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Existence, uniqueness and ergodicity for the
centered Fleming-Viot process
Nicolas Champagnat*, Vincent Hass*1

March 3, 2022

* Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

Abstract. Motivated by questions of ergodicity for shift invariant Fleming-Viot pro-
cess, we consider the centered Fleming-Viot process (Zt)t⩾0 defined by Zt := τ−⟨id,Yt⟩♯ Yt,
where (Yt)t⩾0 is the original Fleming-Viot process. Our goal is to characterise the centered
Fleming-Viot process with a martingale problem. To establish the existence of a solution
to this martingale problem, we exploit the original Fleming-Viot martingale problem and
asymptotic expansions. The proof of uniqueness is based on a weakened version of the duality
method, allowing us to prove uniqueness for initial conditions admitting finite moments. We
also provide counter examples showing that our approach based on the duality method cannot
be expected to give uniqueness for more general initial conditions. Finally, we establish ergod-
icity properties with exponential convergence in total variation for the centered Fleming-Viot
process and characterise the invariant measure.

Keywords. Measure-valued diffusion processes, Fleming-Viot process, Martingale prob-
lems, Duality method, Exponential ergodicity in total variation, Donnelly-Kurtz’s modified
look-down.

MSC subject classification. Primary 37A25, 37A30, 60G44, 60J60, 60J68; Secondary
60B10, 60G09, 60J76, 60J90, 92D10.

1 Introduction
Fleming and Viot have introduced in [26] a probability-measure-valued stochastic process
modeling the dynamics of the distribution of allelic frequencies in a selectively neutral genetic
population as influenced by mutation and random genetic drift: the original Fleming-Viot
process. The initial model of [26] was progressively enriched with further mechanisms of Dar-
winian evolution: selection [26, 20, 22, 8, 17], recombination [24, 22] or the effect of an envi-
ronment [27]. Fleming and Viot characterise in [26] the law of their process as a solution
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des Aiguillettes 54506 Vandœuvre-lès-Nancy, Cedex, France.
E-mail addresses: nicolas.champagnat@inria.fr (Nicolas Champagnat), vincent.hass@inria.fr (Vincent Hass).
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of a Stroock-Varadhan measure-valued martingale problem [50] both in the selective neu-
tral case and the case with selection. To obtain the existence of such solution on a compact
metric space, their method is based on discretization of the mutation operator and tightness
arguments. An alternative approach is used, in the studies [39, 40, 31, 30, 49] based on the
Otha-Kimura model [41, 42] and in the references [26, 9, 22, 16] based on its continuous-
time version: the Moran model (also called continuous-state stepwise mutation model). If we
denote by N the population size, these authors construct a particle process whose limiting be-
havior is analysed under the assumptions that the mutation step is proportional to 1/

√
N and

on the time scale (Nt)t⩾0. In [27], another particle process, based on the lookdown construc-
tion [13] is used to show the existence of the Fleming-Viot process in a random environment.
This lookdown construction also allows to analyse sample path properties of the process and
has been used in numerous references since then, such as [14] [16, Chapter 5].

In [26], uniqueness of the solution to the Fleming-Viot martingale problem in the se-
lective neutral case, is proved using uniqueness of moments of certain finite-dimensional dis-
tributions and arguments on semigroup. However, in the case where natural selection acts,
the previous method fails, but the result can be obtained from a version of the Cameron-
Martin-Girsanov formula [8, Chapter 10] [7, Theorem 5.1]. See also [23] for an applica-
tion of this method in the case of unbounded selection function. In most references such as
[16, 9, 19, 20, 22, 23], under a variety of assumptions, the duality method [25, Proposition
4.4.7] is used to prove the uniqueness of the Fleming-Viot process. The idea is to relate
the distribution of the original process with that of a simple process, called dual process. This
leads to a duality relation which ensures that two solutions to the martingale problem have
the same 1-dimensional marginal laws. Uniqueness of the solution to the martingale problem
then follows from Markov’s property [25, Theorem 4.4.2]. Other methods are used in some
references: [10] makes use of resolvent estimates; [44, 43] prove existence and uniqueness of
Fleming-Viot processes with unbounded selection intensity functions by using Dirichlet’s
forms.

Questions of ergodicity of the Fleming-Viot process were also the subject of many works.
Let E be a Polish space and B(E) the Borel σ−field on E. Let us recall that an E−valued
Markov process (Zt)t⩾0 is weakly ergodic if for all continuous functions f on E

lim
t→+∞

Eν0 (f (Zt)) =
∫

E
f(x)ν0(dx)

for every initial condition ν0 and strongly ergodic if

lim
t→+∞

sup
B∈B(E)

|Px (Zt ∈ B) − ν0(B)| = 0, x ∈ E.

If E is compact, for mutation operators A whose closure generates a Feller semigroup on
the space of continuous functions and such that there is a unique probability measure ν0 on
E satisfying

∫
E Af(x)ν0(dx) = 0, some ergodicity results for the Fleming-Viot process are

obtained in [22]. More precisely, in the selectively neutral case and without recombination, a
simple proof of weak ergodicity of the Fleming-Viot process is given using duality arguments
whereas coupling arguments provide an approach to strong ergodicity. These results were
extended in [21] to models with recombination and in [23] to models with unbounded selection,
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with the additional tool of Dawson’s Girsanov-type formula for strong ergodicity. In the
special case where the mutation operator of the Fleming-Viot process has the form

Af(x) = θ

2

∫
E

(f(y) − f(x)) P (x, dy), θ ∈ R⋆
+, f ∈ D(A), (1)

it is proved in [22] that the Fleming-Viot process has a reversible stationnary distribution if
P (x, dy) = ν(dy) (see [34] for a converse result). For the mutation operator (1), it is proved
in [19, 20] and [8, Theorem 8.2.1] that the Fleming-Viot process is purely atomic for every
time, in other words the solutions of the martingale problem take values in the set of purely
atomic probability measures. In [24], the ergodicity result of [21] was extended to the weak
atomic topology.

However, if we consider the case where the mutation operator is the Laplacian on Rd, there
exists no stationary distribution [22, 34], [25, Problem 11 p.450]. Instead the process exhibits
a wandering phenomenon [9]. Nevertheless, [49, 22] considered the Fleming-Viot process
shifted by minus its empirical mean and established existence of a unique invariant measure
and weak ergodicity for this process using moment and duality arguments. More precisely in
[22], thanks to some estimates of the original Fleming-Viot dual process and the finiteness
of all moments of the Fleming-Viot process shifted by minus its empirical mean for any time
t, the authors obtain an expression for these in the asymptotic t → +∞. Then, by tension
arguments and characterisation of the limit, the result follows. In [49], an analoguous approach
is used for the continuous-state stepwise mutation model.

In this paper we are interested in the Fleming-Viot processshifted by minus its empirical
mean, which we call centered Fleming-Viot process. As in previous works it is natural to ask
questions of existence, uniqueness and ergodicity. Moreover, the study of this process was mo-
tivated by biological questions in adaptive dynamics. The theory of adaptative dynamics [38]
is based on biological assumptions of rare and small mutations and of large population under
which an ODE approximating the population evolutionary dynamics, the Canonical Equation
of Adaptive Dynamics (CEAD) was proposed [11]. Two mathematical approaches were devel-
oped to give a proper mathematical justification of this theory: a deterministic one [12, 46, 37],
and a stochastic one [3, 6, 5]. Despite their success, the proposed approaches are criticised by
biologists [51, 47]. Among the biological assumptions of adaptive dynamics, the assumption of
rare mutations is the most critised as unrealistic. In order to solve this problem, we propose to
apply an asymptotic of small mutations and large population, but frequent mutations. After
conveniently scaling the population state, this leads to a slow-fast dynamics [45, 33], where the
fast dynamic appears to be given by a discrete version of the centered Fleming-Viot process
[4]. This explains why we are interested in ergodicity properties of such processes.

To establish the existence of the centered Fleming-Viot process, we characterise it as a so-
lution of a measure-valued martingale problem and that we called the centered Fleming-Viot
martingale problem. Our method is to exploit the original Fleming-Viot martingale problem
and asymptotic expansions. An additionnal difficulty occurs in our case since we need to apply
the original Fleming-Viot martingale problem to predictable test functions. This requires to
extend the martingale problem to such test functions using regular conditional probabilities.
The proof of uniqueness of the solution of the centered Fleming-Viot martingale problem is
based on duality method as in the previous works. However, additionnal difficulties occur in
our case since bounds on the dual process are much harder to obtain and the duality indentity
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can only be proved in a weakened version. In particular, our uniqueness result only holds for
initial conditions admitting finite moments. We also provide a counter example showing that
our uniqueness result is optimal in the sense we cannot expect to obtain uniqueness for more
general initial conditions using the duality approach. Finally, we obtain strong ergodicity prop-
erties of the centered Fleming-Viot process that extend the weak ergodicity results obtained
in [49, 22]. To this aim, we construct the centered version of the Moran process and we prove
that converges in law to the centered Fleming-Viot process. Exploiting relationship between
the Moran model and the Kingman coalescent, we obtain a result of exponential ergodicity in
total variation for the centered Moran model uniform in the number of particles. This result
is propagated to the centered Fleming-Viot process by coupling arguments. Using another
strategy proposed by [49, 22], based on the Donnelly-Kurtz modified look-down [14] we give
a characterisation of the unique invariant measure of the centered Fleming-Viot process.

This paper is organized as follows. In Section 2 we define the martingale problem for the
centered Fleming-Viot process and establish an existence result. We give also some equiva-
lent extensions to the centered Fleming-Viot martingale problem and some properties of the
centered Fleming-Viot process. In Section 3 we prove uniqueness to the centered Fleming-
Viot martingale problem for initial conditions admitting finite moments and we discuss this
assumption. In Section 4, we establish exponential convergence in total variation for the cen-
tered Fleming-Viot process to its unique invariant measure and provide a characterisation
of this measure based on the Donnelly-Kurtz modified look-down. Finally in Sections 5
and 6, we prove respectively the main results of existence and uniqueness of the solution of
the centered Fleming-Viot martingale problem. The paper ends with an appendix gathering
technical lemmas for the existence proof.

2 Existence for the centered Fleming-Viot process
In this section, our aim is to define the martingale problem for the centered Fleming-Viot
process and to establish an existence result. This result is stated in Subsection 2.1. Then,
we give in Subsection 2.2, the framework and ideas of the proof. In Subsection 2.3, we give
some equivalent extensions to the centered Fleming-Viot martingale problem with different
sets of test functions. We end this section by giving some interesting results about the cen-
tered Fleming-Viot process: it satisfies the Markov property (Subsubsection 2.4.1), admits
moments finite (Subsubsection 2.4.2) and has compact support (Subsubsection 2.4.3).

2.1 Centered Fleming-Viot martingale problem and main result

The original Fleming-Viot process is a measure-valued diffusion in M1(R), the set of prob-
ability measures on R, which is endowed with the topology of weak convergence making it a
Polish space [2]. If I is an interval of R, then for all ℓ ∈ N, we denote by C ℓ(I,R) the space of
functions of class C ℓ from I to R. For ℓ ∈ N, we denote by C ℓ

b (R,R) the space of real bounded
functions of class C ℓ(R,R) with bounded derivatives. We consider the filtered probability space(
Ω, F , (Ft)t⩾0

)
where

Ω := C 0 ([0, +∞) , M1(R))

4/74



is endowed with the Skorohod topology, F is the associated Borel σ−field and (Ft)t⩾0 is
the canonical filtration. The centered Fleming-Viot process is a measure-valued diffusion in

Mc,2
1 (R) :=

ß
µ ∈ M1(R)

∣∣∣∣ ∫
R

|x|2µ(dx) < ∞,

∫
R

xµ(dx) = 0
™

which is endowed with the trace of the topology of weak convergence on M1(R). We consider
the filtered probability space

(
Ω̃, ‹F ,

Ä‹Ft

ä
t⩾0

)
where

Ω̃ :=
®

X ∈ C 0
Ä
[0, +∞) , Mc,2

1 (R)
ä ∣∣∣∣ ∀T > 0, sup

0⩽t⩽T

∫
R

|x|2 Xt(dx) < ∞
´

is endowed with the trace of the Skorohod topology on Ω, ‹F is the trace of the σ−field
F and

Ä‹Ft

ä
t⩾0

is the trace of the filtration (Ft)t⩾0. We introduce several notations that
we use repeatedly in the sequel. For a measurable real bounded function f and a measure
ν ∈ M1(R), we denote ⟨f, ν⟩ :=

∫
R f(x)ν(dx). We denote by id the identity function. We

denote N := {0, 1, 2, · · · } and N⋆ := N \ {0}. For all k ∈ N and for all ν ∈ M1(R), we also
denote

Mk (ν) :=
∫
R

|x − ⟨id, ν⟩|k ν(dx).

In particular, for all k ∈ N and for all µ ∈ Mc,2
1 (R), Mk(µ) =

¨
|id|k , µ

∂
.

Definition 2.1. A probability measure Pµ ∈ M1
Ä
Ω̃
ä

is said to solve the centered Fleming-
Viot martingale problem with initial condition µ ∈ Mc,2

1 (R), if the canonical process (Xt)t⩾0
on Ω̃ satisfies Pµ(X0 = µ) = 1 and for each F ∈ C 2(R,R) and g ∈ C 2

b (R,R),

M̂F
t (g) := F (⟨g, Xt⟩) − F (⟨g, X0⟩) −

∫ t

0
F ′ (⟨g, Xs⟩)

Å≠
g′′

2 , Xs

∑
+ γ

[〈
g′′, Xs

〉
M2(Xs) − 2

〈
g′ × id, Xs

〉]ã
ds

− γ

∫ t

0
F ′′ (⟨g, Xs⟩)

î〈
g2, Xs

〉
− ⟨g, Xs⟩2

+
〈
g′, Xs

〉2
M2 (Xs) − 2

〈
g′, Xs

〉
⟨g × id, Xs⟩

ó
ds

(2)

is a continuous Pµ−martingale in L2
Ä
Ω̃
ä

with quadratic variation process¨
M̂F (g)

∂
t

= 2γ

∫ t

0

[
F ′ (⟨g, Xs⟩)

]2 î〈
g2, Xs

〉
− ⟨g, Xs⟩2

+
〈
g′, Xs

〉2
M2 (Xs) − 2

〈
g′, Xs

〉
⟨g × id, Xs⟩

ó
ds.

(3)

We recall that the probability measure PF V
ν ∈ M1 (Ω) is said to solve the original Fleming-

Viot martingale problem with initial condition ν ∈ M1(R) if the canonical process (Yt)t⩾0 on
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Ω satifies PF V
ν (Y0 = ν) = 1 and for each F ∈ C 2(R,R) and g ∈ C 2

b (R,R),

MF
t (g) := F (⟨g, Yt⟩) − F (⟨g, Y0⟩) −

∫ t

0
F ′ (⟨g, Ys⟩)

≠
g′′

2 , Ys

∑
ds

− γ

∫ t

0
F ′′ (⟨g, Ys⟩)

î〈
g2, Ys

〉
− ⟨g, Ys⟩2

ó
ds

(4)

is a square integrable PF V
ν −martingale whose martingale bracket satisfies for all G, H ∈

C 2(R,R) and for all g, h ∈ C 2
b (R,R),¨

MG(g), MH(h)
∂

t
= 2γ

∫ t

0
G′ (⟨g, Ys⟩) H ′ (⟨h, Ys⟩) [⟨gh, Ys⟩ − ⟨g, Ys⟩ ⟨h, Ys⟩] ds. (5)

In the population genetics literature, the terms involving the first order derivative F ′ describe
the effect of the mutation whereas the one involving the second order derivative F ′′ describe
the effect of the random genetic drift. It is well-known that, for all ν ∈ M1(R), there exists a
unique probability measure PF V

ν ∈ M1 (Ω) satisfying the previous martingale problem (4) [26,
Theorem 3].

Remark 2.2. The additional terms in the martingale problem (2) with respect to the martingale
problem (4) describe the impact of centering and ensure that at all times the centered Fleming-
Viot process remains Mc,2

1 (R)−valued.

The main result of this subsection is the following:

Theorem 2.3. For all µ ∈ Mc,2
1 (R), there exists a probability measure Pµ ∈ M1

Ä
Ω̃
ä

satisfying
the martingale problem of Definition 2.1, given by the law of the process (Zt)t⩾0 defined by

Zt := τ−⟨id,Yt⟩♯ Yt := Yt (· + ⟨id, Yt⟩) , t ⩾ 0 (6)

where (Yt)t⩾0 is the original Fleming-Viot process.

2.2 Sketch of proof of Theorem 2.3

The proof is based on the original Fleming-Viot martingale problem (4).

2.2.1 Framework and objective of the proof

For all k ∈ N, we denote

Mk
1(R) :=

®
ν ∈ M1(R)

∣∣∣∣∣¨|id|k , ν
∂

< ∞
´

.

Let ν ∈ M2
1(R) and PF V

ν the unique solution to the original Fleming-Viot martingale problem
(4). As the support of the original Fleming-Viot process is compact at all positive times
PF V

ν −a.s. [36], PF V
ν

(
C 0 ([0, +∞) , M2

1(R)
))

= 1. Moreover, as t 7→ ⟨id, Yt⟩ is continuous
PF V

ν −a.s. (Lemma 5.1 (2)), we deduce that, for all t ⩾ 0, Zt given by (6), is well defined and
is a random variable on Ω̃.
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When the dependency of Y and Z on the initial condition ν of Y is important, we shall use
the notation (Y ν

t )t⩾0 and (Zν
t )t⩾0 instead of (Yt)t⩾0 and (Zt)t⩾0. Our goal is to prove that the

law of the process (Zt)t⩾0 denoted by PF V c
τ−⟨id,ν⟩♯ ν solves the martingale problem of Definition

2.1 with initial condition τ−⟨id,ν⟩♯ ν. Note that the notation PF V c
τ−⟨id,ν⟩♯ ν is justified because the

original Fleming-Viot process is invariant by translation:

Proposition 2.4. Let ν ∈ M1
1(R) and a ∈ R. Then, the law of Zν

t is the same as the law of
Zτa♯ ν

t .

Proof. By translation invariance of the original Fleming-Viot process, the process
Ä
τ−a♯ Y τa♯ ν

t

ä
t⩾0

has the same law as the process (Y ν
t )t⩾0. Now,

Zτa♯ ν
t = τ−

¨
id,Y τa♯ ν

t

∂♯ Y τa♯ ν
t = τ−

¨
id,τ−a♯ Y τa♯ ν

t

∂♯ Äτ−a♯ Y τa♯ ν
t

ä
.

Thus,
Ä
Zτa♯ν

t

ä
t⩾0

has the same law as
(

τ−⟨id,Y ν
t ⟩♯ Y ν

t

)
t⩾0

= (Zν
t )t⩾0.

2.2.2 Outline of the proof

We restrict to the time interval [0, T ] for T > 0 arbitrary. By standard arguments, it is sufficient
to prove that, for all F ∈ C 2(R,R) and g ∈ C 2

b (R,R),

F (⟨g, Zt⟩) − F (⟨g, Z0⟩) −
∫ t

0
F ′ (⟨g, Zs⟩)

Å≠
g′′

2 , Zs

∑
+ γ

[〈
g′′, Zs

〉
M2(Zs) − 2

〈
g′ × id, Zs

〉]ã
ds

− γ

∫ t

0
F ′′ (⟨g, Zs⟩)

î〈
g2, Zs

〉
− ⟨g, Zs⟩2

+
〈
g′, Zs

〉2
M2 (Zs) − 2

〈
g′, Zs

〉
⟨g × id, Zs⟩

ó
ds

(7)

is a PF V
ν −martingale, ν ∈ M2

1(R). We start by assuming F, g ∈ C 4
b (R,R) and we seek for the

Doob’s semi-martingale decomposition of

Fg(Zt) := F (⟨g, Zt⟩) = F
(〈

g ◦ τ−⟨id,Yt⟩, Yt

〉)
,

using the original Fleming-Viot martingale problem (4). However, F
(〈

g ◦ τ−⟨id,Yt⟩, Yt

〉)
does

not take the form H (⟨h, Yt⟩) with deterministic h. Therefore, we cannot apply (4) directly. To
get over this difficulty, we consider for t ∈ [0, T ], an increasing sequence 0 = tn

0 < tn
1 < · · · <

tn
pn

= T of subdivisions of [0, T ] whose mesh tends to 0. We can observe that

Fg(Zt) − Fg(Z0) =
pn−1∑
i = 0

¶
Fg(Ztn

i+1∧t) − Fg(Ztn
i ∧t)
©

=
pn−1∑
i = 1

{
F

(〈
g ◦ τ

−
≠

id,Ytn
i+1∧t

∑, Ytn
i+1∧t

〉)
− F

(〈
g ◦ τ

−
≠

id,Ytn
i

∧t

∑, Ytn
i ∧t

〉)}
.
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Using asymptotic expansions (see Lemma A.1 with p = 1) of the terms in the previous sum,
we prove that

Fg(Zt) − Fg(Z0) =
pn−1∑
i = 0

®
(A)i + (B)i + O

Å∣∣∣¨id, Ytn
i+1∧t − Ytn

i ∧t

∂∣∣∣3ã
+ O

Ç 2∑
k = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3å´ ,

(8)

where

(A)i = F ′
Å≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑ãß≠
g ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
−
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂ ï≠
g′ ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑
+
≠

g′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑ò
(9)

+ 1
2
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂2
≠

g′′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑™
,

(B)i =
F ′′
Å≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑ã
2

®≠
g ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑2

+
¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂2
≠

g′ ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑2
(10)

− 2
≠

g ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑¨
id, Ytn

i+1∧t − Ytn
i ∧t

∂≠
g′ ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i ∧t

∑´
,

and where g(j), j ∈ {0, 1, 2}, denotes the jth derivative of g. Several steps are described in
Section 5 to obtain the semi-martingale decomposition of each term of the previous sum. By
making the step of the subdivision tend towards 0, we obtain the expected result. By density
arguments, the martingale problem (4) satisfied by F, g ∈ C 4

b (R,R) is extended, in Subsection
5.6, to the case where F ∈ C 2(R,R) and g ∈ C 2

b (R,R). Once we have proved that M̂F (g) is
a martingale, using Itô’s formula and the martingale problem (2) with localization sequence,
we deduce the value of

¨
M̂F (g)

∂
t

and by Fatou’s lemma that M̂F
t (g) ∈ L2

Ä
Ω̃
ä
.

2.3 Some extensions to the centered Fleming-Viot martingale problem

Our goal is now to give some extensions to the martingale problem (2) which will be useful to
compute the martingale bracket between two martingales of the form (2) and prove uniqueness
of the solution of the martingale problem of the centered Fleming-Viot in Section 3.

2.3.1 Extensions to multiple variables

We firstly introduce the version of the centered Fleming-Viot martingale problem with p ∈ N⋆

variables.
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Definition 2.5. The probability measure Pµ ∈ M1
Ä
Ω̃
ä

is said to solve the centered Fleming-
Viot martingale problem with p variables and with initial condition µ ∈ Mc,2

1 (R), if the
canonical process (Xt)t⩾0 on Ω̃ satisfies Pµ(X0 = µ) = 1 and for each F ∈ C 2(Rp,R) and
g = (g1, · · · , gp) ∈ C 2

b (Rp,R),

M̂F
t (g) := F (⟨g1, Xt⟩ , · · · , ⟨gp, Xt⟩) − F (⟨g1, X0⟩ , · · · , ⟨gp, X0⟩)

−
∫ t

0

p∑
k = 1

∂kF (⟨g1, Xs⟩ , · · · , ⟨gp, Xs⟩) ×ï≠
g′′

k

2 , Xs

∑
+ γ

(〈
g′′

k , Xs

〉
M2 (Xs) − 2

〈
g′

k × id, Xs

〉)ò
ds

− γ

∫ t

0

p∑
i,j = 1

∂2
ijF (⟨g1, Xs⟩ , · · · , ⟨gp, Xs⟩) ×[

⟨gigj , Xs⟩ − ⟨gi, Xs⟩ ⟨gj , Xs⟩ +
〈
g′

i, Xs

〉 〈
g′

j , Xs

〉
M2 (Xs)

−
〈
g′

i, Xs

〉
⟨gj × id, Xs⟩ −

〈
g′

j , Xs

〉
⟨gi × id, Xs⟩

]
ds

(11)

is a continuous Pµ−martingale in L2
Ä
Ω̃
ä
.

We will see in Section 3 that this martingale problem admits a unique solution which is the
same as the solution of the martingale problem (2) if the initial condition has all its moments
finite. For the moment, we can prove:

Theorem 2.6. For all µ ∈ Mc,2
1 (R), the probability measure Pµ constructed in Theorem 2.3,

satisfies the martingale problem of Definition 2.5.

Proof. We can deduce the result from the original Fleming-Viot martingale problem with
p variables [9] given by (12) below, following exactly the same method as for the proof of
Theorem 2.3. We recall that, the probability measure PF V

ν ∈ M1 (Ω) is said to solve the original
Fleming-Viot martingale problem with p variables and with initial condition ν ∈ M1(R), if
the canonical process (Yt)t⩾0 on Ω satisfies PF V

ν (Y0 = ν) = 1 and for each F ∈ C 2(Rp,R) and
g = (g1, · · · , gp) ∈ C 2

b (Rp,R),

MF
t (g) := F (⟨g1, Yt⟩ , · · · , ⟨gp, Yt⟩) − F (⟨g1, Y0⟩ , · · · , ⟨gp, Y0⟩)

−
∫ t

0

p∑
k = 1

∂kF (⟨g1, Ys⟩ , · · · , ⟨gp, Ys⟩)
≠

g′′
k

2 , Ys

∑
ds (12)

− γ

∫ t

0

p∑
i,j = 1

∂2
ijF (⟨g1, Ys⟩ , · · · , ⟨gp, Ys⟩) [⟨gigj , Ys⟩ − ⟨gi, Ys⟩ ⟨gj , Ys⟩] ds

is a PF V
ν −martingale. As mentionned in [9, Theorem 5.1], the solution PF V

ν of the martingale
problem (4) is the unique solution to the previous martingale problem (12). Here, (8) has to
be replaced by the general version of Lemma A.1.

