare
and small mutations and of large population under which an ODE approximating the population
evolutionary dynamics, the Canonical Equation of Adaptive Dynamics (CEAD) was proposed
[12]. Two mathematical approaches were developed to give a proper mathematical justification of
this theory: a deterministic one [13] 47, 38], and a stochastic one [4} [T, [6]. Despite their success,
the proposed approaches are criticised by biologists [52, [48]. Among the biological assumptions
of adaptive dynamics, the assumption of rare mutations is the most critised as unrealistic. In
order to solve this problem, we propose to apply an asymptotic of small mutations and large
population, but frequent mutations. After conveniently scaling the population state, this leads to
a slow-fast dynamics [46l [34], where the fast dynamics appears to be given by a discrete version
of the centered FLEMING-VIOT process [5]. This explains why we are interested in ergodicity
properties of such processes.

To establish the existence of the centered FLEMING-VIOT process, we characterise it as a
solution of a measure-valued martingale problem that we called the centered FLEMING-VIOT
martingale problem. Our method is to exploit the original FLEMING-VIOT martingale problem
and asymptotic expansions. An additional difficulty occurs in our case since we need to apply
the original FLEMING-VIOT martingale problem to predictable test functions. This requires to
extend the martingale problem to such test functions using reqular conditional probabilities. The
proof of uniqueness of the solution of the centered FLEMING-VIOT martingale problem is based
on duality methods as in the previous works. However, additional difficulties occur in our case
since bounds on the dual process are much harder to obtain and the duality identity can only be
proved in a weakened version. In particular, our uniqueness result only holds for initial conditions
admitting finite moments. We also provide a counter example showing that our uniqueness result
is optimal in the sense that we cannot expect to obtain uniqueness for more general initial condi-
tions using the duality approach. Finally, we obtain strong ergodicity properties of the centered
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FLEMING-VIOT process that extend the weak ergodicity results obtained in [50} 23]. To this aim,
we construct the centered version of the MORAN process and we prove that it converges in law
to the centered FLEMING-VIOT process. Exploiting the relationship between the MORAN model
and the KINGMAN coalescent, we obtain a result of exponential ergodicity in total variation for
the centered MORAN model uniformly in the number of particles. This result is propagated to
the centered FLEMING-VIOT process by coupling arguments. Using another strategy proposed
by [50} 23], based on the DONNELLY-KURTZ modified look-down [I5] we give a characterisation
of the unique invariant measure of the centered FLEMING-VIOT process.

This paper is organised as follows. In Section 2 we define the martingale problem for the
centered FLEMING-VIOT process and establish an existence result. We give also some equiva-
lent extensions to the centered FLEMING-VIOT martingale problem and some properties of the
centered FLEMING-VIOT process. In Section 3 we prove uniqueness to the centered FLEMING-
VIOT martingale problem for initial conditions admitting finite moments and we discuss this
assumption. In Section 4, we establish exponential convergence in total variation for the cen-
tered FLEMING-VIOT process to its unique invariant measure and provide a characterisation of
this measure based on the DONNELLY-KURTZ modified look-down. Finally in Sections 5 and 6,
we prove respectively the main results of existence and uniqueness of the solution of the cen-
tered FLEMING-VIOT martingale problem. The paper ends with an appendix gathering technical
lemmas for the existence proof.

2 Existence for the centered Fleming-Viot process

In this section, our aim is to define the martingale problem for the centered FLEMING-VIOT
process and to establish an existence result. This result is stated in Section Then, we give
in Section [2:2] the framework and ideas of the proof. In Section 2.3] we give some equivalent
extensions to the centered FLEMING-VIOT martingale problem with different sets of test func-
tions. We end this section by giving some interesting results about the centered FLEMING-VIOT
process: it satisfies the MARKOV property (Section , admits finite moments (Section
and has compact support (Section .

2.1 Centered Fleming-Viot martingale problem and main result

The original FLEMING-VIOT process is a measure-valued diffusion in M (R), the set of probabil-
ity measures on R with respect to the BOREL o—field B(R), which is endowed with the topology
of weak convergence making it a Polish space [2]. If Z is an interval of R, then for all £ € N,
we denote by €“(Z,R) the space of functions of class € from T to R. For ¢ € N, we denote by
%L (R,R) the space of real bounded functions of class ¥*(R,R) with bounded derivatives. We
consider the filtered probability space (Q, F, (ft)t>o) where

Q:=%€° ([0, +0), M1 (R))

is endowed with the SKOROHOD topology, F is the associated BOREL o—field and (F%), is the
canonical filtration. The centered FLEMING-VIOT process is a measure-valued diffusion in

ME(R) = {u € Ml(R)' /R|x]2,u(da:) < oo,/Ra:/,L(dx) _ o}
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which is endowed with the trace of the topology of weak convergence on Mj(R). We consider
the filtered probability space (ﬁ, F , (.f’-rt) ) where

t=0

Q= {X e ¢" ([0,—!—00) ,M§’2(R)) ‘ vT >0, sup / |22 Xy (dz) < oo}
R

0<t<T

is endowed with the trace of the SKOROHOD topology on (2, F is the trace of the o—field F
and (]:t)t>0 is the trace of the filtration (F%),,,. We introduce several notations that we use

repeatedly in the sequel. For a measurable real bounded function f and a measure v € M;(R),
we denote (f,v) := [ f(z)v(dz). We denote by id the identity function. We denote N :=
{0,1,2,---} and N* := N\ {0}. For all £ € N and for all v € M;(R), we also denote

My, (v) = /R |z — (id, )| v(dz).

In particular, for all k € N and for all u € M$?*(R), My(p) = <]id\k ,,u> . For all F € % (R,R)
and g € €2(R,R) we denote for all v € M (R), F,(v) :== F ({g,v)).

Definition 2.1. A probability measure P, € My (ﬁ) is satid to solve the centered FLEMING-VIOT

martingale problem with resampling rate v € (0,+00) and with initial condition p € M‘i’z(]R)
if the canonical process (Xt);~q on  satisfies P, (Xo = p) = 1 and for each F' € ¢*(R,R) and
9 € G (R,R),

Wi (g) 1= By (X0) = Fy (X0) ~ [ LoveFy (X s (@)

with, for all w € M$?(R),

1

Loty (@) = F (0.2 ((£.2) +9 (", ) Mo() — 2(g' x1d. )]

(5)
+7F" ((9.@)) (6% @) — (9. @) + (¢ @) Mz (w) — 2 (g, @) (g x id, =)
is a continuous IP,—martingale in L? (Q) with quadratic variation process
_ t
(7 (), =21 [ [F (0. X)) [(9% X.) = (9. %.)° o

+ (g, Xa)? My (X,) — 29/, X,) (g x id, X,)] ds.

Note that a major difficulty comes from the presence of terms in Ma(u) in . We will
see in particular that this leads to the creation of particles in the dual process. Note also that
the operator given by is the generator (in the sense of DYNKIN) of the Mi’Q(R)—Valued
centered FLEMING-VIOT process. We recall that the probability measure PV € M () is said
to solve the original FLEMING-VIOT martingale problem with resampling rate v and with initial
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condition v € M;(R) if the canonical process (Y;);, on 2 satifies PEV(Yy = v) = 1 and for each
F € ¢?(R,R) and g € 62(R,R),

ME ()= F((9¥0) ~ F (g Yo) — [ (g v) (5.3 ds i
t 7
- 7/0 F" ({9, Y)) [0, Ys) = (9, Y:)] ds

is a continuous square integrable PYY —martingale whose martingale bracket satisfies for all
G,H € €*(R,R) and for all g,h € €*(R,R),

(M), M (1), =27 [ G (o, Yo H (YD g Vo) — (0. Yo) Yol ds. (9

In the population genetics literature, the terms involving the first order derivative F’ describe
the effect of the mutation whereas the ones involving the second order derivative F” describe the
effect of the random genetic drift. As the original FLEMING-VIOT process is obtained as a scaling
limit of a population genetics model, called MORAN’s model (see Section7 the different terms
in (7)) can be interpreted as in the population genetics context. It is well-known that, for all
v € Mi(R), there exists a unique probability measure PEY € M (Q) satisfying the previous
martingale problem [27, Theorem 3.

Remark 2.2. The additional terms in the martingale problem with respect to the martingale
problem describe the impact of centering and ensure that at all times the centered FLEMING-
VIOT process remains MT’Q(R)—valued.

Let us define by 7, the translation operator of vector a € R. For all u € M;(R), for all

A € B(R), })
reAp ),

where § is the pushforward operator (o4 i is the pushforward measure of p by 7). For all k € N,

we denote
<|id]k,y> < oo} :

ratn(A) = p (7" (4) = ({o—a

ME(R) := {1/ € Mi(R)

The main result of this section is the following:

Theorem 2.3. For all u € ME’Q(R), there exists a probability measure P, € My (ﬁ) satisfying
the martingale problem of Definition given by the law of the process (Zt)t>0 defined by

Zy =1 eyt Ve =Y (4 (id, V), t=0 (9)
where (Y1), s the original FLEMING-VIOT process.

Note that for all u € M} (R), (id, ) is the mean value of p and so (id, Z;) = 0 for all ¢ > 0.
As a result, the process (Zt)@0 corresponds to the original FLEMING-VIOT process centered by
its mean value, hence its name of centered FLEMING-VIOT process.
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2.2 Sketch of proof of Theorem

The proof is based on the original FLEMING-VIOT martingale problem .

2.2.1 Framework and objective of the proof

Let v € M2?(R) and PEV the unique solution to the original FLEMING-VIOT martingale prob-
lem . As the support of the original FLEMING-VIOT process is compact at all positive
times PV —a.s. [37], PLV (¢ ([0, +00), M3(R))) = 1. Moreover, as t — (id,Y;) is continu-
ous PYV—a.s. (Lemma (2)), we deduce that, for all ¢ > 0, Z; given by @), is well defined
and is a random variable on .

When the dependency of Y and Z on the initial condition v of Y is important, we shall use
the notation (Y}"),5o and (Z}),q instead of (Y3),5o and (Z;),5o. Our goal is to prove that the
law of the process (Z;),, denoted by pEVe solves the martingale problem of Definition

T_ (i) v
with initial condition 7_q ) 7. Note that the notation PE,V(C-(, P is justified because the original
FLEMING-VIOT process is invariant by translation:

Proposition 2.4. Let v € Mi(R) and a € R. Then, the law of Z! is the same as the law of
Z7b

Proof. By translation invariance of the original FLEMING-VIOT process, the process (T_alj Yf"ﬁ ”)t>0

has the same law as the process (Y}”),5,. Now,
Zz—aﬁ v _ T7<id,§/t‘raﬁ 1/>ﬁ YtTaﬂ v _ T*<id,‘l'_aﬁy't7—aﬁ u>ﬁ (T_ah }/tTaﬁ V) .

Thus, (Z;aﬁu)PO has the same law as (T <id,Yt'f>ﬁ Y’tu)

= (Zi/)go- O

=

t=>0

2.2.2 Qutline of the proof

We restrict to the time interval [0, 7] for T' > 0 arbitrary. By standard arguments, it is sufficient
to prove that, for all F € €*(R,R) and g € ¢2(R,R),

Fg (Zt) - Fg (ZO) - /Ot EFVCFg (Zs) ds (10)

is a continuous PFV —martingale, v € M?(R) where Ly is given by . We start by assuming
F ge %lf‘(R, R) and we seek for the DOOB’s semi-martingale decomposition of

Fy(Zt) == F ({9, Z1)) = F ({(goT_pay)» Y)) »

using the original FLEMING-VIOT martingale problem . However, F' (<g © T_(id,Y;)s Yt>) does
not take the form H ((h, Y;)) with deterministic h. Therefore, we cannot apply (7)) directly. To get
over this difficulty, we consider for ¢t € [0, 7], an increasing sequence 0 =t < T < --- < ty, =T
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of subdivisions of [0, 7] whose mesh tends to 0. We can observe that

Fy(Z0) = By(#0) = Y {Fy(Zun,yne) ~ FolZipen)}

e e (eIt

Using asymptotic expansions (see Lemma with p = 1) of the terms in the previous sum, we
prove that

s
I
)

pn—1

Fy(Z) = Fy(Zo) = 3 {(A)i +(B), +0 (\ (id, Yin_ nt — Yinne) \3)

ol

<9(k) ° T_<id7yt?/\t>7)/t?+1/\t - Y;ff/\t>
where
(A)=F <<g ° T*<id,YtgAt>’ Yt%t>> {<g ° Tf<id,Ytan>’ Yo, one = Y;f?/\t>
_ <id, Yin e — }/;f?/\t> [<9/ o T—<id,YthM>’ Y;t?/\t> + <g/ o T_<id’Yt?M>, Yin e — Ytg/\t” (12)
+ % <id, Yin at — Yt;?/\t>2 <g” o 7'_<id’Yt?M>, Yt?/\t>} 7

P (0907 Yerr))

2
B {<9 © T—<id,YzZnM>’ Y;f;lHAt - Yt?At>

2
+ <id7 Yin at — Yt?“>2 <9l O (idYipn) Yt?“> "

-2 <g o T_<id7Yt?M>, Yin e — Yt?/\t> <id, Yir at — Yt;w,> <g' o T_<id%?M>7 Y;S;‘/\t>} )

(B)i =

and where g(j), j € {0,1,2}, denotes the 4 derivative of g. Note that the proposed decompo-
sition in is intended such that each of the terms in and is either ]-‘t? rt—adapted
or they exhibit increments of (Y;),5, between ¢! At and ', ; At. Several steps are described in
Section [5| to obtain the semi-martingale decomposition of each term involving increments of Y;
of the previous sum. Note that the last terms of (A), and (B), bring out the terms in Ma(u).
By making the step of the subdivision tend towards 0, we obtain the expected result. By density
arguments, the martingale problem satisfied by F,g € CKbA‘(R, R) is extended, in Section
to the case where F' € €%(R,R) and g € %2(R,R). Once we have proved that M\F(g) is a
martingale, using ITO’s formula and the martingale problem ({4]) with a localisation sequence, we
deduce the value of <J\7F(g)>t and by FATOU’s lemma that M/ (g) € L? ((2)
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2.3 Some extensions to the centered Fleming-Viot martingale problem

Our goal is now to give some extensions to the martingale problem which will be useful to
compute the martingale bracket between two martingales of the form and prove uniqueness
of the solution of the martingale problem of the centered FLEMING-VIOT in Section 3] Note that
these different versions are equivalent and that it is usual to switch from one to the other.

2.3.1 Extensions to multiple variables

We firstly introduce the version of the centered FLEMING-VIOT martingale problem with p € N*
variables.

Definition 2.5. The probability measure P, € My (ﬁ) is said to solve the centered FLEMING-
VIOT martingale problem with p variables, with resampling rate v and with initial condition
nw e Mi’2(R), if the canonical process (Xi),5o on Q satisfies Pu(Xo = p) = 1 and for each
F € €*(RP,R) and g = (g1, ,9p) € €2 (RP,R),

ME(g) == F (g1, Xe) -+ (gps Xe)) — F ({91, X0) , -+, (g, X))
[ A g X X)) ¢
0 k=1
K%’@,XQ +7 ({gi, Xs) Mz (X5) — 2 (g}, X id,Xs>)} ds

s (14)
—7 [ 30 OF (g X) (g X))
0 j=1

(9095 ) = {90, X0) {93 X.) + (ghs Xo) (g}, X) Ma (X.)

— (g}, X3) (g5 x id, X,) — (g}, X;) (gi % id,Xs>} ds

is a continuous P, —martingale in L? ((Z)

We will see in Section [3| that this martingale problem admits a unique solution which is the
same as the solution of the martingale problem if the initial condition has all its moments
finite. For the moment, we can prove:

Theorem 2.6. For all u € Mi’Z(R), the probability measure P, constructed in Theorem
satisfies the martingale problem of Definition [2.5]

Proof. We can deduce the result from the original FLEMING-VIOT martingale problem with
p variables [I0] given by below, following exactly the same method as for the proof of
Theorem We recall that, the probability measure PEV € M; (Q) is said to solve the original
FLEMING-VIOT martingale problem with p variables with resampling rate v and with initial
condition v € M;(R), if the canonical process (Y7);,, on {2 satisfies PEV(Yy = v) = 1 and for



each F € €?(RP,R) and g = (g1, , gp) € C2(R?,R),

ME(g) = F (g1 %) - gy ¥2) — F (g Y0) - g Y0))
OF ({91, YY)+, {gp, Y 9%y as 15
/;k (0% (g Yo) (25, 7:) (15)
1 [ 0P oY YD) g V) — o Ya) (g Yl 0
i,j=1

is a PV —martingale. As mentionned in [I0, Theorem 5.1], the solution PEV of the martingale
problem is the unique solution to the previous martingale problem . Here, has to
be replaced by the general version of Lemma O

This version allows us to compute the martingale bracket <J\//.7 G(g), MH (h)>1; in a similar form
as ().

Corollary 2.7. Let G, H € ¢*(R,R) and g,h € 62(R,R). Then,

(3T(0), (), =2y [ & (lg. X)) ' ({1, X2) [ (g, X,
— (g, Xa) (h, Xo) + (g, Xa, ) (W, X)) My (X.)
— (g, XY (b x id, Xa) — (I, X4) (g id,XS)] ds.

Proof. Recall that for all v € M;(R), Gy4(v) := G ({g,v)) and Hp(v) := H ((h,v)). Using the
relation for M&(g) and M/ (h), we obtain that

ME ()M (h) = G ({g. X2)) H ((h, X)) — G ({g, X0)) H ({h, X))
— G (g, X1) /O LoveHy (X,)ds — H ((h, X)) /0 LiveGy (Xs) ds

t t (16)
+ /0 LrveGy (Xs) ds /0 LoveH (Xs) ds

— G ({g, Xo)) M (h) — H ((h, Xo)) ME (g)

where Lpy, is given by () . From the martingale problem with p =2, F(z,y) = G(x)H (y)
and f = (g,h), we deduce that

G ({9, X0)) H ({h, X)) — G ((g, Xo)) H ((h, X0))

t
/ G (g, Xs)) Love Hp(Xs)ds + /0 H ((h, X,)) LrveGy(Xs)ds

FNF() 420 [ G (o X B (0, X0) [loh X = (9, X0) (1, X0)

+ (g, XY (W, X)) My (X,) — (g, Xs) hxid,X5>—<h’,XS><g><id,Xs>} ds,
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where (]\ZF ( f)>t>0 is a P,—martingale. Using ITO’s formula for the third and fourth term
of the right hand side and noting that

t t t S
/ LrveG, (X,) ds / LiveH) (Xs) ds = / [LFVCGg(XS) ( / LFVCHh(XT)dr)}ds
0 0 0 0

+ /Ot [LFvcHh(Xs) ( /0 EFVCGQ(XT)drﬂ ds,

we deduce the DOOB-MEYER decomposition of MG(Q)MH (h):

NI (o)W1 () = W () + 27 [ 6 (L9, X)) B (00 X)) [(9h, X0) = (0, o), X0)

(g, X)) (W, X)) My (X,) = (g, Xo) b id, X,) = (W, X,) (g % id, X,) | ds

- [ ([ eovert (x5 ar )dMG [ ([ £rvec, (o ar ) anit o

— G ({g, Xo)) M (h) — H ((h, Xo)) ME (g).

