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Neurobiology of Disease
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Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly
influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability
can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric
modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized
that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the out-
come of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which
makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over
the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the suba-
cute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.
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Significance Statement

Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with
neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct
cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a
chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment,
to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.

Introduction
Stroke remains a devastating clinical challenge because there is
no efficient therapy to either minimize neuronal death with neu-
roprotective drugs or to enhance spontaneous recovery with
neurorepair drugs. The chronic and ever-changing balance
between neuronal excitation and inhibition is a primary trigger
for the initial stroke progression as well as the impairment in the
ability to regain function. Given its predominant role in the con-
trol of inhibition, GABAergic transmission is a major target to
act on the dynamic of this balance (Bachtiar and Stagg, 2014;
Roux and Buzsáki, 2015). The use of pharmacological manipula-
tions targeting GABAA receptors (GABAARs) to modify the
course of ischemic cell damage and their sequelae is an old quest:
numerous preclinical experiments have demonstrated that
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sustaining GABA neurotransmission to counteract the initial
excitotoxic effect of glutamate released minutes to hours after the
onset of stroke can afford protection (Sydserff et al., 1995; Shuaib
and Kanthan, 1997; Green et al., 2000; Schwartz-Bloom and Sah,
2001; Marshall et al., 2003). In this respect, benzodiazepines with
positive allosteric modulation profile were repeatedly shown to
be neuroprotective after cerebral ischemia (Schwartz et al., 1994,
1995; Schwartz-Bloom et al., 1998; Galeffi et al., 2000). However,
like all neuroprotective drug therapies to date, positive GABA
modulators have failed to translate into clinical use.

In recent years, GABA modulation in stroke has been revital-
ized with the understanding that, once the infarction is consolidated,
the excitation and inhibition balance switches from hyperexcitability
to hypoexcitability in the peri-infarct cortex, because of a loss of the
astroglial GABA tranporter, GAT3, and resultant excess in ambient
GABA (Clarkson et al., 2010; Carmichael, 2012). This prolonged
synaptic depression is thought to limit neuronal circuit reorganiza-
tion and therefore the regain of sensorimotor functions (Hummel et
al., 2009; Kim et al., 2014). Dampening the stroke-induced elevation
in inhibition using a negative allosteric modulator (NAM) targeting
the benzodiazepine site of GABAAR, enhances sensorimotor recov-
ery in mice and rats (Clarkson et al., 2010, 2015; Lake et al., 2015;
Alia et al., 2016; Orfila et al., 2019).

Endozepines, known as the endogenous ligands of benzodiaze-
pine-binding sites, comprise the diazepam binding inhibitor (DBI,
also known as acyl-CoA binding protein [ACBP]) and its process-
ing products, including the octadecaneuropeptide (ODN), a small
peptide of 18 amino acids (DBI33-50) (Tonon et al., 2020). In the
brain, DBI is one of the major proteins expressed and released by
astrocytes but not by neurons (Loomis et al., 2010; Tonon et al.,
2020). DBI and ODN bind to the benzodiazepine site of the
GABAAR where they act as allosteric neuromodulators (Bormann,
1991; Barmack et al., 2004; Qian et al., 2008; Möhler, 2014;
Dumitru et al., 2017). Point mutation targeting the benzodiazepine
site of GABAAR renders neuronal cells insensitive to ODN
(Dumitru et al., 2017). At micromolar concentrations, electrophysi-
ological studies show that ODN acts as a NAM on GABAARs, that
is, reduces GABAAR-mediated inhibition (Guidotti et al., 1983;
Ferrero et al., 1986; Barmack et al., 2004; Alfonso et al., 2012;
Dumitru et al., 2017) with no epileptogenic effect (Vezzani et al.,
1991). ODN appears to be a relatively new astroglial modulator of
GABAAR signaling and should therefore be considered for its
potential to correct the imbalance between excitation and inhibition
that arises as a consequence of a stroke. Here, we tested the gliopep-
tide ODN for its potency to enhance recovery after stroke. We
show that ODN boosts the excitability of cortical neurons, which
makes it deleterious in the acute phase of stroke. However, if deliv-
ered 3 days after the stroke onset, ODN is safe and improves motor
recovery in two different models of focal brain ischemia.
Furthermore, we bring novel evidence that, during the subacute pe-
riod after stroke, the repairing cortex can be treated with ODN by
themeans of a single hydrogel injection into the infarct cavity allow-
ing for direct targeting of the peri-infarct cortex.