This version allows us to compute the martingale bracket
¨
M̂G

t (g), M̂H
t (h)

∂
t

in a similar
form as (5).
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Corollary 2.7. Let G, H ∈ C 2(R,R) and g, h ∈ C 2
b (R,R). Then,¨

M̂G(g), M̂H(h)
∂

t
= 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩

− ⟨g, Xs⟩ ⟨h, Xs⟩ +
〈
g′, Xs,

〉 〈
h′, Xs

〉
M2 (Xs)

−
〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds.

Proof. Using the relation (2) for M̂G
t (g) and M̂H

t (h), we obtain that

M̂G
t (g)M̂H

t (h) = G (⟨g, Xt⟩) H (⟨h, Xt⟩) − G (⟨g, X0⟩) H (⟨h, X0⟩)

− G (⟨g, Xt⟩)
∫ t

0
LF V cHh (Xs) ds − H (⟨h, Xt⟩)

∫ t

0
LF V cGg (Xs) ds

+
∫ t

0
LF V cGg (Xs) ds

∫ t

0
LF V cHh (Xs) ds

− G (⟨g, X0⟩) M̂H
t (h) − H (⟨h, X0⟩) M̂G

t (g).

(13)

where LF V c denotes the generator of the centered Fleming-Viot process. From the martingale
problem (11) with p = 2, F (x, y) = G(x)H(y) and f = (g, h), we deduce that

G (⟨g, Xt⟩) H (⟨h, Xt⟩) − G (⟨g, X0⟩) H (⟨h, X0⟩)

=
∫ t

0
G (⟨g, Xs⟩) LF V cHh(Xs)ds +

∫ t

0
H (⟨h, Xs⟩) LF V cGg(Xs)ds

+ M̂F
t (f) + 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩ − ⟨g, Xs⟩ ⟨h, Xs⟩

+
〈
g′, Xs

〉 〈
h′, Xs

〉
M2 (Xs) −

〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds,

where
Ä
M̂F

t (f)
ä

t⩾0
is a Pµ−martingale. Using Itô’s formula for the third and fourth term of

the right hand side (13) and noting that∫ t

0
LF V cGg (Xs) ds

∫ t

0
LF V cHh (Xs) ds =

∫ t

0

ï
LF V cGg(Xs)

Å∫ s

0
LF V cHh(Xr)dr

ãò
ds

+
∫ t

0

ï
LF V cHh(Xs)

Å∫ s

0
LF V cGg(Xr)dr

ãò
ds,

we deduce the Doob-Meyer decomposition of M̂G
t (g)M̂H

t (h):

M̂G
t (g)M̂H

t (h) = M̂F
t (f) + 2γ

∫ t

0
G′ (⟨g, Xs⟩) H ′ (⟨h, Xs⟩)

[
⟨gh, Xs⟩ − ⟨g, Xs⟩ ⟨h, Xs⟩

+
〈
g′, Xs

〉 〈
h′, Xs

〉
M2 (Xs) −

〈
g′, Xs

〉
⟨h × id, Xs⟩ −

〈
h′, Xs

〉
⟨g × id, Xs⟩

]
ds

−
∫ t

0

Å∫ s

0
LF V cHh (Xr) dr

ã
dM̂G

s (g) −
∫ t

0

Å∫ s

0
LF V cGg (Xr) dr

ã
dM̂H

s (h)

− G (⟨g, X0⟩) M̂H
t (h) − H (⟨h, X0⟩) M̂G

t (g).

The result follows.
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2.3.2 Extension to product measures

Our goal here is to study the Doob semi-martingale decomposition of functions of the centered
Fleming-Viot process of the form

⟨f, µn⟩ :=
∫
R

· · ·
∫
R

f(x1, · · · , xn)µ(dx1) · · · µ(dxn)

with n ∈ N⋆, µ ∈ Mc,2
1 (R) and f ∈ C 2

b (Rn,R) and µn is the n−fold product measure of
µ. The previous martingale problem (11) gives heuristics for this issue: for the choice of
F (x1, · · · , xn) =

n∏
i = 1

xi, we deduce that for all µ ∈ Mc,2
1 (R),

LF V c

Ç
n∏

i = 1
⟨gi, µ⟩

å
=

n∑
i = 1

Å≠
g′′

i

2 , µ

∑
+ γ

[〈
g′′

i , µ
〉

M2(µ) − 2
〈
g′

i × id, µ
〉]ã n∏

j = 1
j ̸= i

⟨gj , µ⟩

+ γ
n∑

i = 1

n∑
j = 1
j ̸= i

[
⟨gigj , µ⟩ − ⟨gi, µ⟩ ⟨gj , µ⟩ +

〈
g′

i, µ
〉 〈

g′
j , µ
〉

M2(µ)

−
〈
g′

i, µ
〉

⟨gj × id, µ⟩ −
〈
g′

j , µ
〉

⟨gi × id, µ⟩
] n∏

k = 1
k ̸= i,j

⟨gk, µ⟩.

We denote by 1 ∈ Rn, the vector whose coordinates are all 1 and by ∆ the Laplacian operator
on Rn. The previous relation leads us to introduce, for each n ∈ N⋆ and for all f ∈ C 2

b (Rn,R),
the operator B(n) defined by

B(n)f(x) := 1
2∆f(x) − 2γ (∇f(x) · 1) (x · 1), x ∈ Rn. (14)

Indeed, for the choice f(x1, · · · , xn) =
∏n

i = 1 gi(xi) with gi ∈ C 2
b (R,R), i ∈ {1, · · · , n}, we

obtain

B(n)f(x1, · · · , xn) =
n∑

i = 1

ï
g′′

i (xi)
2 − 2γxig

′
i(xi)
ò n∏

j = 1
j ̸= i

gj(xj)

− γ
n∑

i = 1

n∑
j = 1
j ̸= 1

[
xjgj(xj)g′

i(xi) + xigi(xi)g′
j(xj)

] n∏
k = 1

k ̸= i,j

gk(xk).

Note that,

LF V c

Ç
n∏

i = 1
⟨gi, µ⟩

å
=
¨
B(n)f, µn

∂
+

n∑
i = 1

γ
〈
g′′

i , µ
〉

M2(µ)
n∏

j = 1
j ̸= i

⟨gj , µ⟩

+ γ
n∑

i = 1

n∑
j = 1
j ̸= i

[
⟨gigj , µ⟩ − ⟨gi, µ⟩ ⟨gj , µ⟩ +

〈
g′

i, µ
〉 〈

g′
j , µ
〉

M2(µ)
] n∏

k = 1
k ̸= i,j

⟨gk, µ⟩.

This leads us to introduce another extension of the martingale problem (2) which will be usefull
in Section 3 to prove uniqueness.
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Definition 2.8. The probability measure Pµ ∈ M1
Ä
Ω̃
ä

is said to solve the centered Fleming-
Viot martingale problem for product measures with initial condition µ ∈ Mc,2

1 (R), if the
canonical process (Xt)t⩾0 on Ω̃ satisfies Pµ(X0 = µ) = 1, for all n ∈ N⋆, and for each f ∈
C 2

b (Rn,R),

M̂
(n)
t (f) := ⟨f, Xn

t ⟩ − ⟨f, Xn
0 ⟩ −

∫ t

0
LF V c ⟨f, Xn

s ⟩ ds (15)

with for all µ ∈ Mc,2
1 (R) and f ∈ C 2

b (Rn,R),

LF V c ⟨f, µn⟩ :=
¨
B(n)f, µn

∂
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

[〈
Φi,jf, µn−1〉− ⟨f, µn⟩

]

+ γ
n∑

i = 1

n∑
j = 1

〈
Ki,jf, µn+1〉 (16)

is a continuous Pµ−martingale in L2
Ä
Ω̃
ä

where, for all 1 ⩽ i ⩽ j ⩽ n,

• Φi,j : C 2
b (Rn,R) −→ C 2

b (Rn−1,R) is the function obtained from f by inserting the variable
xi between xj−1 and xj:

Φi,jf (x1, · · · , xn−1) = f (x1, · · · , xj−1, xi, xj , xj+1, · · · , xn−1) (17)

• Ki,j : C 2
b (Rn,R) −→ C 2(Rn+1,R) is defined as

Ki,jf(x1, · · · , xn, xn+1) := ∂2
ijf(x1, · · · , xn)x2

n+1. (18)

We will see in Section 3 that this martingale problem admits the same unique solution as
the martingale problem (2) if the initial condition has all its moments finite. For the moment,
we can prove:

Theorem 2.9. For all µ ∈ Mc,2
1 (R), the probability measure Pµ constructed in Theorem 2.3,

satisfies the martingale problem of Definition 2.8.

Proof. We can deduce the result from the original Fleming-Viot martingale problem for
product measures [22] given by (19) below, following exactly the same arguments than for the
proof of Theorem 2.3. The probability measure PF V

ν ∈ M1 (Ω) is said to solve the original
Fleming-Viot martingale problem for product measures with initial condition ν ∈ M1(R),
if the canonical process (Yt)t⩾0 on Ω satisfies PF V

ν (Y0 = ν) = 1, for all n ∈ N⋆, and for each
f ∈ C 2

b (Rn,R),

M
(n)
t (f) := ⟨f, Y n

t ⟩ − ⟨f, Y n
0 ⟩ −

∫ t

0
LF V ⟨f, Y n

s ⟩ ds (19)

with for all ν ∈ M1(R)

LF V ⟨f, νn⟩ =
≠1

2∆f, νn

∑
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

(⟨Φi,jf, νn⟩ − ⟨f, νn⟩)

is a PF V
ν −martingale. By [22, Theorem 3.2], the solution PF V

ν of the martingale problem (4)
is the unique solution to the previous martingale problem (19).
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2.4 Some properties of the centered Fleming-Viot process

2.4.1 Markov’s property

Due to the invariance by translation property of the original Fleming-Viot process, we can
prove that the centered Fleming-Viot process is homogeneous Markov.

Proposition 2.10. The centered Fleming-Viot process (Zt)t⩾0 defined by (6) satisfies the
homogeneous Markov property: for all measurable bounded function f ,

∀µ ∈ Mc,2
1 (R), ∀t, s > 0, Eµ

Å
f(Zt+s)

∣∣∣∣Ft

ã
= EZt (f(Zs)) Pµ−a.s.

Proof. Let µ ∈ Mc,2
1 (R) and f a measurable bounded function. Let t, s > 0. Using the

Markov property of the original Fleming-Viot process (Yt)t⩾0 we obtain Pµ−a.s.,

Eµ

Å
f(Zt+s)

∣∣∣∣Ft

ã
= Eµ

Å
f(τ−⟨id,Yt+s⟩♯ Yt+s)

∣∣∣∣Ft

ã
= Eµ

Å
g(Yt+s)

∣∣∣∣Ft

ã
= EYt (g(Ys))

where the bounded measurable map g is defined on M1
1(R) by g(ν) := f

(
τ−⟨id,ν⟩♯ ν

)
. By

invariance by translation of the original Fleming-Viot process (Yt)t⩾0 we obtain under the
distribution Pµ:

EYt (g (Ys)) = Eτ−⟨id,Yt⟩♯ Yt

(
g
(
τ⟨id,Yt⟩♯ Ys

))
= Eτ−⟨id,Yt⟩♯ Yt (g (Ys)) = EZt (g (Ys))

= EZt (f (Zs)) .

2.4.2 Moments and some martingales

Proposition 2.11. Let µ ∈ Mc,2
1 (R), possibly random and let Pµ be a distribution on Ω̃

satisfying (2) and such that X0 is equal in law to µ. Let T > 0 and k ∈ N \ {0, 1} fixed.

(1) If E
Ä¨

|id|k , µ
∂ä

< ∞, there exist two constants Ck,T , ‹Ck,T > 0, such that any stochastic
process (Xt)0⩽t⩽T whose law Pµ satisfies

(a) sup
t∈[0,T ]

E
Ä¨

|id|k , Xt

∂ä
⩽ Ck,T

Ä
1 + E

Ä¨
|id|k , µ

∂ää
, (20)

(b) ∀α > 0, Pµ

Ç
sup

t∈[0,T ]

¨
|id|k , Xt

∂
⩾ α

å
⩽
‹Ck,T

Ä
1 + E

Ä¨
|id|k , µ

∂ää
α

.

(2) If E
Ä¨

|id|k , µ
∂ä

< ∞, respectively E
Ä¨

|id|k+1 , µ
∂ä

< ∞, the process
Ä
M̂ id

t

Ä
idk
ää

0⩽t⩽T
defined by

M̂ id
t

Ä
idk
ä

:=
¨
idk, Xt

∂
−
¨
idk, X0

∂
−

∫ t

0

≠
k(k − 1)

2 idk−2, Xs

∑
ds

− γ

∫ t

0

î¨
k(k − 1)idk−2, Xs

∂
M2(Xs) − 2k

¨
idk, Xs

∂ó
ds
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is a continuous Pµ−local martingale, respectively a continuous Pµ−martingale. Moreover,
if E
Ä¨

|id|2k , µ
∂ä

< ∞,
Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a martingale in L2

Ä
Ω̃
ä

whose quadratic
variation is given by¨

M id
Ä
idk
ä∂

t
= 2γ

∫ t

0

[¨
id2k, Xs

∂
−
¨
idk, Xs

∂2
+ k
¨
idk−1, Xs

∂2
M2(Xs)

− 2k
¨
idk−1, Xs

∂ ¨
idk+1, Xs

∂ó
ds.

Proof. Step 1. Proof of (1)(a). We prove only the case k ⩾ 3: the case k = 2, which is
simpler because some terms disappear, is treated in the same way. Let t ∈ [0, T ]. We consider
a sequence of functions (gn)n∈N of class C 2(R,R) with compact support satisfying:

(i) for all n ∈ N, |gn| ⩽ |id|, (iii) gn = id on [−n, n],
(ii) lim

n→+∞

∥∥g′′
n

∥∥
∞ = 0, (iv) g′

n is uniformly bounded on R.

We consider the sequence of functions (hn)n∈N defined by hn :=
√

1 + g2
n and we deduce from

the properties of gn that for all n ∈ N, hn is a non-negative function with compact support,
that for all k ∈ N,Ä

hk
n

ä′
= kgng′

nhk−2
n and

Ä
hk

n

ä′′
= k

(
g′

n

)2
hk−4

n

(
h2

n + (k − 2)g2
n

)
+ kgng′′

nhk−2
n ,

hn = h :=
√

1 + id2 on the compact set [−n, n] and hn ⩽ h on R. We consider for all A ∈ N and
ℓ ∈ N, the stopping time τA,ℓ := inf

{
t ⩾ 0

∣∣∣ ¨|id|ℓ , Xt

∂
⩾ A

}
. Noting that for all t ∈ [0, T ], n ∈

N and k ⩾ 3,
〈
hk−2

n , Xt

〉
⩽
〈
hk

n, Xt

〉 k−2
k ⩽

〈
hk, Xt

〉
and

〈
hk−2

n , Xt

〉 〈
id2, Xt

〉
⩽
〈
hk, Xt

〉
from

Hölder’s inequality, we deduce from the martingale problem (2) that there exists constants
C1(k), C2(k, A) > 0 such that

E
Ä¨

hk
n, Xt∧τA,k

∂ä
= E
Ä¨

hk
n, X0

∂ä
+ E
Ç∫ t∧τA,k

0

Æ(
hk

n

)′′

2 , Xs

∏
ds

å
+ γE

Å∫ t∧τA,k

0

〈Ä
hk

n

ä′′
, Xs

〉
M2(Xs)ds

ã
− 2γE

Å∫ t∧τA,k

0

〈Ä
hk

n

ä′
× id, Xs

〉
ds

ã
⩽ E
Ä¨

hk
n, X0

∂ä
+ k(k − 1)

∥∥g′
n

∥∥2
∞ E
Å∫ t∧τA,k

0

ï1
2 + γ

〈
id2, Xs

〉ò ¨
hk−2

n , Xs

∂
ds

ã
+ k

∥∥g′′
n

∥∥
∞ E
Å∫ t∧τA,k

0

ï1
2 + γ

〈
id2, Xs

〉ò ¨
hk−1

n , Xs

∂
ds

ã
+ 2γk

∥∥g′
n

∥∥
∞ E
Å∫ t∧τA,k

0

¨
hk−1

n × |id| , Xs

∂
ds

ã
⩽ E
Ä¨

hk, X0
∂ä

+ C1(k)E
Å∫ t∧τA,k

0

¨
hk, Xs

∂
ds

ã
+ C2(k, A)

∥∥g′′
n

∥∥
∞ .

By Fatou’s lemma we obtain when n → +∞,

E
Ä¨

hk, Xt∧τA,k

∂ä
⩽ E
Ä¨

hk, X0
∂ä

+ C1(k)E
Å∫ t∧τA,k

0

¨
hk, Xs

∂
ds

ã
.
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By Gronwall’s lemma, we deduce that

E
Ä¨

|id|k , Xt∧τA,k

∂ä
⩽ E
Ä¨

hk, Xt∧τA,k

∂ä
⩽ E
Ä¨

hk, X0
∂ä

exp (C1(k)t) . (21)

In particular, this implies that the sequence (τA,k)A∈N converges Pµ−a.s. to infinity. Indeed,
for all T̃ > 0, we have

Pµ

Å
sup
A∈N

τA,k < T̃

ã
⩽

supt∈[0,T ] E
(〈

|id|k , X
t∧T̃ ∧τA,k

〉)
A

which tends to 0 when A → +∞. We deduce by Fatou’s lemma, when A → +∞, the first
announced result.

Step 2. Proof of (1)(b). Let α > 0. From the martingale problem (2), we deduce that

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

¨
hk

n, Xt

∂
⩾ α

é
⩽ Pµ

(¨
hk

n, X0
∂
⩾

α

5

)
+ Pµ

Ç∫ T ∧τA,k

0

Æ(
hk

n

)′′

2 , Xs

∏
ds ⩾

α

5

å
+ Pµ

Å
γ

∫ T ∧τA,k

0

〈Ä
hk

n

ä′′
, Xs

〉
M2(Xs)ds ⩾

α

5

ã
+ Pµ

Å
2γ

∫ T ∧τA,k

0

〈Ä
hk

n

ä′
× id, Xs

〉
M2(Xs)ds ⩾

α

5

ã
+ Pµ

Ñ
sup

t∈[0,T ∧τA,k]

∣∣∣M̂ id
t

Ä
hk

n

ä∣∣∣ ⩾ α

5

é
The Doob maximal inequality allows us to write

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

∣∣∣M̂ id
t

Ä
hk

n

ä∣∣∣ ⩾ α

5

é
⩽

5E
(Ä

M̂ id
T ∧τA,k

(
hk

n

)ä
+

)
α

.

From the martingale problem (2) and the computations of Step 1, we deduce that

E
(∣∣∣M̂ id

T ∧τA,k

Ä
hk

n

ä∣∣∣) ⩽ 2E
Ä¨

hk, X0
∂ä

+ 2C1(k)E
Å∫ T ∧τA,k

0

¨
hk, Xs

∂
ds

ã
+ 2C2(k, A)

∥∥g′′
n

∥∥
∞

⩽ 2E
Ä¨

hk, X0
∂ä

[1 + exp (C1(k)T )] + 2C2(k, A)
∥∥g′′

n

∥∥
∞ ,

where we use the Fubini-Tonelli theorem and the relation (21). It follows, from Markov’s
inequality, that there exists a constant Ck > 0 such that

Pµ

Ñ
sup

t∈[0,T ∧τA,k]

¨
hk

n, Xt

∂
⩾ α

é
⩽

Ck

α

î
E
Ä¨

hk, X0
∂ä

[1 + exp (C1(k)T )] + C2(k, A)
∥∥g′′

n

∥∥
∞

ó
.
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By applying the dominated convergence theorem twice, successively when n → +∞ then when
A → +∞, there exists a constant ‹Ck,T > 0 such that

Pµ

Ç
sup

t∈[0,T ]

¨
hk, Xt

∂
⩾ α

å
⩽
‹Ck,TE

(〈
hk, X0

〉)
α

,

and thus the announced result.

Step 3. M̂ id
Ä
idk
ä

is a continuous local martingale. From the properties of (gn)n∈N,

note that there exists a constant “Ck > 0 such that for all n ∈ N,
∣∣gk

n

∣∣ ⩽ |id|k and
∣∣∣(gk

n

)′′
∣∣∣ ⩽“Ck

Ä
1 + |id|k−1

ä
. It follows from the martingale problem (2), the properties of (gn)n∈N and the

dominated convergence theorem for conditional expectation that

M̂ id
t∧τA,2

Ä
idk
ä

:= lim
n→+∞

M̂ id
t∧τA,2

Ä
gk

n

ä
=
¨
idk, Xt∧τA,2

∂
−
¨
idk, X0

∂
−

∫ t∧τA,2

0

k(k − 1)
2

¨
idk−2, Xs

∂
ds

− γ

∫ t∧τA,2

0

î
k(k − 1)

¨
idk−2, Xs

∂
M2(Xs) − 2k

¨
idk, Xs

∂ó
ds

is a continuous Pµ−martingale and thus
Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a continuous Pµ−local martingale.

When E
Ä¨

|id|k+1 , µ
∂ä

< ∞, using the inequality for all t ∈ [0, T ],¨
|id|k−1 , Xt

∂ 〈
id2, Xt

〉
⩽
¨
|id|k+1 , Xt

∂
,

the same computation applies replacing t ∧ τA,2 by t to obtain that
Ä
M̂ id
Ä
idk
ää

0⩽t⩽T
is a

continuous Pµ−martingale.

Step 4. L2−martingale and quadratic variation. As soon as E
Ä¨

|id|k+1 , µ
∂ä

< ∞,
M̂ id
Ä
idk
ä

∈ L2
Ä
Ω̃
ä

as a straightforward consequence of Hölder’s inequality. It follows from
(3) that for all n ∈ N, for all t ∈ [0, T ],¨

M̂ id
Ä
gk

n

ä∂
t

= 2γ

∫ t

0

Å¨
g2k

n , Xs

∂
−
¨
gk

n, Xs

∂2
+
〈Ä

gk
n

ä′
, Xs

〉2
M2(Xs)

−2
〈Ä

gk
n

ä′
, Xs

〉 ¨
gk

n × id, Xs

∂)
ds.

For all n ∈ N, the process

Nt,n :=
î
M̂ id

t

Ä
gk

n

äó2
−
¨
M̂ id
Ä
gk

n

ä∂
t

is a Pµ−local martingale. As M̂ id
Ä
idk
ä

is bounded on [0, T ∧ τA,2k] for all A ∈ N, then for all
n ∈ N,

(
Nt∧τA,2k,n

)
is a martingale. From the relation (20) with 2k, the dominated convergence
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theorem for conditional expectation implies as above that Pµ−a.s.

lim
n→+∞

Nt∧τA,2k,n =
î
M̂ id

t∧τA,2k

Ä
idk
äó2

− 2γ

∫ t∧τA,2k

0

(¨
id2k, Xs

∂
−
¨
idk, Xs

∂2

+ k
¨
idk−1, Xs

∂2
M2(Xs) − 2k

¨
idk−1, Xs

∂ ¨
idk+1, Xs

∂)
ds

is a Pµ−martingale and we deduce the quadratic variation announced.

2.4.3 Compact support

Proposition 2.12. For all µ ∈ Mc,2
1 (R), for all ε > 0,

⋃
ε⩽s⩽t SuppZs is compact Pµ−a.s.

where SuppZs is the support of Zs. Further, if SuppZ0 is compact, then
⋃

0⩽s⩽t SuppZs is
compact for all t > 0, Pµ−a.s.

Proof. It is proved in [36] that the support of the Λ−Fleming-Viot process associated to
a Λ−coalescent which comes down from infinity, is compact at all positive times. Our case
corresponds to Kingman’s coalescent. In addition, they prove that, given that the initial
condition ν has compact support, ⋃

0⩽s<t

SuppYs

is compact for all t > 0, PF V
ν −a.s. Markov’s property then entails that, if ν ∈ Mc,2

1 (R),⋃
ε⩽s⩽t SuppYs is compact for all 0 < ε < t, PF V

ν −a.s. Hence, the same is true for Zt =
τ−⟨id,Yt⟩♯ Yt.

3 Uniqueness for the centered Fleming-Viot process
As for the original Fleming-Viot martingale problem, we will prove uniqueness to the mar-
tingale problem (2) by relying on the duality method [17, 8, 20, 22]. Additionnal difficulties
occur in our case since bounds on the dual process are much harder to obtain and the duality
identity cannot be proved in its usual form. In particular, we can prove uniqueness only for
initial conditions admitting finite moments.

3.1 Main result

Theorem 3.1. The centered Fleming-Viot martingale problem (2) has an unique solution if
the initial condition has all its moments finite.

The reason why we need to assume finite initial moment will be explained at the end
of Subsection 3.2. In particular, we will see in Remark 6.5 that we cannot hope to prove
uniqueness for more general initial conditions using our duality method.

Corollary 3.2. Existence and uniqueness hold for all the martingale problems of Definitions
2.1, 2.5 and 2.8 and they all admit the same solution if the initial condition has all its moments
finite.
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Proof of Corollary 3.2. We proved in Subsection 2.3 that Pµ solves the martingale problems of
Definitions 2.5 and 2.8. Since a solution to these martingale problems is of course also solution
to Definition 2.1, uniqueness for Definition 2.1 implies uniqueness for the other martingale
problems.

3.2 Notations and outline of the uniqueness proof

Our proof of Theorem 3.1 is based on the duality method as proposed in [20, 22]. We denote,
for all n ∈ N⋆, µ ∈ M1(R) and f ∈ C 2

b (Rn,R)

F (f, µ) := ⟨f, µn⟩ =
∫
R

· · ·
∫
R

f(x1, · · · , xn)µ(dx1) · · · µ(dxn).