The result follows. O

2.3.2 Extension to polynomials in u

Our goal here is to study the DOOB semi-martingale decomposition of polynomial functions of
the centered FLEMING-VIOT process of the form

Prn() = (Fop) = [ o [ flane anu(dan) - p(da,) (17)

with n € N*, € MT’2(R) and f € €2(R",R) and p" is the n—fold product measure of y. To
obtain the expression of Lpye for polynomial functions Py, with f € 62 (R", R), we first look for
this expression when f has product form. The previous martingale problem ((14)) gives heuristics

for this issue: for the choice of F(z1,---,x,) := H x;, noting that F ({g1, ), -+, {gn, ) =
i=1

Py (p) with f (z1,- -, 2p) == [[I'21 gi(z;) and g; € €2(R,R), i € {1, ,n}, we deduce that for
all e MS*(R),

n

LevePrn (1 Z::<< ,u>+7[<g py Ma(p) — 2 (g x id, uﬂ) 1T (95>

j=1
i#i
+7 Z Z (9igj> 1) — (9i» 1) (94> 1) + (g 1) (g}, 1) Ma(p)
i=15=1
i#i

— (g 1) (g5 x id, ) = (gj, ) {gs x id, )] H Ghes
kL
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For all n € N*, we denote by 1 € R", the vector whose coordinates are all 1 and by A the

Laplacian operator on R™. The previous relation leads us to introduce, for each n € N* and for
all f € €2(R",R), the operator B™ defined by

BW f(z) := %Af(x) —2y(Vf(z)-1)(z-1), =xecR"™ (18)

Indeed, again for the choice f(z1,- - ,xy) = [[7— gi(z;) with g; € €2(R,R), i € {1,--- ,n}, we
obtain

n
B(n)f(xl, Z {7 — 2yz:45(x;) ] H gj(x;)

=1 ji=1

J#i
n n n
-7 Z Z [$jgj($j)gg )"’ngz Z; g] xj H
i=1j=1 )
J#1 k#4,j

Note that, for all u € Mf’Q(]R),

n

LevePrn(p) = (B f,5m) + 3 7 (g}, 1) Ma(p) TT (g 1)
=1

j=1
+’YZ Z (95, 11) — (gi, 1) (g, 1) + {9l 1) (g}, 1) Ma(p)] T (gmr 12)-
e Kz

This leads us to introduce another extension of the martingale problem (4)) which will be
useful in Section [3|to prove uniqueness.

Definition 2.8. The probability measure P, € My (~) is said to solve the centered FLEMING-
VIOT martingale problem for polynomials wzth resampling rate v and with initial condition p €
Miz( ), if the canonical process (Xt);5q on Q satisfies P W(Xo =p) =1, for alln € N*, and for
each f € G2(R",R),

— t
M) = (LX) = (155 = [ LrvePra (Xo)ds (20)

with for all w € M$*(R) and f € G2(R™,R),

n

LyvePrp(w) = <B(n)f7 wn> +y Zn: z”: (@i f, "1 = (f,@™)] +7 z”: > (Kijf, @)

i=1j=1 i=1j=1
J#i
(21)
is a continuous P, —martingale in L? (Q) where, for alli,j € {1,--- ,n},

o &, : GHR"R) — GAR" L R), with i # j, is the function obtained from f by inserting
the variable x; between x;_1 and x; when i < j and by inserting the variable x;_1 between
xj_1 and xj; when i > j:

Qi if (x1, s xn-1) = f (21, -1, i, Tj, Tj1, 0+ 5 Tn—1) i < j

o (22)
Qijf (x1,- xn1) = f (@1, 251, T 1, Tj, Tjg1, - Tn1) P>
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o ;¢ %bQ(RnaR) — 2R, R) is defined as

Kijf(w1,-  @n, ng1) o= 05 f (21, 2n)ah 41 (23)

We will see in Section [3] that this martingale problem admits the same unique solution as the
martingale problem if the initial condition has all its moments finite. For the moment, we
can prove:

Theorem 2.9. For all p € M§’2(R), the probability measure P, constructed in Theorem
satisfies the martingale problem of Definition [2.8]

Proof. We can deduce the result from the original FLEMING-VIOT martingale problem for polyno-
mials [23] given by below, following exactly the same arguments as for the proof of Theorem
The probability measure PEY € M; (Q) is said to solve the original FLEMING-VIOT mar-
tingale problem for polynomials with resampling rate v and with initial condition v € M;(R),
if the canonical process (Y;);,, on  satisfies PEV(Yy = v) = 1, for all n € N*, and for each
[ € €2(R",R),

t
M (F) = (F Y = (f, YY) - /0 LrvPry (Ya)ds (24)
with for all w € M;(R)

Lry Py, (@) = <%Af, w"> YD (@igf @™y = (f, @)

i=1j=1

J#i
is a PEV —martingale. By [23, Theorem 3.2], the solution PEV of the martingale problem is
the unique solution to the previous martingale problem . O

2.4 Some properties of the centered Fleming-Viot process
2.4.1 Markov’s property

Due to the translation invariance property of the original FLEMING-VIOT process, we can prove
that the centered FLEMING-VIOT process is homogeneous MARKOV.

Proposition 2.10. The centered FLEMING-VIOT process (Z;),s, defined by @ satisfies the
homogeneous MARKOV property: for all measurable bounded function f,

Ve MSAR), VYt s>0, K, (f(zm) ]-"t) —Ey, (f(Z,)) Pu-as.

Proof. Let u € /\/1(1:’2 (R) and f a measurable bounded function. Let ¢, s > 0. Using the MARKOV
property of the original FLEMING-VIOT process (Y;);, we obtain P, —a.s.,

E, (f(Zt+S) ft) =E, <f(7—<id7n+s>ﬁn+s) }—t) =E, (9(Yt+s) ]:t> = Ey, (9(Y5))

where the bounded measurable map g is defined on M1 (R) by g(v) := f (7'_<id7l,>jj V). By invari-
ance by translation of the original FLEMING-VIOT process (Y;),, we obtain under the distribu-
tion P

Ey, (9 (Ys)) = ET—(id,Yt)ﬁY;ﬁ (g (T(idﬁ/t)ﬁYS)) = ETf(id,Yt)ﬁY;& (9(Ys)) =Ez (9(Ys)) =Ez (f (%)) .0
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2.4.2 Moments and some martingales

Proposition 2.11. Let p € M§’2(R) and let P, be a distribution on Q satisfying and such
that Xo is equal in law to p. Let T >0 and k € N\ {0,1} be fized.

(1) If <|id]k ,u> < 00, there exist two constants Cy, T, @%T > 0, such that any stochastic process
(Xt)octcr whose law is P, satisfies

@ s B (i, X0) < Cur (1+ (1)) )
~ -
(b) Voo >0, P, < sup <]id\k ,Xt> > a) < Ch.r (1 ™ <|1d’ 7N>).
te[0,7 @

(2) If <|id|k ,,u> < 00, respectively <|id|kJrl ,,u> < 00, the process (]\/Igd (idk))0<t<

bx

- defined by
T () = Gk, ) — (i, o) — [ (M2 ) ag
_ 7/; [(k(k — 1)id""2, X,) My(X,) — 2k (id*, X, )| ds

is a continuous P, —local martingale, respectively a continuous P,—martingale. Moreover,
if <]id\2k,u> < 00, then (Mid (idk))

variation is given by

is a martingale in L? (ﬁ) whose quadratic
0<t<T

(37 (ia#)), =2 [ [l x) — ik, x) + k(10 X ()
— 9%k <jdk_1,Xs> <idk+1,X5>} ds.

Note that the properties for k£ = 1 fail because of M> in the expression of Lgye.

Proof. Step 1. Proof of (1)(a). We prove only the case k > 3: the case k = 2, which is
simpler because some terms disappear, is treated in the same way. Let ¢t € [0,T]. We consider a
sequence of functions (g,),, ¢y of class ¢*(R,R) with compact support satisfying:

(i) for all m €N, |gn| < |id], (iii) g, = id on [—n,n],
(i) lm |gn||., =0, (iv) g, is uniformly bounded on R.
n—-+00 o0

We consider the sequence of functions (hy), oy defined by h, := /1 + g2 and we deduce from
the properties of g, that for all n € N, h,, is a non-negative function with compact support, that
for all k£ € N,

hk / — k /hkz—2 d hk " -k 7\ 2 hk—4 h2 k—9 2 k /lhk—Q

( n) - gngn n an ( n) - (gn) n ( n + ( )gn) + gngn n )

By = h := /1 +id? on the compact set [~n,n] and h, < h on R. We consider for all A € N
and £ € N, the stopping time 74 ¢ := inf {t >0 ‘ <|id|€ ,Xt> > A}. Noting that for all ¢ € [0, 77,
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k=2
ne€Nandk >3, (hE72,X;) <(hh, X;) F < (B* X;) and (R}2, X;) (id%, X¢) < (B*, X;) from
HOLDER’s inequality, we deduce from the martingale problem that there exists constants
Ci(k),Co(k, A) > 0 such that

&«mxwmw:M«mxm+&«£mM«%ﬂX§®)
+ K, ( /O v ((nh)" . x4) MQ(XS)d5> ~E, ( /0 R ((ns) xid, x.) ds)
< (i) + k0= ) B ([ ]3] (1472 x,) as)
kgl E, (/OWA”“ 5 (0 x| (B ) as )

, tATA K 1 )
+ 29k || ¢b ]| By (/0 it x Jid], Xo) ds)

tATA K
< (1) + a0, ([ (B8 X0) ds) + Call 4) -

By FATOU’s lemma we obtain when n — 400,
Ey (¥, Xinra,)) < (05, 1) + C1(K)E,, ( /0 Tk (" X,) ds) .
By GRONWALL’s lemma, we deduce that
By ({id*, Xinry,)) < By ((h*, Xinr, ) < (BF, 1) exp (Ca(R)E). (26)

In particular, this implies that the sequence (74 1) 4 cry converges Py —a.s. to infinity. Indeed, for

all T > 0, we have

ik
~ SUPie(o,T Ey (<|1d| s XA T >>
]P)’LL (Sup TA < T> < [0,7] tNTATA g
AEN A

which tends to 0 when A — 4o00. We deduce by FATOU’s lemma, when A — +oo, the first

announced result.

Step 2. Proof of (1)(b). Let o > 0. From the martingale problem (4)), we deduce that

T/\‘I'A’]C hk "
P, sup <hf’L,Xt> za | <P, (<h7]§,,u> > %) +P, (/ <(721)’XS ds > %
tG[O,T/\TA’k] 0
T/\TAyk
oo () i)
0 )

+P, (27 /OTMM ((nk) xid, X, ) Ma(X,)ds > g‘)

+P, sup M4 (hﬁ)’ >4
tE[O,T/\TAyk] 5
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The DOOB maximal inequality allows us to write

58, (37, (14)),)

P, sup ’Mld hk)
te[0,TATA k]

a
Z = <

From the martingale problem and the computations of Step 1, we deduce that

) <20+ 2cu0mm, (7 () ) 20500 i)

2 <h’“,u> [1+exp (C1(k)T)] 4 2Ca(k, A) || o »

(‘ T/\TA k n

where we use the FUBINI-TONELLI theorem and the relation . It follows, from MARKOV’s
inequality, that there exists a constant Cj > 0 such that

(o ()2 ) < QL0R 0 ep@@n) oo 4 ]
te |0, TATA L

By applying the dominated convergence theorem twice, successively when n — +oo then when
A — 400, there exists a constant C 7 > 0 such that

~ k
Pl" < sup <hka Xt> 2 Oé) < M:
t€[0,T «

and thus the announced result.

Step 3. Mid (idk> is a continuous local martingale. From the properties of (gn),cn»

note that there exists a constant 5k > 0 such that for all n € N, \g,’j‘ < \id]k and )(gﬁ)” <

ak: (1 + |id|k_1). It follows from the martingale problem , the properties of (g,),cy and the
dominated convergence theorem for conditional expectation that

(idk) = nEI—ir-loo Mtlfi\m ) (g,li)
= (id", Xinr,,) — (id¥, Xo) — /0 e ’f(’f;l) (12, X,) ds
_ V/OWA‘Q [k(k — 1) (id*2, X.) M () — 2k (id¥, X,)] ds

is a continuous P, —martingale and thus (]/\/[\ id (idk))

Mld

tATA 2

is a continuous P, —local martingale.
0<t<T

When <|id\k+1 ,u> < 00, using the inequality for all ¢ € [0, 7],
<\id|k_1 ,Xt> (id?, X;) < <\id]k+1 ,Xt> ,

the same computation applies replacing ¢ A 742 by ¢ to obtain that (Z\/Z id (idk ))0<t<T is a con-

X

tinuous PP, —martingale.
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Step 4. L?’—martingale and quadratic variation. As soon as <\id|k+1,,u> < 00,

Mid (idk) e L? (ﬁ) as a straightforward consequence of HOLDER’s inequality. It follows from
(6) that for all n € N, for all t € 0,7,

(M (g5)), = 27 /Ot (<gi’“,xs> (b x)" + (o) x0) aa(x)

) <(g,’§)’ ,XS> (gh x id, X>) ds.

Now = [35 (g8)]" — (319 (g8)),

is a P,,—local martingale. As Mid (idk) is bounded on [0,T A 749;] for all A € N, then for all

n €N, (Nr A,zk,n) is a martingale. From the relation with 2k, the dominated convergence
theorem for conditional expectation implies as above that P, —a.s.

For all n € N, the process

i Mot = [t (09)]" =2 [ (G0 - ()

n——+o0o

2
+ k(51 X)) My () — 2k (id LX) <idk+1,Xs>> ds
is a P,—martingale and we deduce the quadratic variation announced. O

2.4.3 Compact support

For all v € M;(R), we denote by Supp v the support of v. The historical reference of compact
support property of the original FLEMING-VIOT process is [10, Theorem 7.1] where the authors
proved that Supp Y; is a.s. compact for each fixed ¢ > 0. We will used a slightly stronger version
based on [37].

Proposition 2.12. For all p € Mi’2(R), for all e > 0, U.cs<;Supp Zs is compact P, —a.s.
Further, if Supp Zo is compact, then Ug<s<; SUpp Zs is compact for all t > 0, P,—a.s.

Proof. Tt is proved in [37] that the support of the A—FLEMING-VIOT process associated to a
A—coalescent which comes down from infinity, is compact at all positive times. Our case corre-
sponds to KINGMAN’s coalescent. In addition, they prove that, given that the initial condition
v has compact support,

J SuppY;

0<s<t

is compact for all t > 0, PEV—a.s. MARKOV’s property then entails that, if v € MT’Q(R),
U.cs<e Supp Yy is compact for all 0 < ¢ < ¢, PFV_—a.s. Hence, the same is true for Z; =
O

T_(id,v)) i Y

3 Uniqueness for the centered Fleming-Viot process

As for the original FLEMING-VIOT martingale problem, we will prove uniqueness to the martin-
gale problem by relying on the duality method [17, 9, 21), 23]. Additional difficulties occur
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in our case since bounds on the dual process are much harder to obtain and the duality iden-
tity cannot be proved in its usual form. In particular, we can prove uniqueness only for initial
conditions admitting finite moments.

3.1 Main result

Theorem 3.1. The centered FLEMING-VIOT martingale problem has a unique solution if
the initial condition has all its moments finite.

The reason why we need to assume finite initial moments will be explained at the end of
Section [3.2] In particular, we will see in Remark that we cannot hope to prove uniqueness
for more general initial conditions using our duality method.

Corollary 3.2. Ezistence and uniqueness hold for all the martingale problems of Definitions
23], 275 and 28] and they all admit the same solution if the initial condition has all its moments
finite.

Proof of Corollary[3.2 We proved in Section that P, solves the martingale problems of
Definitions[2.5] and 2.8} Since a solution to these martingale problems is of course also solution to

Definition uniqueness for Definition [2.1]implies uniqueness for the other martingale problems.
O

3.2 Notations and outline of the uniqueness proof

Our proof of Theorem is based on the duality method as proposed in [21], 23]. From , the
operator Lyvy. applied on the function Py,, defined in (17) with fixed f and n € N*, satisfies the
following identity:

LevePra(p) = (B F ) +9 >0 > [(®@iifon ™) = (£,u™)]

i=1j=1
Jj#i

(27)
',jfv Nn+1> - <f7 ,U'nﬂ + 7”2 <f7 :U’n>

M:

PP
= B3Py () 4 (f. )

We note that Z’} can be seen as an operator acting on the function f — P, (1) with fixed p.
The operator Z’} can be interpreted as the generator of a stochastic process on the state space
Unens €%(R™, R). Following ETHIER-KURTZ’s works [21], 23], this suggests to introduce a dual
process (ft)t>0> of generator Z} and to prove a duality relation of the form:

vVt >0, (<§0, x MO >) =E <<£t,Xéw(t)> exp (v /Ot M2(u)du>> (28)

where M := (M(t)),5, is @ MARKOV’s birth and death process in N whose transition rates g; ;
from i to j are given by:

(1) gnp+1= ,m2 (2) gnp—1 =9n(n—1) (3) ¢i;j = 0 otherwise.
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It is known that the relation implies uniqueness [26, Theorem 4.4.2]. However in our situa-
tion, it is difficult to obtain the strong version . For technical reasons, we will obtain only a
weakened version. Therefore, the proof will be divided in two large steps.

Step 1. Construction of the dual process (ft)t>0. The relation suggests that the
dual process (&)~ jumps, for all 4, j € {1,--- ,n} from f € ¢Z(R™R) to K, ;f € ¢*(R"" R)
at rate v and if i # 7, from f € €2(R™,R) to ®; jf € €2(R""1 R) at rate v. Moreover, note that
if n = 1, the dual process can only jump from f € Cgbz (R,R) to K; ;f. Between jumps, this dual
process evolves according to the semi-group of operator (T(”) (t))t>0 associated to the generator

B™ given by |D We will give an explicit expression of the semi-group (T () (¢ ))t> defined

as an integral against Gaussian kernels. This representation will be derived from a probabilistic
interpretation of the semi-group using a FEYNMAN-KAC’s formula. We define the dual process
as follows:

Definition 3.3. For all M(0) € N*, for all & € €2 (RM(O),R),

& = T(M(70)) (t —7n) AnT(M(an)) (Tn — Tr—1) An_ AlT(M (1) &,
Tn <t < Tpy1, nEN, (29)
where (Ty),cn 5 the sequence of jump times of the birth-death process M with 1o = 0 and where

(An),en @ a sequence of random operators. These are conditionally independent given M and
satisfy for allk e N, n>1 and 1 <i# j < n,

]P)(Ak:@i’j {M(Tk_):nvM(Tk):n_l}>:n(nl_1) (30)
and for allmn > 1 and 1 <i,j5 < n,
P (Ak =Kij|{M(r;) =nM (1) =n+ 1}) = % (31)

Moreover, the random times (Tx — Tr—1);5, are independent conditionally to M (1,—1) = n and
of exponential law of parameter yn? + yn(n — 1).