Materials and Methods
Animals and approvals
Eight- to 12-week-old (20-25 g) male C57BL/6J mice were purchased
from Janvier Laboratories. ACBP KO (ACBP�/� hereinafter referred to
as DBI�/�) mice were obtained from Prof. Mandrup Laboratory
(University of Southern Denmark). Mice were backcrossed to the
C57BL/6J Bom Tac strain for 10 generations to obtain a congenic back-
ground as previously described (Neess et al., 2011). WT (DBI1/1) and
KO (DBI�/�) were littermate generated from heterozygote mice. The

homozygote DBI�/� mice used in this study were identified by genotyp-
ing PCR. Aged female (206 2months) mice were obtained from the
Hercus Taieri Resource Unit at the University of Otago. Experiments,
approved by the Ethics Committee for Animal Research of Normandy
or the University of Otago Animal Ethics Committee, were conducted
by authorized investigators in accordance with the recommendations of
the European Communities 86/609/EEC. All procedures were under-
taken and reporting done in accordance to the ARRIVE (Animal
Research: Reporting In Vivo Experiments) guidelines. All in vivo proce-
dures were conducted between 8:00 A.M. to 6:00 P.M. in specific experi-
mental rooms.

In vivo electrophysiology
Under isoflurane anesthesia (2%-2.5%), two holes were drilled over the
whisker barrel cortex with the dura mater intact, and two glass micro-
pipettes were inserted for recording and micro-injection. After the surgi-
cal procedure, isoflurane was reduced to 1.16 0.1% for a 30–45min
resting period. All in vivo recordings were done with an amplifier
PowerLab 8/35 and aquired with Labchart software (AD-Instrument).

Local field potential (LFP) and extracellular unit recording (EU). An
aCSF-filled glass-micropipette/AgCl/Ag electrode, 3- to 6-mm-diameter
opening, was positioned in cortical layer 4 of the whisker barrel cortex.
Reference and ground electrodes (AgCl/Ag wire) were inserted into the
cerebellum. For ODN microinjection, a glass micropipette (10-mm-di-
ameter opening) was placed 50–100mm away from the recording pip-
ette’s tip. For KCl-induced spreading depolarization waves, 2ml of KCl
(0.5mol/L) was slowly infused (10min) at a distant site from the record-
ing site (4 mm). The signal was bandpass filtered at 200–2000Hz and
digitized at 20 kHz for EU or at 1–100Hz and digitized at 4 kHz for LFP.
Signals were recorded for 12min before the microinjection of 1mg of
ODN (0.5ml) and compared with a 12min period beginning 3min after
the microinjection ended (3min). Spike detection and sorting were then
performed semiautomatically, using Klusta software suite (Rossant et al.,
2016), freely available (http://klusta-team.github.io). Spikes were identi-
fied from the high-frequency component by SpikeDetekt using a thresh-
olding of 4.5 times the standard deviation of the signal. Clustering was
performed using Klustakwik to verify the coherence of the clusters of the
two periods (pre- vs post-injection period) and eliminate spikes that are
an apparent noise (,1% of total spikes). Waveforms were viewed and
extracted using Phy graphical unit interface. For each animal, the spiking
change (%) represents a normalized difference of spikes between the
pre- and the post-injection period.

Somatosensory-evoked potentials (SEPs). The left whiskers were
stimulated with a short rod controlled by an Arduino UNO board at
0.1Hz, 100 times. Signal was acquired at 4 kHz; and analysis was per-
formed by a custom-made script in MATLAB, bandpass filtered (1-
25Hz), and segmented around each stimulation (�2 to 4 s). Each trial
was normalized by subtracting the baseline i.e., signal average of the sig-
nal comprised between �1 and �0.1 s). For the SEP slope, 100 trials
were superimposed and averaged, and the initial deflection of the LFP
was defined as the interval within 20%-80% of the peak-to-peak ampli-
tude. The slope was computed by linear regression of the selected region.

Intravital calcium imaging
A cranial window was made over the somatosensory cortex as previously
described (Chuquet et al., 2010). Imaging was performed under anesthesia
using 2-photon laser scanning microscope (SP8, Leica Microsystems). SR-
101 (1 mM applied on the cortex for 10min) and OGB1-AM (1.2mg in 1ml
micro-injected in the cortex) were both excited at 805nm. Frames
(256� 256 pixels) were collected at 3Hz. x-y drifts were automatically cor-
rected. All traces were median filtered. Signal was expressed as relative
OGB1-AM fluorescence changes (dF/F0) where F0 is the mean of the lowest
20% of the somatic fluorescence signals. Astrocytic calcium surges were
defined as transient increase of dF/F0 signal exceeding 3 SDs.