From (16), the operator LF V c applied on the function µ 7→ F (f, µ) with fixed f , satisfies the
following identity:

LF V cF (f, µ) =
¨
B(n)f, µn

∂
+ γ

n∑
i = 1

n∑
j = 1
j ̸= i

[〈
Φi,jf, µn−1〉− ⟨f, µn⟩

]

+ γ
n∑

i = 1

n∑
j = 1

[〈
Ki,jf, µn+1〉− ⟨f, µn⟩

]
+ γn2 ⟨f, µn⟩

=: L̃⋆
f F (f, µ) + γn2 ⟨f, µn⟩

(22)

We note that L̃⋆
f can be seen as an operator acting on the function f 7→ F (f, µ) with fixed µ.

The operator L̃⋆
f can be interpreted as the generator of a stochastic process on the state space⋃

n∈N⋆ C 2
b (Rn,R). Following Ethier-Kurtz’s works [20, 22], this suggests to introduce a dual

process (ξt)t⩾0, of generator L̃⋆
f and to prove a duality relation of the form:

∀t ⩾ 0, E
Ä¨

ξ0, X
M(0)
t

∂ä
= E
Å¨

ξt, X
M(t)
0
∂

exp
Å

γ

∫ t

0
M2(u)du

ãã
(23)

where M := (M(t))t⩾0 is a Markov’s jump process in N whose transition rates are given by:

(1) qn,n+1 = γn2 (2) qn,n−1 = γn(n − 1) (3) qi,j = 0 otherwise.

It is known that the relation (23) implies uniqueness [25, Theorem 4.4.2]. However in our
situation, it is difficult to obtain the strong version (23). For technical reasons, we will obtain
only a weakened version. Therefore, the proof will be divided in two large steps.

Step 1. Construction of the dual process (ξt)t⩾0. The relation (22) suggests that the
dual process (ξt)t⩾0 jumps, for all i, j ∈ {1, · · · , n} from f ∈ C 2

b (Rn,R) to Ki,jf ∈ C 2
b (Rn+1,R)

at rate γ and if i ̸= j, from f ∈ C 2
b (Rn,R) to Φi,jf ∈ C 2

b (Rn−1,R) at rate γ. Between jumps,
this dual process evolves according to the semi-group of operator

Ä
T (n)(t)

ä
t⩾0

associated to the

generator B(n) given by (14). We will give an explicit expression of the semi-group
Ä
T (n)(t)

ä
t⩾0

defined as an integral against Gaussian kernels. This representation will be derived from a
probabilistic interpretation of the semi-group using a Feynman-Kac’s formula. We define the
dual process as follows:
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Definition 3.3. For all M(0) ∈ N⋆, for all ξ0 ∈ C 2
b

Ä
RM(0),R

ä
,

ξt := T (M(τn)) (t − τn) ΓnT (M(τn−1)) (τn − τn−1) Γn−1 · · · Γ1T (M(0)) (τ1) ξ0,

τn ⩽ t < τn+1, n ∈ N, (24)

where (τn)n∈N is the sequence of jump times of the birth-death process M with τ0 = 0 and where
(Γn)n∈N is a sequence of random operators. These are conditionally independent given M and
satisfy for all k ∈ N, n ⩾ 1 and 1 ⩽ i ̸= j ⩽ n,

P
Å

Γk = Φi,j

∣∣∣∣ {M
(
τ−

k

)
= n, M (τk) = n − 1

}ã
= 1

n(n − 1) (25)

and for all n ⩾ 1 and 1 ⩽ i, j ⩽ n,

P
Å

Γk = Ki,j

∣∣∣∣ {M
(
τ−

k

)
= n, M (τk) = n + 1

}ã
= 1

n2 . (26)

Moreover, the random times (τk − τk−1)k⩾1 are independent conditionally to M (τk−1) = n and
of exponential law of parameter γn2 + γn(n − 1).

Note that M is a non-explosive process:

∀T > 0, P
Ç

sup
t∈[0,T ]

M(t) < +∞
å

= P
Å

lim
n→+∞

τn = +∞
ã

= 1. (27)

Indeed, we note that for the choice of µi := γi(i − 1) and λi := γi2, i ⩾ 1 in [1, Theorem 2.2.],
we have

µi . . . µ2
λi . . . λ2λ1

= 1
2γi

> 0,

so that ∑
i⩾1

Å 1
λi

+ µi

λiλi−1
+ · · · + µi . . . µ2

λi . . . λ2λ1

ã
⩾

∑
i⩾1

µi . . . µ2
λi . . . λ2λ1

= +∞.

Hence, M is non-explosive.

Step 2. Weakened duality relation. We consider fixed M(0) ∈ N⋆, ξ0 ∈ C 2
b (RM(0),R)

and (Xt)t⩾0 a stochastic process whose law Pµ is a solution of the martingale problem (2) with
µ ∈ Mc,2

1 (R). We introduce a dual process (ξt)t⩾0 independent of (Xt)t⩾0 built on the same
probability space (enlarging it if necessary). We shall denote by P(µ,ξ0), the law of ((Xt, ξt))t⩾0
on this probability space. For any k ∈ N, we introduce the stopping time

θk := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, X

M(s)
t−s

∂
⩾ k

™
. (28)

Theorem 3.4. Given any (Xt)t⩾0 (ξt)t⩾0 as above, we have the weakened duality identity: for
all k ∈ N and any stopping time θ such that θ ⩽ θk,

∀t ⩾ 0, E(µ,ξ0)
Ä¨

ξ0, X
M(0)
t∧θ

∂ä
= E(µ,ξ0)

Å¨
ξt∧θ, X

M(t∧θ)
0

∂
exp
Å

γ

∫ t∧θ

0
M2(u)du

ãã
. (29)
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Note that this result holds true for any initial measure µ ∈ Mc,2
1 (R). The stopping time θk

ensures that each of the quantities involved in (29) are bounded and thus that their expectations
are finite. Afterwards, we want to prove that if two solutions of the martingale problem satisfy
the weakened duality identity, then their 1−dimensional marginals coincide. This is where we
need stronger assumptions on µ.
Lemma 3.5. Assume that µ ∈ Mc,2

1 (R) has all its moments finite. Then, the stopping time
θk defined by (28) satisfies limk→+∞ θk = +∞, P(µ,ξ0) − a.s.

We will see in Remark 6.5 that the assumption on µ is optimal in the following sense: even
if ξ0 is bounded, ξt may have polynomial growth of any exponent k in some direction of RM(t)

so that
¨
|ξt| , µM(t)

∂
is infinite if µ has infinite kth moment. This shows that we cannot expect

to have θk → +∞ when k → +∞ if µ has not all its moments finite. This means that we
cannot expect that the duality method could give uniqueness for weaker assumptions on the
initial condition.

The proofs of Theorem 3.4 and Lemma 3.5 are respectively given in Subsections 6.2 and
6.3. Once they are proved, the proof of uniqueness can be completed as follows.

3.3 Proof of Theorem 3.1 from Theorem 3.4 and Lemma 3.5

We rely on Theorem 4.4.2 of the Ethier-Kurtz book [25]. To get the desired result, i.e. the
uniqueness of the martingale problem (2), it is sufficient to verify that if we give ourselves two
solutions to the martingale problem (2), they have the same 1−dimensional marginal laws.

Let (Xt)t⩾0 and
Ä‹Xt

ä
t⩾0

be two solutions of the martingale problem (2) with the same
initial condition µ ∈ Mc,2

1 (R) which has all its moments finite. Let (ξt)t⩾0 be the dual process
with initial condition ξ0 ∈ C 2

b (RM(0),R) with M(0) ∈ N. We suppose that these three processes
are built on the same probability space and independent of each other. We denote by

θ̃k := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, ‹XM(s)

t−s

∂
⩾ k

™
.

These processes satisfy, the weakened duality identity (29):

∀t ⩾ 0, E(µ,ξ0)

(〈
ξ0, X

M(0)
t∧θk∧θ̃k

〉)
= E(µ,ξ0)

Ç〈
ξ

t∧θk∧θ̃k
, µM(t∧θk∧θ̃k)

〉
exp
Ç

γ

∫ t∧θk∧θ̃k

0
M2(u)du

åå
= E(µ,ξ0)

(〈
ξ0, ‹XM(0)

t∧θk∧θ̃k

〉)
.

In particular, for the choice M(0) := 1, for all k ∈ N and for all ξ0 ∈ C 2
b (R,R), we obtain

∀t ⩾ 0, E(µ,ξ0)
Ä¨

ξ0, X
t∧θk∧θ̃k

∂ä
= E(µ,ξ0)

Ä¨
ξ0, ‹X

t∧θk∧θ̃k

∂ä
.

From Lemma 3.5, since Xt and ‹Xt have continuous paths for the topology of weak convergence,
we have P(µ,ξ0)−a.s.,

lim
k→+∞

¨
ξ0, X

t∧θk∧θ̃k

∂
= ⟨ξ0, Xt⟩ and lim

k→+∞

¨
ξ0, ‹X

t∧θk∧θ̃k

∂
=
¨
ξ0, ‹Xt

∂
.
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Therefore, we deduce from the dominated convergence theorem, that for all ξ0 ∈ C 2
b (R,R),

∀t ⩾ 0, E(µ,ξ0) (⟨ξ0, Xt⟩) = E(µ,ξ0)
Ä¨

ξ0, ‹Xt

∂ä
.

As
ß

⟨f, ·⟩
∣∣∣∣ f ∈ C 2

b (R,R)
™

is a M1
Ä
Ω̃
ä

−determining class [29, Definition 4.24], it follows that

for any t ⩾ 0, Xt and ‹Xt have the same law. Theorem 4.4.2 of [25] then ensures uniqueness to
the martingale problem (2). □

4 Ergodicity for the centered Fleming-Viot process
In this section, we establish ergodicity properties with exponential convergence in total varia-
tion for the centered Fleming-Viot process (Zt)t⩾0. For all µ, ν ∈ M1(R), we denote by

∥µ − ν∥T V := 1
2 sup

∥f∥∞⩽1
|⟨f, µ⟩ − ⟨f, ν⟩|,

the total variation distance between µ and ν.

Theorem 4.1. There exists a unique invariant probability measure π for (Zt)t⩾0 and constants
α, β ∈ (0, +∞) such that for all µ ∈ Mc,2

1 (R), for all T ⩾ 0,

∥Pµ (ZT ∈ ·) − π∥T V ⩽ α exp (−βT ) .

The main part of this section is devoted to the proof of this result (Subsections 4.1 to
4.5) and in Subsection 4.6, we characterise the invariant measure of the centered Fleming-
Viot process. In Subsection 4.1 we construct the centered Moran process and we establish
its convergence in law to the centered Fleming-Viot process. In Subsections 4.2 and 4.3,
we construct, backward in time, the Moran process, its centered version and we exploit its
relationship with the Kingman coalescent in order to prove in Subsection 4.4 an exponential
coupling in total variation for the Moran process. We finally deduce, in Subsection 4.5, the
proof of the main result announced by letting the number of particles go to infinity.

4.1 Moran’s models and Fleming-Viot’s processes

In [16, 9, 26, 8], the authors construct the original Fleming-Viot process as a scaling limit
of a particle process: the Moran process. The aim of this subsection is to construct the
version of the centered Moran process and to establish its convergence in law to the centered
Fleming-Viot process.

We consider the Moran particle process Y N defined by

Y N
t := 1

N

N∑
i = 1

δXi(t)

21/74



with state space M1,N (R), the set of probability measures on R consisting of N atoms of mass
1/N . Moreover, if (Xi(0))i∈N⋆ is exchangeable, then for all t > 0, (Xi(t))i∈N⋆ is exchangeable
[22, Theorem 6.1]. The infinitesimal generator of the R−measure-valued process Y N is given
for all F ∈ C 2(R,R), g ∈ C 2

b (R,R), for all µN ∈ M1,N (R) by

LN F (⟨g, µN ⟩) = F

Å≠1
2∆g, µN

∑ã
+ γ

N(N − 1)
2

∫
R

∫
R

ï
F

Å
⟨g, µN ⟩ − g(x)

N
+ g(y)

N

ã
− F (⟨g, µN ⟩)

ò
µN (dx)µN (dy).

The first term of the generator describes the effect of the mutation according to the Lapla-
cian operator. The second term describes the sampling replacement mechanism: at rate γ (the
sampling rate) an individual of type x is immediatly replaced by one of type y. Note that the
population size remains contant over time.

We recall the following convergence result [8, Theorem 2.7.1]: for all initial condition
Y N

0 = 1
N

∑N
i = 1 δXi ∈ M1,N (R) with (Xi)1⩽i⩽N exchangeable R−valued random variables such

that Y N
0 converges in law to µ ∈ M1(R) as N → +∞, the Moran process

(
Y N

t

)
t⩾0 converges

in law on C 0 ([0, +∞), M1(R)), as N → +∞, to the original Fleming-Viot process (Yt)t⩾0
defined as the solution to the martingale problem (4).

We denote Mc,2
1,N (R) :=

{
µN ∈ M1,N (R)

∣∣∣ 〈id2, µN

〉
< ∞, ⟨id, µN ⟩ = 0

}
, and we define the

centered Moran process
(
ZN

t

)
t⩾0 by

ZN
t := τ−⟨id,Y N

t ⟩♯ Y N
t , t ⩾ 0.

The main result of this subsection is the following:

Proposition 4.2. For all initial condition ZN
0 := 1

N

∑N
i = 1 δXi ∈ Mc,2

1,N (R) with (Xi)1⩽i⩽N

exchangeable R−valued random variables such that ZN
0 converges in law to Z0 ∈ Mc,2

1 (R) as
N → +∞ and satisfying supN∈N E

(〈
id2, ZN

0
〉)

< ∞, the centered Moran process
(
ZN

t

)
t⩾0

converges in law on C 0
Ä
[0, +∞), Mc,2

1 (R)
ä
, as N → +∞, to the centered Fleming-Viot

process (Zt)t⩾0 solution of the martingale problem (2) with initial condition Z0.

A difficulty in proving this result lies in the fact that µ 7→ τ−⟨id,µ⟩♯ µ may not be continuous
on M1(R) because id is not bounded. Hence we need to carry out several approximations and
be very careful to control the approximation error on events of large probabilities. In order to
prove this proposition, we need to introduce some notations and results. For all real-valued
function f on R, the Lipschitz seminorm is defined by ∥f∥L = supx ̸=y

|f(x)−f(y)|
|x−y| . We denote

by
BL1(R) :=

ß
f : R → R

∣∣∣∣ ∥f∥BL ⩽ 1
™

where ∥f∥BL := ∥f∥L + ∥f∥∞ For all µ, ν ∈ M1(R), we denote by

dF M (µ, ν) := sup
f∈BL1(R)

|⟨f, µ⟩ − ⟨f, ν⟩|,
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the Fortet-Mourier distance. Recall that M1 (R) endowed with the weak topology is com-
plete for the distance of Fortet-Mourier [15, Corollary 11.5.5]. Let Λ denote the class of
strictly increasing, continuous mappings of [0, T ] onto itself. For given metric spaces E and ‹E,
we denote by D ([0, T ], E), the space of right continuous and left limitied (càd-làg) functions
from [0, T ] to E and by C 0

b

Ä
E, ‹Eä the space of continuous bounded functions from E to ‹E.

For x, y ∈ D ([0, T ], M1(R)), we define the distance d0(x, y) by:

d0(x, y) := inf
λ∈Λ

®
sup

t∈[0,T ]
dF M (x ◦ λ(t), y(t)) + sup

s<t

∣∣∣∣log
Å

λ(t) − λ(s)
t − s

ã∣∣∣∣´ .

From [2, Theorem 12.2 and Remark of page 121], (D ([0, T ], M1(R)) , d0) is a Polish space
and the topology induced by the distance d0 is the Skorohod topology. Let us consider the
following lemma whose proof is similar to that of Proposition 2.11 and left to the reader:

Lemma 4.3. Let T > 0 and k ∈ N fixed. There exists a constant Ck,T > 0 independent of N

such that for all Y N
0 ∈ M1,N (R) satisfying supN∈N E

Ä¨
|id|k , Y N

0
∂ä

< ∞, the Moran process(
Y N

t

)
0⩽t⩽T

satisfies

∀α > 0, PY N
0

Ç
sup

t∈[0,T ]

¨
|id|k , Y N

t

∂
⩾ α

å
⩽

Ck,T supN∈N E
Ä¨

|id|k , Y N
0
∂ä

α
.

Proof of Proposition 4.2. We want to establish that for all g ∈ C 0
b (D ([0, T ], M1(R)) ,R),

limN→+∞ E
(
g
(
ZN
))

= E (g (Z)). Let ε > 0. We consider the two following maps F and Fε

from D
(
[0, T ], M1

1(R)
)

to D ([0, T ], M1(R)) defined by F (y)(t) := τ−⟨id,y(t)⟩ ♯ y(t) and Fε(y)(t) :=
τ−⟨hε,y(t)⟩ ♯ y(t) where hε is a map from R to R defined by

hε(x) :=


x if |x| ⩽ 1

ε
1
ε if x > 1

ε
−1

ε if x < −1
ε

.

Step 1. Continuity of Fε. In this step, we want to establish that

Fε ∈ C 0
b (D ([0, T ], M1(R)) ,D ([0, T ], M1(R))) .

To obtain this, it is equivalent to prove that if for all n ∈ N, yn, y ∈ D ([0, T ], M1(R)) and
limn→+∞ d0(yn, y) = 0, we have limn→+∞ d0 (Fε(yn), Fε(y)) = 0. As, limn→+∞ d0(yn, y) = 0,
there exists n0 ∈ N such that for all n ⩾ n0, there exists λn ∈ Λ satisfying

sup
t∈[0,T ]

dF M (yn ◦ λn(t), y(t)) + sup
s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣ ⩽ ε2

2 . (30)

Note that

d0 (Fε(yn), Fε(y)) ⩽ sup
t∈[0,T ]

dF M (Fε (yn) (λn(t)) , Fε(y)(t)) + sup
s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣ .
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Now, for all t ∈ [0, T ],

dF M (Fε(yn)(λn(t)), Fε(y)(t)) = sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t)
〉

−
〈
f ◦ τ−⟨hε,y(t)⟩, y(t)

〉∣∣
⩽ sup

f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t) − y(t)
〉∣∣

+ sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩ − f ◦ τ−⟨hε,y(t)⟩, y(t)
〉∣∣.

On the one hand, as f ∈ BL1(R), it follows that f ◦ τ−⟨hε,yn◦λn(t)⟩ ∈ BL1(R) and thus

sup
f∈BL1(R)

∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩, yn ◦ λn(t) − y(t)
〉∣∣ ⩽ dF M (yn ◦ λn(t), y(t)) .

One the other hand, as f and εhε are in BL1(R), we have∣∣〈f ◦ τ−⟨hε,yn◦λn(t)⟩ − f ◦ τ−⟨hε,y(t)⟩, y(t)
〉∣∣ ⩽ |− ⟨hε, yn ◦ λn(t)⟩ + ⟨hε, y(t)⟩|

= 1
ε

|⟨εhε, yn ◦ λn(t) − y(t)⟩|

⩽
1
ε

dF M (yn ◦ λn(t), y(t)) .

It follows from (30) that,

d0 (Fε(yn), Fε(y)) ⩽
Å

1 + 1
ε

ã
sup

t∈[0,T ]
dF M (yn ◦ λn(t), y(t)) + sup

s<t

∣∣∣∣log
Å

λn(t) − λn(s)
t − s

ã∣∣∣∣
⩽ ε.

Step 2. Control in distance d0 of the difference between F
(
Y N
)

and Fε

(
Y N
)
.

We consider the Moran process
(
Y N

t

)
0⩽t⩽T

started from Y N
0 = ZN

0 andand the original
Fleming-Viot process (Yt)0⩽t⩽T started from Y0 = Z0. In this step, we consider the events

Ωε,N :=
®

sup
t∈[0,T ]

¨
id2, Y N

t

∂
⩽

2√
ε

´
and Ωε,∞ :=

®
sup

t∈[0,T ]

〈
id2, Yt

〉
⩽

2√
ε

´
.

As supN∈N E
(〈

id2, ZN
0
〉)

< ∞, it follows from Lemma 4.3 (respectively Proposition 2.11), there
exists a constant ‹CT > 0, independent of N , such that PY N

0
(Ωε,N ) ⩾ 1 − ‹CT

√
ε (respectively

PY0 (Ωε,∞) ⩾ 1 − ‹CT
√

ε). Moreover, on Ωε,N , for all t ∈ [0, T ],

d0
Ä
F
Ä
Y N
ä

, Fε

Ä
Y N
ää

⩽ sup
t∈[0,T ]

dF M

Ä
F
Ä
Y N
ä

(t), Fε

Ä
Y N
ä

(t)
ä

⩽ sup
t∈[0,T ]

sup
f∈BL1(R)

∥∥∥f ◦ τ−⟨id,Y N
t ⟩ − f ◦ τ−⟨hε,Y N

t ⟩
∥∥∥

∞

⩽ sup
t∈[0,T ]

∥∥∥¨|hε − id| , Y N
t

∂∥∥∥
∞

⩽
ε

2 sup
t∈[0,T ]

∥∥∥¨id2, Y N
t

∂∥∥∥
∞

⩽
√

ε,

24/74



where we used the inequality |hε − id| ⩽ ε
2 id2. Similarly on Ωε,∞,

d0 (F (Y ) , Fε (Y )) ⩽
√

ε.

Step 3. Conclusion. We want to prove that for all g ∈ C 0
b (D ([0, T ], M1(R)) ,R),

limN→+∞ E
(
g
(
ZN
))

= E (g(Z)). Thanks to the Portmanteau theorem [2, Theorem 2.1],
then it is sufficient to prove this for all g 1−Lipschitz. As

(
Y N
)

N∈N⋆ converges in law to Y ,
we deduce that, for N large enough,∣∣∣E Äg ◦ Fε

Ä
Y N
ää

− E (g ◦ Fε (Y ))
∣∣∣ ⩽ √

ε.

Using that g is 1−Lipschitz, and the inequalities of Step 2, it follows that∣∣∣E Äg ÄZN
ää

− E (g (Z))
∣∣∣ =

∣∣∣E Äg ◦ F
Ä
Y N
ää

− E (g ◦ F (Y ))
∣∣∣

⩽
∣∣∣E Äg ◦ Fε

Ä
Y N
ää

− E (g ◦ Fε (Y ))
∣∣∣

+
∣∣∣E Äg ◦ F

Ä
Y N
ää

− E
Ä
g ◦ Fε

Ä
Y N
ää∣∣∣

+ |E (g ◦ Fε (Y )) − E (g ◦ F (Y ))|

⩽
√

ε + 2 ∥g∥∞

î
PY N

0

(
Ωc

ε,N

)
+ PY0

(
Ωc

ε,∞
)ó

+
√

ε
î
PY N

0
(Ωε,N ) + PY0 (Ωε,∞)

ó
⩽
Ä
3 + 2 ∥g∥∞

‹CT

ä√
ε.

The announced result follows and completes the proof.

4.2 Backward construction of Moran’s process and Kingman’s coalescent

In this subsection, we exploit the relationship between the Moran model and the Kingman
coalescent to obtain in Proposition 4.7, a result of exponential ergodicity in total variation
for the centered Moran model uniform in N . The genealogy of a sample from a population
evolving according to the Moran model of Subsection 4.1 is exactly determined by Kingman’s
coalescent with coalescence rate γ. The state of the population at the final time is constructed
from the ancestral positions by following the genealogy and adding mutations on the genealogi-
cal tree of the sample according to a standard Brownian motion. Therefore, at the final time T ,
the position of each individual of the sample is equal to the sum of the position of its ancestor
at time 0 and the Brownian mutations steps that occured during its ancestral branches in the
coalescent. We formalize this construction below by giving some notations and illustrations of
the latter ones.

Let be fixed the time T > 0 and the number of particles N ∈ N⋆. We consider the
probability space

Ä
Ω̂, “F , P̂

ä
where Ω̂ := KN,T ×Mut2N −1

N,T ×AµN
N , “F := FKN,T

⊗FMutN,T
⊗FAµN

N

and P̂ := KN,T ⊗ L⊗2N −1
Mut ⊗

⊗N
i = 1 EchµN

i with the following notations.
We denote by KN,T the state space of the Kingman N−coalescent with coalescence rate γ

on [0, T ]:
KN,T := D ([0, T ], ΠN )
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with ΠN the set of partitions of {1, · · · , N}. We denote by KN,T the law of the Kingman
N−coalescent with coalescence rate γ on [0, T ] and FKN,T

the Skorohod σ−field on KN,T .
In the following, in order to simplify the names, the precision “at coalescence rate γ” will be
omitted.

We denote by AµN
N :=

∏N
i = 1 Ri the state space of the possible ancestral positions in the

Kingman N−coalescent at date 0. We denote by EchµN
i with µN := 1

N

∑N
j = 1 δxj ∈ M1,N (R),

the law of a i−sample where we select i elements randomly and without replacement in
{x1, · · · , xN } according to µN and by FAµN

N
the Borel σ−field on AµN

N .
We denote by MutN,T the set of Brownian trajectories of C 0 ([0, T ],R). We denote by LMut

the law of a 1−standard Brownian motion and FMutN,T
the Borel σ−field on MutN,T .

Finally, we denote an element ω̂ of Ω̂ as:

ω̂ :=
{

(kN,t)0⩽t⩽T ;
Ä
W (B)

ä
B⊂{1,··· ,N} \∅

; x(1), · · · , x(N) =
Ä
x

(N)
1 , x

(N)
2 , · · · , x

(N)
N

ä}
.