Note that particle creation for the centered FLEMING-VIOT dual process is possible unlike the
original FLEMING-VIOT dual process. It comes from the K; ; operator which has appeared under
the centering effect. Note that these terms are the ones with the My(u) factor in and are
found by the heuristic computation in . Indeed, for the choice of n € N*, f (IL‘1, C L Tp) =
[17—; gi(z;) with g; € 62 (R,R), i € {1 . n} we have fora all u € M$?(R) that

n

n n n n
Z Z Kifnt )y = X2 (o) I {o5o +Z Z Gis 1) (o) 11 (orr 1) | Ma(p)
= ST S 7

The terms ®; ; are present both in the original and centered FLEMING-VIOT. Because of the
operators K ;, difficulties will arise to get bounds on the dual process (see Section [6.2]) contrary
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to the non-centered case. Note also that M is a non-explosive process:

VT >0, ]P’( sup M(t)<+oo) :]P’( lim Tn:+oo) =1. (32)
t€[0,T] n—+00

Indeed, we note that for the choice of u; := vi(i — 1) and \; := i, i > 1 in [I, Theorem 2.2.],
we have

Pi--opi2 1

)\i e )\2)\1 2’}@

so that

1 1 > (A
Z(Aﬁm“ + +>\ >\2)\1 ZA )\2>\1 = too.

11

Hence, M is non-explosive.

Step 2. Weakened duality relation. We consider fixed M(0) € N*, & € €2(RMO) R)
and (X¢);5( a stochastic process whose law P, is a solution of the martingale problem with
p e MS%(R). We introduce a dual process (&t)¢o independent of (X¢),., built on the same
probability space (enlarging it if necessary). We shall denote by P, ¢), the law of ((X¢,&t)),>0
on this probability space. For any k € N, we introduce the stopping time

0y == mf ‘M >k or 3Jsel0,d, <§S,X}f§5)>>k}. (33)

Theorem 3.4. Given any (Xt);50, (&t)io as above, we have the weakened duality identity: for
all k € N and any stopping time 6 such that 0 < 0y,

W20, Egg) (€0 Xin")) = Equgo) <<5tA0,XéW Y exp (7 Om M2(u)du>> . (34

Note that this result holds true for any initial measure u € ME’Q(]R). The stopping time 6y,
ensures that each of the quantities involved in are bounded and thus that their expectations
are finite. Afterwards, we want to prove that if two solutions of the martingale problem satisfy
the weakened duality identity, then their 1—dimensional marginals coincide. This is where we
need stronger assumptions on pu.

Lemma 3.5. Assume that p € Mi’Q(R) has all its moments finite. Then, the stopping time 0y
defined by satisfies limg 1 o0 O = +00, P, ¢,) — a.s.

We will see in Remark [6.5] that the assumption on u is optimal in the following sense: even
if & is bounded, & may have polynomial growth of any exponent k in some direction of RM ®
so that <|§t\ M (t)> is infinite if 4 has infinite & moment. This shows that we cannot expect
to have 0 — 400 when k — +o0o if p has not all its moments finite. This means that we can-
not expect that the duality method could give uniqueness for weaker assumptions on the initial
condition.

The proofs of Theorem and Lemma are respectively given in Sections [6.2] and [6.3]
Once they are proved, the proof of uniqueness can be completed as follows.
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3.3 Proof of Theorem [3.1] from Theorem [3.4] and Lemma [3.5]

We rely on the ETHIER-KURTZ’s result [26, Theorem 4.4.2]. To get the desired result, i.e. the
uniqueness of the martingale problem , it is sufficient to verify that if we give ourselves two
solutions to the martingale problem , they have the same 1—dimensional marginal laws.

Let (Xt)t20 and ()?t)po be two solutions of the martingale problem 1' with the same initial

condition 1 € MS*(R) which has all its moments finite. Let (&t)¢>0 be the dual process with
initial condition & € €2(RM() R) with M(0) € N*. We suppose that these three processes are
built on the same probability space and independent of each other. We denote for all k£ € N,

Oy, = mf ‘M >k or Jselo, (&,X1Y) > k;}
These processes satisfy, for all k € N, &, € ‘€b2 (]RM (0),R) the weakened duality identity :

Ve =0, ,u{o (<£0’ t/\9k/\9k>) -
=E(, ¢ (<§t/\9k/\§k”uM(t/\0k/\§k)> exp (7 /Ot/\ek/\ek M2(u)du>)
“ €o) <<£O’ t/\9k3\9k>>

From Lemma since (Xt)t>0 and ()?t)po have continuous paths for the topology of weak
convergence, we have P, ¢ )—a.s., -

i (e XU0) = (@) it (6 00,) = (0 5),

Therefore, we deduce from the dominated convergence theorem and , that for all & €

&2 (RMO),R),

V20, B (Paao) (X)) = Eue) (Poaro) (X1))-

feEER,R),ne N*} is M1 (M;(R)) —convergence deter-
mining [9, Lemma 2.1.2], it is M; (./\/ll( )) —separating [26, Chapter 3, Section 4, p.112], it

follows that for any ¢t > 0, X, MO and X MO pave the same law. In particular, for the choice
M(0) := 1, [26, Theorem 4.4.2] ensures uniqueness to the martingale problem (4)). O

As the set of test functions {me

4 Ergodicity for the centered Fleming-Viot process

In this section, we establish ergodicity properties with exponential convergence in total variation
for the centered FLEMING-VIOT process (Z),. Note that in the case of the original FLEMING-
V10T process, ergodicity fails without the centering property [23 Section 9.1]. Standard duality
arguments would provide weak ergodicity estimates (see (1)) and [23]). However, using a coupling
argument based on the MORAN process and its relationship with the KINGMAN coalescent, it

21/[74]



is possible to obtain strong ergodicity bounds (see ) as done below. In addition, this will
provide an explicit construction of the invariant probability measure from the DONNELLY-KURTZ
modified look-down [I4}, 15]. For all u, v € M;(R), we denote by

= vy =5 s [(fm) = ()]
Ifll o<1

the total variation distance between p and v.

Theorem 4.1. There exists a unique invariant probability measure 7 for (Zt),~, and constants
a, € (0,+00) such that for all p € M(i’z(R), for all T >0,

Py (Zr € ) = 7llpy < avexp (=6T).

The main part of this section is devoted to the proof of this result (Sections to and
in Section [£.6] we characterise the invariant measure of the centered FLEMING-VIOT process.
In Section we construct the centered MORAN process and we establish its convergence in
law to the centered FLEMING-VIOT process. In Sections [£.2] and [£.3] we construct, backward in
time, the MORAN process, its centered version and we exploit its relationship with the KINGMAN
coalescent in order to prove in Section [£.4] an exponential coupling in total variation for the
MORAN process. We finally deduce, in Section the proof of the main result announced by
letting the number of particles go to infinity.

4.1 Moran’s models and Fleming-Viot’s processes

In [I7, [10L 27, 9], the authors construct the original FLEMING-VIOT process as a scaling limit of
a particle process: the MORAN process. The aim of this section is to construct the version of the
centered MORAN process and to establish its convergence in law to the centered FLEMING-VIOT
process.

We consider the MORAN particle process YV defined by
1
YN == E dx.

with state space M; n(RR), the set of probability measures on R consisting of N atoms of mass
1/N. Moreover, if (X;(0)),cn+ is exchangeable, then for all ¢ > 0, (X;(t)),cn« is exchangeable
[23, Theorem 6.1]. The infinitesimal generator of the R—measure-valued process YV is given for
all n € N*, f € 62 (R, R), uny € My ny(R) by

LnPyn (pn) = Pas , (1N)

+N(N —-1) /}R/]R [Pf,n <uzv - %‘r + f@) — P (uzv)} v (dz)pn (dy).
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The first term of the generator describes the effect of the mutation according to the Lapla-
cian operator. The second term describes the sampling replacement mechanism: at rate « (the
sampling rate) an individual of type z is immediatly replaced by one of type y. Note that the
population size remains constant over time.

We recall the following convergence result [9, Theorem 2.7.1]: for all initial condition Y{¥ =
~ LSV | 6x, € My n(R) with (Xi)1<i< v exchangeable R—valued random variables such that \
converges in law to p € M;(R) as N — 400, the MORAN process (YtN)@O
on €Y ([0,400), M1(R)), as N — +o0, to the original FLEMING-VIOT process (Y;),, defined as
the solution to the martingale problem .

converges in law

We denote M(I:%V(R) = {MN € M n(R) ‘ (id?, pun) < oo, (id, un) = 0}, and we define the

centered MORAN process (ng ) by

=0
z{ = T—<id,YtN>ﬁYtNa t=0.
The main result of this section is the following:

Proposition 4.2. For all initial condition Z} = + 3N 6x, € M‘f?\,(R) with (Xi)icicn
exchangeable R—valued random wvariables such that Z{¥ converges in law to Zy € Mi’z(R) as

N — 400 and satisfying supNeN*E(<id2,ZéV>) < 00, the centered MORAN process (ng)t>0

converges in law on €° ([0, +00), Mi’Q(R)), as N — 400, to the centered FLEMING-VIOT process
(Zt);>q solution of the martingale problem with initial condition Zy.

A difficulty in proving this result lies in the fact that p — 7_4q 8 # may not be continuous
on M (R) because id is not bounded. Hence we need to carry out several approximations and be
very careful to control the approximation error on events of large probabilities. In order to prove
this proposition, we need to introduce some notations and results. For all real-valued function f

on R, the LIPSCHITZ seminorm is defined by || f|| = sup,, % We denote by

BLA®) = {1 R R Ifll < 1]
where || fll 5z == |l fll, + | fllo For all u,v € M;(R), we denote by
dpy(p,v) i= sup  [(f, 1) = (f,v)],

feBL1(R)
the FORTET-MOURIER distance. Recall that M (R) endowed with the weak topology is complete
for the distance of FORTET-MOURIER [16], Corollary 11.5.5]. Let A denote the class of strictly
increasing, continuous mappings of [0,7] onto itself. For given metric spaces E and E, we
denote by D ([0, 7], E), the space of right continuous and left limited (cad-lag) functions from

[0,T] to E and by €} (E E) the space of continuous bounded functions from E to E. For
z,y € D([0,T], M1(R)), we define the distance dy(x,y) by:
log (A(t) - MS)) ‘} .
t—s

%@Wﬁﬁ%wmewmw+m
AEA (tefo,T) <t
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From [2 Theorem 12.2 and Remark of page 121], (D ([0,T], M1(R)),dp) is a Polish space and
the topology induced by the distance dj is the SKOROHOD topology. Let us consider the following
lemma whose proof is similar to that of Proposition and left to the reader:

Lemma 4.3. Let T'> 0 and k € N fized. There exists a constant Cpr > 0 independent of N
such that for all YV € M n(R) satisfying supyen E (<|id|k,Y0N>) < 00, the MORAN process
(vY)

0<t<T satisfies

) _ Crrsupyen+ E (<|1d\k ,Y0N>)
< - )

Ya > 0, Py~ ( sup <|id|k,YtN> >«
O \telo,T]

Proof of Proposition[{.9 We want to establish that

vg € % (D(0.7), M1(R)).R),  lim E(g(2")) =E(9(2)).
Let € > 0. We consider the two following maps F and F; from D ([0, 7], M}(R)) to D ([0, T], M1(R))
defined by F(y)(t) := T_iay) $y(t) and Fo(y)(t) = 7_(h. y()) §y(t) where he is a map from R
to R defined by
z if |z <1
he(z) == Logf a>1

_1 _1
61f r < =2

Step 1. Continuity of F.. In this step, we want to establish that
Fe € %bo (D ([07 T]7 Ml(R)) ,D ([07 T]? Ml(R))) :

To obtain this, it is equivalent to prove that if for all n € N, y,,y € D([0,T], M;(R)) and

limy, 400 do(Yn,y) = 0, we have lim, 1o do (Fz(yn), Fe(y)) = 0. As, limy, 1 o0 do(yn,y) = 0,
there exists ng € N such that for all n > ng, there exists A, € A satisfying

o (2 =) 2 )

sup dpar(yn © An(t), y(t)) + sup P 5

te[0,T] s<t

Note that

dO (Fa(yn)v F&(y)) § teS[%I;“] dFM(FE (yn) (An(t)) ) Fa(y) (t)) + Sslilt)

MECREO

t—s
Now, for all t € [0, T,

drar (Fe(yn) A (@), Fe(p) (@) = sup  |(f o T—(he ynorn () ¥n © Anlt)) — (f o T— i ytyy> y ()]
fEBL1(R)

< sup |(f 0T (he ynorn(t)) Yn © An(t) — y(1))|
FEBL\(R)

+ sup fOT, c,YnOAn —fOT, - ,yt .
fE€BL1(R) < {hesynoAn (1)) the () Y1)
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On the one hand, as f € BL1(R), it follows that f o 7_(,. y.0r,. (1)) € BL1(R) and thus

SUp [ (f © T— (e ynorn(8)) Un © An(t) = y(1))| < drar (Yn © An(t), y(t)) .-
fEBL1 (R)

On the other hand, as f and eh. are in BL1(R), we have
|<fo7' (he ,YnoAn( fOT (he,y(t))s >| 67yn0)‘ ( )> <h€7y(t)>’
= [{ehe, yn 0 An(t) — y(1))]

< —dry (Yn 0 (), y(1)) .

M=M=

It follows from that,

1
o (Felun), o) < (14 2) sup_dias (g 0 Aa(t), (1)) + sup
te[0,7) s<t

log ()‘n(t) - /\n<3)> ‘

t—s
Le.
Step 2. Control in distance dj of the difference between F (YN) and F. (YN). We

consider the MORAN process (V" )0 <t Started from Y{Y = Z} and the original FLEMING-VIOT
process (Yt)ogth started from Yy = Zy. In this step, we consider the events

2 2
Q. N = { sup id%, v,V < } and Qe oo i= { sup (id%,V;) < } .
) {te[O,T] < ! > \@ t€(0,T] < t> \@

As supycy E (<id2, zy >) < 00, it follows from Lemma (respectively Proposition , there
exists a constant Cp > 0, independent of N, such that IP’YON (Qe,n) = 1 — Cpy/e (respectively

Py, (Qe00) =1 — Cr+/2). Moreover, on Q. n, forall t € [0,T7,

do (F(YV),F (YN)) < ts[lé%]dFM (F (YY) ), F: (YV) )

< s [for gy = S0 pam
< s [[(he —ial )|

<— sup H 1d2 YN H

where we used the inequality |he —id| < %id2. Similarly on € ,
do (F(Y), Fx (V) < V&

Step 3. Conclusion. We want to prove that for all ¢ € % (D([0,7], M1(R)),R),
limy—io0c E(9(Z2Y)) = E(9(Z)). Thanks to the PORTMANTEAU theorem [2, Theorem 2.1],
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then it is sufficient to prove this for all g 1—LipscHITZ. As (YN) converges in law to Y,

we deduce that, for N large enough,

NeN*

[E(go £ (YV)) ~E(go £ (V)| < V=

Using that g is 1—LIPSCHITZ, and the inequalities of Step 2, it follows that

‘E(g (zM)) —E(g(Z))‘ - ’E(goF(YN)) —]E(goF(Y))‘
<[E(go R (YY) ~E(go (V)]
n ‘E(goF(YN)) ~E(go L. (YN))‘
+E(goF: (Y)) —E(g0 F (Y))|
<VE+2|gll [Pyy (6n) + Py (%00)]
+ VE [Py (2 n) + Pyg (Qe,00)]
< (3+2llgllo Cr) Ve

The announced result follows and completes the proof. O

4.2 Backward construction of Moran’s process and Kingman’s coalescent

In this section, we exploit the relationship between the MORAN model and the KINGMAN coa-
lescent to obtain in Proposition [4.7 a result of exponential ergodicity in total variation for the
centered MORAN model uniformly in N. The genealogy of a sample from a population evolving
according to the MORAN model of Section is exactly determined by KINGMAN’s coalescent
with coalescence rate 2. The state of the population at the final time is constructed from the
ancestral positions by following the genealogy and adding mutations on the genealogical tree of
the sample according to a standard Brownian motion. Therefore, at the final time T', the position
of each individual of the sample is equal to the sum of the position of its ancestor at time 0 and
the Brownian mutation steps that occured during its ancestral branches in the coalescent. We
formalise this construction below by giving some notations and illustrations of the latter ones.
Let be fixed the time T' > 0 and the number of particles NV € N*. We consider the probability
space (ﬁ,f, @) where Q) := Kn1 X Mut?&?l x ARY, F o= Frnr @ FMuty r © FAL;VN and

P.= Ky ® E%ﬁg_l ® ®f»V: 1 Ech!"™ with the following notations.
We denote by Ky 1 the state space of the KINGMAN [N —coalescent with coalescence rate 2
on [0,T):
Ky :=D([0,T],1Ly)

with IIy the set of partitions of {1,---,N}. We denote by Ky 7 the law of the KINGMAN
N —coalescent with coalescence rate 2y on [0,7] and Fiyr the SKOROHOD o—field on Ky 1.
In the following, in order to simplify the names, the precision “at coalescence rate 2v” will be
omitted.

We denote by ALY := Hf-V: 1 R? the state space of the possible ancestral positions in the KING-
MAN N —coalescent at time 0. We denote by Ech/" with uy := % Z;-V: 10z, € My n(R), the law
of a i—sample where we select i elements randomly and without replacement in {z1, -+ ,xnx}

26 /[74]



according to pn and by F LN the BOREL o—field on ALY.

We denote by Muty r the set of Brownian trajectories of 4 ([0, T],R). We denote by Lyfut
the law of a 1—standard Brownian motion and Fyut NT the BOREL o—field on Muty 7.

Finally, we denote an element & of Q as:

~

W= {(kNvt)OétéT; (W(B)>Bc{17.,.7N}\g ;x(l)v e 7x(N)} 5

where we denote z(*) = (xgl),azgk), e ,:E,(gk)). Note that (kn,)y,cp IS an increasing process

in Ky representing the genealogy. In addition, we denote by kyr := {L1,---,Ly} with
n := |kyr|. In other words, KINGMAN’s N —coalescent contains n distinct lineages where L; is
a subset of {1,---, N} at the final time 7. For each individual i € {1,---, N}, we denote by
a(i) € {1,--- ,n}, the index such that i € L,(;). In other words, Ly is the ancestral lineage of 1.
For each individual ¢ € {1,---, N}, we denote by B(s,1) the block of the partition ky s at time

s and containing the individual i. We denote by z(™ = (xgn), e ,x%n)) the ancestral positions

at the final time T so that for all i € {1,--- | N}, xl(:éz)) € R is the position of the ancestor of the

individual i, at time 7', in the genealogical tree. Each process W(5) = (Wt(B)) governs the

0<t<T
dynamics of mutations occuring on the interval time where B C ky 7.
:v§2) =1 ng) =5
0
t1 +
to T
w4q
25 DgbobrlrrbrbrAriririrbubobobod— us
x4 l vy U4 v
xr3 A / us3
T2 /f\v/\v oA U2 t3
D ANDNDANNDANNNLD
Tl SRVVETETETEYSYSY \"4 u1 e
ta
0 t1 t2 i3 t4 ts t6 T
ts w2
Figure 4.1: Graphical representation of the to 1 - —l
1
MORAN model with N = 5. T + ®
ul ug Uuq u3 us

Figure 4.2: KINGMAN’s genealogy
(k57T—t)0<t<T under the MORAN model
on the left, tracing back from time 7" to
time 0.