Stroke models
Middle cerebral artery occlusion. Temporary focal cerebral ischemia

was induced under general anesthesia (isoflurane 1.5%-2%) by occlusion
of the right middle cerebral artery (MCAO) using the intraluminal
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filament technique. Briefly, a nylon thread (80mm in diameter) with a
distal cylinder (1.5 mm and 180mm in diameter) was inserted into the
common carotid artery, advanced to the origin of the MCA (exept for
sham), and removed 60min later to allow reperfusion. A laser-Doppler
flowmetry probe (Moor Instruments) was used to continuously monitor
cerebral blood flow (CBF). Post-surgery analgesic care comprised intra-
dermal ropivacaine (25ml at 2.5mg/ml, Naropeine) around sutures and
applications of lidocaine/prilocaine cream (2.5% EMLA, AstraZeneca).
The animals were then allowed to recover and were killed at day 2 or 28
after MCAO.

Cortical photothrombosis. Focal stroke was induced in the left hemi-
sphere using the photothrombosis method in aged (206 2-month-old)
female C57BL/6J mice weighing 35.86 5.6 g (Clarkson et al., 2010, 2011,
2019). Briefly, under isoflurane anesthesia (2%-2.5% in O2), mice were
placed in a stereotactic apparatus and the skull was exposed. A cold light
source (KL1500 LCD, Carl Zeiss) attached to a 40� objective giving a 2-
mm-diameter illumination was positioned 1.5 mm lateral from bregma,
and 0.2 ml of Rose Bengal solution (Sigma-Aldrich; 10 g/L in saline, i.p.)
was administered. After 5min, the brain was illuminated through the
skull for 15min. All animals were randomly assigned to a treatment
group 5 d post-stroke, by an operator not undertaking behavioral, histo-
logic, or immunohistochemical assessments. All assessments were con-
ducted by observers blind to the treatment group.

NMDA-induced excitotoxic damage
In isoflurane-anesthetized mice, excitotoxic lesions were induced by
NMDAmicro-injection (20 nmol/0.5ml) into the right striatum (2.5 mm
lateral,�4.0 mm ventral, and�0.7 mm posterior to the bregma) infused
at a rate of 0.2ml/min. The lesion volume was quantified 48 h later.

Peptide synthesis and drug preparation
Mouse/rat ODN (H-Gln-Ala-Thr-Val-Gly-Asp-Val-Asn-Thr-Asp-Arg-
Pro-Gly-Leu-Leu-Asp-Leu-Lys-OH) was synthesized as previously described
(Leprince et al., 2001). Flumazenil, a selective antagonist of the benzodiaze-
pine site of the GABAAR, and NMDA were purchased from Sigma-Aldrich
and dissolved in sterile HEPES buffer supplemented with KCl (2.5mmol/L)
and NaCl (145mmol/L), pH 7.4, and DMSO (dilution 1:4) for flumazenil.
ODN or its vehicle was infused over 5min into the lateral ventricle (3ml;
�0.1 mm posterior, 0.8 mm lateral,�2.5 mm ventral to the bregma) or into
the cisterna magna for the experiment conducted under the 2-photon
microscope.

In vivo dosing with hydrogel impregnated with ODN
A hyaluronan/heparan sulfate proteoglycan biopolymer hydrogel
(HyStem-C, BioTime) was used to locally deliver ODN, to the peri-
infarct cortex as described previously (Clarkson et al., 2011; Houlton et
al., 2019). In brief, ODN was added to the HyStem/Gelin-S mix (compo-
nent 1 of hydrogel, glycosyl/gelin 1:1), followed by addition of Extralink
(component 2 of hydrogel) in a 4:1 ratio. In prior studies, we have reli-
ably shown that hydrogels can be used to release small and large proteins
for at least 3weeks from the stroke cavity (Li et al., 2010; Overman et al.,
2012). Five days after stroke, 7.5ml of HyStem-C, impregnated with ei-
ther ODN (1mg or 5mg) or saline-vehicle, was injected directly into the
stroke infarct cavity (30-gauge needle and a Hamilton syringe at coordi-
nates 0 mmAP, 1.5 mmML, and 0.75 mmDV).

Behavioral tests
MCAO. Behavioral tests were conducted by a manipulator blind to

treatment groups. After a pretest performed 3 or 4 d before MCAO sur-
gery, three sensorimotor tasks were conducted once a week.

The pole test was performed as described by Matsuura et al. (1997).
Mice performed two different tasks: (1) mice were placed head upward
on top of the vertical pole (55 cm). The time to turn completely head
downward was measured (return task); and (2) the descent of the pole
(descent task) was covered with Durapore tape (3M). The third test was
the beam crossing test (Carter et al., 2001), measuring the time to cross a
horizontal beam (diameter: 10 mm; length: 1 m). For animals unable to
perform one of these three tasks, a time penalty of 60, 60, and 200 s was,

respectively, attributed, corresponding to the worst performances
(Mann and Chesselet, 2014).