Note that (kN,t)0⩽t⩽T is an increasing process in KN,T representing the genealogy. In addition,
we denote by kN,T := {L1, · · · , Ln} with n := |kN,T |. In other words, Kingman’s N−coalescent
contains n distinct lineages where Li is a subset of {1, · · · , N} at the final time T . For each
individual i ∈ {1, · · · , N}, we denote by a(i) ∈ {1, · · · , n}, the index such that i ∈ La(i). In
other words, La(i) is the ancestral lineage of i. For each individual i ∈ {1, · · · , N}, we denote by
B(s, i) the block of the partition kN,s at time s and containing the individual i. We denote by
x(n) =

Ä
x

(n)
1 , · · · , x

(n)
n

ä
the ancestral positions at the final time T so that for all i ∈ {1, · · · , N},

x
(n)
a(i) ∈ R is the position of the ancestor of the individual i, at time T , in the genealogical tree.

Each process W (B) =
Ä
W

(B)
t

ä
0⩽t⩽T

governs the dynamics of mutations occuring on the interval
time where B ⊂ kN,T .

Let us recall the link between the Moran model and the previous stochastic objects. At
each reproduction event tk in the Moran model, illustrated on Figure 4.1, an ordered pair of
individuals (i, j) is sampled uniformly at random from the population: one the two individuals
dies and the other reproduces with equal probabilities. In Figure 4.1, we draw an arrow between
lines: the arrow i → j indicates that i reproduced and j died. We can recover the ancestry
of the sample by tracing backwards in time from the right to the left in Figure 4.1 to obtain
Figure 4.2. We coalesce any pair of individuals whenever they find a common ancestor which is
represented by the bold blue arrows. The other arrows do not modify the genealogical tree. The
ancestral positions in Figure 4.1 are given by (xi)1⩽i⩽5 where µ5 = 1

5
∑5

i = 1 δxi and the ancestral
positions in Figure 4.2 are distributed as x(2). Note that x

(2)
a(1) = x

(2)
a(2) = x

(2)
a(4) = x

(2)
1 = x1

and x
(2)
a(1) = x

(2)
a(1) = x

(2)
2 = x5. Then, we add the mutations, denoted by “ ”. Not

all of them are shown in Figures 4.1 and 4.2 for the sake of clarity: the ones which are
represented are w1 := W

({3})
T −t6

− W
({3})
0 , w2 := W

({2})
T −t4

− W
({2})
0 , w3 := W

({1,2})
T −t3

− W
({1,2})
T −t4

and
w4 := W

({1,2,4})
T − W

({1,2,4})
T −t3

. Then the position ui of the individual i ∈ {1, · · · , 5} at time T
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x1

x2

x3

x4

x5

u1

u2

u3

u4

u5

0 Tt1 t2 t3 t4 t5 t6

Figure 4.1: Graphical representation of the
Moran model with N = 5.

w1

w2

w3

w4

u1 u2 u4 u3 u5
T

t6

t5

t4

t3

t2

t1

0
x

(2)
1 = x1 x

(2)
2 = x5

Figure 4.2: Kingman’s genealogy
(k5,T −t)0⩽t⩽T under the Moran model
on the left, tracing back from time T
to time 0.

in Figure 4.2, are

u1 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({1,2})
T −t3

− W
({1,2})
T −t4

+ W
({1})
T −t4

− W
({1})
0 ,

u2 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({1,2})
T −t3

− W
({1,2})
T −t4

+ W
({2})
T −t4

− W
({2})
0 ,

u3 = x2 + W
({3,5})
T − W

({3,5})
T −t6

+ W
({3})
T −t6

− W
({3})
0 ,

u4 = x1 + W
({1,2,4})
T − W

({1,2,4})
T −t3

+ W
({4})
T −t3

− W
({4})
0 ,

u5 = x2 + W
({3,5})
T − W

({3,5})
T −t6

+ W
({5})
T −t6

− W
({5})
0 .

Putting everything together, we define in the general case the random variable“Y N,µN
T := 1

N

N∑
i = 1

δui ,

where, for all i ∈ {1, · · · , N},

ui := uµN
i := x

(n)
a(i) +

∫ T

0
dW

(B(s−,i))
s . (31)

The well-known backward construction of the Moran model [18, Subsection 1.2], [17,
Subsection 2.8] entails the following result.

Proposition 4.4. For all initial condition µN ∈ M1,N (R), Y N
T

law= “Y N,µN
T where Y N

0 = µN .
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4.3 Centered variables and centering effects

We construct the centered version of the random variables “Y N,µN
T . We define the random

variable ẐN,µN
T as follows:

ẐN,µN
T := τ

−
〈

id,“Y N,µN
T

〉♯“Y N,µN
T .

Corollary 4.5. For all initial condition µN ∈ Mc,2
1,N (R), ZN

T
law= ẐN,µN

T = 1
N

∑N
i = 1 δvi where,

for all i ∈ {1, · · · , N}, vi := vµN
i := ui − 1

N

∑N
j = 1 uj and ZN

0 = µN .

w1 w2

w3 w4

w5

w6

w7

x(1)

v1 v2 v3 v4
0

T

Figure 4.3: Illustration of the centered
Moran process where |k4,T | = 1.

w1 w2

w3 w4

w5

w6

x
(2)
1 x

(2)
2

v1 v2 v3 v4
0

T

Figure 4.4: Illustration of the centered
Moran process where |k4,T | = 2.

In the example of Figure 4.3, we can observe that

Ẑ4,µ4
T = 1

4δ 1
2 [w5−w6]+ 3

4 w1− 1
4 [w2+w3+w4] + 1

4δ 1
2 [w5−w6]+ 3

4 w2− 1
4 [w1+w3+w4]

+ 1
4δ− 1

2 [w5−w6]+ 3
4 w3− 1

4 [w1+w2+w4] + 1
4δ− 1

2 [w5−w6]+ 3
4 w4− 1

4 [w1+w2+w3],

and for Figure 4.4 that

Ẑ4,µ4
T = 1

4δ 1
2

î
x

(2)
1 −x

(2)
2 +w5−w6

ó
+ 3

4 w1− 1
4 [w2+w3+w4] + 1

4δ 1
2

î
x

(2)
1 −x

(2)
2 +w5−w6

ó
+ 3

4 w2− 1
4 [w1+w3+w4]

+ 1
4δ− 1

2

î
x

(2)
1 −x

(2)
2 +w5−w6

ó
+ 3

4 w3− 1
4 [w1+w2+w4] + 1

4δ− 1
2

î
x

(2)
1 −x

(2)
2 +w5−w6

ó
+ 3

4 w4− 1
4 [w1+w2+w3].

In other words, when there is just one ancestral lineage, the random variable ẐN,µ4
T is indepen-

dent of the ancestral position x(1). In general, when n = |kN,T | = 1,

vi =
∫ T

0
dW

B(s−,i)
s − 1

N

N∑
j = 1

∫ T

0
dW

B(s−,j)
s (32)

does not depend on the ancestral lineage: this is the centering effect.
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For any fixed T > 0, for all i, j ∈ {1, · · · , N}, let us consider Tij the coalescence time be-
tween the individuals i and j at time T in the process (kN,t)0⩽t⩽T . In the following proposition
we establish that (vi)1⩽i⩽N is a centered Gaussian vector whose covariance matrix is an explicit
function of Tij .

Proposition 4.6. (1) For any fixed T > 0, for all µN ∈ Mc,2
1,N (R), conditionally to kN :=

(kN,t)0⩽t⩽T , on the event {|kN,T | = 1}, we have for all i, j ∈ {1, · · · , N}, Cov (ui, uj | kN ) =
T − Tij.

(2) Conditionally to kN , on the event {|kN,T | = 1}, (vi)1⩽i⩽N ∼ N (N) (0RN , Σ) where Σ :=
(Σij)1⩽i,j⩽N is define by

∀i, j ∈ {1, · · · , N} , Σij := Cov (vi, vj | kN ) = 1
N

N∑
k = 1

(Tik + Tjk)−

(
Tij + 1

N2

N∑
k,ℓ = 1

Tkℓ

)
.

Proof. (1) It is a straightforward computation from (31).

(2) Noting that for all i, j ∈ {1, · · · , N}, Tij = Tji and Tii = 0 and from (32), we deduce
the announced result by a straightforward computation.

4.4 Coupling arguments with two distincts initial conditions

In this subsection, we want to couple centered Moran’s processes from different initial condi-
tions but with the same Kingman genealogy and the same mutations in order to establish the
following exponential ergodicity result.

Proposition 4.7. For all µN , νN ∈ Mc,2
1,N (R), for all T ⩾ 0, there exists constants α, β ∈

(0, +∞), independent of µN , νN , T and N such that∥∥∥P̂ ÄẐN,µN
T ∈ ·

ä
− P̂
Ä
ẐN,νN

T ∈ ·
ä∥∥∥

T V
⩽ α exp (−βT ) .

In particular, for all N ∈ N⋆ there exists a unique invariant probability measure πN for the
centered Moran process

(
ZN

t

)
t⩾0 such that for all µN ∈ Mc,2

1,N (R), for all T ⩾ 0,∥∥∥PµN

Ä
ZN

T ∈ ·
ä

− πN

∥∥∥
T V

⩽ α exp (−βT ) .

Remark 4.8. The previous result is true for all deterministic initial conditions, so also for
any random initial conditions.

Proof. Step 1. Coupling. Let ω̂µN and ω̂νN be two elements of Ω̂ which have the same
Kingman genealogy (kN,t)0⩽t⩽T and the same mutation but whose initial conditions µN :=
1
N

∑N
i = 1 δ

x
(n)
a(i)

and νN := 1
N

∑N
i = 1 δ

y
(n)
a(i)

are different where n = |kN,T |. We assume that the x
(n)
a(i)

respectively y
(n)
a(i) are selected randomly and without replacement in {x1, · · · , xN } respectively
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{y1, · · · , yN }, independently. This allows us to construct, on the same probability space, two
random variables

ẐN,µN
T := 1

N

N∑
i = 1

δv
µN
i

and ẐN,νN
T := 1

N

N∑
i = 1

δv
νN
i

such that ZN,µN
T

law= ẐN,µN
T and ZN,νN

T
law= ẐN,νN

T .

Step 2. Control in total variation. From (32), on the event {|kN,T | = 1}, we have that
for all i ∈ {1, · · · , N}, vµN

i = vνN
i a.s. and from [35] we deduce that∥∥∥P̂ ÄẐN,µN

T ∈ ·
ä

− P̂
Ä
ẐN,νN

T ∈ ·
ä∥∥∥

T V
⩽ P̂
Ä
ẐN,µN

T ̸= ẐN,νN
T

ä
= 1 − KN,T (|kN,T | = 1) .

We denote by HN :=
∑N

k = 2 Tk the height of the Kingman N−coalescent where (Tk)2⩽k⩽N

are independent random variables such that Tk follows an exponential law of parameter γ
(k

2
)

[17, Lemma 2.20]. Now, KN,T (|kN,T | = 1) ⩾ K∞,T (|k∞,T | = 1) = K∞,T (H∞ ⩽ T ) and by the
exponential Tchebychev inequality we have

K∞,T (H∞ > T ) ⩽ inf
λ ∈ ]0,γ[

E (exp (λH∞))
exp (λT ) .

Note that for all λ ∈ ]0, γ[,

E (exp (λH∞)) =
+∞∏
k = 2

E (exp (λTk)) = γ

γ − λ

+∞∏
k = 3

1
1 − 2λ

γk(k−1)
,

where the last product is convergent. We deduce that

K∞,T (H∞ > T ) ⩽ C inf
λ ∈ ]0,γ[

1
(γ − λ) exp(λT ) = Cγ exp(1)T exp(−γT ),

where C :=
∏+∞

k = 3
1

1− 2
γk(k−1)

. The result follows for α = Cγ exp(1)T and β = γ.

4.5 Proof of Theorem 4.1

Classically, it is sufficient to check that there exists constants α, β ∈ R+ such that for all
µ, ν ∈ Mc,2

1 (R), for all T ⩾ 0,

∥Pµ (ZT ∈ ·) − Pν (ZT ∈ ·)∥T V ⩽ α exp (−βT ) .

From Lusin’s theorem [48, Corollary of Theorem 2.24], Proposition 4.7 and Corollary 4.5 there
exists two constants α, β ∈ (0, +∞) such that for all µN , νN ∈ Mc,2

1,N (R), for all T ⩾ 0,

sup
∥f∥∞⩽1

f continuous

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣ = sup
∥f∥∞⩽1

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣
⩽ α exp(−βT ).
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Now, let be fixed two deterministic initial conditions µ, ν ∈ Mc,2
1 (R) and consider an i.i.d.

sample (Xi)1⩽i⩽N of distribution µ and an i.i.d. sample
Ä‹Xi

ä
1⩽i⩽N

of distribution ν. Then, we
construct two initial conditions µN = 1

N

∑N
i = 1 δXi and νN = 1

N

∑N
i = 1 δ‹Xi

such that µN and νN

converge in law respectively to µ and ν. We define µ̃N := τ−⟨id,µN ⟩♯ µN and ν̃N := τ−⟨id,νN ⟩♯ νN

such that µ̃N , ν̃N ∈ Mc,2
1,N (R). By construction, the assumptions of exchangeability of the ran-

dom variables (Xi)1⩽i⩽N and
Ä‹Xi

ä
1⩽i⩽N

are satisfied, µ̃N and ν̃N converge in law respectively
to µ and ν and we have

E
(〈

id2, µ̃N

〉)
= E
Ä〈

id2, µN

〉
− ⟨id, µN ⟩2

ä
=
Å

1 − 1
N

ã
Var(X1) < ∞.

Then, we deduce from Proposition 4.2 that for all f ∈ C 0
b (R,R) satisfying ∥f∥∞ ⩽ 1, for all

T ⩾ 0,

|Eµf (ZT ) − Eνf (ZT )| = lim
N→+∞

∣∣∣EµN

Ä
f
Ä
ZN

T

ää
− EνN

Ä
f
Ä
ZN

T

ää∣∣∣ ⩽ α exp(−βT )

which concludes the proof. □

4.6 Characterisation of the invariant probabiblity measure

In this subsection, we characterise the invariant probability measure of the centered Fleming-
Viot process π thanks to an adaptation of Donnelly-Kurtz’s modified look-down construc-
tion whose original construction of [13, 14] is recalled in Subsubsection 4.6.1. We give in
Subsubsection 4.6.2 an explicit characterisation of the invariant probability measure π. Let us
begin by giving a convergence result of the invariant probability measure πN to the invariant
probability measure π.
Lemma 4.9. The sequence of laws (πN )N∈N⋆ converges in law to π in M1 (M1(R)).

Proof. Let T ⩾ 0, µN ∈ Mc,2
1,N (R) and µ ∈ Mc,2

1 (R) such that µN converges in law to µ. From
Proposition 4.7 and Theorem 4.1, we have for all f ∈ C 0

b (M1(R),R),

|⟨f, πN ⟩ − ⟨f, π⟩| ⩽
∣∣∣⟨f, πN ⟩ − EµN

Ä
f
Ä
ẐN,µN

T

ää∣∣∣+
∣∣∣EµN

Ä
f
Ä
ẐN,µN

T

ää
− Eµ (f (ZT ))

∣∣∣
+ |Eµ (f (ZT )) − ⟨f, π⟩|

⩽ 2 ∥f∥∞ α exp (−βT ) +
∣∣∣EµN

Ä
f
Ä
ẐN,µN

T

ää
− Eµ (f (ZT ))

∣∣∣ .
The announced result follows from Proposition 4.2.

4.6.1 Construction of exchangeable random variables allowing to characterise πN

and π

We consider the probability space
Ä
Ω̌, F̌ , P̌

ä
where we define the modified look-down process

on (−∞, 0] as a population dynamics on the set N of levels where one individual is assigned to
each level. To each pair of levels (i, j) ∈ N2 with 1 ⩽ i < j, we assign an independent Poisson
process (Nij(t))t⩾0 with intensity γ and to each level i ∈ N⋆, we assign an independent standard
Brownian motion (Bi(t))t⩽0 on R−. Jointly with the modified look-down is constructed for all
N ∈ N⋆, the so-called N−look-down process whose evolution is given as follows:
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B1(t)

B2 (t)

B3 (t)

B4 (t)

B5 (t)

ǔ1

ǔ2

ǔ3

ǔ4

ǔ5

1

2

3

4

5

0−t1−t2−t3−t4−T

Figure 4.5: Graphical representation of the mod-
ified look-down process with N = 5.

ǔ1 ǔ3 ǔ4 ǔ2 ǔ5
0

−t1

−t2

−t3

−Ť 5
coal = −t4

−T

Figure 4.6: Kingman’s geneal-
ogy
Ä
ǩ5,t

ä
0⩽t⩽T

under the modified
look-down model on the left, trac-
ing back from time 0 to time −T .

(1) Birth/Death rule. Each jump time tk of one of the Poisson process (Nij)1⩽i<j⩽N
corresponds to a reproduction event at backward time −tk. When the time tk is the
jump time of the Poisson process Nij , we put an arrow from i to j as illustrated in
Figure 4.5 which means that the individual at level i puts a child at level j. The offspring
at level j adopts the current spatial position of its parent at level i. The parent level and
position do not change. Individuals previously at level ℓ ∈ {j, · · · , N − 1} are shifted one
level up to ℓ + 1 and the individual at level N dies.

(2) Spatial motion. Between reproduction events, individuals’ spatial positions at each
level i evolve according to the standard Brownian motion Bi(−t). As explain below, we
will fix the position of the individual at level 1 at coalescence time to 0.

Note that the N−modified look-down process is simply the first N levels of the (N+k)−modified
look-down for any k ∈ N⋆. In other words, the modified look-down construction can be done
with an infinite population as a projective limit of the so-called (infinite) modified look-down.
From [13, 14], the genealogy

Ä
ǩN,t

ä
t⩾0

in backward time since time 0 of a sample from a popu-
lation evolving according to the N−modified look-down is exactly determined by Kingman’s
N−coalescent with coalescence rate γ. In Figure 4.6 we give the Kingman genealogy associ-
ated to the 5−modified look-down of the Figure 4.5.

We denote by a(i, t), i ∈ {1, · · · , N}, t ∈ (−∞, 0], the ancestor level of the individual at
level i at time t. For example, in Figure 4.5, for all t ∈ ] − t3, −t4], a(5, t) = 2 and for all
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t ∈ ] − t2, −t4], a(3, t) = 1. Let us consider the random variables

Ť N
coal := inf

ß
T ⩾ 0

∣∣∣∣ a(i, −T ) = 1, ∀i ∈ {1, · · · , N}
™

,

Ť ∞
coal := inf

ß
T ⩾ 0

∣∣∣∣ a(i, −T ) = 1, ∀i ∈ N⋆

™
,

which can be interpreted respectively as the coalescence time (i.e. the first time where |ǩN,t = 1)
of the Kingman N−coalescent

Ä
ǩN,t

ä
t⩾0

and the Kingman coalescent
Ä
ǩ∞,t

ä
t⩾0

. Note that,
for all N ∈ N⋆, Ť N

coal ⩽ Ť ∞
coal P̌−a.s. In Proposition 4.10, we establish that Ť ∞

coal admits moments
of any order. We shall be interested in the spatial position ǔi of the individual at level i ∈ N⋆

at time 0 assuming that the position of its ancestor at backward time −Ť ∞
coal is 0. For example,

if we assume that, in Figure 4.6, Ť ∞
coal = Ť 5

coal = t4, then the spatial position of the individual
at level 5 at backward time −Ť ∞

coal, represented by the curve in bold in Figures 4.5 and 4.6, is

ǔ5 := B2(−t4) − B2(−t3) + B3(−t3) − B3(−t2) + B4(−t2) − B4(−t1) + B5(−t1).

Similarly, ǔ1 := B1(−t4), ǔ2 := B2 (−t4) , ǔ3 := B1(−t4)−B1(−t2)+B3 (−t2) , ǔ4 := B1 (−t4)−
B1 (−t2) + B3 (−t2) − B3 (−t1) + B4 (−t1). In general, we define for all i ∈ N⋆, the random
variable

ǔi :=
∫ 0

−Ť ∞
coal

dBa(i,t)(t).

Proposition 4.10. For all k ∈ N, there exists a constant Ck > 0 such that E
(Ä

Ť ∞
coal

äk
)
⩽ Ck.

Proof. Note that Ť ∞
coal =

∑+∞
k = 2 Tk where (Tk)k⩾2 are independent random variables such that

Tk follows an exponential law of parameter γ
(k

2
)
. As previously in Step 2 of the proof of

Proposition 4.7, there exists a constant C > 0 such that for all λ ∈ ]0, γ[,

E
Ä
exp
Ä
λŤ ∞

coal

ää
=

+∞∏
k = 2

1
1 − 2λ

γk(k−1)
⩽ exp (Cλ) .

From the inequality: for all x ∈ R+, xk ⩽
Ä

2k
γ exp(1)

äk
exp

(γ
2 x
)
, we deduce that

E
(Ä

Ť ∞
coal

äk
)
⩽
Å 2k

γ exp(1)

ãk

E
(

exp
(γ

2 Ť ∞
coal

))
⩽ Ck

where Ck :=
Ä

2k
γ exp(1)

äk
exp
Ä

Cγ
2

ä
which ends the proof.

In view of (32), it is natural to introduce for all N, i ∈ N⋆, v̌N
i := ǔi − 1

N

N∑
j = 1

ǔj . In the

following proposition, we give analogous results to those of Proposition 4.6.
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Proposition 4.11. (1) Conditionally to ǩN :=
Ä
ǩN,t

ä
t⩾0

, on the event
{∣∣∣ǩN,T

∣∣∣ = 1
}

, we

have for all i, j ∈ {1, · · · , N}, Cov
(

ǔi, ǔj

∣∣∣ ǩN

)
= Ť ∞

coal − Ťij, where Ťij is the coalescence
time between individuals at level i and j at time 0.

(2) Conditionally to ǩN , on the event
{∣∣∣ǩN,T

∣∣∣ = 1
}

,
(
v̌N

i

)
1⩽i⩽N

∼ N (N)
Ä
0RN , Σ̌

ä
where

Σ̌ :=
Ä
Σ̌ij

ä
1⩽i,j⩽N

is define by

∀i, j ∈ {1, · · · , N} , Σ̌ij := Cov
(

v̌N
i , v̌N

j

∣∣∣ ǩN

)
= 1

N

N∑
k = 1

Ä
Ťik + Ťjk

ä
−

(
Ťij + 1

N2

N∑
k,ℓ = 1

Ťkℓ

)
.

Proof. The proof is similar to that of Proposition 4.6.

Let us define respectively the empirical distribution of (ǔi)1⩽i⩽N and its centered version
by

Y̌ N
coal := 1

N

N∑
i = 1

δǔi and ŽN
coal := 1

N

N∑
i = 1

δv̌N
i

.

Proposition 4.12. The measure-valued random variable ŽN
coal has the law πN .

Proof. The proof consists in establishing for all f : Mc,2
1 (R) → R measurable real bounded

function, E
Ä
f
Ä
ŽN

coal

ää
=

∫
Mc,2

1 (R) f(µ)πN (dµ). From Proposition 4.7, it is sufficient to estab-

lish for all µN ∈ Mc,2
1,N (R), that limT →+∞

∣∣∣E Äf ÄŽN
coal

ää
− E
Ä
f
Ä
ẐN,µN

T

ää∣∣∣ = 0.
Let f : Mc,2

1 (R) → R be a measurable real bounded function. Note that,∣∣∣E Äf ÄŽN
coal

ää
− E
Ä
f
Ä
ẐN,µN

T

ää∣∣∣ ⩽ ∣∣∣E(f
Ä
ŽN

coal

ä
1{|ǩN,T |=1}

)
− E

(
f
Ä
ẐN,µN

T

ä
1{|kN,T |=1}

)∣∣∣
+ ∥f∥∞

[
P̌
(∣∣∣ǩN,T

∣∣∣ > 1
)

+ P̂ (|kN,T | > 1)
]

.

Now, from Propositions 4.6 and 4.11, it follows that for all µN ∈ Mc,2
1,N (R),

ẐN,µN
T 1{|kN,T |=1}

law= ŽN
coal1{|ǩN,T |=1}.

As established in Step 2 of the proof of Proposition 4.7,

lim
T →+∞

P̌
(∣∣∣ǩN,T

∣∣∣ > 1
)

= lim
T →+∞

P̂ (|kN,T | > 1) = 0,

which concludes the proof.

In the next proposition, we establish the exchangeability property of the family (ǔi)i∈N⋆

which will allow to apply the De Finetti representation theorem.

Proposition 4.13. (1) The family (ǔi)i∈N⋆ is exchangeable.
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(2) There exists a random variable measure-valued Y̌ ∞
coal : Ω̌ → M1(R) such that

Ä
Y̌ N

coal

ä
N∈N⋆

converges P̌−a.s. when N → +∞ to Y̌ ∞
coal in M1(R) which is equipped with the weak

topology. Moreover, given Y̌ ∞
coal, (ǔi)i∈N⋆ is i.i.d. of law Y̌ ∞

coal.

Proof. (1) From [13, Proof of Theorem 2.2], it is enough to show for each N ∈ N⋆, (ǔi)1⩽i⩽N

is exchangeable. Let σ : N⋆ → N⋆ be a finite permutation, that is to say a bijection that
leaves all but finitely many points unchanged. The well-known backward construction of
the modified look-down process [13, 14] entails that

Ä
ǩ∞,t

ä
t⩾0

law=
Ä
ǩσ

∞,t

ä
t⩾0

where ǩσ
∞,t is

the partition obtained by applying the permutation σ to ǩ∞,t. Therefore, for any permu-
tation σ : {1, · · · , N} → {1, · · · , N} extended by id to N⋆, it is sufficient to prove that(

(ǔi)1⩽i⩽N

∣∣∣ ǩ∞

)
law=
((

ǔσ(i)
)

1⩽i⩽N

∣∣∣ ǩσ
∞

)
to obtain the announced result.