Let us recall the link between the MORAN model and the previous stochastic objects. At
each reproduction event t; in the MORAN model, illustrated on Figure [4.1 an ordered pair of
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individuals (4, 7) is sampled uniformly at random from the population: one of the two individuals
dies and the other reproduces with equal probabilities. In Figure 4.1 we draw an arrow between
lines: the arrow ¢ — j indicates that ¢ reproduced and j died. We can recover the ancestry
of the sample by tracing backwards in time from the right to the left in Figure to obtain
Figure £.2l We coalesce any pair of individuals whenever they find a common ancestor which is
represented by the bold blue arrows. The other arrows do not modify the genealogical tree. The
ancestral positions in Figure are given by (i), ;<5 where us = % S22 _, 6z, and the ancestral

positions in Figure are distributed as z(2). Note that xf&) = xf&) = xf(zl) = xgz) = z1 and

1622()1) = m((lz()l) = :cg) = x5. Then, we add the mutations, denoted by “ ”. Not all of them

are shown in Figures[d.1]and for the sake of clarity: the ones which are represented are w; :=

3 3 2 2 12 12 1,24 1,24
Wq(ig(ﬁ) _ Wé{ })7 Wy = ({ WO({ ) g = (Etg}) W}EM}), Wy = W}{ H_ Wé{,ts H
and ws 1= W}{‘g":’}) — W}?ti}). Then the position u; of the individual i € {1,---,5} at time T in

Figure are
= W) 02 02D ypieh )y

T—t3 —t4 0 ’
Up = x1 + W({l 2,4}) W({th A}) W}{Etz}) _ 7(1{7111/421}) + W}{Egj _ Wé{Q}),

us = g+ WD gD e ),
wi = oy + W2 W({l 24}) W({4}> Wi,
ws = g + WD _ W}{f’;i” L) e,

Putting everything together, we define in the general case the random variable

7/"‘N Z 5%’

z—l

where, for all i € {1,--- , N},
T ST,
u; = ulN = $£:(lz)) +/0 dWS(B( 7 )) (36)

The well-known backward construction of the MORAN model [19, Section 1.2], [I8, Section
2.8] entails the following result.

Proposition 4.4. For all initial condition uy € My n(R), Y taw ?Y{V’MN where Y = uy.

4.3 Centered variables and centering effects

SHN

We construct the centered version of the random variables ?I{V . We define the random variable

ZF}V’“N as follows:

ZNuN . _
ZT

= T—<id,?TN’”N>ﬁ?7{WN'

Corollary 4.5. For all initial condition uyn € MT?V(R), N taw EJTV’“N = LN | 5, where,
fO?" all i € {17 7N}; Vi 1= U#N = Uy — %Z;yzluj' andZéV = UN.
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V1 Vg v3 V4 V1 V2 3 V4
Figure 4.3: Illustration of the centered Figure 4.4: Illustration of the centered
MORAN process where |ky 7| = 1. MORAN process where |ky 7| = 2.

In the example of Figure we can observe that u; = (M 4 w1 + ws + wr, ug = M + wo +
Wy + wr, uz = =W 4 w3 + we + wy, ug = M 4+ w4 + wg + wy, so that

o U = % hU5 —-106]—F %101-—-% hUQ + ws 4—1U4], ® Uy = % PU5 —-1U6]-% %1U2 — i hU1 + w3 %—lU4L

o v3=—1[ws—we] + 3wz — (w1 +wr+wy, e vy=—%[ws—we]+ Jwy— § w1 +wy+ws],

2) :rg2)

and for Figure that uqy = 1:52) + wy + ws, ug = xg
Uy = xéQ) + w4 + wg so that

+ wo + ws, uz = + w3 + we,

ovlzé[:):f)—xg2)+w5—w6} +2w1—%[w2+w3+w4],
ovg—%[mf)—xgz)+w5—w6] +2w2—%[w1+w3+w4],
.7}3——% [x?)—a:g)—kwg,—wﬁ} +Zw3—i[w1+wg+w4],
ov4:—% [x§2)—:c52)+w5—w6} +zw4—%[w1+w2+w3].

In other words, when there is just one ancestral lineage as in Figure [{.3] the random variable
Z;V #4 does not depend on the ancestral position z(1): this is the centering effect. In general,
when n = |ky | =1,

T Bls—i 1 N T Bls— i
v = / aw P - Ly / aw P9, (37)
0 N = o
This property is fundamental to implement coupling arguments leading to strong ergodicity (see
Section (4.4)).
For any fixed T' > 0, for all 4,j € {1,--- , N}, let us consider Tj; the coalescence time between
the individuals ¢ and j at time T in the process (kN,t)O <t<T In the following proposition we

establish that (v;);.,n is a centered Gaussian vector whose covariance matrix is an explicit
function of T;;.
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Proposition 4.6. (1) For any fired T > 0, for all uny € MT?V(R), conditionally to ky :=
(kNt)o<icrs on the event {|knr| = 1}, we have for alli,j € {1,--- N}, Cov (uj,u; | kn) =
T-T,.

(2) Conditionally to kn, on the event {|knr| =1}, (vi)jiey ~ N (0pn, ) where ¥ =
(Eij)lgi,jgN is define by

=

.. 1
VZ,] e {1, N} EJ = COV(UZ,’U] “{ZN Z k‘i‘Tjk (TZJ =+ N2 Z Tkg>
kfl=1

Proof. (1) It is a straightforward computation from ([36]).

(2) Noting that for all ¢,j € {1,--- ,N}, Tj; = Tj; and Tj; = 0 and from (37)), we deduce the
announced result by a straightforward computation. O

4.4 Coupling arguments with two distincts initial conditions

In this section, we want to couple centered MORAN’s processes from different initial conditions
but with the same KINGMAN genealogy and the same mutations in order to establish the following
exponential ergodicity result.

Proposition 4.7. For all un,vy € M;?V(R), for all T > 0, there exist constants o, 3 €
(0, +00), independent of un,vn,T and N such that

~

HI@(Z%V’“NE-)—I/ES(ZQZYVNE H < aexp(—4T).

In particular, for all N € N* there exists a unique invariant probability measure wn for the

centered MIORAN process (ZtN)t>0 such that for all py € Mi%\r(R); for all T >0,

H]P’#N (quy € ) — ﬂ'NH < aexp(—pT).

Remark 4.8. The previous result is true for all deterministic initial conditions, so also for any
random initial conditions.

Proof. Step 1. Coupling. Let &,, and &,, be two elements of Q which have the same
KINGMAN genealogy (th)(Kt < and the same mutation but whose initial conditions py :=

~ 2171 0 Lm and vy = 2171 ) ,(m are different where n = |ky r|. We assume that the xg( )

a(i) a(l)
respectively yg(i)) are selected randomly and without replacement in {z1,---,zxN} respectively
{y1, - ,yn}, independently. This allows us to construct, on the same probability space, two

random variables

N 7N
BN — Z 1) uN and ZT’VN = — Z 5,0_VN
1—1 1=1
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N.un law SN uyn Ny law ZNvy
such that Z;, = Zp and Z;, = Zp .

Step 2. Control in total variation. From (37), on the event {|kyr| = 1}, we have that
forallie {1,--- N}, of'" =0V a.s. and from [36] we deduce that

HIP N ) B NuN H N#«N £ ZNVN)
=1- KN,T (kN7 =1).

We denote by Hy := S.N_, T} the height of the KINGMAN N —coalescent where (Tk)g<ren
are independent random variables such that T} follows an exponential law of parameter 2y (g)
[18, Lemma 220} NOW, KN,T (|kN,T‘ = 1) > KOO,T (’koo,T’ = 1) = KOO,T (Hoo < T) and by the
exponential TCHEBYCHEV inequality we have

E (exp (AH))

Keor (Ho >T) < i
oo, (Hoc ) Ael(r(l),27) exp (AT)

Note that for all A € (0,27),

+00 too
B (exp (M) = T[ E(exp (OWT3) = 52 [ ———5—

k=2 2y = A - e

where the last product is convergent. We deduce that

1
Koo (Hoo > T) < C_ inf =2 1)T exp(—2+T),
T e >T)<C i o N epor) — 2O ePT exp(=2T)

where C := Hk 3 1_7 The result follows for o = 2Cyexp(1)T and 5 = 2. O

Fh(k—1)

4.5 Proof of Theorem 4.1]

Classically, it is sufficient to check that there exists constants «, 8 € R, such that for all u,v €
MS2(R), for all T >0,

1P (Zr € ) = Py (Z1 € )|lgy < cvexp (—BT).

From LusiN’s theorem [49, Corollary of Theorem 2.24], Propos1t10n E 7| and Corollary 4.5 - 5[ there
exists two constants «, 8 € (0, +00) such that for all uy,vn € M7 N( ), for all T > 0,

(B (£(28)) = Buy (£ (20))] = sn By (£(2)) =By (1 (20))]
f continuous

< aexp(—4T).

Now, let be fixed two deterministic initial conditions u,v € MT’Q(R) and consider an i.i.d. sample

(Xi)1<icy of distribution p and an i.i.d. sample ( ) i of distribution v. Then, we construct
\Z\

two initial conditions py = & 21—1 dx, and vy == & 21—1 ~such that uy and vy converge
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in law respectively to p and v. We define iy = 7_gq )iy and Uy 1= 7_q ) vy such
that gy, vN € M??\,(R) By construction, the assumptions of exchangeability of the random
variables (XZ-)1<Z< N and (Xi)1<'<N are satisfied, iy and vy converge in law respectively to u

RS

and v and we have
- 1
E ((id* fin)) = E ((id?, pn) — (id, un)?) = (1 - N) Var(X1) < oo.

Then, we deduce from Proposition that for all f € €2(R,R) satisfying || f||,, < 1, for all
T>0,

Buf (Zr) = Euf (Zr)| = Jlim[Byy (£ (22)) = Euy (£(27))] < cexp(=5T)

which concludes the proof. O

4.6 Characterisation of the invariant probability measure

In this section, we characterise the invariant probability measure of the centered FLEMING-VIOT
process 7 thanks to an adaptation of DONNELLY-KURTZ’s modified look-down construction
presented in Section [£.6.1] We give in Section [£.6.2] an explicit characterisation of the invariant
probability measure 7. Let us begin by giving a convergence result of the invariant probability
measure 7y to the invariant probability measure 7.

Lemma 4.9. The sequence of laws (TN ) yens converges in law to m in My (M1(R)).

Proof. Let T > 0, uy € Mi%V(R) and p € MT’Z(R) such that pn converges in law to p. From
Proposition |4.7| and Theorem H, we have for all f € €°(M;(R),R),

(o) = (Fml < [ mn) =By (£ (Z89))] + [Buy (£ (Z2%)) — B (£ (21))
+ B, (f (2) = (f,7)
<2 flloc avexp (~BT) + [Epy (£ (Z07%)) =By (f (20))]

The announced result follows from Proposition O

4.6.1 Construction of exchangeable random variables allowing to characterise my
and m

We consider the probability space (Q,f , If”) where we define the modified look-down process
on (—o00,0] as a population dynamics on the set N of levels where one individual is assigned to
each level. To each pair of levels (i,) € N? with 1 <4 < j, we assign an independent POISSON
processes (N;;(t)),5, with intensity 2y and to each level i € N*, we assign an independent
standard Brownian motion (B;(t)),c, on R_. Jointly with the modified look-down is constructed
for all N € N*, the so-called N —look-down process whose evolution is given as follows:

(1) Birth/Death rule. Each jump time ¢; of one of the POISSON process (Nij)1<i<j<N
corresponds to a reproduction event at backward time —t;. When the time ¢ is the jump

32/74]



A
77??0(1[ =—ta
Bs(t) 5 j j r us —t
By (t) 4 j ( - F Uy
Bs (t) 3 ( N us3 —to+
Bz (t) 2 U2
B (t) 1 U1 —h
—‘T *‘I 4 7‘/:; 7‘L2 7‘L1 6
0 [ [ ]
1 3 Uy U2 us

Figure 4.5: Graphical representation of the mod-

ified look-down process with N = 5. Figure 4.6: KINGMAN’s genealogy
(125 t) under the modified look-
tlogt<T

down model on the left, tracing back
from time 0 to time —7'.

time of the POISSON process NV;j, we put an arrow from i to j as illustrated in Figure
which means that the individual at level ¢ puts a child at level j. The offspring at level j
adopts the current spatial position of its parent at level . The parent level and position
do not change. Individuals previously at level ¢ € {j,---, N — 1} are shifted one level up
to £ + 1 and the individual at level N dies.

(2) Spatial motion. Between reproduction events, individuals’ spatial positions at each level
i evolve according to the standard Brownian motion B;(—t). As explain below, we will fix
the position of the individual at level 1 at coalescence time to 0.

Note that the N—modified look-down process is simply the first IV levels of the (N + k)—modified
look-down for any k& € N*. In other words, the modified look-down construction can be done
with an infinite population as a projective limit of the so-called (infinite) modified look-down.

From [14, I5], the genealogy (];:N’t>t>0 in backward time since time 0 of a sample from a pop-

ulation evolving according to the N ~modified look-down is exactly determined by KINGMAN’s
N —coalescent with coalescence rate 2. In Figure 1.6l we give the KINGMAN genealogy associated

to the 5—modified look-down of the Figure [£.5]

We denote by a(i,t),i € {1,--- , N}, t € (—o0, 0], the ancestor level of the individual at level

i at time ¢. For example, in Figure[l.5] for all t €] —t3, —t4], a(5,t) = 2 and for all t €] —to, —t4],
a(3,t) = 1. Let us consider the random variables

Tégal =

inf{T>0 a(i,-T) =1, Vie {1, - ,N}},

=it {70 a6 1) =1, view,
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which can be interpreted respectively as the coalescence time (i.e. the first time where |ky | = 1)
of the KINGMAN N —coalescent (I;IN7t>t>O and the KINGMAN coalescent (Eoo’t)po' Note that,

for all N € N*, coal < Tgfal P—a.s. In Proposition below, we establish that Tg;al admits
moments of any order. We shall be interested in the spatial position ; of the individual at level
1 € N* at time 0 assuming that the position: of its ancestor at backward time T(?;al is 0. For
example, if we assume that, in Figure E Tc‘fal = Tcoal = t4, then the spatial position of the
individual at level 5 at backward time —71°°

s represented by the curve in bold in Figures
and is
U5 = Ba(—t4) — Ba(—t3) + B3(—t3) — B3(—t2) + Ba(—t2) — Ba(—t1) + Bs(—t1).

Similarly, 1y := Bi(—t4),Ug := Bo (—t4) , U3 := B1(—t4) — Bi(—t2) + Bz (—t2), 4 := By (—ts) —
By (—t9) + B3 (—t2) — B3 (—t1) + B4(—t1). In general, we define for all i € N*, the random

variable
_/ dBa(z t) )

coal

coal

Proposition 4.10. For all k € N, there exists a constant Cp > 0 such that E ((Too ) ) < Cg.

Proof. Note that T TS, = Zﬁ T, where (T});~, are independent random variables such that 7},

follows an exponential law of parameter 2y (2) As previously in Step 2 of the proof of Proposition
there exists a constant C' > 0 such that for all A € (0,27),

+oo
E (exp (ATcoal)) H2 ]__::(2\1) § exp (CA) .
_ ~k(k—

k
From the inequality: for all z € R, 2* < (ﬁp(l)) exp (yz), we deduce that

k
E (( Vcoooal)k) < <ryexkp(1)> E(GXP( Tcoaz>) Ck

k
where C}, := (%%p(lﬁ exp (C~) which ends the proof. O

N
In view of , it is natural to introduce for all N,i € N*, 17?[ = U; — % > uj. In the
following proposition, we give analogous results to those of Proposition
Proposition 4.11. (1) Conditionally to kN = (th) S0’ on the event {’]éNT‘ = 1}, we have

foralli,je{1,--- ,N}, Cov (uz,u]’k]v) =
between individuals at level i and j at time 0.

OO
T T”, where Tw s the coalescence time

(2) Conditionally to lva, on the event {‘lvaT’ = 1}, (ﬁzN>1<i<N ~ NW) (ORN, i]) where Y :=
<Eij)1<i,j<N is define by
. . 1N y 1 M.
Vije{l,-- N}, S ::cov( N, o) ‘kN> 5 2 (Ta+ D) = T+ 55 2 Tae
k=1 k=1



Proof. The proof is similar to that of Proposition O

Let us define respectively the empirical distribution of (%;); ;< and its centered version by

. 1
Yc]oval = N Z 5121 and coal Z 5 A
=1 24*1

Proposition 4.12. The measure-valued random variable Zcoal has the law wp .

Proof. The proof consists in establishing for all f : Mi (R) — R measurable real bounded
function, E (f (Zgal)) = ch,z(R) f(p)mn(dp). From Proposition it is sufficient to establish
1

for all juy € M2 (R), that limy 4o )E( 7 (28a)) ~E(f (Z2))] =o.
Let f: Mf’z(R) — R be a measurable real bounded function. Note that,

2(f (25)) =B (£ (Z0))| < [B (7 (Z20) Ljisainy) B (F (207 Ljainy )|
+ 1o [B (|| > 1) + B (hnrl > 1))

Now, from Propositions and it follows that for all uy € Mﬁv(R),

20" Ui gty = ZosatLfjig g1}
As established in Step 2 of the proof of Proposition [4.7]

li I@(‘V ( 1):1 B 1
P FAvr| > 1) =l Fllker] > 1) =0,

which concludes the proof. O

In the next proposition, we establish the exchangeability property of the family (2;), .« Which
will allow to apply the DE FINETTI representation theorem.

Proposition 4.13. (1) The family (1;);cn+ i exchangeable.

(2) There exists a random variable measure-valued ffc%le : Q) — M (R) such that ( Coal)NeN*

converges P—a.s. when N — 400 to Yool in M1(R) which is equipped with the weak

Ccoa
topology. Moreover, given Ycoal, (1) ;epge 08 1.0.d. of law y oo

coal *

Proof. (1) From [I4, Proof of Theorem 2.2], it is enough to show for each N € N*, (1;); ;¢ is
exchangeable. Let o : N* — N* be a finite permutation, that is to say a bijection that leaves all
but finitely many points unchanged. The well-known backward construction of the modified look-

down process [14, [15] entails that (l;:oo’t)po taw (Ego,t)t 0 where k2, + is the partition obtained by

applying the permutation o to lvfoo,t. Therefore, for any permutationo : {1,--- N} — {1,--- | N}
extended by id to N*, it is sufficient to prove that (mi)léiéN ‘ lvcoo) taw (({L ())1<z<N ‘ kg, ) to
obtain the announced result.
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We define 7507 = T2, (/I:go) and for all 4,5 € {1,---,N}, TZ‘; = Ty (légo) Note that

~ 00, v v . y law [y
chfa;’ =T, P—a.s. and it follows from the fact (koo’t)tgo = (kg,t)t>0

that

v v

v law A
T 00,0 an N A
(7. Toms ))1<i,j<N = ((TU’TCO‘”))KLKN'

From Proposition for all f: RN — R measurable real bounded function,

E(f(ﬂl, ,?VLN)’]vﬁoo> :F<(ﬂj)1<i<j<NaTcoooal>'

for a certain function F'. So, in particular

E (f (%(1)7 e ,ﬂU(N)) ‘];?go> =F ((Ti§>1<i<j<N ’T:‘?’l’?) ’

By taking the expectation in the previous expressions, we deduce that E ( f (710(1), s U N))) =
E (f (41, -+ ,un)) which completes the proof.