We define Ť ∞,σ
coal := Ť ∞

coal

Ä
ǩσ

∞
ä

and for all i, j ∈ {1, · · · , N}, Ť σ
ij := Ťij

Ä
ǩσ

∞
ä
. Note that

Ť ∞,σ
coal = Ť ∞

coal P̌−a.s. and it follows from the fact
Ä
ǩ∞,t

ä
t⩾0

law=
Ä
ǩσ

∞,t

ä
t⩾0

thatÄÄ
Ť σ

ij , Ť ∞,σ
coal

ää
1⩽i,j⩽N

law=
ÄÄ

Ťij , Ť ∞
coal

ää
1⩽i,j⩽N

.

From Proposition 4.11, for all f : RN → R measurable real bounded function,

E
(

f (ǔ1, · · · , ǔN )
∣∣∣ ǩ∞

)
= F

(Ä
Ťij

ä
1⩽i<j⩽N

, Ť ∞
coal

)
.

for a certain function F . So, in particular

E
(

f
(
ǔσ(1), · · · , ǔσ(N)

) ∣∣∣ ǩσ
∞

)
= F

(Ä
Ť σ

ij

ä
1⩽i<j⩽N

, Ť ∞,σ
coal

)
.

By taking the expectation in the previous expressions, we deduce that E
(
f
(
ǔσ(1), · · · , ǔσ(N)

))
=

E (f (ǔ1, · · · , ǔN )) which completes the proof.

(2) As the family (ǔi)i∈N⋆ is exchangeable, the announced result follows from De Finetti’s
representation theorem [32, Theorem 12.26 and Remark 12.27].

We conclude this subsubsection with a corollary which will be useful to characterise the
probability measure π.

Corollary 4.14. (1) For all k ∈ N, the random variable Y̌ ∞
coal satisfies

¨
|id|k , Y̌ ∞

coal

∂
< ∞

P̌−a.s.

(2) The limit ǔ∞ := limN→+∞
1
N

∑N
j = 1 ǔj exists P̌−a.s. and satisfies ǔ∞ =

¨
id, Y̌ ∞

coal

∂
.

Proof. (1) For all M ∈ (0, +∞), let us consider |id|M the truncation function of id at level M
defined by |id|M = |id| on [−M, M ] and |id|M = M on R \ [−M, M ]. By Fatou’s lemma, we
obtain that

E
Ä¨

|id|kM , Y̌ ∞
coal

∂ä
⩽ lim

N→+∞
E
Ä¨

|id|kM , Y̌ N
coal

∂ä
⩽ lim

N→+∞

1
N

N∑
i = 1

Ä
1 + E

Ä
ǔ2k

i

ää
.
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Now, classical moment results for Gaussian random variables show that for all n ∈ N, E
(
G2n

)
=

(2n)!
2nn! σ

2n for G ∼ N (0, σ2). From Proposition 4.11,

E
Ä
ǔ2k

i

ä
= E

(
E
(

ǔ2k
i

∣∣∣ ǩN

))
= (2k)!

2kk! E
(Ä

Ť ∞
coal

äk
)

.

Therefore, from Proposition 4.10, we deduce that there exists a constant Ck > 0 such that
E
Ä¨

|id|kM , Y̌ ∞
coal

∂ä
⩽ 1 + (2k)!

2kk! Ck and by the dominated convergence theorem when M → +∞,
the announced result follows.

(2) From Proposition 4.13, given Y̌ ∞
coal, (ǔi)i∈N⋆ is i.i.d. Therefore, the announced almost

surely existence limit follows from the Strong Law of Large Numbers. Moreover,¨
id, Y̌ ∞

coal

∂
= lim

N→+∞

¨
id, Y̌ N

coal

∂
= lim

N→+∞

1
N

N∑
j = 1

ǔj = ǔ∞, P̌ − a.s.

4.6.2 Characterisation of the invariant probability measure π

Now we define the random variable Ž∞
coal ∈ M1(R) as

Ž∞
coal := τ−⟨id,Y̌ ∞

coal⟩ ♯Y̌ ∞
coal.

The following proposition establishes the convergence of
Ä
ŽN

coal

ä
N∈N⋆

to Ž∞
coal. Let us recall

the following well-known fact useful for the proof below: a straightforward adaptation of the
proof of [8, Lemma 2.1.2] allows us to obtain that for all d ∈ N⋆, the algebra of polynomials

Span
Åß¨

f, µd
∂ ∣∣∣∣ f : Rd → R uniformly continuous, µ ∈ M1(R)

™ã
is convergence determining in M1 (M1(R)).

Proposition 4.15. (1) The sequence of random variables
Ä
ŽN

coal

ä
N∈N⋆

converges P̌−a.s. when
N → +∞ to Ž∞

coal in M1(R) for the weak convergence topology.

(2) The random variable Ž∞
coal has the law π.

Proof. (1) From the previous reminder, it is sufficient to prove that for all d ∈ N⋆, for all
f : Rd → R uniformly continuous, limN→+∞

〈
f,
Ä
ŽN

coal

äd
〉

=
〈

f,
Ä
Ž∞

coal

äd
〉

. With an argument
similar to the proof of Proposition 4.2, we obtain that for all d ∈ N⋆, for all f : Rd → R
uniformly continuous,

Fd : M1
1(R) −→ R

µ 7−→
〈
f ◦ τ−⟨id,µ⟩, µd

〉
is continuous. Let d ∈ N⋆ and f : Rd → R uniformly continuous. Now, Y̌ ∞

coal ∈ M1
1(R) from

Corollary 4.14 and

Fd

Ä
Y̌ N

coal

ä
=
〈

f,
Ä
ŽN

coal

äd
〉

and Fd

Ä
Y̌ ∞

coal

ä
=
〈

f,
Ä
Ž∞

coal

äd
〉

.
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From Proposition 4.13, limN→+∞ Fd

Ä
Y̌ N

coal

ä
= Fd

Ä
Y̌ ∞

coal

ä
P̌−a.s. which concludes the proof.

(2) Let d ∈ N⋆. As for all N ∈ N⋆ and f : Rd → R uniformly continuous,∣∣∣∣E(〈f,
Ä
Ž∞

coal

äd
〉)

−
∫

M1(R)

¨
f, µd

∂
π(dµ)

∣∣∣∣
⩽ E
Å∣∣∣∣〈f,

Ä
Ž∞

coal

äd
−
Ä
ŽN

coal

äd
〉∣∣∣∣ã+

∣∣∣∣E(〈f,
Ä
ŽN

coal

äd
〉)

−
∫

M1(R)

¨
f, µd

∂
πN (dµ)

∣∣∣∣
+
∣∣∣∣∫M1(R)

¨
f, µd

∂
[π(dµ) − πN (dµ)]

∣∣∣∣ ,
the announced result follows from Propositions 4.15 (1), and 4.12 and Lemma 4.9 when
N → +∞.

The last characterisation of the probability measure π is suitable to make explicit compu-
tations. The next corollary give an expression of the second moment under π.

Corollary 4.16. We have
∫

Mc,2
1 (R) M2 (µ) π (dµ) = 1/γ.

Proof. Step 1. Uniform bound in N of E
Ä
M2k

Ä
ŽN

coal

ää
. In this step, we want to establish

sup
N∈N⋆

E
Ä¨

|id|2k , ŽN
coal

∂ä
< ∞.

Let N ∈ N⋆. From Proposition 4.13 (1),

E
Ä¨

|id|2k , ŽN
coal

∂ä
= E

Ñ
E

Ñ
1
N

N∑
i = 1

∣∣∣∣∣ǔi − 1
N

N∑
j = 1

ǔj

∣∣∣∣∣
2k
∣∣∣∣∣∣
Ä
Ťmℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

éé
= E
Å
E
Å∣∣∣v̌N

1

∣∣∣2k ∣∣∣ÄŤmℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

ãã
.

From Propositions 4.11 and 4.10, we obtain that

E
Å
E
Å∣∣∣v̌N

1

∣∣∣2k ∣∣∣ÄŤm,ℓ

ä
1⩽m,ℓ⩽N

, Ť ∞
coal

ãã
= (2k)!

2kk! E
Ä
Σ̌2k

ii

ä
⩽

(2k)!
k! E

(Ä
Ť ∞

coal

ä2k
)

< ∞,

and the announced result follows.

Step 2. Convergence result of E
Ä
M2
Ä
ŽN

coal

ää
to E

Ä
M2
Ä
ŽN

coal

ää
. Note that for all

N ∈ N⋆, M ∈ (0, +∞),∣∣∣E ÄM2
Ä
ŽN

coal

ää
− E
Ä
M2
Ä
Ž∞

coal

ää∣∣∣ ⩽ (A)N,M + (B)N,M + (C)N,M ,

where

(A)N,M :=
∣∣∣E ÄM2

Ä
ŽN

coal

ää
− E
Ä¨

|id|2M , ŽN
coal

∂ä∣∣∣ ,
(B)N,M :=

∣∣∣E Ä¨|id|2M , ŽN
coal

∂ä
− E
Ä¨

|id|2M , Ž∞
coal

∂ä∣∣∣ ,
(C)N,M :=

∣∣∣E Ä¨|id|2M , Ž∞
coal

∂ä
− E
Ä
M2
Ä
Ž∞

coal

ää∣∣∣ .
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From the inequality
∣∣id2 − id2

M

∣∣ ⩽ 2
3
√

3M
|id|3, then the Hölder inequality, we obtain that

(A)N,M ⩽ E
Ä¨∣∣id2 − id2

M

∣∣ , ŽN
coal

∂ä
⩽

2
3
√

3M
E
Ä¨

|id|3 , ŽN
coal

∂ä
⩽

2
3
√

3M
E
Å¨

id4, ŽN
coal

∂ 3
4
ã

.

From Step 1, we deduce that for all N ∈ N⋆,

(A)N,M ⩽
2

3
√

3M

Å
1 + sup

N∈N⋆
E
Ä¨

id4, ŽN
coal

∂äã
< ∞.

In similar way, we obtain that for all N ∈ N⋆, (C)N,M ⩽ 2
3
√

3M

Ä
1 + E

Ä¨
id4, Ž∞

coal

∂ää
where

E
Ä¨

id4, Ž∞
coal

∂ä
< ∞ from Corollary 4.14 (1). By the monotone convergence theorem, we de-

duce that for all N ∈ N⋆, E
Ä
M2
Ä
ŽN

coal

ää
= limM→+∞ E

Ä¨
|id|2M , ŽN

coal

∂ä
and E

Ä
M2
Ä
Ž∞

coal

ää
=

limM→+∞ E
Ä¨

|id|2M , Ž∞
coal

∂ä
. From Proposition 4.15, for all M ∈ (0, +∞), limN→+∞ (B)N,M =

0. From classical analysis techniques, we deduce that limN→+∞ E
Ä
M2
Ä
ŽN

coal

ää
= E
Ä
M2
Ä
Ž∞

coal

ää
.

Step 3. Conclusion. Note that for all N ∈ N⋆,

M2
Ä
ŽN

coal

ä
=
¨
id2, ŽN

coal

∂
= 1

N

N∑
i = 1

ǔ2
i − 1

N2

[
N∑

i = 1
ǔ2

i + 2
∑

1⩽i<j⩽N

ǔiǔj

]
.

From Proposition 4.11, we have for all i, j ∈ {1, · · · , N}, E (ǔiǔj) = E
(
E
(

ǔiǔj

∣∣∣ ǩN

))
=

E
Ä
Ť ∞

coal − Ťij

ä
where Ťij is an exponential random variable with parameter γ if i ̸= j. Therefore

E
Ä
M2
Ä
ŽN

coal

ää
= N−1

N × 1
γ . By Step 2, we deduce that E

Ä
M2
Ä
Ž∞

coal

ää
= 1/γ which completes

the proof.

5 Proof of Theorem 2.3
We divide the proof of the main result into 7 steps, each of which will constitute a subsection
(Subsections 5.1 to 5.7). We recall that the aim of this proof is to prove that the law PF V c

τ−⟨id,ν⟩♯ ν

of the process (Zt)0⩽t⩽T defined by

∀t ⩾ 0, Zt := τ−⟨id,Yt⟩♯ Yt,

under PF V
ν for ν ∈ M2

1(R) is solution of the martingale problem (2). We will start by consider-
ing the case with test functions F, g ∈ C 4

b (R,R) and we will prove the extension to F ∈ C 2(R,R)
and g ∈ C 2

b (R,R) in Subsection 5.6. In (8) there are essentially two types of terms: ⟨id, Yt − Ys⟩
and
¨
g(j) ◦ τ−⟨id,Ys⟩, Yt − Ys

∂
, j ∈ {0, 1, 2}, s ⩽ t. In Subsections 5.1 and 5.2, we prove that the

two previous quantities admit a Doob’s semi-martingale decomposition. In Subsections 5.3
and 5.4, we handle all the terms in (8) involving respectively the first and second derivative of
F . In Subsection 5.5, we deal with the different error terms involved in (8). Finally, in Sub-
section 5.7, we prove that the martingale involved in (2) is square integrable and we establish
the relation (3). We conclude in Subsection 5.8 and 5.9 by proving a technical lemma used in
Subsection 5.2.
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5.1 Doob’s semi-martingale decomposition of ⟨id, Yt − Ys⟩, s ⩽ t

In (4), M id(g) is well-defined only for g ∈ C 2
b (R,R). The expression makes sense for more

general functions g. The goal of this subsection is to prove that, for any k ∈ N, M id
Ä
idk
ä

is
the martingale part in the Doob semi-martingale decomposition of

¨
idk, Yt

∂
. In particular,¨

id, Ys − Ytn
i ∧t

∂
= M id

s (id) − M id
tn
i ∧t(id), s ⩾ tn

i ∧ t

is a PF V
ν −martingale.

Lemma 5.1. Let ν ∈ M1(R), possibly random and let Pν be a distribution on Ω satisfying (4)
and such that Y0 is equal in law to ν. Let T > 0 and k ∈ N fixed.

(1) If E
Ä¨

|id|k , ν
∂ä

< ∞, there exist two constants Ck,T , ‹Ck,T > 0, such that any stochastic
process (Yt)0⩽t⩽T whose law Pν satisfies

(a) sup
t∈[0,T ]

E
Ä¨

|id|k , Yt

∂ä
⩽ Ck,T

Ä
1 + E

Ä¨
|id|k , ν

∂ää
,

(b) ∀α > 0, Pν

Ç
sup

t∈[0,T ]

¨
|id|k , Yt

∂
⩾ α

å
⩽
‹Ck,T

Ä
1 + E

Ä¨
|id|k , ν

∂ää
α

.

(2) If E
Ä¨

|id|k , ν
∂ä

< ∞, the process
Ä
M id

t

Ä
idk
ää

0⩽t⩽T
defined by

M id
t

Ä
idk
ä

:=
¨
idk, Yt

∂
−
¨
idk, Y0

∂
−

∫ t

0

≠
k(k − 1)

2 idk−2, Ys

∑
ds,

is a continuous Pν−martingale. Moreover, E
Ä¨

|id|2k , ν
∂ä

< ∞,
Ä
M id
Ä
idk
ää

0⩽t⩽T
is a

martingale in L2 (Ω) whose quadratic variation is given by¨
M id
Ä
idk
ä∂

t
= 2γ

∫ t

0

[¨
id2k, Ys

∂
−
¨
idk, Ys

∂2]
ds.

Proof. The proof is similar to that of Proposition 2.11.

5.2 Doob’s semi-martingale decomposition of
〈
g(j) ◦ τ−⟨id,Ys⟩, Yt − Ys

〉
, s ⩽ t,

j ∈ {0, 1, 2}

Equation (8) involves terms of the form
≠

g(j) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
with j ∈ {0, 1, 2}.

We wish to express, each of these terms using the martingale problem (4). However, this leads
us to consider quantities of the form

M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã (33)
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with j ∈ {0, 1, 2}, which are not well defined at the moment. Indeed, in (33) the input argument
is a predictable random function of the process (Yt)0⩽t⩽T while the martingale problem (4)
defines M id

t (g) only for deterministic functions g. Lemma 5.2 hereafter, allows us to give a
precise meaning to (33) by extending the well-defined character of the martingales of (4) to
predictable input arguments. The proof of this technical lemma, given in Subsection 5.9, is
based on regular conditional probabilities.

Lemma 5.2. Let t⋆ ∈ R+ be a deterministic time and h : Ω → C 2
b (R,R) be a measurable

function satisfying the following property:

∀ ω, ω′ ∈ Ω, h(ω) = h(ω′) if ω|[0,t⋆] = ω′
|[0,t⋆]

.

Then, the following process defined, for all t ∈ [0, T ], by

Mt (ω̃) := M id
t (h (ω̃)) (ω̃) − M id

t∧t⋆ (h (ω̃)) (ω̃)

is a PF V
ν (dω̃) square integrable martingale whose quadratic variation is given by

⟨M (ω̃)⟩t = 2γ

∫ t

t∧t⋆

î〈
h2 (ω̃s) , ω̃s

〉
− ⟨h (ω̃s) , ω̃s⟩2

ó
ds.

Lemma 5.2 with t⋆ = t allows us to assert that (33) is a PF V
ν (dY )−martingale increment.

Thus, we obtain for j ∈ {0, 1, 2}:≠
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑
=

∫ tn
i+1∧t

tn
i ∧t

1
2

≠
g(j+2) ◦ τ

−
〈

id,Ytn
i

∧t

〉, Ys

∑
ds (34)

+ M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã
where

Å
M id

s∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ãã
s⩾tn

i

is a PF V
ν square integrable

martingale satisfying for all s ⩾ tn
i ,≠

M id
·∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∑
s

= 2γ

∫ s∧t

tn
i ∧t

ñÆÅ
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã2
, Yu

∏
−
≠

g(j) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Yu

∑2ô
du.

(35)

5.3 Expressions of the terms of (8) involving F ′

In the rest of this proof, we use the following notations to simplify the writing. We denote for
all s ⩾ 0, R(s) := ⟨id, Ys⟩. We assume that F, g ∈ C 4

b (R,R). Our goal is to prove the following
lemma:
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Lemma 5.3. When the mesh of the subdivision 0 = tn
0 < tn

1 < · · · < tn
pn

= T of [0, T ] tends to
0 when n → +∞, we have the following convergence in probability

lim
n→+∞

pn−1∑
i = 0

(A)i =
∫ t

0
F ′ (⟨g, Zs⟩)

Å≠
g′′

2 , Zs

∑
+ γ

〈
g′′, Zs

〉
M2(Zs) − 2γ

〈
g′ × id, Zs

〉ã
+ Martt,

where (Martt)0⩽t⩽T is a PF V
ν −martingale.

The proof of Lemma 5.3 is based on the following decomposition of (A)i (given by the
expression (9)) and using the Doob semi-martingale decomposition of Subsections 5.1 and 5.2.
We have

(A)i =
6∑

k = 1
F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i

where

(A)1
i =

∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds,

(A)2
i = M id

tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)

,

(A)3
i = −

î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(A)4
i = −

î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó [
M id

tn
i+1∧t

(
g′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′ ◦ τ−R(tn

i ∧t)
)]

,

(A)5
i = 1

2
î
M id

tn
i+1∧t (id) − M id

tn
i ∧t (id)

ó2 〈
g′′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(A)6
i = O

(∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ ∣∣∣M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣) .

Note that we used the following inequality∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g(3) ◦ τ−R(tn

i ∧t), Ys

〉
ds ⩽

∥∥∥g(3)
∥∥∥

∞

(
tn
i+1 ∧ t − tn

i ∧ t
)

PF V
ν − a.s.

to bound the term
[
M id

tn
i+1

(id) − M id
tn
i
(id)

] ∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g(3) ◦ τ−R(tn

i ∧t), Ys

〉
ds by (A)6

i . Our goal
in the sequel is to write each of these six quantities as sums of finite variation terms, martingale
terms and negligible terms and to study the limit of each of them.

5.3.1 Decomposition and study of (A)1
i

Note that, for any i ∈ {0, · · · , pn − 1},

(A)1
i =

∫ tn
i+1∧t

tn
i ∧t

1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds +

∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t) − g′′ ◦ τ−R(s), Ys

〉
ds.
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As a consequence of Riemann’s sum convergences and using that s 7→
〈
g′′ ◦ τ−R(s), Ys

〉
is

continuous, we obtain PF V
ν −a.s., and therefore in probability that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∫ tn
i+1∧t

tn
i ∧t

1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds

=
∫ t

0
F ′ (〈g ◦ τ−R(s), Ys

〉) 1
2
〈
g′′ ◦ τ−R(s), Ys

〉
ds

=
∫ t

0
F ′ (⟨g, Zs⟩)

≠
g′′

2 , Zs

∑
ds.

From Lemma A.2 (2), we deduce that, in probability,

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∫ tn
i+1∧t

tn
i ∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t) − g′′ ◦ τ−R(s), Ys

〉
ds = 0.

5.3.2 Martingale contribution of (A)2
i and (A)3

i

Note that
pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)3

i ,

is a stochastic integral with respect to the square integrable martingale
(
M id

s (id)
)

0⩽s⩽T
. Since

F ′ and s 7→
〈
g′ ◦ τ−R(s), Ys

〉
are bounded, we deduce that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)3

i

is PF V
ν −martingale. The term

Mn
t :=

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)2

i

is a stochastic integral with respect to a martingale which depends on n. However, the same
argument as above applies because (Mn

t )0⩽t⩽T is bounded in L2 (Ω), hence uniformly inte-
grable. This can proved as follows: as F ′ is bounded and from Lemma 5.2, there exists two
constant C1, C2 > 0 such that

E
Ä
[Mn

t ]2
ä

=
pn−1∑
i = 0

E
Å[

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)2

i

]2ã
⩽ C1

pn−1∑
i = 0

〈
M id

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)〉

tn
i+1∧t

⩽ 4γC1C2

pn−1∑
i = 0

(
tn
i+1 ∧ t − tn

i ∧ t
)

= 4γC1C2t < ∞.
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5.3.3 Contributions of (A)4
i and (A)5

i

The contribution of the next two terms corresponds to the terms due to the centering effect in
the martingale problem (2).

Study of the term (A)4
i . Using Itô’s formula and the relation (5), we obtain that

(A)4
i = (A)41

i + (A)42
i + (A)43

i

where

(A)41
i = −

∫ tn
i+1∧t

tn
i ∧t

î
M id

s (id) − M id
tn
i ∧t(id)

ó
dM id

s

(
g′ ◦ τ−R(tn

i ∧t)
)

,

(A)42
i = −

∫ tn
i+1∧t

tn
i ∧t

[
M id

s

(
g′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′ ◦ τ−R(tn

i ∧t)
)]

dM id
s (id),

(A)43
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

[〈
id × g′ ◦ τ−R(tn

i ∧t), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(tn

i ∧t), Ys

〉]
ds.

Using the same arguments as for (A)2
i , we deduce, in probability, that for k ∈ {41, 42},

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i

is a PF V
ν −martingale. Moreover, we decompose the integral of (A)43

i in the following way:

(A)43
i = (A)431

i + (A)432
i + (A)433

i

where

(A)431
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

〈
id × g′ ◦ τ−R(tn

i ∧t) − id × g′ ◦ τ−R(s), Ys

〉
ds,

(A)432
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

⟨id, Ys⟩
〈

g′ ◦ τ−R(s) − g′ ◦ τ−R(tn
i ∧t), Ys

〉
ds,

(A)433
i = −2γ

∫ tn
i+1∧t

tn
i ∧t

[〈
id × g′ ◦ τ−R(s), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(s), Ys

〉]
ds.

Using Lemma A.2, we deduce, in probability, that for k ∈ {431, 432},

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)k

i = 0,

and we deduce from the convergence of Riemann’s sums that, PF V
ν −a.s. and hence in proba-

bility,

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)433

i

= −2γ

∫ t

0
F ′ (〈g ◦ τ−R(s), Ys

〉) [〈
id × g′ ◦ τ−R(s), Ys

〉
− ⟨id, Ys⟩

〈
g′ ◦ τ−R(s), Ys

〉]
ds

= −2γ

∫ t

0
F ′ (⟨g, Zs⟩)

〈
g′ × id, Zs

〉
ds.
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Study of the term (A)5
i . As (A)5

i satisfies the following decomposition:

(A)5
i =
Ç∫ tn

i+1∧t

tn
i ∧t

î
M id

s (id) − M id
tn
i ∧t(id)

ó
dM id

s (id)

+ γ

∫ tn
i+1∧t

tn
i ∧t

î〈
id2, Ys

〉
− ⟨id, Ys⟩2

ó
ds

å〈
g′′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
and proceeding as for (A)4

i above, we obtain, in probability, that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(A)5

i = γ

∫ T

0
F ′ (⟨g, Zs∧t⟩)

〈
g′′, Zs∧t

〉
M2 (Zs∧t) ds+Mart(1)

t

where
Ä
Mart(1)

t

ä
0⩽t⩽T

is a PF V
ν −martingale.

5.3.4 Study of the error term (A)6
i

From the inequality: for all x, y ∈ R+, xy ⩽ 2
3

Ä
x

3
2 + y3

ä
and Lemma A.3, we deduce, in

probability, that

lim
n→+∞

pn−1∑
i = 0

F ′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) ∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ ∣∣∣M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣
⩽ lim

n→+∞

2 ∥F ′∥∞
3

(
pn−1∑
i = 0

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣ 3

2 +
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3) = 0

and this completes the proof of Lemma 5.3. □

5.4 Expressions of terms of (8) involving F ′′

From the expression (10) of (B)i, we have

(B)i =
5∑

k = 1

1
2F ′′

(〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉)
(B)k

i ,

where

(B)1
i =

〈
g ◦ τ−R(tn

i ∧t), Ytn
i+1∧t

〉2
−
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉2
,

(B)2
i = −2

〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉 [〈
g ◦ τ−R(tn

i ∧t), Ytn
i+1∧t

〉
−
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉]
,

(B)3
i =
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó2 〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉2
,

(B)4
i = −

∫ tn
i+1∧t

tn
i ∧t

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
,

(B)5
i = −2

[
M id

tn
i+1∧t

(
g′′ ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g′′ ◦ τ−R(tn

i ∧t)
)]

×
î
M id

tn
i+1∧t(id) − M id

tn
i ∧t(id)

ó〈
g′ ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉
.
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As in Subsection 5.3, we treat each of the previous terms successively to prove the following
lemma:

Lemma 5.4. When the mesh of the subdivision 0 = tn
0 < tn

1 < · · · < tn
pn

= T of [0, T ] tends to
0 when n → +∞, we obtain in probability that

lim
n→+∞

pn−1∑
i = 0

(B)i = γ

∫ t

0
F ′′ (⟨g, Zs⟩)

î〈
g2, Zs

〉
− ⟨g, Zs⟩2 +

〈
g′, Zs

〉2
M2 (Zs)

− 2
〈
g′, Zs

〉
⟨g × id, Zs⟩

ó
ds +’Martt

where
Ä’Martt

ä
0⩽t⩽T

is a PF V
ν −martingale.