(2) As the family (;),cn~ is exchangeable, the announced result follows from DE FINETTI's
representation theorem [33] Theorem 12.26 and Remark 12.27]. O

We conclude this section with a corollary which will be useful to characterise the probability
measure 7.

coal

Corollary 4.14. (1) For all k € N, the random variable Y2, satisfies <]id|k,1vfci‘;l> < 0

P—-a.s.
(2) The limit too := impy_ 400 % Zé\le U; exists P—a.s. and satisfies Uoo = <id,1vfc%?ll>.

Proof. (1) For all M € (0,+00), let us consider [id|,, the truncation function of id at level M
defined by [id|,, = |id| on [-M, M] and |id|,; = M on R\ [-M, M]. By FATOU’s lemma, we
obtain that

B (il F25)) < I B (il V) € > (14E ()

Now, classical moment results for Gaussian random variables show that for alln € N, E (GZ") =

(2271"72!! o2 for G ~ N(0,0?). From Proposition

oK\ _ <2k | 7 _ (2k)! yoo \F
B (a2) =B (B (a* [k )) = 5o (7))
Therefore, from Proposition we deduce that there exists a constant C; > 0 such that
E (<|1d|]fw LY 2O >) < 1+ ZMC and by the dominated convergence theorem when M — +o0,

coal 2k !
the announced result follows.

(2) From Proposition given }V/c%f’ll, (1) ;ep+ is id.d. Therefore, the announced almost

surely existence limit follows from the Strong Law of Large Numbers. Moreover,

<id,?§°>: lim <id,Y/N>: lim ;ZN:aj:aoo, P as. 0
=1

oal J coal N 00
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4.6.2 Characterisation of the invariant probability measure 7

Now we define the random variable 222, € M;(R) as

coa

~

Zggal =T <jd7ffcoooa > ﬁ coal*

The following proposition establishes the convergence of ( coal) Nen- to 2 ;- Recall from

coa
that for all n € N*, € Mi(R), Prn(p) := (f, ™). Let us recall the following well-known fact
useful for the proof below: a straightforward adaptation of the proof of [9, Lemma 2.1.2] allows
us to obtain that for all n € N*, the algebra of polynomials

Span <{Pf,n(,u) ’ f : R"™ — R uniformly continuous, u € M1(R)}>

is convergence determining in My (M;j(R)).

Proposition 4.15. (1) The sequence of random variables (ZN . converges P—a.s. when

Coal)NEN
N — 400 to Zcoal in M1(R) for the weak convergence topology.

(2) The random variable Zg‘;al has the law .

Proof. (1) From the previous reminder, it is sufficient to prove that for all n € N*, for all
f + R" — R uniformly continuous, limy_, o Prp (Zvégal = Pry, (Zcoal With an argument
similar to the proof of Proposition we obtain that for all n € N*, for all f : R® — R

uniformly continuous, Pfor_, a from Mi(R) to R is continuous. Let n € N* and f: R® — R
uniformly continuous. Now, Ycoal € M}(R) from Corollary and

wa‘@ﬁ‘v” 0" (cho‘”) Pran (Zgal) and PfOT—(id,wo N ( chal) Prn ( éfaz)

From Proposition [4.13} Bmy— 00 Por (agy Y (YCJOVal) = Pfol<idyoo oy (Yc%?ll) P—a.s. which

coal

concludes the proof.

(2) Let n € N*. As for all N € N* and f : RY — R uniformly continuous,

‘E (Pron (Zesar)) /MloR)

E (‘Pf,n (th(:)c?al) — Prn (Zé\o[al) D + ‘E (Pf,n (Zvézal)) - /Ml(R) Py (1) mn(dp)

Pf,n(#)ﬁ(dﬂ)‘

" ‘/Ml(R) Ppin (1) [m(dpe) = mn(dp)]|

the announced result follows from Propositions (1), and and Lemma when
N — Ho0. OJ

The last characterisation of the probability measure 7 is suitable to make explicit computa-
tions. The next corollary gives an expression of the second moment under 7
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Corollary 4.16. We have ch,z Mo (p) m (dp) = 1/27.

Proof. Step 1. Uniform bound in N of E (Mgk (Zcoal>> ,k € N*. In this step, we want to

establish
1 & y y
E (<|id|2k ) Z£a1>) =E| E N Z L (TmZ)Km,egN’ng)‘ll

1
= (E ( ) (Tmﬁ)lgmjgN ’chfal>> .

From Propositions [4.11] and £.10] we obtain that

E (E (’ ‘ ‘ 1<me<N Tvé?“)) - (22’!2!!IE (£%) < (2:!)!E <(T‘?§“l>2k) < 00,

and the announced result follows.

J\s{g\;E (<]id\2k Zégal>) < 0.

Let N € N*. From Proposition (1),

Step 2. Convergence result of E (M2 (ZN

coal)) to E (MZ (Zcoal)). Note that for all
N e N*, M € (0,4+00),

£ (M (2)) ~ B (32 (Z350))] < (A)as + B)yas + (C)

where
(A)N,M = ‘]E coal (<’1d|M Zé\olal>)’ )
(B)N,M = ‘E ld‘M coal (<‘1d’M 3(?al>>)7

(C)N7M = ‘E 1d|M7 coal —-E (M2 (Zcoal))’ :

From the inequality |id* —id},| < |id|?, then the HOLDER inequality, we obtain that

3fM

. 12 9 2 3
(A)N,M <E (<|1d ldM’ coal>) < W (<’ d| coal>) < WE << d4 Zé\o]al> >

From Step 1, we deduce that for all N € N*,

(A < 3\/25]\/[ <1 + sup E<<1d ,Zwal>)> < o0.

NeN~*

- . 2 4 oo
In similar way, we obtain that for all N € N*, (C)y,, < ENGITE (1 +E (<1d >)) where

coal

(<1d4 Zo0 >) < oo from Corollary |4.14] (1). By the monotone convergence theorem, we de-

» “coal

duce that for all N € N*, E (M, (Z5,)) = limy oo E ((Jid[3,, ZY,,) ) and E (M (25,)) =
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limy/ 100 B (<]1dﬁw , 7 >) From Proposition 4.15 for all M € (0, +00), imy—+00 (B) v 3y =

coal

0. From classical analysis techniques, we deduce that limy_, 400 E (M2 (Zwal)) E (M2 (Zwal)).

Step 3. Conclusion. Note that for all N € N*|

N
(Zcoal) = <1d2 Zcoal> ]1[ Z azZ N2 [Z Z ﬁzﬁ]] '

i=1 i=1 1<i<j<N

From Proposition 4.11, we have for all i,5 € {1,---,N}, E(4u;) = E (E (&i&j ‘ ];}N)) =
E (T3

ol TZ]) where Tij is an exponential random variable with parameter 2+ if ¢ # j. Therefore
E (M2 (Zcoal)) = % 5-. By Step 2, we deduce that E (M2 (Zcoal)) = 1/2~ which completes
the proof. O

5 Proof of Theorem 2.3

We divide the proof of the main result into 7 steps, each of which will constitute a section

(Sections to . We recall that the aim of this proof is to prove that the law ]P’E_ng v of

the process (Zt)y;<p defined by
vVt >0, Zy =T i,y i Y,

under PEV for v € M2(R) is solution of the martingale problem . We will start by considering
the case with test functions F,g € Cﬁf(R,R) and we will prove the extension to F € ¢?(R,R)
and g € €2(R,R) in Section [5.6 E In there are essentially two types of terms: (id,Y; — Y5)
and <g(j) O T_(id,Ys)> Yt — Y> j€{0,1, 2} s < t. In Sections and we prove that the two
previous quantities admit a DOOB’s semi-martingale decomp051t10n. n Sections [5.3] and [5.4]
we handle all the terms in involving respectively the first and second derivative of F'. In
Section we deal with the different error terms involved in (11). Finally, in Section we
prove that the martingale involved in is square integrable and we establish the relation @
We conclude in Sections and by proving a technical lemma used in Section

5.1 Doob’s semi-martingale decomposition of (id,Y; — Y), s <t

In @, M14(g) is well-defined only for g € ¢2(R,R). The expression makes sense for more general
functions g. The goal of this section is to prove that, for any k € N, A4 (idk) is the martingale

part in the DOOB semi-martingale decomposition of <id]“‘7 Y}> In particular,
(id, Yo = Yinne) = MI(d) — Mig,, (id), s>t At

is a PE'V —martingale.

Lemma 5.1. Let v € M(R) and let P, be a distribution on 0 satisfying and such that Yy
is equal in law to v. Let T > 0 and k € N* be fized.
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(1) If <\id]k , V> < 00, then there exist two constants Ck,T75k,T > 0, such that any stochastic
process (Yi)ocicp whose law is P, satisfies

X

(a) Sop, E, ({id",¥:)) < Cer (1+ (lid[*,v)),

~ -
(b) Va >0, P, ( sup <]id\k ,Y}> > @) < Ck,r (1 + <’1d| ,y>).
te(0,7) «

(2) If <|id|k,1/> < 00, then the process (Mtld (idk))0<t<T defined by

M (id¥) = (id",v;) — (id*, vp) — /Ot <k(k72_1)id’“‘2,12> ds,

is a continuous P,—martingale. Moreover, if <|id\2k , l/> < 00, then (Mid (idk))0<t<T is a
martingale in L? (Q) whose quadratic variation is given by
. t 2
id (k) _ . 12k ik
(M4 (id*)). 727/0 [<1d Yy — (id*,v;) ]ds.
Proof. The proof is similar to that of Proposition [2.11 O

5.2 Doob’s semi-martingale decomposition of <g(j) O T _(id,Ys)s Yt — YS>, s<ty, g€
{0,1,2}
Equation (|11]) involves terms of the form <g(j) oT < Y A — Y}nAt> with j € {0,1,2}.
—(id.Yinn ) i i
We wish to express, each of these terms using the martingale problem @ However, this leads
us to consider quantities of the form

id () — Mid ()
Mtﬁl/\t (g ° T_<id:YtnAt>> Mt?/\t <g ° T_<id’yt"/\t>> (%)

with 7 € {0, 1,2}, which are not well defined at the moment. Indeed, in the input argument is
a predictable random function of the process (Yt)ogth while the martingale problem defines
Mj4(g) only for deterministic functions g. Lemma hereafter, allows us to give a precise
meaning to by extending the well-defined character of the martingales of @ to predictable
input arguments. The proof of this technical lemma, given in Section [5.9] is based on regular
conditional probabilities.

Lemma 5.2. Let t* € Ry be a deterministic time and h : Q@ — %2(R,R) be a measurable
function satisfying the following property:

Vw,w €Q, h(w) = h(wl) if Wio,%) = wll[o,z*]'

Then, the following process defined, for all t € [0,T], by

My (@) = My (R (@)) (@) = M5 (R (@) (@)
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is a PEV(d@) square integrable martingale whose quadratic variation is given by

M@ =2 [

tAL*

[(h* (@), @s) — (b (@), @s)°] ds.

Lemma with ¢* = ¢ allows us to assert that is a PEV(dY)—martingale increment.
Thus, we obtain for j € {0,1,2}:

() "
<g O T (id¥ym) YHaA T Y “>
LNt 1

_ (7+2)
- tEAE 2 <g ’ ° T_<idaYt?At>7l/S> ds (39)
30 0 (9907 g y) = M (9707 (v, )

where (M 4 (g( Dor <d Ytnm>> — Mg?/\t (g(j) o T—<id7YtyAt>>)s>w is a PFV square integrable
martingale satisfying for all s > 7', '

<M.i/<3t <g<j> or. <id7Yt?M>) My, ( @or <id,Yth>)>S
_ j oy
=5 o[ o ) ) = (e ) o

5.3 Expressions of the terms of (11 involving F’

(40)

In the rest of this proof, we use the following notations to simplify the writing. We denote for
all s > 0, R(s) := (id, Y5). We assume that F,g € €}(R,R). Our goal is to prove the following
lemma:

Lemma 5.3. When the mesh of the subdivision 0 = t§ <t} <--- <ty =T of [0,T] tends to 0
when n — 400, we have the following convergence in probability

lim S 1(A) —/ F'({9,Z )(<gﬂ Z>+7< Z>M2(Z)—27<g’xid,Zs>)—|—Martt,

n%+m. 2’
izo

where (Marty) o, is a PEY —martingale.

The proof of Lemma is based on the following decomposition of (A), (given by the
expression ) and using the DOOB semi-martingale decomposition of Sections and We
have

(A), = 1;6: F (<9 © T—R(t;mt)vyt?/\t» (A);
—1
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where

1 ti At ]

(A); = 5 <9H o TfR(t;L/\t)ﬂ Ys> ds,

trAL

9 ) )
(A)z = tl:d‘ AL (g o TfR(t;l/\t)> - Mtlgdb/\t (g © TfR(tff/\t)) )

(A)? [ t” /\t Mt”/\t (ld)} <9/ o T,R(tlnm)vyty/\t> )
(-A);1 [ " /\t ”/\t (ld)} [ tg AL (g/ © T—R(t;?/\t)) - Mti?/\t (gl o T—R(t?/\t))} )
(A)? = [ t" /\t Mtig/\t (id)} ’ <9” o T—R(t?/\t)’ny/\t> )

1
2
(A)Gzo(|tmm t”/\t” i M(ld)—MggM(id)D.

)

Note that we used the following inequality

[ g o ey Yoy as <o) (ant—an) BV —as
LA 2 —R(ti/\t)’ oo Vit i v

. . nOAL .
to bound the term [Mg?ﬂ(ld) — My (1d)] tnj“\i 5 <g(3) o TﬁR(t?/\t),Y;> ds by (A)Y. Our goal in
the sequel is to write each of these six quantities as sums of finite variation terms, martingale
terms and negligible terms and to study the limit of each of them.

5.3.1 Decomposition and study of (A);

Note that, for any i € {0, ,p, — 1},

(A)! / "o Vo) s+ [

TAL

tH_l/\ 1
2<g oT R(t“/\t) g o T_ R(s)a >d8

As a consequence of RIEMANN’s sum convergences and using that s — <g O T_R(s Y> is con-
tinuous, we obtain PXV —a.s., and therefore in probability that

-1
Pn th At 1

. / - 1
A 3 F (a0 agny Yion)) [0 34" o mn i) s
1
—/ ({90 7-R(s),Ys)) 5 (9" 0 T-R(s), Ys) ds
ez
From Lemma (2), we deduce that, in probability,

-1
Pn t1+1

. Nt 1
m Z;) F' <<g o tR(tgAt),Yt?At» /t oy 2 <g" O T_p(mat) =9 ©T-R(s)s Y5> ds = 0.
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5.3.2 Martingale contribution of (A)Z2 and (A)f’

Note that
Pn _1

X P (90 gy Yiors) J(AYL

is a stochastic integral with respect to the square integrable martingale (M ;d (id))O csep- SOlnce

F" and s — (g’ o T_pyy), Ys) are bounded, we deduce that

pn—1

m Z F' (<9 © T—R(ty/\t)’yt?/\t» (A);

is PV —martingale. The term

M = p"i F' ({907 ey Yionr) ) (A)?
1=0

is a stochastic integral with respect to a martingale which depends on n. However, the same
argument as above applies because (M}')q;<p is bounded in L? (), hence uniformly integrable.
This can proved as follows: as F’ is bounded and from Lemma there exists two constant
C1,Cy > 0 such that

E(IMP1) = ; ([ ({0 m_ngoney Yeen)) 7] )

pn—1
<Gy Z <Mid (907_3 n ) — My (907'_3 n >>
izo (tz /\t) g (tz /\t) t?+1/\t
pn—1
SAYC1Cy Y (1 A= 1] A L)
1=0
= 4~yC1 0ot < .

5.3.3 Contributions of (A);l and (A)Z5

The contribution of the next two terms corresponds to the terms due to the centering effect in
the martingale problem .

Study of the term (A)?. Using ITO’s formula and the relation , we obtain that
(A); = (A) + (A + (A

where

4l 1A id /e id id (7
(A)Z = — /tn [Ms (ld) — Mt;l/\t(ld)} dMs <g o T—R(t?/\t))’

AL
A 2 t?+1At Mid , Mid / dMid d
(A);" =— t AL { s (g OT—R(t?/\t)> Al (g OT_R(WM))} s (id),
4 t A , . !
(A);” = -2y ot Kld X g o T_R(t?/\t)a}/s> — (id, Y5) <g o T_R(t;t/\t)’ysﬂ ds.
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Using the same arguments as for (A)?, we deduce, in probability, that for k € {41,42},

pn—1

. ZO F' ({907 nrany Yirnr)) (A}

is a PY'V —martingale. Moreover, we decompose the integral of (A);13 in the following way:

(A);7 = (A); + (A);* + (A);*

where
(M) = 9y tj::/\t <id x g o T_R(imnt) ~ id X g' o T_pg(s), Y$> ds,
(A);132 = —2y t:il/\t (id, Y5) <g/ ©T—R(s) — g'o T—R(tg."/\t)vYS> ds,
(A);* = —2y o

[<1d X gl O T_R(s)> Y;> - <1d7 Y:?> <gl O T_R(s)> sz>] ds.
At
Using Lemma we deduce, in probability, that for k € {431,432},
pn—1

. k
Jim 30 F (90 n(ney Yirne)) (A =0
&

and we deduce from the convergence of RIEMANN’s sums that,

PFV _—a.s. and hence in probability,
pn_l
. 433
5 (0o ) 0
1=
t

| ({90 7r(s) Ya)) [(id x g 0 TR, Ys) = (i, Ya) (g 0 7 p(s), Vo) ds
—2v | F'((9.Zs)) (¢' xid, Z) ds.

0
Study of the term (A)Z5 As (A)f’ satisfies the following decomposition:

s oAt . ‘
@7 = ([ [Midd) - 2, ()] anidia)
At :

R At

tAL [<id27 YS> B (id,Y5>2} ds) <g” © TfR(t?/\t)’Y;f?/\t>

and proceeding as for (A);1 above, we obtain, in probability, that

pn—1

+y

T
Jim 3 F ({90 7y Yipns) ) (87 = [ F (9. Z6n0) 6" Zune) Mo (Zins) ds+Mart )
1=0

(1) . FV :
where (Martt )OStST is a P, ¥ —martingale.
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5.3.4 Study of the error term (A)E3

From the inequality: for all z,y € Ry, zy < %(a?% +y3> and Lemma [A.3], we deduce, in
probability, that

pn—1
lim Z F (<go7‘ Rt ne) th>) |tl+1/\t—t”/\t|‘ i nalid) - n/\t(ld)’

1=0

n—1
< lim 2”F’” pz |t} At—t”m\urz( n (id) — Mg (id)‘3 —0
S A i+1 1; At thAL
1=0
and this completes the proof of Lemma O

5.4 Expressions of terms of (11)) involving F”
From the expression of (B),, we have

®),- Y. S ({907 nguny Yiene)) (B
k=1

where
1 2 2
(B);, = <9 o T—R(tf/\t)’ytlﬂ/\t> - <g °T_R(trnt) Yt?/\t> )
(B)} = =2 (g0 ngpueyYirne) [(9° 7 m(ipna) Yiruane) = (9™ papany Yo )|

(B)? = [M] (i) ~ M GD] " (o o7y Viome)

(B)? = /tt?HAt <9” © TfR(t?/\t) >d5 [ t" /\t(ld) M"/\t('d)} <g’ o T,R(t?/\t), Y;f?/\t>7

nAL
(B)] = =2 [0 e (6" 0 7 ny) = Mitne (9" i)
[Mt" ac(id) — Mti?/\t(id)} <9l o TfR(t?/\t)7Y;ff/\t> .
As in Section [5.3] we treat each of the previous terms successively to prove the following lemma:

Lemma 5.4. When the mesh of the subdivision 0 = tf <t} <--- <ty =T of [0,T] tends to 0
when n — 400, we obtain in probability that

pn—1

lim Z (B), —7/ F" ({9, 23)) [(9% Zs) — (9. Z)* + (g, Z.)* M2 (Zs)

n—+4oo -

—2(¢,Zs) (g x id, Zs>] ds 4+ Mart,

where (Martt>0<t<T is a PEY —martingale.