The proof is similar to Lemma 5.3: we use the martingale problem (4) to write

(B)1
i = 2

∫ tn
i+1∧t

tn
i ∧t

〈
g ◦ τ−R(tn

i ∧t), Ys

〉 1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds

+ 2γ

∫ tn
i+1∧t

tn
i ∧t

ï〈
g2 ◦ τ−R(tn

i ∧t), Ys

〉
−
〈

g ◦ τ−R(tn
i ∧t), Ys

〉2ò
ds

+ M id2
tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id2
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)

,

(B)2
i = −2

〈
g ◦ τ−R(tn

i ∧t), Ytn
i ∧t

〉 ∫ tn
i+1∧t

ti∧t

1
2

〈
g′′ ◦ τ−R(tn

i ∧t), Ys

〉
ds

− 2
〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉 [
M id

tn
i+1∧t

(
g ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g ◦ τ−R(tn

i ∧t)
)]

,

and we obtain that, in probability,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(B)1

i

= γ

∫ t

0
F ′′ (⟨g, Zs⟩)

ß
⟨g, Zs⟩

≠
g′′

2 , Zs

∑
+ γ
î〈

g2, Zs

〉
− ⟨g, Zs⟩2

ó™
ds +’Mart

(1)
t ,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉)
(B)2

i

= −
∫ t

0
F ′′ (⟨g, Zs⟩) ⟨g, Zs⟩

≠
g′′

2 , Zs

∑
ds +’Mart

(2)
t ,

lim
n→+∞

pn−1∑
i = 0

F ′′
(〈

g ◦ τ−R(tn
i ∧t), Ytn

i ∧t

〉) Ä
(B)3

i + (B)4
i + (B)5

i

ä
= γ

∫ t

0
F ′′ (⟨g, Zs⟩)

Ä〈
g′, Zs

〉2
M2(Zs) +

〈
g′, Zs

〉
⟨g × id, Zs⟩

ä
ds +’Mart

(3)
t ,

where
Å’Mart

(j)
t

ã
0⩽t⩽T

, j ∈ {1, 2, 3} are PF V
ν −martingales.
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5.5 Error terms

In this subsection, we examine the different error terms involved in the approximation (8).
From Lemma A.3, we deduce that, in probability,

lim
n→+∞

pn−1∑
i = 0

∣∣∣¨id, Ytn
i+1∧t − Ytn

i ∧t

∂∣∣∣3 = lim
n→+∞

pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 = 0.

Using the relations (34) and (35), we deduce for any k ∈ {0, 1, 2},

pn−1∑
i = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3
⩽ max

Å1
2

∥∥∥g(k)
∥∥∥3

∞
, 4
ã pn−1∑

i = 0

Å∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣3

+
∣∣∣M id

tn
i+1∧t

(
g(k) ◦ τ−R(tn

i ∧t)
)

− M id
tn
i ∧t

(
g(k) ◦ τ−R(tn

i ∧t)
)∣∣∣3ã .

Hence,

lim
n→+∞

pn−1∑
i = 0

∣∣∣∣≠g(k) ◦ τ
−
〈

id,Ytn
i

∧t

〉, Ytn
i+1∧t − Ytn

i ∧t

∑∣∣∣∣3 = 0

in probability. Combining all the previous results, we deduce that (7) is a martingale for all
F, g ∈ C 4

b (R,R).

5.6 Extension to test functions F ∈ C 2(R,R) and g ∈ C 2
b (R,R)

For all g ∈ C 2
b (R,R) and for all t ⩾ 0, we have ⟨g, Yt⟩ ∈ [− ∥g∥∞ , ∥g∥∞], so we can assume

without loss of generality that F ∈ C 2
b (R,R) in the martingale problem (2) with Xt replaced

by Zt. Let F, g ∈ C 2
b (R,R). Then, by density arguments, there exists (Fn)n∈N , (gn)n∈N ∈

C 4
b (R,R)N such that for all t ⩾ 0, for all i ∈ {0, 1, 2}, we have Pµ−a.s.

g(i)
n

∥.∥∞−−−−−→
n→+∞

g(i) and F (i)
n

∥.∥∞−−−−−→
n→+∞

F (i). (36)

For all n ∈ N, for all t ⩾ 0, M̂Fn
t (gn) given by the martingale problem (2) is a Pµ−martingale.

Let T > 0. Note that, there exists a constant C for all n ∈ N, for all t ∈ [0, T ] such that∣∣∣M̂Fn
t (gn) − M̂F

t (g)
∣∣∣ ⩽ C

Å
1 +

∫ T

0
M2(Zs)ds

ã
.

Thanks to Proposition 2.11, (36) and the dominated convergence theorem, we have for all
t ∈ [0, T ],

lim
n→+∞

E
(∣∣∣M̂Fn

t (gn) − M̂F
t (g)

∣∣∣) = 0,

and M̂F
t (g) ∈ L1

Ä
Ω̃
ä
. Then, using the dominated convergence theorem for conditional expec-

tation, we obtain that
Ä
M̂F

t (g)
ä

0⩽t⩽T
is a Pµ−martingale.
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5.7 L2−martingale and quadratic variation

As
Ä
M̂F

t (g)
ä

0⩽t⩽T
is a Pµ−martingale for F ∈ C 2(R,R) and g ∈ C 2

b (R,R) we deduce thatÄ
M̂F

t (g)2 −
¨
M̂F (g)

∂
t

ä
0⩽t⩽T

is a Pµ−local martingale. In consequence, there exists a increasing
sequence of stopping times (τn)n∈N satisfying limn→+∞ τn = +∞ such that for all n ∈ N,

E
Ä
M̂F

t∧τn
(g)2
ä

= E
(¨

M̂F (g)
∂

t∧τn

)
.

We apply Itô’s formula to compute F 2 (⟨g, Xt∧τn⟩) from Doob’s semi-martingale decompo-
sition of F (⟨g, Xt∧τn⟩) and apply the martingale problem (2) to test functions F 2 and g to
deduce (3) at time t ∧ τn. By Fatou’s lemma, letting n → +∞, we deduce that

E
Ä
M̂F

t (g)2
ä
⩽ E
Ä¨

M̂F (g)
∂

t

ä
< ∞.

This ends the proof of Theorem 2.3.

5.8 Technical result for Lemma 5.2

As the filtered probability space
(
Ω, F , (Ft)t⩾0

)
is Polish (Subsection 2.1), we deduce from [29,

Theorem 3.18] there exists, for all ν ∈ M1(R), an unique family (Qω)ω∈Ω of regular conditional
probability of PF V

ν given Ft⋆ and a PF V
ν −null event N ∈ Ft⋆ such that for all ω ∈ Ω \ N ,

Qω

Åß
ω̃ ∈ Ω

∣∣∣∣ ω̃t⋆ = ωt⋆

™ã
= 1. (37)

The following Theorem 5.5 ensures that time shifts of regular conditional probabilities of PF V
ν

remain solutions to the Fleming-Viot martingale problem (4). The proof of this result is
given hereafter and is based on the proof of [29, Lemma 4.19]. We introduce, for ω ∈ Ω, the
time-shift operator θ defined by

[θsω]t := ωs+t, 0 ⩽ t < +∞, s ⩾ 0.

Theorem 5.5. Let t⋆ ∈ R+ be a deterministic time. Then there exists a PF V
ν −null event

N ∈ Ft⋆ such that, for every ω ∈ Ω \ N , the probability measure

Pω (dω̃) := θt⋆♯Qω (dω̃) (38)

solves the martingale problem (4) with ν := ωt⋆.

Proof. Step 0. Preliminary results. We denote by C 2
K(R,R) the space of real functions of

class C 2(R,R) with compact support. It is well-known that the formulation of the martingale
problem (4) for F, g ∈ C 2

b (R,R) is equivalent to the one for F, g ∈ C 2
K(R,R) [9]. The space

C 2
K(R,R) equipped with the norm ∥f∥

W 2,∞
0

:= ∥f∥∞ + ∥f ′∥∞ + ∥f ′′∥∞ is separable. So, we
can choose a dense countable family B ⊂ C 2

K(R,R), for the topology associated to the norm,
that is to say

∀F, g ∈ C 2
K(R,R), ∃ (Fn)n∈N , (gn)n∈N ∈ BN, Fn

∥·∥
W

2,∞
0−−−−−→

n→+∞
F, gn

∥·∥
W

2,∞
0−−−−−→

n→+∞
g.
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Hence, if we denote by LF V the generator of the original Fleming-Viot process, we deduce
that LF V (Fn)gn

∥.∥∞−−−−−→
n→+∞

LF V Fg.

Step 1. Reformulation of the goal. Let ν ∈ M1(R). From (37), it follows that
Pω (ω̃0 = ν) = 1 is satisfied with ν := ωt⋆ . The rest of the proof is devoted to construct a
PF V

ν −null event N4 such that

EPF V
ν

ñ
Fg (ωt) − Fg (ωs) −

∫ t

s
LF V Fg(ωr)dr

∣∣∣∣∣ Fs

ô
= 0, PF V

ν −a.s.

is satisfied for all ω ∈ Ω \ N4. This means that for all 0 ⩽ s < t < ∞, A ∈ Fs, F, g ∈ C 2
K(R,R),

∀w ∈ Ω \ N4,

∫
Ω

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
1A (ω̃)Pω (dω̃) = 0, (39)

where
M

Fg

t (ω̃) := Fg (ω̃t) − Fg (ω̃0) −
∫ t

0
LF V Fg (ω̃r) dr.

Let ω ∈ Ω, 0 ⩽ s < t < ∞, A ∈ Fs, F, g ∈ C 2
K(R,R) be fixed.

Step 2. Property (39) satisfied except on a PF V
ν −null event N1(s, t, A, F, g) ∈ Ft⋆.

As LF V Fg ∈ C 2
b (R,R), the random variable M

Fg

t − M
Fg
s is bounded. Note that,∫

Ω

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
1A (ω̃)Pω (dω̃) = EQω(dω̂)

(î
M

Fg

t − MFg
s

ó
◦ θt⋆ (ω̂)1θ−1

t⋆ A (ω̂)
)

= EPF V
ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆1θ−1

t⋆ A

∣∣∣∣Ft⋆

ã
(ω)

= EPF V
ν

ñ
EPF V

ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆1θ−1

t⋆ A

∣∣∣∣Ft⋆+s

ã ∣∣∣∣∣Ft⋆

ô
(ω)

= EPF V
ν

ñ
1θ−1

t⋆ AEPF V
ν

Åî
M

Fg

t − MFg
s

ó
◦ θt⋆

∣∣∣∣Ft⋆+s

ã ∣∣∣∣∣Ft⋆

ô
(ω)

= 0,

where the last equality follows from martingale property (4). This chain of equalities shows
that the random variable ω 7→

∫
A

î
M

Fg

t (ω̃) − M
Fg
s (ω̃)

ó
Pω (dω̃) is null except on a PF V

ν −null
event N1(s, t, A, F, g) ∈ Ft⋆ which depends on s, t, A, F and g.

Step 3. Property (39) satisfied except on a PF V
ν −null event N2(s, t, F, g) ∈ Ft⋆.

We consider a countable subcollection E of Fs which generates Fs [29, Definition 3.17] and a
Pν−null event N2(s, t, F, g) ∈ Ft⋆ such that for ω ∈ Ω \ N2(s, t, F, g),

∀A ∈ E ,

∫
A

î
M

Fg

t (ω̃) − MFg
s (ω̃)

ó
Pω (dω̃) = 0.
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Therefore, the two measures

v+
ω (A) :=

∫
A

î
M

Fg

t − MFg
s

ó+
(ω̃)Pω (dω̃) and v−

ω (A) :=
∫

A

î
M

Fg

t − MFg
s

ó−
(ω̃)Pω (dω̃),

coincide on E , hence on Fs. Therefore, for ω ∈ Ω \ N2(s, t, F, g), we have proved that for all
A ∈ Fs, EPω

Ä
1A

î
M

Fg

t − M
Fg
s

óä
= 0.

Step 4. Property (39) satisfied except on a PF V
ν −null event N3(F, g) ∈ Ft⋆. We

may set now, the PF V
ν −null event

N3(F, g) :=
⋃

s,t ∈Q
0⩽s<t<∞

N2(s, t, F, g).

Due to the boundedness and continuity of t 7→ M
Fg

t , it follows from the dominated convergence
theorem that for ω ∈ Ω \ N3(F, g)

∀s < t, ∀A ∈ Fs, EPω

Ä
1A

î
M

Fg

t − MFg
s

óä
= 0,

in other words, for all ω ∈ Ω \ N3(F, g),
Ä
M

Fg

t (ω̃)
ä

t⩾0
is a (Fs,Pω (dω̃)) −martingale.

Step 5. Conclusion. Now we define the PF V
ν −null event

N4 :=
⋃

F,g ∈ B
N3(F, g)

From the Step 4, we have for all s ⩽ t,

∀ω ∈ Ω \ N4, ∀A ∈ Fs, ∀F, g ∈ B, EPω

î
1A

Ä
M

Fg

t − MFg
s

äó
= 0.

From Step 0, for all F, g ∈ C 2
K(R,R), there exist two sequences (Fn)n∈N , (gn)n∈N ∈ BN such

that

Fn

∥.∥
W

2,∞
0−−−−−→

n→+∞
F, gn

∥.∥
W

2,∞
0−−−−−→

n→+∞
g, and LF V (Fn)gn

∥.∥∞−−−−−→
n→+∞

AFg.

By the dominated convergence theorem, we deduce that for all ω ∈ Ω, s ⩽ t, and A ∈ Fs,

EPω

î
1A

Ä
M

Fg

t − MFg
s

äó
= lim

n→+∞
EPω

[
1A

(
M

(Fn)gn
t − M

(Fn)gn
s

)]
= 0.

which concludes the proof. □

5.9 Proof of Lemma 5.2

By abuse of notation, we note h
Ä
ω|[0,t⋆]

ä
= h(ω). We want to prove that for all 0 ⩽ s ⩽ t, for

all Fs−measurable bounded random variable Z,

EPF V
ν (dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃)) = 0.
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Using [28, Definition 3.2 (iii)’] we deduce that

EPF V
ν (dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃)) = EPν(dω)

[
EQω(dω̃) ([Mt (ω̃) − Ms (ω̃)] Z (ω̃))

]
.

Thus, it is sufficient to prove that for PF V
ν −almost every ω ∈ Ω, (Mt (ω̃))0⩽t⩽T is a Qω (dω̃) −

martingale and this is what we propose to establish in the rest of this proof.

For fixed ω, the function h(ω) ∈ C 2
b (R,R) can be considered as deterministic. We deduce

from Theorem 5.5 that there exists a PF V
ν −null event N ∈ Ft⋆ such that for all ω ∈ Ω \ N ,(

M id
t (h(ω)) (ω̃)

)
0⩽t⩽T

is a Pω (dω̃) −martingale. We deduce from [29, Theorem 3.18] that
PF V

ν −almost every ω ∈ Ω,

ω̃|[0,t⋆] = ω|[0,t⋆] , Qω (dω̃)−a.s. (40)

This implies that, Qω (dω̃) −almost surely,

Mt (ω̃) = M id
t (h(ω)) (ω̃) − M id

t∧t⋆ (h(ω)) (ω̃) =
ß

M id
t−t⋆ (h (ω)) (θt⋆ (ω̃)) if t > t⋆

0 if t ⩽ t⋆

= M id
(t−t⋆)+ (h (ω)) (θt⋆ (ω̃)) .

Let n ∈ N⋆ and 0 ⩽ s ⩽ T . To prove the martingale property for all Fs−measurable bounded
random variable Z, it is sufficient to prove it on elementary events. Then, we consider a random
variable Z of the form

Z(ω) := 1{ωt1 ∈Γ1,··· ,ωtn ∈Γn}
where for all i ∈ {1, · · · , n}, ti ⩽ s and Γi ⊂ M1(R) measurable. We define

Z̃ (ω, ω̃) := 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}1{ω̃tj ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆}.

By (40), Z̃ (ω, ω̃) = Z (ω), Qω (dω̃) − a.s. Therefore, for PF V
ν −almost every ω ∈ Ω,

EQω ([Mt − Ms] Z)

= EQω(dω̃)
Äî

M id
(t−t⋆)+ (h (ω)) (θt⋆ (ω̃)) − M id

(s−t⋆)+ (h (ω)) (θt⋆ (ω̃))
ó

Z̃ (ω, ω̃)
ä

= 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}×

EQω(dω̃)

(î
M id

t−t⋆ (h (ω)) (θt⋆ (ω̃)) − M id
s−t⋆ (h (ω)) (θt⋆ (ω̃))

ó
× 1{[θt⋆ (ω̃)]tj −t⋆ ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆

}ã
(38)= 1{ωti ∈Γi,∀i∈{1,··· ,n} such that ti⩽t⋆}EPω(dω̂)

(î
M id

t−t⋆ (h (ω)) (ω̂) − M id
s−t⋆ (h (ω)) (ω̂)

ó
× 1{

ω̂tj −t⋆ ∈Γj ,∀j∈{1,··· ,n} such that tj>t⋆
}ã

= 0,
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using that
(
M id

t−t⋆ (h (ω)) (ω̂)
)

t⋆⩽t⩽T +t⋆ is a Pω (dω̂) −martingale if the internal indicator is non
zero. Thus, for PF V

ν −almost every ω ∈ Ω, (Mt (ω̃))0⩽t⩽T is a Qω (dω̃) −martingale which
completes the first part of this proof. In similar way, we can prove

M id2
t (h (ω̃)) (ω̃) − M id2

t∧t⋆ (h (ω̃)) (ω̃)

is a PF V
ν −martingale. Applying Itô’s formula to compute ⟨h (ω̃t) , ω̃t⟩2 and comparing it to

the previous result, we obtain the announced result. □

6 Proof of the results of Section 3

6.1 Study of a semi-group

In this subsection, we devote a specific study to the semi-group
Ä
T (n)(t)

ä
t⩾0

generated by
the operator B(n). In the first subsubsection, we provide an explicit expression of (t, x) 7→
T (n)(t)f(x) and prove that it is a strong solution to the semi-group PDE associated with B(n),
by means of Feynman-Kac’s formula. With the aim of subsequently obtaining fairly fine
bounds on this operator (see Corollary 6.2), we give all the necessary details. In the second
subsubsection, we give a MILD formulation of the martingale problem (15) using the semigroupÄ
T (n)(t)

ä
t⩾0

in Proposition 6.3.

6.1.1 Construction of the semi-group

Recall that we denote by 1 ∈ Rn, the vector whose coordinates are all 1. For any real vector-
valued function f and g of L1(Rn), we denote by (f ∗g)(x) :=

∫
Rn f(t)g(x − t)dt the convolution

product of f and g. For any function f whose second partial derivatives exist, we denote by
Hess(f) :=

Ä
∂2

ijf
ä

1⩽i,j⩽n
the Hessian matrix of f . We denote by C 1,2

b (R+ × Rn,R) the space
of real functions on R+ × Rn of class C 1(R+,R) with respect to the first variable and of class
C 2

b (Rn,R) to the second variable.

Theorem 6.1. The family of operators
Ä
T (n)(t)

ä
t⩾0

defined as:

∀t > 0, ∀x ∈ Rn, T (n)(t)f(x) :=
∫
Rn

f(u)gX
t,x(u)du, (41)

∀x ∈ Rn, T (n)(0)f(x) := f(x),

where gX
t,x is a Gaussian density of N (n) (mt,x, Σt) where Σt := PσtP

−1 and mt,x := Pµt,P −1x =
x − (1−exp(−2γnt))

n (x · 1)1 with

µt,y :=

á
y1 exp (−2γnt)

y2
...

yn

ë
and σt :=


e4(t) 0 . . . . . . 0

0 t 0 . . . 0
... 0 . . . . . . ...
...

... . . . . . . 0
0 0 . . . 0 t

 ,

51/74



where e4(t) := 1−exp(−4γnt)
4γn and P is an explicit change of orthonormal basis matrix defined

in the proof below, is a semi-group of bounded operators on L∞ (Rn). In addition, for all
f ∈ C 2

b (Rn,R),

(1) The application (t, x) 7→ T (n)(t)f(x) is of class C 1,2(R+ ×Rn,R) and is a strong solution
of the PDE

∀t ⩾ 0, ∀x ∈ Rn, ∂tu(t, x) = 1
2∆u(t, x) − 2γ (∇u(t, x) · 1) (x · 1) (42)

∀x ∈ Rn, u(0, x) = f(x), (43)

and

(2) ∇T (n)(t)f(x) =
(
∂ximt,x ·

(
∇f ∗ gX

t,0
)

(mt,x)
)t

1⩽i⩽n

(3) ∀i, j ∈ {1, · · · , n} , ∂2
xixj

T (n)(t)f(x) =
(
∂xj mt,x

)t [(
f ∗ Hess

(
gX

t,0
))

(mt,x)∂ximt,x

]
where ∂ximt,x = ϵi − 1−exp(−2γnt)

n 1 with (ϵ1, · · · , ϵn) the canonical basis of Rn.

As we will see in the proof, everything follows quite directly from the Feynman-Kac
formula, except the fact that (t, x) 7→ T (n)(t)f(x) is a strong solution of the PDE up to time
t = 0. This technical point will be useful for the MILD formulation and this is why we make
a detailed proof.

Proof. In view of the operator B(n) given by (14), it is natural to define the semi-group T (n)(t)
using the formula of Feynman-Kac: for any f ∈ C 2

b (Rn,R),

T (n)(t)f(x) := Exf(Xt)

where (Xt)t⩾0 is solution to the following SDE:

X0 = x, dXt = dBt − 2γ (Xt · 1)1dt, Xt ∈ Rn, t > 0 (44)

where (Bt)t⩾0 is a n−standard Brownian motion and x ∈ Rn.

In Step 1, we check that this definition of T (n)(t) coincides with the one given in the state-
ment of Theorem 6.1. In Step 2, we verify that (x, t) 7→ Exf(Xt) is indeed a solution of the
PDE (42) for all t > 0. In Step 3, we treat the case t = 0. In Step 4, we prove the announced
expressions of the derivatives of T (n)(t)f(x).

Step 1. Change of basis in the SDE (44). We consider the orthonormal basis
(v1, · · · , vn) of Rn defined by v1 := 1√

n
(1 · · · 1)t and for 2 ⩽ i ⩽ n,

vi :=
…

i − 1
i

Ü
1

i − 1 , · · · ,
1

i − 1︸ ︷︷ ︸
i−1 terms

, −1, 0, · · · , 0

êt

.
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We denote by P the change of basis matrix from the canonical basis to the orthonormal basis
(v1, · · · , vn). We define for all t ⩾ 0, Zt = P −1Xt, i.e. Zt :=

Ä
Z

(1)
t , · · · , Z

(n)
t

ä
where for all

i ∈ {1, · · · , n}, Z
(i)
t := (Xt · vi). It is standard to check that Wt :=

Ä
W

(1)
t , · · · , W

(n)
t

ä
where

for all i ∈ {1, · · · , n}, W
(i)
t := (Bt · vi) is a n−standard Brownian motion and that (Zt)t⩾0 is

solution to the SDE

Z0 = y = P −1x,

®
dZ

(1)
t = dW

(1)
t − 2γnZ

(1)
t dt,

dZ
(j)
t = dW

(j)
t , j ∈ {2, · · · , n}

. (45)

All coordinates in (45) are independent and solve a one-dimensional SDE whose solution is
explicit (Ornstein-Uhlenbeck for Z(1), standard Brownian motion for Z(i), i ⩾ 2). It follows
that Zt is a Gaussian vector of law N (n) (µt,y, σt). Therefore, for any t > 0 and all y ∈ Rn, PZt

has a density with respect to the Lebesgue measure on Rn given by:

gZ
t,y(z1, · · · , zn) = 1

(2π)
n
2
√

det(σt)
exp

(
− [z1 − y1 exp (−2γnt)]2

2e4(t) − 1
2t

n∑
j = 2

(zj − yj)2

)
. (46)

Since, Xt = PZt, we deduce that for all x ∈ Rn and for all t > 0, Xt follows the normal
distribution N (n) (mt,x, Σt), with density

gX
t,x(r) := gZ

t,P −1x

(
P −1r

)
= 1

(2π)
n
2
√

det(Σt)
exp
Ç

−(r − mt,x)tΣ−1
t (r − mt,x)
2

å
. (47)

Hence, Exf (Xt) coincides with (41).

Step 2. T (n)(t)f is solution to (42) on (0, +∞) ×Rn. Without difficulty we verify that
for any y ∈ Rn, gZ

t,y satifies the following Fokker-Planck PDE:

∀t > 0, ∀z ∈ Rn, ∂tg
Z
t,y(z) = 1

2∆ygZ
t,y(z) − 2γn∂y1gZ

t,y(z). (48)

We deduce from (47) that

∀y ∈ Rn, ∀r ∈ Rn, ∂tg
Z
t,y

(
P −1r

)
= ∂tg

X
t,P y(r),

and, for all y, r ∈ Rn, ∂yig
Z
t,y(P −1r) =

n∑
k = 1

Pki∂xk
gX

t,P y(r). In particular,

∂y1gZ
t,y(P −1r) = 1√

n

Ä
∇xgX

t,P y(r) · 1
ä

.

In an analogous way, we deduce that

∆ygZ
t,y(P −1r) =

n∑
i = 1

n∑
k,ℓ = 1

PkiPℓi∂
2
xℓ,xk

gX
t,P y(r) = ∆xgX

t,P y(r),
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because P is an orthonormal matrix. From (48) and since
(
P −1x

)
1 = (x·1)√

n
, we deduce that

the density gX
t,x satisfies:

∀t > 0, ∀x ∈ Rn, ∀r ∈ Rn, ∂tg
X
t,x(r) − 1

2∆xgX
t,x(r) + 2γ(x · 1)∇xgt,x(r) = 0.

Now, the fact that for all f ∈ L∞(Rn,R),

T (n)(t)f(x) =
∫
Rn

f(r)gX
t,x(r)dr

is C 1,2
b ((0, +∞) × Rn,R) and is a solution of (42) on (0, +∞) × Rn follows from the theorem

of differentiation under the integral sign. Note that, if f is continuous,

T (n)(t)f(x) = Exf (Xt) −−→
t→0

f(x)

by the dominated convergence theorem which leads to (43).

Step 3. Verification of (42) up to t = 0. Assume that f ∈ C 2
b (Rn,R). This is equivalent

to prove that for all x ∈ Rn,

lim
t→0

∫
Rn f(u)gX

t,x(u)du − f(x)
t

= 1
2∆f(x) − 2γ (∇f(x) · 1) (x · 1) .

Let be x ∈ Rn fixed. Using Taylor’s formula we obtain that∫
Rn

f(u)gX
t,x(u)du − f(x) = (A)t + (B)t + (C)t,

where

(A)t :=
∫
Rn

([u − x] · ∇f(x)) gX
t,x(u)du, (B)t := 1

2

∫
Rn

(u − x)tHessf(x)(u − x)gX
t,x(u)du,

(C)t :=
∫
Rn

Rx(u)gX
t,x(u)du,

where Rx(u) := o
Ä
∥x − u∥2

2

ä
. As gX

t,x is a Gaussian density of N (n) (mt,x, Σt), where

x − mt,x = (1 − exp (−2γnt)) (x · 1)√
n

× 1√
n

∼
t→0

−2γ(x · 1)t,

∀i ∈ {1, · · · , n}, (Σt)ii ∼
t→0

t,
(49)

it follows that

(A)t = (∇f(x) · [mt,x − x]) = −(1 − exp (−2γnt))
n

(∇f(x) · 1) (x · 1) .

(B)t = 1
2

∫
Rn

(u − mt,x)t Hessf(x) (u − mt,x) gX
t,x(u)du

+ 1
2 (x − mt,x)t Hessf(x) (x − mt,x)

= 1
2

n∑
i,j = 1

∂xixj f(x) (Σt)ij + (1 − exp(−2γnt))2 (x · 1)2

2n2 1tHessf(x)1.
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Therefore,
lim
t→0

(A)t + (B)t

t
= −2γ (∇f(x) · 1) (x · 1) + 1

2∆f(x).

Now, it remains to manage the (C)t error term. Note that,

∀ε > 0, ∃α > 0, ∀u ∈ B(x, α), |Rx(u)| ⩽ ε ∥u − x∥2
2 .

∀u ∈ Rn \ B(x, α), |Rx(u)| ⩽ 2 ∥f∥∞ + ∥∇f∥∞ ∥u − x∥2

+ 1
2 ∥Hessf(x)∥∞ ∥u − x∥2 .

Let ε > 0, α > 0 and t0 ⩾ 0 such that for all t ∈ [0, t0], ∥x − mt,x∥2 ⩽ α
2 . Let t ∈ [0, t0].

Separating the domain of integration of the integral of (C)t into B(x, α) and Rn \ B(x, α), it
follows from the Young and previous inequalities that there exists a constant C > 0 such that

(C)t ⩽ ε

∫
Rn

∥u − x∥2
2 gX

t,x(u)du + C

∫
Rn \ B(x,α)

Ä
1 + ∥u − x∥2

2

ä
gX

t,x(u)du

⩽ 2ε
n∑

i = 1
(Σt)ii + 2(ε + C) ∥x − mt,x∥2

2 + 2C

∫
Rn \ B(x,α)

Ä
1 + ∥u − mt,x∥2

2

ä
gX

t,x(u)du

Now, for the choice of α and then the Markov inequality, we obtain that∫
Rn \ B(x,α)

Ä
1 + ∥u − mt,x∥2

2

ä
gX

t,x(u)du ⩽
Å

1 + 4
α2

ã ∫
Rn \ B(mt,x, α

2 )
∥u − mt,x∥2

2 gX
t,x(u)du

⩽
Å

1 + 4
α2

ã ∫
Rn ∥u − mt,x∥4

2 gX
t,x(u)du(

α
2
)4

⩽
16n

α4

Å
1 + 4

α2

ã n∑
i = 1

∫
Rn

(
ui − (mt,x)i

)4
gX

t,x(u)du.

As for all i ∈ {1, · · · , n}, the fourth moment of a random variable of law N (0, (Σt)ii) is smaller
than 3 (Σt)2

ii, it follows from (49) that there exists a constant ‹C > 0 such that

(C)t

t
⩽ 2εn + ε‹C

for t small enough and then the conclusion.

Step 4. Expression of the derivatives of T (n)(t)f . Noting that for all u ∈ Rn,
gX

t,x(u) = gX
t,0(u − mt,x) and using the symmetry property of this density, we obtain that

T (n)(t)f(x) =
Ä
f ∗ gX

t,0
ä

(mt,x).

By the chain rule formula, we deduce the properties (2) and for all i, j ∈ {1, · · · , n},

∂2
xixj

T (n)(t)f(x) =
(
∂xj mt,x

)t
îÄ

f ∗ Hess
Ä
gX

t,0
ää

(mt,x)∂ximt,x

ó
+
Ä
∂2

xixj
mt,x ·

Ä
f ∗ ∇gX

t,0
ä

(mt,x)
ä

.
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Now,

∂ximt,x = ∂xiPµt,P −1x = ϵi − (1 − exp (−2γnt))
(
P −1)

1i
Pϵ1.

The property (3) follows.

The following corollary is useful for bounding the dual process in the next subsection.

Corollary 6.2. Let f ∈ C 2(Rn,R). We assume that there exists a constant C1 > 0 such that
for all x ∈ Rn,

|f(x)| ⩽ C1
Ä
1 + ∥x∥2n

2

ä
.

Then, for all t > 0 and x ∈ Rn, there exists two constants C2(t, n) > 0 locally bounded on
R+ × N and C3(t, n) > 0 locally bounded on (0, +∞) × N such that

(1)
∣∣∣T (n)(t)f(x)

∣∣∣ ⩽ C2(t, n)
Ä
1 + ∥x∥2n

2

ä
(2)

∥∥∥(Hess
(
gX

t,0
)

∗ f
)

(mt,x)
∥∥∥ ⩽ C3(t, n)

Ä
1 + ∥x∥2n

2

ä
Proof. Step 1. Proof of (1). From (46) and (47), note that for all x, r ∈ Rn, t ⩾ 0,
gX

t,x(r) =
∏n

j = 1 g
Zj

t,[P −1x]j

Ä[
P −1r

]
j

ä
, where

gZ(1)
t,y1 (z1) := 1√

2πe4(t)
exp
Ç

− [z1 − y1 exp (−2γnt)]2

2e4(t)

å
gZ(j)

t,yj
(zj) := 1√

2πt
exp
Ç

− [zj − yj ]2

2t

å
, j ∈ {2, · · · , n}.

(50)

Since ∥Pz∥2 = ∥z∥2 for all z ∈ Rn, we also have∫
Rn

∥u∥2n
2 gX

t,x(u)du =
∫
Rn

∥z∥2n
2 gZ

t,P −1x(z)dz.

Hence,∫
Rn

∥u∥2n
2 gX

t,x(u)du ⩽ nn−1
n∑

i = 1

∫
Rn

z2n
i

n∏
j = 1

gZ(j)

t,[P −1x]j
(zj)dz = nn−1

n∑
i = 1

E
(î

Z(i)
ó2n
)

.

Classical moment bounds for Gaussian random variables show that E
(
G2n

)
⩽ C(n)t2n for

G ∼ N (0, t) and C(n) > 0. Since e4(t) ⩽ t and using (50), we deduce that there exists two
constants ‹C1(n) and ‹C2(t, n) such that for all i ∈ {1, · · · , n}

E
(î

Z(i)
ó2n
)
⩽ ‹C1(n)

Ä(
P −1x

)2n

i
+ t2n

ä
⩽ ‹C2(t, n)

(
1 +

∥∥∥P −1x
∥∥∥2n

2

)
.

The result (1) follows.
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Step 2. Proof of (2). Now, we want to control, for all i, j ∈ {1, · · · , n},∣∣∣ÄÄHess
Ä
gX

t,0
ä

∗ f
ä

(mt,x)
ä

ij

∣∣∣ ⩽ C1(n)
∫
Rn

∣∣∣∂2
rirj

gX
t,0(r)

∣∣∣ Ä1 + ∥mt,x − r∥2n
2

ä
dr.

For all k ∈ {1, · · · , n}, we consider:

Vk(t) :=
ß

e4(t) if k = 1
t if k ̸= 1 .

From (50), we deduce that for all i, j, k ∈ {1, · · · , n}, for all t > 0,

∂rig
Z(k)
t,0

((
P −1r

)
k

)
= −

(
P −1)

ki

(
P −1r

)
k

Vk(t) gZ(k)
t,0

((
P −1r

)
k

)
,

∂2
rjri

gZ(k)
t,0

((
P −1r

)
k

)
=
(
P −1)

kj

(
P −1)

ki

Vk(t)

((
P −1r

)2
k

Vk(t) − 1
)

gZ(k)
t,0

((
P −1r

)
k

)
.

Hence, for all i, j ∈ {1, · · · , n}, for all t > 0,

∂2
rjri

gX
t,0 (r) =

n∑
k = 1

(
P −1)

kj

(
P −1)

ki

Vk(t)

((
P −1r

)2
k

Vk(t) − 1
)

gX
t,0 (r)

+
n∑

k = 1

n∑
ℓ = 1
ℓ ̸= k

(
P −1)

kj

(
P −1)

ℓj

Vk(t)Vℓ(t)
(
P −1r

)
k

(
P −1r

)
ℓ
gX

t,0 (r)

Noting that for all i, j, k ∈ {1, · · · , n},
∣∣∣(P −1)

ij

∣∣∣ ⩽ 1 and
∣∣(P −1r

)
k

∣∣ ⩽ n ∥r∥2,

∥mt,x − r∥2n
2 ⩽ 22n−1

Ä
∥r∥2n

2 + 22n−1nn (2 − exp (−2γnt)) ∥x∥2n
2

ä
,

we deduce that for all i, j ∈ {1, · · · , n}, there exists a constant ‹C3(t, n) > 0 locally bounded on
(0, +∞) × N such that∫

Rn

∣∣∣∂2
rirj

gX
t,0(r)

∣∣∣ ∥mt,x − r∥2n
2 dr

⩽
∫
Rn

ñ
1

e4(t)

Ç
n2 ∥r∥2

2
e4(t) + 1

å
+ n − 1

t

Ç
n2 ∥r∥2

2
t

+ 1
å

+ n3
Å 1

e4(t) + n − 1
t

ã
∥r∥2

2

ô
× gX

t,0(r) ∥mt,x − r∥2n
2 dr

⩽ ‹C3(t, n)
Ä
1 + ∥x∥2n

2

ä
.

The announced result (2) follows.

6.1.2 MILD formulation

In this subsubsection, we establish the MILD formulation associated with the martingale prob-
lem (15).
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Proposition 6.3. Let (Xt)t⩾0 be a stochastic process whose the law Pµ is solution to the
martingale problem (2) with initial value µ. Then, for all f ∈ C 2

b (Rn,R),¨
T (n)(t0 − t)f, Xn

t

∂
− γ

∫ t

0

n∑
i = 1

n∑
j = 1
j ̸= i

î¨
Φi,jT (n)(t0 − s)f, Xn−1

s

∂
−
¨
T (n)(t0 − s)f, Xn

s

∂ó
ds

− γ

∫ t

0

n∑
i = 1

n∑
j = 1

¨
Ki,jT (n)(t0 − s)f, Xn+1

s

∂
ds

is a Pµ− martingale for 0 ⩽ t ⩽ t0.

Proof. Let t0 ⩾ 0. Let u, v, w : [0, t0] × Mc,2
1 (R) × Ω̃ → R be B([0, t0]) ⊗ B

Ä
Mc,2

1 (R)
ä

⊗‹F−measurable defined by

• u(r, µ) :=
¨
T (n) (t0 − r) f, µn

∂
, • v(r, µ) := −

¨
∂tT

(n)(t0 − r)f, µn
∂
,

• w(r, µ) := LF V c

¨
T (n)(t0 − r)f, µn

∂
.

The expected result is a direct consequence of a version of Lemma 4.3.4 of [25] where we replace
the assumption of boundedness on w by an assumption of domination. Hence, we need to check
the following assumptions of this lemma:

(i) The process (u(t, Xt))t⩾0 is
Ä‹Ft

ä
t⩾0

−adapted and the processes (v(t, Xt))t⩾0 and (w(t, Xt))t⩾0

are
Ä‹Ft

ä
t⩾0

−progressive. These properties are standard in our case.

(ii) The functions u, v are bounded on [0, t0] × Mc,2
1 (R) and there exists C > 0 such

that for all t ∈ [0, t0], for all µ ∈ Mc,2
1 (R), w(t, µ) ⩽ C (1 + M2 (µ)) where we recall that

M2(µ) =
〈
id2, µ

〉
.

(iii) The function µ 7→ v (t, µ, ω̃) is continuous for fixed t and ω̃.

(iv) For all t0 ⩾ t2 > t1 ⩾ 0,

E
Å

u(t2, Xt2) − u(t1, Xt2)
∣∣∣∣ ‹Ft1

ã
= E
Å∫ t2

t1
v(s, Xt2)ds

∣∣∣∣ ‹Ft1

ã
, (51)

and
E
Å

u(t1, Xt2) − u(t1, Xt1)
∣∣∣∣ ‹Ft1

ã
= E
Å∫ t2

t1
w(t1, Xs)ds

∣∣∣∣ ‹Ft1

ã
. (52)

(v) The process (Xt)t⩾0 is right continuous (here, it is continuous) and

lim
δ→0+

E (|w(t − δ, Xt) − w(t, Xt)|) = 0, t0 > t > 0. (53)

Step 1. Verification of assumptions (ii) and (iii). From Theorem 6.1, for all f ∈
C 2

b (Rn,R), (t, x) 7→ T (n)(t)f(x) is bounded on [0, t0] × Rn. The boundedness of u follows.
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Moreover, as (t, x) 7→ T (n)(t)f(x) is solution of the PDE (42), we obtain for all r ∈ [0, t0] and
µ ∈ Mc,2

1 (R) that

v(r, µ) = −1
2
¨
∆T (n)(t0 − r)f, µn

∂
+ 2γ

¨Ä
∇T (n)(t0 − r)f · 1

ä
(id · 1), µn

∂
.

Since µ ∈ Mc,2
1 (R), the second term of the right hand side is well-defined. Using the properties

(2) and (3) of Theorem 6.1, we deduce that v is bounded on [0, t0] × Mc,2
1 (R). In addition,

∆T (n)(t0 − r)f and
Ä
∇T (n)(t0 − r)f · 1

ä
are continuous bounded, hence µ 7→ v(r, µ) is contin-

uous on M1(R) for the topology of weak convergence. Now, using (14), (16), (17), (18) and
Theorem 6.1 (2) and (3), note that for all r ∈ [0, t0] and µ ∈ Mc,2

1 (R), there exists a constant
Cf > 0 such that,

w(r, µ) =
¨
∂tT

(n)(t0 − r)f, µn
∂

+ γ
n∑

i,j = 1

¨
KijT (n)(t0 − r)f, µn+1

∂
+ γ

n∑
i,j = 1
j ̸= i

î¨
ΦijT (n)(t0 − r)f, µn−1

∂
−
¨
T (n)(t0 − r)f, µn

∂ó
⩽ Cf (1 + M2 (µ)) ,

(54)

where the bound M2(µ) comes from Kij .

Step 2. Verification of assumption (iv) and (v). Let t2 > t1 ⩾ 0. On the one hand,

u (t2, Xt2) − u (t1, Xt2) =
≠

−
∫ t2

t1
∂tT

(n)(t0 − s)fds, Xn
t2

∑
=

∫ t2

t1
v (s, Xt2) ds

and the relation (51) follows. On the other hand, as the martingale problem (2) classically
involves the martingale problem (15) [22], we obtain that

u(t1, Xt2) − u(t1, Xt1) =
¨
T (n)(t0 − t1)f, Xn

t2 − Xn
t1

ä
=

∫ t2

t1
LF V c

¨
T (n)(t0 − t1)f, Xn

s

∂
ds

+ M̂
(n)
t2

Ä
T (n)(t0 − t1)f

ä
− M̂

(n)
t1

Ä
T (n)(t0 − t1)f

ä
.

The relation (52) follows. Finally, from (54), Proposition 2.11 and the Lebesgue dominated
convergence theorem, we deduce the relation (53).

6.2 Proof of Lemma 3.5

Recall that, our goal is to prove that the stopping time θk, defined by

∀k ∈ N, θk := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k or ∃s ∈ [0, t],

¨
ξs, X

M(s)
t−s

∂
⩾ k

™
,

satisfies limk→+∞ θk = +∞, P(µ,ξ0)−a.s. with µ ∈ Mc,2
1 (R) and ξ0 ∈ C 2

b

Ä
RM(0),R

ä
. Before to

prove Lemma 3.5, we introduce the following lemma, whose proof will be given at Subsubsection
6.2.2. We denote by St the number of jumps of the process M on the time interval [0, t].
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Lemma 6.4. If ξ0 ∈ C 2
b (Rn,R) then there exists a finite function C(t, n) on R+ × N locally

bounded non-decreasing in both variables such that for all T > 0,

∀t ∈ [0, T ], ∀x ∈ RM(t), |ξt(x)| ⩽ C(T, ST )
Ä
1 + ∥x∥2ST

2

ä
.

The bound obtained above will only allow us to show that θk → +∞ P(µ,ξ0)−a.s. under
the assumption that the initial condition X0 has all its finite moments. The following remark
shows that we cannot expect that θk → +∞ under weaker assumptions on the initial condition.

Remark 6.5. Let ξ0 : x 7→ sin(x) ∈ C 2
b (R,R). Let us assume that

¨
|id|4 , µ

∂
= +∞ and ξt

successively jumps at times τ1, τ2 and τ3 with respective jump operator K11, K11 and Φ13. If
we denote by τ1,2 := τ2 − τ1, straightforward but tedious computations give

ξτ1(x, y) = K11T (1)(τ1)ξ0(x, y) = − exp
Å

−e4(τ1)
2 − 4γτ1

ã
sin (x exp (−2γτ1)) y2

and

ξτ2(x, y, z) = K11T (2) (τ1,2) ξτ1(x, y, z)

= 1
4 exp

Ç
−e4 (τ1)

2 − 4γτ1 − exp (−4γτ1) − exp (−4γτ1) (e4(τ1,2) − τ1,2)2

4 (e4(τ1,2) + τ1,2)

å
×
ïßexp (−4γτ1)

4 (1 + exp (−4γτ1,2))2
î
2 (e4(τ1,2) + τ1,2) − exp (−4γτ1) (e4(τ1,2) − τ1,2)2

+
(
x [1 − exp(−4γτ1,2)] − y [1 + exp(−4γτ1,2)]

)2
]

− 2 (1 + exp (−8γτ1) − exp (−4γτ1))

− 2 exp (−4γτ1) (1 − exp (−8γτ1,2)) (e4(τ1,2) − τ1,2)
™

× sin
Åexp (−2γτ1)

2 [x − y + (x + y) exp (−4γτ1,2)]
ã

− 2 exp (−2γτ1) (1 + exp (−4γτ1,2))
ß

x − y + (x + y) exp (−8γτ1,2) − x exp (−4γτ1,2)

− exp (−4γτ1,2)
2 (e4(τ1,2) − τ1,2) [−(x − y) + (x + y) exp (−4γτ1,2)]

™
× cos

Åexp (−2γτ1)
2 [x − y + (x + y) exp (−4γτ1,2)]

ãò
z2.

Note that the leading order term in ξτ2(x, y, z) is of the form (ax − by)2 z2 sin (cx + dy). Now,

ξτ3(x, y) = Φ13T (3) (τ3 − τ2) ξτ2(x, y).

If τ3 = τ2, we obtain as leading order term in ξτ3(x, y) the term (ax − by)2 x2 sin (cx + dy),
which is not integrable with respect to µ2(dx, dy). If τ3 > τ2, one can check that the leading order
term in T (3)(τ3 − τ2)ξτ2(x, y, z) is of the form P4(x, y, z) sin

Ä
c̃x + d̃y + ẽz

ä
where P4(X, Y, Z)

is a homogeneous polynomial of degree 4 such that P4(X, Y, Z) → (aX − bY )2 Z2, c̃ → c,
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d̃ → d and ẽ → 0 when τ3 → τ2. Therefore, for τ3 close enough to τ2, ξτ3(x, y) has a non-zero
term proportional to x4 sin

Ä
[c̃ + ẽ] x + d̃y

ä
which is not compensated by another term. Hence,〈

|ξτ3 | , µ2〉 = +∞ if τ3 − τ2 is small enough, for any values of τ1 and τ2. Given T large enough,
we have proved that θk ⩽ τ3 ⩽ T with positive probability.

6.2.1 Proof that Lemma 6.4 implies Lemma 3.5

Note that θk = θ̂k ∧ θ̃k where

θ̂k := inf
ß

t ⩾ 0
∣∣∣∣M(t) ⩾ k

™
and θ̃k := inf

ß
t ⩾ 0

∣∣∣∣ ∃s ∈ [0, t],
¨
ξs, X

M(s)
t−s

∂
⩾ k

™
.

Thanks to (27) it follows that θ̂k → +∞ when k → +∞. In order to prove that θ̃k → +∞ when
k → +∞, we rely on the control of the dual process obtained in Lemma 6.4. So we need to
control

¨
∥·∥2ST

2 , X
M(s)
t−s

∂
. Let T > 0 and ε > 0 be arbitrary. From (27), we choose A(T, ε) > 0

such that P(µ,ξ0) (ST ⩽ A) ⩾ 1 − ε
2 . Then, using Proposition 2.11, we choose B(T, ε, A) > 0

such that P(µ,ξ0)
Ä
∀k ⩽ 2A, ∀t ⩽ T,

¨
|id|k , Xt

∂
⩽ B
ä
⩾ 1 − ε

2 . We recall that for any m ∈ N⋆,
for all x ∈ Rm, (

∑m
i = 1 xi)n ⩽ mn−1 ∑m

i = 1 xn
i . Thus, the following inequality¨

∥·∥2ST
2 , X

M(s)
t−s

∂
⩽ M(s)ST −1

M(s)∑
i = 1

∫
RM(s)

x2ST
i X

M(s)
t−s (dx) = M(s)ST

¨
id2ST , Xt−s

∂
⩽ (M(0) + A)A B,

takes place with probability 1−ε. Therefore, we deduce from Lemma 6.4 that for all s ⩽ t ⩽ T ,¨
ξs, X

M(s)
t−s

∂
⩽ C(T, A) (M(0) + A)A B

In particular, for k ⩾ C(T, A)
Ä
1 + (M(0) + A)A B

ä
, it follows that

P(µ,ξ0)
Ä
θ̃k ⩾ T

ä
⩾ P(µ,ξ0)

Ä
{ST ⩽ A} ∩

¶
∀k ⩽ 2A, ∀t ⩽ T,

¨
idk, Xt

∂
⩽ B
©ä

⩾ 1 − ε.

The conclusion follows. □

6.2.2 Proof of Lemma 6.4

By mathematical induction on k ∈ N, we prove the property

(Pk) : ∀t ∈ [τk, τk+1[ , ∀x ∈ RM(t), |ξt(x)| ⩽ C0((τi+1 − τi)0⩽i⩽k , k)
Ä
1 + ∥x∥2k

2

ä
,

where C0 is locally bounded on
⋃

k∈N (0, +∞)k × {k}.

Initial case. For k = 0, S0 = 0 and ξ0 ∈ C 2
b (Rn,R). Hence, the property (P0) is satisfied.

Inductive step. We assume that, for k ∈ N⋆, the property (Pk−1) is satisfied and prove that
(Pk) is also. Let t ∈ [τk, τk+1[ and note that M(t) = M (τk). We make a partition of cases
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according to whether the dual process loses or gains.

Step 1. Case Γk = Φi,j at the kth jump. In this case, M(τk) = M(τk−1) − 1 and we
deduce from the explicit expression (24) of the dual process that

ξt(x) = T (M(τk−1)−1)(t − τk)Φi,jT (M(τk−1))(τk − τk−1)ξτk−1(x).

By using expression (17) of Φi,j and the property (Pk−1), we deduce from Corollary 6.2 (1)
that for all x ∈ RM(τk−1)−1,∣∣∣Φi,jT (M(τk−1)) (τk − τk−1) ξτk−1(x)

∣∣∣
⩽ C2 (τk − τk−1, M (τk−1)) C0

(
(τi+1 − τi)1⩽i⩽k−1 , k

) Ä
1 + ∥x∥2(k−1)

2
ä

,

where C2C0 is locally bounded. Using again Corollary 6.2 (1), we deduce the property (Pk).

Step 2. Case Γk = Ki,j at the kth jump. In this case, M(τk) = M(τk−1) + 1 and the
explicit expression (24) of dual process that

ξt(x) = T (M(τk−1)+1)(t − τk)Ki,jT (M(τk−1))(τk − τk−1)ξτk−1(x).