X
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The proof is similar to Lemma we use the martingale problem (7)) to write

1 e 1 "
(B)i =2 / (907 n(emny ¥s) 2 (90 m_npny Yo ) ds

it 9 )
i /t;w Rg O T_n(erney o) = {90 T_nurne): Vi) }ds

Mid2 . Mid2
+ troont\9° T_R(t;t/\t) tPat \ 9 © T—R(t?At) )

tz+1/\t 1 ’
®)7 = =2{g o T_ny Vo) [ 5 (570 Tngny o)

id id
= 2{g o ny Y ) (M v (90 7 nepnn) = Mitne (907 nernn) |
and we obtain that, in probability,
pn—1

5 (027 g o)) O
1=0

1
= [ P 0.2 {10.2 (%.2.) + 7 [(6% Z2) ~ (0. 27]  ds 4 N,

lim pi: F’ <<g o T_R(t?/\t),y;‘,?/\t>> (B)z2

n—-+oo
i=0

1" g// ——(2)
:_/0 F" ({9, 2:)) {9, Z5) { & Zs ) ds + Mart, |
pn—1

nEIJIrlOO z:o F’ (<g ° T_R(t?/\t)ﬂfty/\t>> ((B)? + (B);1 + (B)§>

t —
= [ F"((9.2) (¢ 2.)" Ma(Z.) + (9. 2.) (g x id. Z2)) ds + Maxt,

——(j) . .
where (Martiy > , 7 €{1,2,3} are PEV —martingales.
0<t<T

5.5 Error terms

In this section, we examine the different error terms involved in the approximation (L1f). From
Lemma we deduce that, in probability,

pn—1 pn—1
im X (i Yig, e~ Yira)| = 1im Z\ B lid) — M 0| = 0.

n—+00 ! n—-+00
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Using the relations and , we deduce for any k € {0, 1,2},

Pn—1

>

i=0

3

<9(k) ° T_<id7}/t;_”At>7 Ytgzrl/\t - Y%;L/\t>
< {1 ®)|° 4}pn_1(t" At —t0 At
X max 9 Hg Hoo’ Z | i+1 Y |

3
id k id k
+ ‘Mt?+1At (9( Vo T—R(ty/\t)) — Mign (g( o T—R(t?/\t)ﬂ > '

Hence,
3

=0

(k) n ap— Yin
<9 oT—<id,}QnM>’Yti+1/\t Yti/\t>

in probability. Combining all the previous results, we deduce that is a martingale for all
F,g € €}(R,R).

5.6 Extension to test functions F € ¢*(R,R) and g € 6*(R,R)

For all g € 62(R,R) and for all t > 0, we have (g,Y;) € [~ |9l ,l9]l.o), S0 We can assume
without loss of generality that F' € CKbQ(R, R) in the martingale problem (4)) with X; replaced by
Zy;. Let F, g € ¢2(R,R). Then, by density arguments, there exists (F,),cn > (9n)pen € € (R, R)Y
such that for all ¢t > 0, for all ¢ € {0, 1,2}, we have P,—a.s.

g Mot gpa g >, po) (41)
n—-+o0o n—-+o00

For all n € N, for all t > 0, ]\ZF "(gn) given by the martingale problem is a P,—martingale.
Let T > 0. Note that, there exists a constant C for all n € N, for all ¢ € [0, T] such that

—~ —~ T
52 (g0) - T )| <€ (14 [ Ma(z)as).
Thanks to Proposition and the dominated convergence theorem, we have for all ¢ €
[0, 7],
Jim E (|2 (0:) - 9)]) = 0
and ]\ZF (g) e L! (Q) Then, using the dominated convergence theorem for conditional expecta-

tion, we obtain that (]\ZF(g)) is a [P, —martingale.

0<t<T

5.7 L?’—martingale and quadratic variation

As (J\ZF(g))KKT is a P,—martingale for ' € ¢*(R,R) and g € 2(R,R) we deduce that
ATF ()2 i

(M (9) = (M"(9)),) -y

sequence of stopping times (7,),,cy satisfying lim,,, yo 7, = 400 such that for all n € N,

E (M), (9)?) =E (<J‘A4F(9)>tm) '
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We apply IT6’s formula to compute F? ({g, X¢pr,)) from DOOB’s semi-martingale decomposition
of F ({g, Xirr,)) and apply the martingale problem (4)) to test functions F? and g to deduce @
at time t A 7,. By FATOU’s lemma, letting n — +oo, we deduce that

E (M (97) <E((M"(9),) < oo.

This ends the proof of Theorem

5.8 Technical result for Lemma [5.2]

As the filtered probability space (2, F, (Ft),) is Polish (see Section , we deduce from [30,
Theorem 3.18 of Section 5.3 (p 307)] there exists, for all v € M1(R), a unique family (Qu),cq

of regular conditional probability of PEY given Fi+ and a PEY —null event N € F;« such that for
all w e Q\ N,

@w<{aeg‘ &t*:wt*}):l. (42)

The following Theorem ensures that time shifts of regular conditional probabilities of PEY
remain solutions to the FLEMING-VIOT martingale problem . The proof of this result is given
hereafter and is based on the proof of |30, Lemma 4.19 of Section 5.4 (p 321)]. We introduce,
for w € ), the time-shift operator 6 defined by

[Osw], := wett, 0<t<+o0, s=0.

Theorem 5.5. Lett* € R, be a deterministic time. Then there exists a PLY —null event N € Fy«
such that, for every w € Q\ N, the probability measure

P,y (d3) = O£ Q, (d3) (43)
solves the martingale problem with v := wyx.

Proof. Step 0. Preliminary results. We denote by %[%(R,R) the space of real functions of
class ¢?(R,R) with compact support. It is well-known that the formulation of the martingale
problem for F,g € €2(R,R) is equivalent to the one for F,g € €%(R,R) [I0]. The space
%2 (R,R) equipped with the norm ||f||W02,oo = | flloo + 1/ Nloe + 1/l & is separable. So, we can

choose a dense countable family B C %[%(R, R), for the topology associated to the norm, that is
to say

lI-1l} 2,00 [Nl 2,00
2 N
VFmg € (gK(RJR)a 3 (Fn)nEN ’ (gn)neN eb, I n—HO-oo Fogn n—>—|(ioo g

Hence, if we denote by Lgy the generator of the original FLEMING-VIOT process, we deduce that
ll-llo
Lev(En)g, — = LevEy.

Step 1. Reformulation of the goal. Let v € M;(R). From (42), it follows that

P, (wo =v) = 1 is satisfied with v := wix. The rest of the proof is devoted to construct a
PV —null event N, such that

t
Eorv | F, (@) — Fy (ws) — / Ly Fy(wr)dr

Fs] :07

48 /|74



is satisfied for all w € Q\ Ny. This means that for all 0 < s <t < 00, A € Fs, F,g € €%(R,R),
Vo e Q\Ni, [ M@ - M @)] 14 @) P (dD) =0, (44)
Q

where

MF (@) = F, @) - F, (@) - / LoV E, (@) dr.
0

Letwe N, 0<s<t<oo, A€ Fs, F,g € €4(R,R) be fixed.

Step 2. Property (44) satisfied except on a PYV—null event Ni(s,t, A F,g) € F.
As LpyF, € 62(R,R), the random variable MtF“’ — MZ¥¥ is bounded. Note that,

/Q (M @) = Mo (@)] 14 @) Py (42) = Bg as) ([M/" = M) 0 01 @) 11, @)

= Eprv ([qu — M) o by iy ft*> (w)

= E]Pﬂ;v [EPEV ([Mth — MSFQ} o 675*]19:*114

- EPI;V []let_*lA]EPEV <|:Mth — Mngi| @] Qt* Ft*+5 ‘Ft*

-7:t*+s) ‘]:t*} (w)
i
=0,

where the last equality follows from martingale property . This chain of equalities shows that
the random variable w — [, [Mth (W) — Mk ((D)} P, (d@) is null except on a PEV—null event
Ni(s,t, A, F,g) € Fy= which depends on s,t, A, F and g.

Step 3. Property (44]) satisfied except on a PY'V —null event No(s,t, F,g) € F. We
consider a countable subcollection & of F, which generates Fs [30, Definition 3.17 of Section 5.3
(p 306)] and a P, —null event Na(s,t, F, g) € F= such that for w € Q\ Na(s,t, F,g),

VACE, / (M (@) = MPs @) P, (d@) = 0.
A
Therefore, the two measures
)= [ (M- BT @R AE) and o)== [ [M - M) @R, @2,
A A

coincide on &, hence on Fs. Therefore, for w € Q\ Na(s,t, F,g), we have proved that for all
A€ Fo By, (1a [M7 = M]) =0.

Step 4. Property (44) satisfied except on a P!’V —null event N3(F,g) € Fi-. We may
set now, the PEY —null event

N3(F,g) := U Ny(s,t, F,g).

s,teQ
0<s<t<oo
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Due to the boundedness and continuity of ¢ — Mth , it follows from the dominated convergence
theorem that for w € Q\ N3(F, g)

Vs <t VA€ F., Ep, (1a[M7—MI7]) =0,

in other words, for all w € Q\ N3(F, g), (Mth ((I)))t>0 is a (Fs, P, (dw)) —martingale.

=

Step 5. Conclusion. Now we define the PYV —null event

Ny = U N3(F7g)
FgeB

From the Step 4, we have for all s < ¢,
VweQ\Ny, VAEF, VFgeB,  Ep, [1a(M - M) =0

From Step 0, for all F, g € 6% (R, R), there exist two sequences (Fy,),.cx » (9n)nen € B such that

-1l 32000 -1l 32000
F, —>—%F, g,—2—y, and Ley(Fp) —M% AF,.
n—+oo n—+oo 9n p—s+toco

By the dominated convergence theorem, we deduce that for all w € Q, s < t, and A € F,

F, . (Fn) (Fn)
5. [0 (07~ 3)] =t B, [10 (4~ 2 o

which concludes the proof. ([l

5.9 Proof of Lemma

By abuse of notation, we note h (w‘[o t*]) = h(w). We want to prove that for all 0 < s < ¢, for all
Fs—measurable bounded random variable Z,

Eprv(ag) (M (@) = M (@0)] Z (@) = 0.
Using [29, Definition 3.2 (iii)’ of Section 1] we deduce that
Eppv(az) (M (@) — Ms (@)] Z (@) = Ep, (dw) [Eqaz) (M (@) = Ms (@)] Z (@))] -

Thus, it is sufficient to prove that for PEV —almost every w € Q, (M; (@))o<icr 18 @ Qu (dw) —
martingale and this is what we propose to establish in the rest of this proof.

For fixed w, the function h(w) € %2(R,R) can be considered as deterministic. We deduce
from Theorem that there exists a PEY—null event N € Fj such that for all w € Q\ N,
(M4 (h(w)) (cNu))O<t<T is a P, (dw) —martingale. We deduce from [30, Theorem 3.18 of Section
5.3 (p 307)] that PEY —almost every w € Q,

o?h W]ig i Qu (dw)—a.s. (45)

0,t%]
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This implies that, Q,, (dw) —almost surely,
M, (h(w)) (O (@) if t>t*
0 if t<t*

= My () (01 (@)

M (@) = M () @) ~ Mt (b)) (3) = {

where (a)' designates the non-negative part of a € R. Let n € N* and 0 < s < T. To prove the
martingale property for all F;—measurable bounded random variable Z, it is sufficient to prove
it on elementary events. Then, we consider a random variable Z of the form

Z(w) = ]I{th €Ty, 7wtn€Fn}

where for all i € {1,--- ,n},t; < s and I'; € M;(R) measurable. We define

Z (w,w) = ]l{wtieri,we{1,-.-,n} such that tigt*}]l{wtj €L} Vj€{1, n} such that t;>t*}*
By , Z (w,®) = Z (w), Q, (d@&) — a.s. Therefore, for PEY —almost every w € ©,
Eq, (M — M) Z)
= Bg.(az) ([M{L s (0 (@) (00 @) = M 1s (0 (@) (0 (@))] Z (@,3))
= ]l{wtieri,ViE{l,“' ;n} such that ¢;<t*} X

Eguaa) ([Mi2e (b (@) (0 @) = M, (b () (61 (@)]

X ]l{[et*(@)]tj_t*erj,we{L---,n} such that tj>t*}>
(43) id ~ id ~
= ]l{wtieri,we{17~-- m} such that tigt*}EPw(dfu) ([Mtl—t* (h(w)) @) = M (h (w)) (w)}
X ]l{atj_t*erj,we{1,---,n} such that tj>t*}>
=0,

using that (M4, (h(w)) (@))t*<t<T+t* is a P, (dw) —martingale if the internal indicator is non

zero. Thus, for PEY —almost every w € Q, (M; (@))o<ter 18 @ Qu (dw) —martingale which com-
pletes the first part of this proof. In similar way, we can prove

M (n (@) @) — ML (h (@) @)

is a PFV —martingale. Applying ITO’s formula to compute (h (&;) ,&t>2 and comparing it to the
previous result, we obtain the announced result. [l

6 Proof of the results of Section (3|

6.1 Study of a semi-group

In this section, we devote a specific study to the semi-group (T(”) (t))t>0 generated by the

>

operator B(™. In Section we provide an explicit expression of (t,z) — T (t)f(z) and
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prove that it is a strong solution to the semi-group PDE associated with B™, by means of
FEYNMAN-KAC’s formula. With the aim of subsequently obtaining fairly fine bounds on this
operator (see Corollary , we give all the necessary details. In Section 7?7, we give a MILD
formulation of the martingale problem using the semigroup (T(") (t))t>0 in Proposition

6.1.1 Construction of the semi-group

Recall that we denote by 1 € R", the vector whose coordinates are all 1. For any real vector-
valued function f and g of L'(R™), we denote by (f *g)(z) := [gn f(t)g(x — t)dt the convolution
product of f and ¢g. For any function f whose second partial derivatives exist, we denote by
Hess(f) := (8i2jf) I<ij<n the Hessian matrix of f. We denote by ‘fbu (Ry x R™ R) the space

of real functions on Ry x R™ of class €' (Ry,R) with respect to the first variable and of class
%Z2(R™, R) to the second variable.

Theorem 6.1. The family of operators (T(”) (t))t>0 defined as:

=

n

V>0, Vo eRY,  TO(8)f(x) = / £ (u)g, (u)du, (46)
Yz € R, TM(0)f(z) := f(=),

where gffx is a density of the Gaussian distribution N (mt .z, Xt) where ¥y := PoyP™' and

My = Py p-1, = — M (x-1)1 with

64(t) 0O ... ... 0
y1 exp (—2ynt) 0 t 0 0
Y2
Mty = . and oy = 0 ,
' : : . .0
Yn
0 0O ... 0 ¢t

1—exp(—4ynt)
4yn
proof below, is a semi-group of bounded operators on L (R™). In addition, for all f € ‘Kf (R™ R),

where ey (t) := and P is an explicit change of orthonormal basis matriz defined in the

(1) The application (t,z) — T (t)f(z) is of class €*(Ry x R™ R) and is a strong solution

of the PDE
Vt>0, Ve e R,  dult,x) = %Au(t,x) — 2y (Vu(t,z) - 1) (z - 1) (47)
Ve e R”, u(0,z) = f(x), (48)
and
(2) VIO f() = (Dmia (VF*05%5) (men)) o,

(3) V'Lv] € {L e ,TL}, a%ij(n) (t)f(l’) = (axjmt,x)t [(f * Hess (gt),([))) (mt,z)amimt,x]

where Oy, My, = €; — Ml with (e1,--- ,€,) the canonical basis of R™.
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As we will see in the proof, everything follows quite directly from the FEYNMAN-KAC formula,
except the fact that (t,x) — T (t)f(x) is a strong solution of the PDE up to time ¢ = 0. This
technical point will be useful for the MILD formulation and this is why we make a detailed proof.

Proof. In view of the operator B(™ given by , it is natural to define the semi-group 7" (t)
using the FEYNMAN-KAC formula: for any f € 62(R",R),

T (t) f(x) = Eo f(Xo)
where (X¢);- is solution to the following SDE:
Xo =z, dX; = dB, — 2v(X;-1)1dt, X, €R", t>0 (49)
where (By), is a n—standard Brownian motion and z € R".

In Step 1, we check that this definition of 7")(¢) coincides with the one given in the statement
of Theorem In Step 2, we verify that (x,t) — E; f(X;) is indeed a solution of the PDE (47))
for all ¢ > 0. In Step 3, we treat the case t = 0. In Step 4, we prove the announced expressions
of the derivatives of T () f(z).

Step 1. Change of basis in the SDE ([49)). We consider the orthonormal basis (v, -, v,)

of R" defined by vy := ﬁ(l +- 1)t and for 2 < i < n,

t
—1( 1 1
i \i-1v v

Vv
i—1 terms

v; = ~1,0,---,0

We denote by P the change of basis matrix from the canonical basis to the orthonormal basis
(v1,---,vn). We define for all ¢t > 0, Z; = P7'Xy, ie. Z; := (Zt(l),--- ,Zt(n)) where for all

i€ {l,---,n}, Zt(i) = (X;-v;). It is standard to check that W, := (Wt(l), e ,Wt(n)) where

for all i € {1,--- ,n}, Wt(i) := (B¢ - v;) is a n—standard Brownian motion and that (Zt)t;0 is
solution to the SDE

az = awt — 2ynzMat,

. 50
dZt(J) — th(J), j€{27...’n} ( )

Zo=y=Pla, {

All coordinates in are independent and solve a one-dimensional SDE whose solution is
explicit (ORNSTEIN-UHLENBECK for ZW) | standard Brownian motion for Z(®) i > 2). Tt follows
that Z; is a Gaussian vector of law N (™) (ttt,y,0¢). Therefore, for any ¢t > 0 and all y € R", Py,
has a density with respect to the LEBESGUE measure on R” given by:

_ 1 1 —yiexp (=2yn)? 1T &
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Since, Xy = PZ;, we deduce that for all z € R™ and for all ¢ > 0, X; follows the normal
distribution A () (Mg, Xt), with density

1
(27)3 Jdet(zg) ¥ (_ 2

Hence, E, f (X¢) coincides with (46]).

gg,(a:(r) = gfp—lx (P_lr) =

Step 2. T (t)f is solution to (47) on (0,400) x R". Without difficulty we verify that
for any y € R", gfy satifies the following FOKKER-PLANCK PDE:

n 1
vVt > 0,Vz € R", &gggy(z) = iAyggy(z) — 2’yn8ylggy(z). (53)

We deduce from that

Yy € R",Vr € R", 8tggy (Pilr) = 8tgt)fpy(r),

n
and, for all y,r € R, ayigfy(P_lr) = > Pkiaxkgf(py(r). In particular,
k=1 ’

_ 1
O g0y (P7Ir) = = (Vegitpy(r)-1).

In an analogous way, we deduce that

n

n
Aygt v Z Z Pyi Py zo,x 9t Py( r) = Azgi),(Py(r)7
—1ki=1

because P is an orthonormal matrix. From and since (13*136)1 = f)’ we deduce that the

density gfft satisfies:

1
*A;rgi),(x (r) +2v(z - 1)Vage(r) = 0.

V>0 Vr RNV ERY,  Og%(r) - 3

Now, the fact that for all f € L*°(R",R),

T (@) f(z) = / f(r)gi,(r)dr

n

is ‘5;2 ((0,400) x R™ R) and is a solution of on (0,4+00) x R" follows from the theorem of
differentiation under the integral sign. Note that, if f is continuous,

T (1) f(x) = Bof (Xe) — f()

by the dominated convergence theorem which leads to (48)).
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Step 3. Verification of (47) up to ¢ = 0. Assume that f € €2(R",R). This is equivalent
to prove that for all z € R",

o fe () (w)du — (@)
tg% t

1
= SAS@) =2y (V) 1) (1)
Let be z € R™ fixed. Using TAYLOR’s formula we obtain that
- fw)gig(u)du — f(z) = (A), + (B), + (C),,

where
(A), = [ (=l Vi) g, (B), =5 [ (o) Hess(F)(a)(u — 7)o (u)du,
(©), = [ Relw)gi(w)du,

where R, (u) := o0 (H:U — u||§) As g%, is a Gaussian density of N (my ., y), where

(- )x— ~ =2y(z- 1),

Voo /=0 (54)
vie Lok (S0 ot

r —myy = (1 —exp(—2ynt))

it follows that

(A), = (V@) - [mye — a]) = = L= P20 () 1y 1)
(B) =5 [ (=) Hoss(£)(2) (u = 1) g% ()l

+ % (x —my x)t Hess(f)(x) (x — myz)

L 1)2
Z 7o, F (@) (S1); + (1 — exp(—2ynt))? (m2n12) 1'Hess(f)(x)1.
hj=1

Therefore,
tim BB oy (95) 1)@ 1) + Las)

Now, it remains to manage the (C), error term. Note that,

Ve > 0,3a > 0,Vu € B(z, o), | Ry (u)
Vu € R"\ B(z, o), | Ry (u)

2
€ [lu— [l
2|[flloe + IV Fllog llu = [l
1
+ 5 [Hessf (@)l lu — 2]l

NN

Let ¢ > 0, @ > 0 and £y > 0 such that for all ¢ € [0,to], ||z —myzll, < % Let t € [0,%o).
Separating the domain of integration of the integral of (C), into B(z,a) and R"\ B(z, o), it
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follows from the YOUNG and previous inequalities that there exists a constant C' > 0 such that

(©),<c [ lu=aligi(wdu+C (1+ lu = al}3) g% (w)ce

R”\ B(z,x)

<2 Y (50 + 2+ C) o — mual3 + 2 [
Rn

(14w = mall3) 6% (u)du
i=1 \ B(z,a)

Now, for the choice of & and then the MARKOV inequality, we obtain that

4
1+ |Ju—myg .2 gﬂudué(l—k)/ w—my |2 g% (u)du
/R"\B(x,a)( H b H2) b ( ) a? R"\B<mt,m7%) ” bzt

4
i f]Rn |u — mt,xHQ gt),(x(u)du
Oé2 (2)4

2

16 4 n
< 7? <1 + 7) Z / (ul - (mt,x)i)zlgffx(u)du.
(0% (6% iz1 n

(i

As for all i € {1,--- ,n}, the fourth moment of a random variable of law N (0, (3;),;) is smaller
than 3 ()3, it follows from that there exists a constant C' > 0 such that
C -
(t)t < 2en +eC

for ¢ small enough and then the conclusion.

Step 4. Expression of the derivatives of 7(")(t)f. Noting that for all u € R", gip(u) =
ggXO (u —my ;) and using the symmetry property of this density, we obtain that

)

TO(E) f(2) = (£ + 6%5) ().
By the chain rule formula, we deduce the properties (2) and for all i,5 € {1,--- ,n},
02, T (1) f(x) = (Oa,me) [(f * Hess (g7%) ) (me2)0r,mia)
+ (%ﬂjmt,x . (f * Vgg(o) (mtm)> .
Now,
Oz My e = Op; Py p-1, = € — (1 — exp (—27ynt)) (Pil)li Pe.
The property (3) follows. O]

The following corollary is useful for bounding the dual process in Section [6.2

Corollary 6.2. Let f € €%(R™",R). We assume that there exists a constant C1 > 0 such that
for all x € R",
F@) < C(1+ 23"

Then, for allt > 0 and x € R™, there exists two constants Ca(t,n) > 0 locally bounded on
R4 x N such that t — Ca(t,n) is non-decreasing and C3(t,n) > 0 locally bounded on (0, +00) x N
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satisfying
(1) TV @) < Caltom) (1+ 2]3")

(2) H(Hess (9{5,{0) * f) (meg)|| < Cs(t,n) (1 + ||:BH§")

Proof. Step 1. Proof of (1). From 1' and 1) note that for all z,r € R™, ¢t > 0, gt)’(z(r) =
Z; -1
i gt,[]Pflx]j ([P r]j), where

— y1 exp (—2ynt))?

7(1) 1 [21
= ————exp| — ,
9t Y1 ( 1) 27T€4(t) p( 264(t) )
0 1 25 — y;)? %)
AY J 93 :
N = _ 2 ... )
gt,yj ( J) Tﬂ'texp( 2% )7 J 6{ ) 7n}
Since ||Pz||2 = ||z]|2 for all z € R™, we also have

Ll = [ 21807, ()
Hence,
n n— n (7) e i 2n
L lulg (du < n 12/ 2 Hgf[ia (e =t S0 ([200]™).
i=1 i=1

Classical moment bounds for Gaussian random variables show that E (G*") < C(n)t*" for G ~
N(0,t) and C(n) > 0. Since e4(t) < ¢ and using (55), we deduce that there exists two constants

C1(n) and Cs(t,n) such that for all i € {1,--- ,n}
E ([Z(i)rn) < 51(71) ((P_lx)?n + t2”) < ag(t,n) (1 + HP_lezn> .
The result (1) follows.

Step 2. Proof of (2). Now, we want to control, for all 7,5 € {1,--- ,n},

[((tess (97%) = f) (me)) | < Catm) |

For all k € {1,--- ,n}, we consider:

_ feat) if k=1
V’“(t)'_{ 4t it k£1

From , we deduce that for all 4,5,k € {1,--- ,n}, for all £ > 0,

029t m)] (1+ lImee = 73" dr.

097" ((P~'r)

)=l (7).

k kt)
. P (P, (P ‘
s () = g (Gl 1) st ()
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Hence, for all 4,j € {1,--- ,n}, for all t > 0,
n })—1 ) })—1 ) 13,1 2
a7 . 92 ()ZZ( )iy (s ( T)k—l gio (7)
id = Vi(t) Vi(t) ’

P, (P71,
( vk)ff)x(/g(t) () (P )

Noting that for all 4, j,k € {1,--- ,n},

(P_l)ij

s — 2" < 2270 ([lr]3" + 22" ' (2 — exp (~2ymt)) [l2]3")

< 1 and ’(P_lr)k| < nr|ly,

we deduce that for all 4,7 € {1,--- ,n}, there exists a constant 53(t, n) > 0 locally bounded on
(0, +00) x N such that

J.

372’”3%0 ‘Hmtz _7'||2 dr

L (n2lrl n—1(n|rl3 L om—i
g/"Lﬂt(t)(e4(t)2+1>+ t ( t 2+1)+”3<64(t)+ ; )HHI%}

x 975 (r) lmy e — r||2" dr
< Cs(t,n) (1+ [lll3") -

The announced result (2) follows. O

6.1.2 MILD formulation
In this section, we establish the MILD formulation associated with the martingale problem .

Proposition 6.3. Let (X;), be a stochastic process whose law P, is solution to the martingale
problem . with initial value . Then, for all f € €2(R™,R),

<T(n)(t0_tht 7/ ZZ @HT (to—s)f. X171 — < )(to—s)fyX?HdS
i=15=1
J#Z

[ 33 (a0 — ), x5
l_lj_l

is a IP,— martingale for 0 <t <.

Proof. Let ty > 0. Using , let u, v, w : [0,t0] x MS2(R) x © — R be B([0, to]) @ B (MfQ(]R)) ®
F —measurable defined by

o u(r,pu) = <T(”) (to —1) f, ,u">, o u(r,p) = — <8tT(”) (to —7)f, ,u”>,
o w(r, u) = LrvePrm) ty—r) f,n (1)-
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The expected result is a direct consequence of a version of [26, Lemma 4.3.4] where we replace
the assumption of boundedness on w by an assumption of domination. Hence, we need to check
the following assumptions of this lemma;:

(i) The process (u(t, Xt)); is (j-:t) —adapted and the processes (v(t, X)), and (w(t, Xt));5

>0
are (}—t)t>0 —progressive. These properties are standard in our case.
=

(ii) The functions u, v are bounded on [0, tg] x M$*(R) and there exists C' > 0 such that for
all t € [0, o], for all u € M$*(R), w(t, 1) < C (1 + Mo (1)) where we recall that My (u) = (id?, p).

(iii) The function p — v (¢, u, w) is continuous for fixed ¢ and w.

(iV) For all to=ta >t = 0,

E (u(tg, X4,) — ult, Xy,) 5%) : (56)

. ¢
}"t1> “E (/ C (s, Xi)ds

t1

and

jfm) =E (/t2 w(ty, Xs)ds

t1

E (u(tl,XtQ) — u(ty, X¢,) E) . (57)

v) The process (X; is right continuous (here, it is continuous) and
t>0 &

lim E (Jw(t — 9, X;) —w(t, X¢)|) =0, to >t > 0. (58)
5—)04,_

Step 1. Verification of Assumptions (ii) and (iii). From Theorem for all f €
C2(R™,R), (t,z) — TM™(t)f(x) is bounded on [0,%y] x R". The boundedness of u follows.
Moreover, as (t,x) — T™(t)f(z) is solution of the PDE , we obtain for all r € [0, ] and

c,2
w e M7°(R) that

o(r, 1) = —% (AT (1o — ) f, 5"y + 29 (VT (tg — 1) f - 1) (id - 1), ™).

Since p € ME’Q(R), the second term of the right hand side is well-defined. Using the properties
(2) and (3) of Theorem we deduce that v is bounded on [0,%g] x M$?*(R). In addition,
AT (tg—r) f and (VT(") (to—r)f- 1) are continuous bounded, hence p +— v(r, ) is continuous
on M (R) for the topology of weak convergence. Now, using , , , and Theorem
(2) and (3), note that for all 7 € [0, %] and p € M{*(R), there exists a constant Cr>0
such that,

n

w(r, p) = <(9tT(”) (to—1)f, u”> + 7 Z <KijT(") (to—1)f, u"+1>

ij=1
+ 7 Zn: (@7 (b —r) 5" = (T (tg — 1) f, 1) | (59)
ij=1
j#i
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where the bound Ms(p) comes from Kj;.

Step 2. Verification of Assumptions (iv) and (v). Let t2 > ¢; > 0. On the one hand,

to to
w (s, Xp) — (b1, Xo,) = <f 0,T™ (¢ — s)fds,xg> :/t v (s, Xp,) ds
1

t1

and the relation follows. On the other hand, as the martingale problem classically
involves the martingale problem [23], we obtain that

ulty, Xe,) — ulty, Xo,) = (T™ (to — t1) £, XJ — X7
to
= ‘CFVCPT(M(tO—tI)f,n (Xs)dS

t1

+ ]\//E(;) (T(n)(to - tl)f) - ]\//—Tt(?) (T(”)(to - tl)f) :

The relation follows. Finally, from , Proposition and the LEBESGUE dominated
convergence theorem, we deduce the relation (H8]). O

6.2 Proof of Lemma [3.5]

Recall that, our goal is to prove that the stopping time 6, defined by

VkEN, 6 :=inf {t >0 lM(t) >k or Jselod, (&,X1Y) > k:}

satisfies limg, 00 O = +00, P(, ¢ )—a.s. with u € Mi’2(R) and & € Cff (RM(O),R). Before to
prove Lemma [3.5] we introduce the following lemma, whose proof will be given at Section [6.2.2]
We denote by S; the number of jumps of the process M on the time interval [0, ¢].

Lemma 6.4. If & € 62(R™,R) then there exists a function Cy on Ugep (0, +00)* x {k} to Ry,
locally bounded, such that for all (t;),cy € (0, +0)N, k = Co ((t:)o<ick + k) is non-decreasing
and satisfying

vVt € [0,T], Vx € ]RM(t), |&c(z)| < Co (71,72 — T1, -+ s TSp41 — TSps ST) (1 + ||3:H§ST) .

The bound obtained above will only allow us to show that 65 — +oo P(, ¢)—a.s. under the
assumption that the initial condition Xy has all its finite moments. The following remark shows
that we cannot expect that 6, — +o0o under weaker assumptions on the initial condition.

Remark 6.5. Let & : = — sin(z) € ¢2(R,R). Let us assume that <]id|4,,u> = +o00 and &
successively jumps at times T, To and T3 with respective jump operator Kq1, K11 and ®13. If we
denote by 71 2 := T9 — T1, straightforward but tedious computations give

64(7’1)
2

2

&n (2, y) = KnTW (1)é(z,y) = —exp <— — 4771) sin (z exp (—2771)) ¥
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and
r (2,1, 2) = KnT® (112) & (2,9, 2)

1
= —exp (—64 (n) _ 4dy1 — exp (—4y71) —

4 2

" Hexp (:1477'1)

+ (2 [1 — exp(—4771,2)] — y [1 + exp(—4y712)] )2] —2(1 + exp (—8y71) — exp (—4vy71))

exp (—4y71) (ea(m12) — 71,2)2)
4 (64(71,2) + 7'1,2)

(14 exp (—4y719))? [2 (ea(T12) + T12) — exp (—4y71) (ea(T12) — T1.2)°

~ 2exp (~4ym) (1 - exp (~8y72)) (ea(ri2) — 712)}

—2
X sin <exp( 77’1)

5 [t —y+ (z+y)exp (—4771,2)]>

—2exp (—=2771) (1 + exp (—4771,2)) {$ —y+ (z+y)exp(—8y72) — wexp (—4y712)
_exp (—4y71,) (
2

-2
X cOos (exp( 5 )

es(n) ~ ) [~ 9) + (2 +y)exp (~4rm )]}

o —y+ (2 ) exp (49 2)] ) | 2

Note that the leading order term in &, (x,y, ) is of the form (ax — by)? 22 sin (cx + dy). Now,

§T3 (.’L‘, y) = ©13T(3) (7—3 - 7—2) §T2 (1"> y)

If 73 = T, we obtain as leading order term in &.,(x,y) the term (ax — by)2x2 sin (cx + dy),
which is not integrable with respect to p?(dz,dy). If T3 > T2, one can check that the leading order

term in TG (13 — 7)&n (,y, 2) is of the form Py(z,y, z)sin (Ex +dy+ Ez) where Py(X,Y,Z)
is a homogeneous polynomial of degree 4 such that Py(X,Y,Z) — (aX — bY)2 72, ¢— ¢, d —
d and € — 0 when 13 — To. Therefore, for 15 close enough to T2, &r,(x,y) has a non-zero
term proportional to x*sin ([5—1— elz+ Jy) which is not compensated by another term. Hence,
<]£}3\ ,u2> = 400 if T3 — 9 is small enough, for any values of 71 and 1. Given T large enough,
we have proved that 0, < 13 < T with positive probability.

6.2.1 Proof that Lemma [6.4] implies Lemma (3.5

Note that 0, = ék A gk where

~

B, := inf {t >0 ‘ M(t) > k} and 0 := inf {t >0 |3se 0,4, (&, X)) > k}

Thanks to it follows that é\k — 400 when £ — 4o00. In order to prove that gk; — 400 when

k — +o0, we rely on the control of the dual process obtained in Lemma So we need to
control <HH§ST ,Xt]\ilgs)>. Let T' > 0 and € > 0 be arbitrary. From (32, we choose A(T,e) > 0

such that P, ¢y (S7 < A) > 1 —¢/3. Then, using Proposition [2.11, we choose B(T,e,A) > 0
such that P, ¢ (Vk‘ <24, Vt < T, <]id|k ,Xt> < B) > 1 —¢/3. Finally, from Lemma H we

61/74]




choose Cp (T,e,A) > 0 such that P, ¢) (Co ((Tix1 — Ti)o<ica ,A) < Co) > 1—¢/3. We recall
that for any m € N*, for all z € R™, (31" 4 ;)" < m™~ 137 | 2. Thus, the following inequality

M(s)
(M55, 1) < M () IZ/ oy TN () = M (s)T (1257, X )

< (M(0) + A)*
takes place with probability 1—2¢/3. Therefore, we deduce from Lemmathat foralls <t < T,
(€0, XMWY < Ty (M(0) + 4)
In particular, for k& > Cy (1 + (M(0) + A)* B), it follows that

(,u £) (Gk T) > P(M@O) ({ST < A} N {Vk < 2A, vVt < T, <idk,Xt> < B}

N {C’o ((Ti+1 — Ti)o<i<A s A) })
=21—e.

The conclusion follows. ]
6.2.2 Proof of Lemma [6.4]
By mathematical induction on k£ € N, we prove the property

(Pr): V€ [mh, Tera], Yo € RMO 0 1g(2)] < Co((Tig1 — Ti)ocicr » %) (1 + Hﬂ?Hgk) ,
where Cj is locally bounded on Uyey (0, +00)" x {k}.

Initial case. For k =0, Sy = 0 and & € 6(R™, R). Hence, the property (Pp) is satisfied.

Inductive step. We assume that, for k& € N*, the property (Px_1) is satisfied and prove that
(Py) is also. Let t € [7x, Tk+1[ and note that M(t) = M (1x). We make a partition of cases

according to whether the dual process loses or gains a variable. Let i,7 € {1,--- , M (15,_1)} be
fixed.

Step 1. Case Ay = ®;; at the k™ jump. In this case, M(7;) = M(7%_1) — 1 and we
deduce from the explicit expression of the dual process that for all z € RM(7k-1)-1,

&(x) = T(M(Tk—l)_l)(t _ Tk)q)i,jT(M(T’“*))(Tk — Th1)Er ().