From the expression (18) of Ki,j and Theorem 6.1 (3), we have for all x ∈ RM(τk−1)+1,∣∣∣Ki,jT (M(τk−1)+1) (τk − τk−1) ξτk−1(x)
∣∣∣

=
∣∣∣(∂xj mτk−τk−1,x̃

)t
îÄ

ξτk−1 ∗ Hess
Ä
gX

τk−τk−1,0
ää

(mτk−τk−1,x̃)∂ximτk−τk−1,x̃

ó∣∣∣x2
M(τk−1)+1,

where x̃ =
Ä
x1, · · · , xM(τk−1)

ät
∈ RM(τk−1). From the property (Pk−1) and Corollary 6.2 (2),

we deduce that∣∣∣Ki,jT (M(τk−1)+1) (τk − τk−1) ξτk−1(x)
∣∣∣

⩽ C3 (τk − τk−1, M (τk−1)) C0
(
(τi+1 − τi)1⩽i⩽k−1 , k

) Ä
1 + ∥x∥2k

2

ä
,

where C3C0 is locally bounded. Using Corollary 6.2 (1), we deduce the property (Pk). We
conclude by the principle of induction. □

6.3 Proof of Theorem 3.4

Recall that (Xt)t⩾0 is a stochastic process whose law Pµ is a solution of the martingale prob-
lem (2) with µ ∈ Mc,2

1 (R) and (ξt)t⩾0 a dual process independent of (Xt)t⩾0 built on the same
probability space. To simplify, we will note P = P(µ,ξ0) the distribution of ((Xt, ξt))t⩾0. As
ξ0 ∈ C 2

b (RM(0),R) and for the choice of the stopping time θk given by (28), the set of quantities,
involved in the expectations of the weakened duality identity (29), are bounded.
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Step 1. Approximation reasoning. To establish the relation (29) we introduce a
increasing sequence 0 = tn

0 < tn
1 < · · · < tn

pn
= t of subdivisions of [0, t] such that tn

i+1 = tn
i + h

with h tending to 0. Note that

E
Å¨

ξt∧θk
, X

M(t∧θk)
0

∂
exp
Å

γ

∫ t∧θk

0
M2(u)du

ãã
− E
Ä¨

ξ0, X
M(0)
t∧θk

∂ä
=

pn−1∑
i = 0

ï
E
Å≠

ξtn
i+1∧θk

, X
M(tn

i+1∧θk)
t∧θk−tn

i+1∧θk

∑
exp
Å

γ

∫ tn
i+1∧θk

0
M2(u)du

ãã
− E
Å≠

ξtn
i ∧θk

, X
M(tn

i ∧θk)
t∧θk−tn

i ∧θk

∑
exp
Å

γ

∫ tn
i ∧θk

0
M2(u)du

ããò
.

We are therefore interested in terms of the form

E
Ç¨

ξ(s+h)∧θk
, X

M((s+h)∧θk)
t∧θk−(s+h)∧θk

∂
exp
Ç

γ

∫ (s+h)∧θk

0
M2(u)du

åå
− E
Å¨

ξs∧θk
, X

M(s∧θk)
t∧θk−s∧θk

∂
exp
Å

γ

∫ s∧θk

0
M2(u)du

ãã
, for s ∈ [0, t − h] .

(55)

It is sufficient to prove that these quantities are O
(
h2). The procedure to be adopted is as

follows. First of all, we consider separately the two terms which constitute (55) in Steps 2 and
3. Then, we prove that the sum of these terms is O

(
h2) in Steps 4 and 5. Throughout this

subsection, in order to simplify the writing, the following notations are introduced:

tk := t ∧ θk, sk := s ∧ θk, and sh
k := (s + h) ∧ θk.

We note respectively τ1, τ2 the first and second jump times after sk for the process M . We
denote by τ1,k := τ1 ∧ θk and τ2,k := τ2 ∧ θk.

Step 2. First term of (55). We exploit the explicit expression (24) of the dual process
and make the following partition:

(a) If there has been no jump of M on the interval
[
sk, sh

k

]
.

(b) If there was only one jump of M on the interval
[
sk, sh

k

]
and distinguish according to the

events {Γ = Φi,j} and {Γ = Ki,j} where Γ is the first Γk defined by (25) and (26) after
sk.

(c) If there are two or more than two jumps of M on the interval
[
sk, sh

k

]
.
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Then

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å ∣∣∣∣∣ ‹Fsk

å
= E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k>sh

k}

∣∣∣∣∣ ‹Fsk

å
+

M(sk)∑
i,j = 1
i ̸= j

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Γ=Φi,j}

∣∣∣∣∣ ‹Fsk

å
+

M(sk)∑
i,j = 1

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Γ=Ki,j}

∣∣∣∣∣ ‹Fsk

å
+ E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ2,k⩽sh

k}

∣∣∣∣∣ ‹Fsk

å
.

We consider successively each term in the right-hand side.

Firts term: no jump. As there is no jump on [sk, sh
k ], we have M

(
sh

k

)
= M(sk) and

ξsh
k

= T (M(sk)) (sh
k − sk

)
ξsk

. Thus,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k>sh

k}

∣∣∣∣∣ ‹Fsk

å
=
〈

T (M(sk))
Ä
sh

k − sk

ä
ξsk

, X
M(sk)
tk−sh

k

〉
exp
Å

γ

∫ sk

0
M2(u)du −

î
γ
Ä
sh

k − sk

ä
M(sk)(M(sk) − 1)

óã
where we used the fact that τ1,k − sk given ‹Fsk

follows an exponential law of parameter
γM2 (sk) + γM (sk) (M (sk) − 1).

Second and third terms : only one jump. These terms are treated in an analogous
way, so we only give the details for the first one.

If there is a jump on [sk, sh
k ] and for i ̸= j ∈ {1, 2, · · · , M (sk)} fixed, Γ = Φi,j , then

M
(
sh

k

)
= M(sk) − 1 and ξsh

k
= T (M(sk)−1) (sh

k − τ1,k

)
Φi,jT (M(sk)) (τ1,k − sk) ξsk

. Thus,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh

k
,Γ=Φi,j}

∣∣∣∣∣ ‹Fsk

å
=
〈

T (M(sk)−1)
Ä
sh

k − τ1,k

ä
Φi,jT (M(sk)) (τ1,k − sk) ξsk

, X
M(sk)−1
tk−sh

k

〉
× exp

Å
γ

∫ sk

0
M2(u)du + γ [τ1,k − sk] M2(sk) + γ

î
sh

k − τ1,k

ó
(M(sk) − 1)2

ã
× 1{τ1,k−sk⩽sh

k
−sk}E

[
1{Γ=Φi,j}1{τ2,k−τ1,k>sh

k
−τ1,k}

∣∣∣σ (τ1,k) ∨ ‹Fsk

]
.
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Now, using that, given Γ = Φi,j and σ (τ1,k) ∨ ‹Fsk
, τ2,k − τ1,k follows an exponential law of

parameter γ (M (sk) − 1)2 + γ (M (sk) − 1) (M (sk) − 2), we deduce that

P
Å

{Γ = Φi,j} ∩
¶

τ2,k − τ1,k > sh
k − τ1,k

© ∣∣∣∣σ (τ1,k) ∨ ‹Fsk

ã
=

exp
Ä
−γ
î
(M (sk) − 1)2 + (M (sk) − 1) (M (sk) − 2)

ó [
sh

k − τ1,k

]ä
M2 (sk) + M (sk) (M (sk) − 1) .

Then using that, given σ (τ1,k)∨‹Fsk
, τ1,k−sk follows an exponential law of parameter γM2 (sk)+

γM (sk) (M (sk) − 1), we deduce that

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
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γ
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k
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M2(u)du

å
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= γ
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®〈
T (M(sk)−1)

Ä
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Φi,jT (M(sk)) (r − sk) ξsk
, X
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〉
exp
Å

γ

∫ sk
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M2(u)du

ã
× exp

Ç
−2γ (r − sk) (M(sk) − 1) − γ

Ä
sh

k − sk

ä
(M(sk) − 1) (M(sk) − 2)

å´
dr.

Similarly,

E
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ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
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γ

∫ sh
k

0
M2(u)du

å
1{τ1,k⩽sh

k
,τ2,k>sh
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,Γ=Ki,j}

∣∣∣∣∣ ‹Fsk

å
= γ
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ß〈
T (M(sk)+1)

Ä
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Ki,jT (M(sk)) (r − sk) ξsk
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〉
× exp

Å
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M2(u)du − 2γ(r − sk)M(sk) − γ

Ä
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ä
M(sk) (M(sk) + 1)

ã™
dr.

Fourth term : at least two jumps. Note that, P
(

·
∣∣∣ ‹Fsk

)
−a.s., τ2,k − τ1,k ⩾ Esk

where Esk
is an exponential random variable with parameter λ2 (sk) := γ (M (sk) + 1)2 +

γ (M (sk) + 1) M (sk). We denote by λ1 (sk) := γ (M (sk) + 1)2 + γ (M (sk) + 1) M (sk). Using
the strong Markov property at time τ1,k, we obtain that

P
(

τ2,k ⩽ sh
k

∣∣∣ ‹Fsk

)
⩽ P

(¶
τ1,k ⩽ sh
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©
∩
¶
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k

© ∣∣∣ ‹Fsk

)
⩽ λ1(sk)λ2(sk)

î
sh

k − sk

ó2
.

It follows that there exists a constant C(k) such that,

E
Ç≠

ξsh
k
, X

M(sh
k)

tk−sh
k

∑
exp
Ç

γ

∫ sh
k

0
M2(u)du

å
1{τ2,k⩽sh

k}

∣∣∣∣∣ ‹Fsk

å
⩽ C(k)h2.

Step 3. Second term of (55). It follows from the MILD formulation of Proposition 6.3
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that

E
Ç¨

ξsk
, X

M(sk)
tk−sk

∂
exp
Å

γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
= E
Ç〈

T (M(sk))(sh
k − sk)ξsk

, X
M(sk)
tk−sh

k

〉
exp
Å

γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
+ γ

M(sk)∑
i,j = 1
i ̸= j

E
Ç∫ sh

k−sk

0

Ä¨
Φi,jT (M(sk))(r)ξsk

, X
M(sk)−1
tk−sk−r

∂
−
¨
T (M(sk))(r)ξsk

, X
M(sk)
tk−sk−r

∂ä
dr exp

Å
γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

å
+ γ

M(sk)∑
i,j = 1

E

(∫ sh
k−sk

0

¨
Ki,jT (M(sk))(r)ξsk

, X
M(sk)+1
tk−sk−r

∂
dr exp

Å
γ

∫ sk

0
M2(u)du

ã ∣∣∣∣∣ ‹Fsk

)
.

Step 4. Conclusion. Putting together all the previous equations, we deduce that

E
Ç¨

ξ(s+h)∧θk
, X

M([s+h]∧θk)
t∧θk−(s+h)∧θk

∂
exp
Ç

γ

∫ [s+h]∧θk

0
M2(u)du

åå
− E
Å¨

ξs∧θk
, X

M(s∧θk)
t∧θk−s∧θk

∂
exp
Å

γ

∫ s∧θk

0
M2(u)du

ãã
= (A) + (B) + (C) + (D) + (E) + O(h2),

where

(A) = E
(〈

T (M(sk))
Ä
sh

k − sk

ä
ξsk

, X
M(sk)
tk−sh

k

〉
× exp

Å
γ

∫ sk

0
M2(u)du − γ

î
sh

k − sk

ó
M (sk) (M(sk) − 1)

ã
+ γE

Ü∫ sh
k−sk

0

M(sk)∑
i,j = 1
i ̸= j

¨
T (M(sk))(r)ξsk

, X
M(sk)
tk−sk−r

∂
dr exp

Å
γ

∫ sk

0
M2(u)du

ãê
,

(B) = γE

Ü
M(sk)∑
i,j = 1
i ̸= j

∫ sh
k−sk

0

{〈
T (M(sk)−1)

Ä
sh

k − sk − r
ä

Φi,jT (M(sk))(r)ξsk
, X

M(sk)−1
tk−sh

k

〉

−
¨
T (M(sk)−1) (0) Φi,jT (M(sk))(r)ξsk

, X
M(sk)−1
tk−sk−r

∂©
exp
Å

γ

∫ sk

0
M2(u)du

ãã
,

(C) = γE

(
M(sk)∑
i,j = 1

∫ sh
k−sk

0

{〈
T (M(sk)+1)

Ä
sh

k − sk − r
ä

Ki,jT (M(sk))(r)ξsk
, X

M(sk)+1
tk−sh

k

〉
−
¨
T (M(sk)+1) (0) Ki,jT (M(sk))(r)ξsk

, X
M(sk)+1
tk−sk−r

∂©
exp
Å

γ

∫ sk

0
M2(u)du

ãã
,
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(D) = γE

Ü
M(sk)∑
i,j = 1
i ̸= j

∫ sh
k−sk

0

{〈
T (M(sk)−1)

Ä
sh

k − sk − r
ä

Φi,jT (M(sk))(r)ξsk
, X

M(sk)−1
tk−sh

k

〉

× exp
Ä
−2γr [M(sk) − 1] − γ

Ä
sh

k − sk

ä
[M(sk) − 1] [M(sk) − 2]

ä™
dr

ã
,

(E) = γE

(
M(sk)∑
i,j = 1

∫ sh
k−sk

0

{〈
T (M(sk)+1)

Ä
sh

k − sk − r
ä

Ki,jT (M(sk))(r)ξsk
, X

M(sk)+1
tk−sh

k

〉
× exp

Ä
−2γrM(sk) − γ

Ä
sh

k − sk

ä
M(sk) [M(sk) − 1]

ä ©
dr

ã
.

All these terms are O
(
h2) uniformly with respect to the other parameters which is sufficient

to conclude the proof. This can be proved similarly for each term, so we only give the details
for (A). We first notice that when h → 0,

(A) = E
Ç

M(sk) (M(sk) − 1)
∫ sh

k−sk

0

{〈
T (M(sk))

Ä
sh

k − sk

ä
ξsk

, X
M(sk)
tk−sh

k

〉
−
〈

T (M(sk))(r)ξsk
, X

M(sk)
tk−s

k
−r

〉}
dr exp

Å
γ

∫ sk

0
M2(u)du

ãã
+ O

(
h2) .

By conditioning with respect to ‹Fsk
in the previous expression and using the MILD formulation

of the Proposition 6.3 again we obtain that

(A) = γE
Ç

exp
Å

γ

∫ sk

0
M2(u)du

ã
M(sk) (M(sk) − 1)

∫ sh
k−sk

0

ñ∫ tk−sh
k

tk−sk−r

®
M(sk)∑
i,j = 1
i ̸= j

î¨
Φi,jT (M(sk)) (tk − sk − v) ξsk

, XM(sk)−1
v

∂
−
¨
T (M(sk)) (tk − sk − v) ξsk

, XM(sk)
v

∂ó
+

M(sk)∑
i,j = 1

¨
Ki,jT (M(sk))(tk − sk − v)ξsk

, XM(sk)+1
v

∂}
dv

]
dr

)
+ O

(
h2) .

Both integrals are on intervals of length at most h. Since all the quantities in the integrals are
bounded by definition of the stopping time θk, we deduce that (A) =

h→0
O(h2). □
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A Technical lemmas involved in the existence proof

A.1 Approximation lemma

Lemma A.1. Let p ∈ N⋆, µ, ν ∈ M1(R), F ∈ C 3
b (Rp,R) and g = (g1, · · · , gp) where for each

i ∈ {1, · · · , p}, gi ∈ C 3
b (R,R). Then,

F
(〈

g1 ◦ τ−⟨id,µ⟩, µ
〉

, · · · ,
〈
gp ◦ τ−⟨id,µ⟩, µ

〉)
− F

(〈
g1 ◦ τ−⟨id,ν⟩, ν

〉
, · · · ,

〈
gp ◦ τ−⟨id,ν⟩, ν

〉)
=

p∑
k = 1

ß
∂kF

(〈
g1 ◦ τ−⟨id,ν⟩, ν

〉
, · · · ,

〈
gp ◦ τ−⟨id,ν⟩, ν

〉)Å〈
gk ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

[〈
g′

k ◦ τ−⟨id,ν⟩, ν
〉

+
〈
g′

k ◦ τ−⟨id,ν⟩, µ − ν
〉]

+ 1
2 ⟨id, µ − ν⟩2 〈g′′

k ◦ τ−⟨id,ν⟩, ν
〉ã™

+ 1
2

p∑
i,j = 1

ß
∂2

ijF
(〈

g1 ◦ τ−⟨id,ν⟩, ν
〉

, · · · ,
〈
gp ◦ τ−⟨id,ν⟩, ν

〉)Å〈
gi ◦ τ−⟨id,ν⟩, µ − ν

〉
×
〈
gj ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

ï〈
g′

j ◦ τ−⟨id,ν⟩, ν
〉 〈

gi ◦ τ−⟨id,ν⟩, µ − ν
〉

+
〈
g′

i ◦ τ−⟨id,ν⟩, ν
〉 〈

gj ◦ τ−⟨id,ν⟩, µ − ν
〉

−
〈
g′

i ◦ τ−⟨id,ν⟩, ν
〉 〈

g′
j ◦ τ−⟨id,ν⟩, ν

〉
⟨id, µ − ν⟩

òã™
+ O

Ç
|⟨id, µ − ν⟩|3 +

p∑
k = 1

2∑
ℓ = 0

∣∣∣¨g(ℓ)
k ◦ τ−⟨id,ν⟩, µ − ν

∂∣∣∣3å
Proof. The general case p ∈ N⋆ can be proved by a straightforward extension of the proof
of the case p = 1 which is the only case that we prove. Applying Taylor’s formula to
g ◦ τ−⟨id,µ⟩ = g (· − ⟨id, µ⟩), we obtain〈

g ◦ τ−⟨id,µ⟩ − g ◦ τ−⟨id,ν⟩, µ
〉

=
∫
R

µ(dx)
ï
g′ (x − ⟨id, ν⟩) ⟨id, ν − µ⟩ + 1

2g′′ (x − ⟨id, ν⟩) ⟨id, ν − µ⟩2 + O
Ä
⟨id, ν − µ⟩3

äò
= − ⟨id, µ − ν⟩

[〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+
〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
+ 1

2 ⟨id, µ − ν⟩2 [〈g′′ ◦ τ−⟨id,ν⟩, ν
〉

+
〈
g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
+ O
Ä
⟨id, µ − ν⟩3

ä
.

Therefore, we deduce the following approximation:〈
g ◦ τ−⟨id,µ⟩, µ

〉
−
〈
g ◦ τ−⟨id,ν⟩, ν

〉
=
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉
− ⟨id, µ − ν⟩

[〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+
〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉]
(A.1)

+ 1
2 ⟨id, µ − ν⟩2 〈g′′ ◦ τ−⟨id,ν⟩, ν

〉
+ O
Ä
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2 ∣∣〈g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ä .
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Applying Taylor’s formula to F
(〈

g ◦ τ−⟨id,µ⟩, µ
〉)

, we obtain that

F
(〈

g ◦ τ−⟨id,µ⟩, µ
〉)

− F
(〈

g ◦ τ−⟨id,ν⟩, ν
〉)

= F ′ (〈g ◦ τ−⟨id,ν⟩, ν
〉)

×
[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]
+

F ′′ (〈g ◦ τ−⟨id,ν⟩, ν
〉)

2 ×
[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]2
+ O
Ä[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]3ä
.

Using (A.1), we deduce that[〈
g ◦ τ−⟨id,µ⟩, µ

〉
−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]2
=
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉2 + ⟨id, µ − ν⟩2 〈g′ ◦ τ−⟨id,ν⟩, ν
〉2

− 2
〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉
⟨id, µ − ν⟩

〈
g′ ◦ τ−⟨id,ν⟩, ν

〉
+ O

Å
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2

ï∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣

+
∣∣〈g′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣+
∣∣〈g′′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ò
+
∣∣⟨id, µ − ν⟩

〈
g ◦ τ−⟨id,ν⟩, µ − ν

〉 〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣ã ,

and

O
Ä[〈

g ◦ τ−⟨id,µ⟩, µ
〉

−
〈
g ◦ τ−⟨id,ν⟩, ν

〉]3ä
= O

Å
|⟨id, µ − ν⟩|3 + ⟨id, µ − ν⟩2

ï∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣+

∣∣〈g′ ◦ τ−⟨id,ν⟩, µ − ν
〉∣∣ò

+ |⟨id, µ − ν⟩|
î〈

g ◦ τ−⟨id,ν⟩, µ − ν
〉2 +

〈
g′ ◦ τ−⟨id,ν⟩, µ − ν

〉2ó+
∣∣〈g ◦ τ−⟨id,ν⟩, µ − ν

〉∣∣3ä .

The announced result follows from Young’s inequalities.

A.2 Lemma of convergence

Lemma A.2. We assume that E
Ä¨

idk, ν
∂ä

< ∞. We consider for t ∈ [0, T ], an increasing
sequence 0 = tn

0 < tn
1 < · · · < tn

pn
= T of subdivisions of [0, T ] whose mesh tends to 0. Then,

for all k ∈ N⋆, h1 ∈ {1, id} and h2 ∈ C 2
b (R,R), we obtain that, in PF V

ν −probability,

(1) lim
n→+∞

pn−1∑
i = 0

∫ tn
i+1∧t

tn
i ∧t

∣∣∣∣≠h1 ×
ï
h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩

ò
, Ys

∑∣∣∣∣kds = 0,

(2) lim
n→+∞

pn−1∑
i = 0

∫ tn
i+1∧t

tn
i ∧t

|⟨h1, Ys⟩|k
∣∣∣∣≠h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩, Ys

∑∣∣∣∣kds = 0.
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Proof. The two properties can be proved similarly. We only prove the first one. Thanks to
Lemma 5.1 (1)(a) and using that h2 is Lipschitz, there exists a constant CLip such that

∫ tn
i+1∧t

tn
i ∧t

∣∣∣∣≠h1 ×
ï
h2 ◦ τ

−
〈

id,Ytn
i

∧t

〉 − h2 ◦ τ−⟨id,Ys⟩

ò
, Ys

∑∣∣∣∣k ds

⩽
∫ tn

i+1∧t

tn
i ∧t

|⟨h1, Ys⟩|k
[
Ck

Lip

∣∣∣M id
s (id) − M id

tn
i ∧t(id)

∣∣∣ ∧ (2 ∥h2∥∞)k
]

ds.

If h1 = 1, the dominated convergence theorem allows us to conclude the proof. If h1 = id, using
that supt∈[0,T ] |⟨id, ν⟩| < ∞ PF V

ν −a.s. by Lemma 5.1 (1)(b), we can also apply the dominated
convergence.

A.3 Control of error terms

Lemma A.3. Let t > 0 be fixed and assume that E
(〈

id2, ν
〉)

< ∞. Let j ∈ {0, 1, 2} and
g ∈ C 4

b (R,R) fixed. The sequences

(1)
(

pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t (id) − M id

tn
i ∧t (id)

∣∣∣3)
n∈N

(2)
(

pn−1∑
i = 0

∣∣∣∣M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3)
n∈N

converge to 0 in PF V
ν −probability.

Proof. Step 1. Proof of (1). Let ε > 0 and t ⩾ 0 fixed. Let A > 0 to be determined later.
We introduce the stopping time

τA := inf
ß

t ⩾ 0
∣∣∣∣ 〈id2, Yt

〉
− ⟨id, Yt⟩2 ⩾ A

™
which satisfies almost surely limA→+∞ τA = +∞ by Lemma 5.1. Then, using Markov’s
inequality, we obtain that

PF V
ν

(
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

)

⩽ PF V
ν (τA ⩽ t) + PF V

ν

(
{τA > t} ∩

{
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

})

⩽ PF V
ν (τA ⩽ t) + 1

ε

pn−1∑
i = 0

E
Å∣∣∣M id

tn
i+1∧t∧τA

(id) − M id
tn
i ∧t(id)

∣∣∣3ã.

From the definition of τA, we obtain for all s ∈
[
tn
i ∧ t, tn

i+1 ∧ t
]
,
∣∣∣M id

s∧τA
(id) − M id

tn
i ∧t(id)

∣∣∣3 is
bounded and

〈
M id(id)

〉
t∧τA

is 2γA2-Lipschitz. Thanks to the Burkolder-Davis-Gundy
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inequality and Lemma 5.1 (2), there exists a constant C1 such that

E
Å∣∣∣M id

tn
i+1∧t∧τA

(id) − M id
tn
i ∧t(id)

∣∣∣3ã ⩽ C1E

(ï¨
M id(id)

∂
tn
i+1∧t∧τA

−
¨
M id(id)

∂
tn
i ∧t

ò 3
2
)

⩽ C1
(
2γA2) 3

2
(
tn
i+1 ∧ t − tn

i ∧ t
) 3

2 .

Therefore, if we choose A such that PF V
ν (τA ⩽ t) ⩽ ε

2 , and n0 ∈ N such that for all n ⩾ n0,…
sup

i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn0

i ∧ t
∣∣ ⩽ ε2

2C1 (2γA2)
3
2 t

,

we obtain that

PF V
ν

(
pn−1∑
i = 0

∣∣∣M id
tn
i+1∧t(id) − M id

tn
i ∧t(id)

∣∣∣3 > ε

)

⩽ PF V
ν (τA ⩽ t) +

C1
(
2γA2) 3

2

ε
t
…

sup
i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣

⩽ ε,

and the first announced result follows.

Step 2. Proof of (2). In similar way as previously, we obtain that

PF V
ν

(
pn−1∑
i = 0

∣∣∣∣M id
tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3 > ε

)

⩽
1
ε

pn−1∑
i = 0

E
Ç∣∣∣∣M id

tn
i+1∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã− M id
tn
i ∧t

Å
g(j) ◦ τ

−
〈

id,Ytn
i

∧t

〉ã∣∣∣∣3å
⩽

C1

(
2γ

∥∥∥g(j)
∥∥∥2

∞

) 3
2

ε
t
…

sup
i∈J0,pn−1K

∣∣tn
i+1 ∧ t − tn

i ∧ t
∣∣,

which converges to 0 when n → +∞.
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