By using expression of ®; ; and the property (Pr—_1), we deduce from Corollary (1) that
for all z € RM(Te—1)—1

@ ; TM=1)) (7 — 7y,_y) fnﬂ(if)‘

< Ca (1= 71, M (10-1) Co (s = Tpiap -k = 1) (14 [l257)
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where C2C is locally bounded. Using again Corollary[6.2](1) and the fact that t — Co (¢, M (14-1))
is non-decreasing, we deduce the property (Py).

Step 2. Case A, = K;; at the k' jump. In this case, M(7;) = M(7;_1) + 1 and the
explicit expression (| of dual process that for all 2 € RM(7s-1)+1,

&i(w) = TN (¢ — ) Ky T O (1 — 1), (@)
From the expression of K, j and Theorem (6.1} m (3), we have for all z € RM(Tk-1)+1

‘Ki’jT(M(Tk’—l)"'l) (Tk - Tk—l) ngfl(x)’

_ By X ~ B 2
- ’(amjmm—m—hx) [(5‘%4 * Hess (ng—rk_l,O)) (mTk_Tk—lym)ﬁximTk_Tk—l1$] LM (14_1)+1>

where 7 = ($1, e ,xM(Tkil))t e RM(7-1) | From the property (Py_;) and Corollary (2), we
deduce that

K T (7 — 1) &, (@)
< Cs (Tk - Tg—1, M (Tk—l)) Co ((Ti+1 - Ti)ogigkq k- 1) (1 + ||33||§k) )

where C3C) is locally bounded. Using Corollary (1), we deduce the property (Px). We
conclude by the principle of induction. O

6.3 Proof of Theorem [3.4]

Recall that (X¢),, is a stochastic process whose law P, is a solution of the martingale prob-

lem 1' with € M$?(R) and (&t)¢0 @ dual process independent of (X),-, built on the same
probability space. To simplify, we will note P = P(, ¢ the distribution of ((X¢,&t));50- As
& € 67 (RM(0) R) and for the choice of the stopping time 6, given by , the set of quantities,
involved in the expectations of the weakened duality identity , are bounded.

Step 1. Approximation reasoning. To establish the relation we introduce a increas-
ing sequence 0 =t < ¢ < --- <ty =t of subdivisions of [0, ] such that tih, =t + h with h

tending to 0. Note that
2 (6o 3"y (3 [ ar2gan) ) = ({50 3257)

Pn—1 6
M(t NO i+17\Vk
= Z |: <<€t /\Hka t/\e(kl‘"tln ’;\?gk> exp <f)//0 M2 (u)du))

=0
M (A0 Ok
—E <<§t?/\9k7Xt/\9(k1—t?]/€\)9k> exp <7/0 M%u)du))} '

We are therefore interested in terms of the form

(S—‘rh)/\@k
M ((s+h)N0
2 (e X o (3 [ a0 ) )

S/\Q}C
-E <<§sA9k, X;‘/{g(i/:i'j\)ek> exp (’y ; M2(u)du)) , forsel0,t—h].

N

(60)
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It is sufficient to prove that these quantities are O (hg). The procedure to be adopted is as
follows. First of all, we consider separately the two terms which constitute in Steps 2 and 3.
Then, we prove that the sum of these terms is O (h2) in Steps 4 and 5. Throughout this section,
in order to simplify the writing, the following notations are introduced:

tp =t A0, s 1= s A\ Oy, and SZ = (s+h) A b.

We note respectively 71, o the first and second jump times after s, for the process M. We
denote by 7y ;, := 71 A0 and 7, == T2 A 0.

Step 2. First term of . We exploit the explicit expression of the dual process
and make the following partition:

(a) If there has been no jump of M on the interval [sy, s}!].

(b) If there was only one jump of M on the interval [sk, SZ] and distinguish according to the

events {A = ®; ;} and {A = K ;} where A is the first A;, defined by and after sj.
(c) If there are two or more than two jumps of M on the interval [sk, s’,ﬂ

Then
E <<5Sg, X)) exp (fy / . M2<u>du) ‘ f)
—E (<£;€ X?Z_(%)> exp (v /OSZ MQ(UMU) Lo san)

M(sy)
+ >

7)
ij=1

M(sh) Sk, ~
= gsZ’?th_SZ exp 7/0 M (u)du ]l{Tl,k<3Z7T2,k>527A:q)i,j} Lo
i

M(Sk) M( h) sz 9 ~
Sk
+ mél E (<£5Z’th—82 > exp (7/0 M (u)du) ]l{71,k<82,T2,k>SZ,A=K¢,j} ‘ ]-“sk>
h
k

M sh, s ~
+E <<§SZ7th—s§)> exp (’)//0 Mz(u)du) ]l{rg,kgsz} ‘ ./—"Sk) .

We consider successively each term in the right-hand side.

Firts term: no jump. As there is no jump on [sk,s’,g], we have M (SZ) = M(sy) and
552 = T(M(sk)) (SZ — sk) &s,,- Thus,

E (<552,Xf<§:?)> exp <v /OSZ MQ(U)dU) Lo e>sh} ‘ fk)

= <T(M(S’“)) (SZ — sk) o XM(S’“)> exp (’y /OSIc MQ(u)du — {’y (SZ — sk) M (sg)(M(sg) — 1)})

_ch
tp—sy;
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where we used the fact that 71 ,—s;, given fsk follows an exponential law of parameter yM? (s;)+
VM (si) (M (s) —1).

Second and third terms : only one jump. These terms are treated in an analogous way,
so we only give the details for the first one.

If there is a jump on [s, s!] and for i # j € {1,2,--+ , M (s3)} fixed, A = ®; ;, then M (s]!) =
M(sp) — 1 and fsz = T(M(s)=1) (sf —Tik) O; ; TME) (1 1 — 83) &, . Thus,

M(Sh> S]];L 9 o~
. <<’582’th8§ >exp <7/0 M (w)du ]I{Tl,k<827727k>sﬁv/\=‘pi»j} i

_ <T(M<Sk>—1> (sh = 714) @i TVED) (14 — 51 &, XM(S';)*1>
ko2 2 h 2
X exp ’Y/O M= (u)du + [T — sk] M (sk) +7 [Sk - Tl,k] (M(sk) —1)

tp—sy

X ]]'{lekfskgszfsk}E |:]]'{A:q)i,j}]1{727]677'1,]6>827T1’k} g (Tlvk) VFSk] N

Now, using that, given A = ®;; and o (111) V j—ik, To; — T1, follows an exponential law of
parameter (M (sp) — 1)* 4+ (M (sg) — 1) (M (s) — 2), we deduce that

P <{A = @m’} N {TQJC — Tk > 82 — Tl,k} o (Tl,k) V .%Tsk)

~exp (= [(M (s1) = 1)+ (M (si) = 1) (M (sx) = 2)] [sh = 714])
B M? (s) + M (s) (M (s) — 1) '

Then using that, given o (1 ) \/]?sk, 71 — Sk, follows an exponential law of parameter yM? (s;)+
M (sg) (M (si) — 1), we deduce that

M(SZ) Sk 2 —
E 6527th752 €xXp ’7/0 M (U)du ]]'{Tl,k<527T27k>Ssz:q>i,j} ]:Sk
sh o . .
— fy/ {<T(M(Sk)1) (32 — 1) By TV (1 — ) gsk,th_(ssf%)— >eXp (,Y/O Mz(u)du)
Sk

X exp <—2’y (r—sg)(M(sg) —1)—~ (sz — sk) (M(sg) —1)(M(sg) — 2))} dr.

Similarly,

M(s}) ko =
E §SZ7th_SZ exp VA M (U)du ]l{lekgsz,727k>sZ,A=K¢7j} Fsk

sk . s M(s)+1
_ 7/% {<T(M( O (sf 1) KT (r — ) 6, X2 )

X exp (fy /OSk M?(u)du — 2v(r — sp)M(s) — (82 - sk) M(sg) (M (sg) + 1)) } dr.
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Fourth term : at least two jumps. Note that, IP’(‘.%S,J —a.8., T — Tik = Fg,
where E,, is an exponential random variable with parameter Ay (sp) := ~ (M (s;) + 1) +
v (M (sg) + 1) M (s). We denote by Aj (si) := v (M (sg) + 1)% + v (M (s) +1) M (s3,). Us-
ing the strong MARKOV property at time 71 j, we obtain that

P (TQ,k < st ‘ .ﬁk> <P ({7171@ < SZ} N {TQ,k —Tik < SZ} ‘fck> < A1(sk)Aa2(sk) [SZ - Skz}

It follows that there exists a constant C'(k) such that,

E (<§s’£’ XZ‘Z_(%)> exp (7 /ok M2(u)du) L e} ‘ fk) < C(k)h2.

Step 3. Second term of . It follows from the MILD formulation of Proposition

that
sk ~
(et )] )
—F (<T(M(Sk))(sz — $1)€p, X (Sk)> exp <’Y/ . M2(u)du>
k Sk 0

M (sg)

3w ([ (e, x)

7]_1
(&N

— (TMED (g, X)) ) drexp (7/? Mz(U)dU> ‘ fsk>
M(sp)

S E(/Sk sk <KZ_]TM(Sk (1)Eqy, X1 sk)r>d7“eXP< / M2( )du>

7]_1

2

;Sk> |
Step 4. Conclusion. Putting together all the previous equations, we deduce that

[S-‘rh]/\ek
M ([s+h]|AO
© ((eesna X e (0 [ a2 )

-8 (e X005 ) esn (5 [ 3 )
= (A) + (B) + (C) + (D) + (E) + O(h?),

where
(A)=E (< TOIED) (sh — 54) &, ;\j(zz)>
X exp (7/0 k M?(u)du — v [SZ - Sk} M (s) (M (sg) — 1)))

sh —sk Sk
+~E / Z (7)€ X, (Sk) 74>drexp (’y/o M2(u)du> ,

i,5=1
i#]
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M(sg)

@ =z [ X [T () T e, 1)

,j=1
i#]

— (7MY (0) g, M ()fsztk(sk)r>}exp< / M2( )du> 7

(s£)  sh N—sp
$ s sk)+1
(C) = 'yE( > / T(M( DD (s — s, — 1) KigTMED (r)e, tk<52)+>
=1

= (O (0) Ky TN (g, X4 L exp (%SkMQ(WC‘“))’

M (s)

=5 [ 3 [FT (100D (o ) 0 T e XY
hj=1
(&N

X exp (—277“ [M(sg) —1] —~ (82 — Sk) [M(sg) — 1] [M(sg) — 2]) } d7"> )
(sk)

Z /Sk o T(M(Sk)+1) ( — 8 — 7«) K ;T (M(sg)) ()&, X Sk)+1>

) tks
2
4,j=

(E) =~E (

X exp (—2")/7“M(8k) — (32,’ - sk) M (sg) [M (sk) — 1]) } dr) .

All these terms are O (h2) uniformly with respect to the other parameters which is sufficient
to conclude the proof. This can be proved similarly for each term, so we only give the details for
(A). We first notice that when h — 0,

(A)=E (M(sk) (M(s) — 1) /0 e {<T<M<sk>> (st — 5t) € M(S’:?>

tr Sk

<T(M (1) ()¢, tk Ss’“) r>}drexp (7/08k MQ(u)du>> +0 (h2).

By conditioning with respect to j-rsk in the previous expression and using the MILD formulation
of the Proposition [6.3] again we obtain that

B = (eXp (v [ w2uyan) arts) (s - 1) [ o [ /ttk—sﬁ {

E—Sk—T
M (s)

3 [<(I)i7jT(M(Sk)) (tr — s — ) £Sk7X11]\4(8k)—1> _ <T(M(5k)) (te — s — V) &gy s Xé\/I(Sk)H
ij=1

i#]

ij=1

M (sy)
+ > (K TMED (1) — 5, —0)&s,, X7 <Sk>+1>} dv] dr) +0 (h?).
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Both integrals are on intervals of length at most h. Since all the quantities in the integrals are
bounded by definition of the stopping time 6, we deduce that (A) o O(h?). O
_>

A Technical lemmas involved in the existence proof

A.1 Approximation lemma

Lemma A.l. Let p € N*, p,v € Mi(R), F € 62 (RP,R) and g = (g1, , gp) where for each
i€{l,---,p},gi € €3(R,R). Then,

F(<gl OTf(id,u>7u>7"' 7<gp07-7 (id, ) 7Iu>)
—F(<g107' (id,v)» >7 7<gpoT—<id,V>7V>)
p
= Z {8I<:F <gl O T_(idv)>V >7 7<gpo7-f<id,1/>7y>) (<gk on<id,l/>7:u’_V>
k=1

- <1d,/1, - V> [<g;c © T—(id,v)» V> + <g;~c o Tf(id,lz>7lul - V>]

1
§<1d:u“_l/ <gko7— (1duvl/>)}

LS o (o) oo i) ({0 o= )

zy*l
X <gjo7—_<id,”>"u_y>_<id7iu_l/> |:<g]o7' (id,v)» ><gioT—(id,V>7lu’_V>
+<g§OT_<id,y> ><QJOT (id,v)> M—V>

_<gon (id,v)» ><g]OT (id,v)» V ><1d7M—V>D}
SRR 3
+0 (1= + 3 3 (ol 0 r-qanrn =) )
k=10=0

Proof. The general case p € N* can be proved by a straightforward extension of the proof of the
case p = 1 which is the only case that we prove. Applying TAYLOR’s formula to g o 7_q )y =
g (- — (id, ), we obtain that

(90T (idpy = 9°T—(idw)s 1)
= /R,u(d:c) [g/ (z — (id, ) (id, v — ) + %g” ( — (id, 1)) (id, v — p)* + O ({id, v — Nf‘")}
=—(id,p—v) [{¢" o T_(iap), ¥) + (9" © T_(ia ) i — V)]
+ % (id, o — )* [{g" o T_iawy, V) + (9" 0 T_giany b — V)] + O ((id,M—V>3) :
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Therefore, we deduce the following approximation:

(90T tiau 1) — (g0 T_(aw, V)
= (goT_gawy, b —v)—(id, p —v) [{¢' 0 T_tia) ) + (9" © T_tia ) it — 1)) (A1)

1 .
+ 5 <ld7lLL - V>2 <g” © T—(id,y>71/> + @ (|<1d71u - V>|3 + <1d7:u - V>2 ‘<g” o T—(id,y)nu - V>D .
Applying TAYLOR’s formula to F ({g o 7_q ), /1)), we obtain that
F((gom—gam: ) = F ({90 T—Gaw)¥))

=F' ((go T tiaw ) ¥ [(g0 T i 1) = (90T (iaw): V)]

F' ({907 (ian):v))
5

3
+ 0 ([{9 07 pagr 1) = (9070 )]°) -
Using (A.1]), we deduce that

+ X ({90 T 1) = (907 ay )]’

2
(€90 T—tid 1) — (90 T—tiap), )]
= <g OT_(idw)s ¥ — U>2 + <ld7 w—= V>2 <g/ O T_(idw)> V>2
—2(g 0T (i) b — ) (id, pp = ) (¢ 0 T_(idp), V)

+0 <!<id,u — )P+ (id, p — v)? [|<g O T_(idp)s b — V)|
+ ‘<gl o T—(id,u)nu - 1/>‘ + ’<g” o T—(id,u)a# - V>}:|
+ |{id, e = ) (g 0 T—giay b — V) (9 0 T_fiawy, 1t — V>\> :
and
3
O ([{g 0 mfiap> 1) = (9° T—gaw) )]")

=0 <’<1d7/1’_y>|3+ <id,/j,—1/>2 |:|<go7-<id,1/)7u_l/>| + |<g/o7—f<id,l/>7:u’_]/>|

+16id, = )] [{g 0 T gawy = V)’ + (g 0 Tgapys i — v)°] + (g0 T_gany 1 —V)[) -

The announced result follows from YOUNG’s inequalities. O

A.2 Lemma of convergence

Lemma A.2. Let k € N*. We assume that <idk,y> < o0. We consider for t € [0,T], an
increasing sequence 0 = tf < tf < --- <ty =T of subdivisions of [0,T] whose mesh tends to 0.
Then, for all hy € {1,id} and hy € €2(R,R), we obtain that, in PLY —probability,

Po b gn At
(1)  lim Z/ <h1><
Pn—l yn A

n—-+oo izo t:-l/\t
. i1/ k
(2) lim Z [(h1,Ys)] ‘<h2 o T—<id,YtnM> —hgo T,<id,ys>,ys>
-0 i

n—+oo tAE
7 %

k
ds =0,

k
ds = 0.
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Proof. The two properties can be proved similarly. We only prove the first one. Thanks to
Lemma [5.1] (1) (a) and using that ho is LIPSCHITZ, there exists a constant Ct,, such that

[ARPAU
hl X
At

k
ds

£ At
</t ’<hlyy>‘ |:CLlp

AL

M3 (id) = My ()| A (2] )"

If h1 = 1, the dominated convergence theorem allows us to conclude the proof. If h; = id, using
that sup,cppy [(id, Yz)| < oo PFV_—a.s. by Lemma (1)(b), we can also apply the dominated
convergence. 0

A.3 Control of error terms

Lemma A.3. Lett > 0 be fized and assume that (id*,v) < co. Let j € {0,1,2} and g € €;'(R,R)
fixed. The sequences

1=0

Pl . 3
(1) ( Mg Mod)—Mz?M(id)\)
neN

pn—1 . . .
(2) <7;) Mtn 1At <g(J) ° T—<id,Y};{L/\t>> o Ml?/\t <g(]) © T—<id,Yt:_L/\z>>

3)
neN

Proof. Step 1. Proof of (1). Let € > 0 and ¢ > 0 fixed. Let A > 0 to be determined later. We
introduce the stopping time

converge to 0 in PEY —probability.

T4 := inf {t 20 <id27Y;f> o <id’Y2>2 > A}

which satisfies almost surely limg_,1. 74 = 400 by Lemma Then, using MARKOV’s in-
equality, we obtain that

=

pn—1 5
prY ( ‘MQS (i) — Mn/\t(ld)’ > 5)
B pn_l

1=0

<PV (ra<t)+ PV ({TA >thn { ‘Mn ae(id) — n/\t(ld)‘3 > 5})

Pnl

3
<Py )+ = ZE(‘M” ntnra (id) — Mt"/\t(ld)‘)'

_ 3
(i) — M, ()| is
bounded and (M(id)), ey 18 2vA%-LipscHITZ. Thanks to the BURKOLDER-DAVIS-GUNDY

From the definition of 74, we obtain for all s € [t7 AL, 17 At], ‘M;(/i\m
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inequality and Lemma (2), there exists a constant Cy such that
3 . . 3
|V senra () = M G0 ) < C1E ([<Mld<id>>t?+lmm - (arga),,, | )
<Cy (27A2)% (t1 At — 0 AE)2 .
Therefore, if we choose A such that ]P’EV (T4 <t) < 5, and ng € N such that for all n > ny,

52

sup [t At =170 At < S iy
\/z'e[[o,pn—l]] ' ' 20, (27A2)7 ¢

we obtain that

Cy (2vA?
<SPEV (ra <t)+ M)t\/ sup  [th o At —th At
i€[0,pn—1]

and the first announced result follows.

Step 2. Proof of (2). In similar way as previously, we obtain that

PV e
AP

i (49 T@MQ (39270 )
1”” ' )
S (80 (59 )~ 80 (597 )

)

3
3
C (2’y 1)
< t\/ sup [t At — 17 At
which converges to 0 when n — 4-o00. O
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