Cortical photothrombosis. Recovery of forelimb motor function was
determined by the cylinder and grid-walking tasks to assess their explor-
atory behavior and walking, respectively, as previously reported
(Clarkson et al., 2010). Mice were tested;7 d before stroke to establish a
baseline performance level and then after 7, 14, 28, and 42d post-stroke
at approximately the same time each day. Observers blinded to the treat-
ment group scored behaviors as previously described.

Immunofluorescent labeling of GFAP and infarct volume
Brains were sectioned, and every sixth section (30mm thick) was col-
lected and stored in cryopreservation solution. Slices were first incubated
with a primary antibody (chicken anti-mouse GFAP, 1:3000, AB5541,
Millipore) for 48 h at 4°C. Then, a secondary antibody (anti-chicken
Alexa-488, 1:1000, SA5-10 071, Thermo Fisher Scientific), followed by
the nuclear counterstain Hoechst (1:1000, Sigma-Aldrich), was used.
Images were taken with an Olympus BX61 microscope. Changes in
GFAP staining were investigated 2 and 6weeks post-stroke, with meas-
urements taken 0-200mm and 800-1000mm from the stroke border in
layers 2/3 and 5, respectively. Using the software Fiji ImageJ (National
Institutes of Health) the integrated density value was measured in all
four ROIs.

Infarct volumes were determined 2 and 6weeks post-stroke using
cresyl violet staining and ImageJ analysis. The analysis is based on
obtaining measurements from every sixth section, and infarct volume
was quantified as follows: infarct volume (mm3) = areas (mm2) � (sec-
tion thickness (mm) 1 section interval (mm)). Infarct volume was cor-
rected for edema as described previously. All analyses were performed
by an observer blind to the treatment groups.

Whole-cell voltage-clamp electrophysiological recordings
Mice (2- to 3-month-old) were anesthetized with isoflurane 3-7 d post-
stroke or sham surgery, and brains were sliced and prepared for record-
ings of tonic currents. All recordings were made from peri-infarct py-
ramidal neurons within layer 2/3 of the primary motor cortex, as
previously described (Clarkson et al., 2010, 2019). Neurons were volt-
age-clamped in whole-cell configuration using a MultiClamp-700B
amplifier using microelectrodes (3-5 MV) filled with a cesium-methyl-
sulfonate (CsMeSO4)-based internal pipette solution. The recording
aCSF was supplemented with 5 mM GABA to replenish the extracellular
GABA concentration reduced by the high-flow perfusion of the slices.

Tonic inhibitory currents (Itonic) were recorded as the reduction in
baseline holding currents (Ihold) after bath-applying a saturating amount
(100 mM) of the GABAAR antagonist SR-95 531 (gabazine), while volt-
age-clamping at 10mV. ODN was added to the recording aCSF via per-
fusion, and their effects on Itonic were recorded as the post-drug shift in
Ihold. Drug perfusion continued until the shifting Ihold remained steady
for 1-2min.

Statistics
Sample size was calculated using the JavaScript utilities available at www.
stat.ubc.ca/;rollin/stats/ssize/index.html with parameters determined
from prior work. For experiments presented in Figures 1A, D, 2B, and
3D, the knowledge of the variability was too uncertain to reliably calcu-
late a sample size (.80% power). For those experiments, we relied on
reasonable assumptions to determine a priori, the number of animals
used. Data are presented as mean 6 SEM or as box-and-whisker plot
showing the median (box = first and third quartiles; whisker = range).
Statistics were performed using Prism software (GraphPad). Normal dis-
tribution of the datasets was tested by a Kolmogorov–Smirnov test.
Pairwise means comparisons were performed using t test for normally
distributed data, or Mann–Whitney test otherwise. For recovery studies,
two-way ANOVA followed by post hoc Tukey’s or Bonferroni’s test for
multiple comparisons was performed.

Data availability
All the data that support the findings of this study are available from the
corresponding author.
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Results
Effect of ODN on cortical activity
Changes in neuronal excitation are critical for cell survival dur-
ing the acute phase of stroke as well as for synaptic plasticity and
recovery during the repair phase after stroke. To address the gen-
eral hypothesis that extrinsic ODN can be used to safely manipu-
late neuronal excitability and influence postischemic repair, we
first checked whether, as reported previously in vitro, ODN
induced a measurable enhancement of cortical activity in vivo. In
neuronal cell culture, the GABAAR NAM effect of ODN was
observed in the micromolar to millimolar range (Guidotti et al.,
1983; Ferrero et al., 1986; Alfonso et al., 2012). We therefore tar-
geted this range to test ODN in vivo. In isoflurane-anesthetized

mice, we recorded the effect of 1mg of ODN or its vehicle on
neuronal spiking of layer 4 of the somatosensory cortex (Fig.
1A). Inspection of electrophysiological recordings did not reveal
any aberrant oscillations or sharp events that would indicate
epileptiform activity (Fig. 1B). ODN increased spontaneous neu-
ronal firing (181.56 61.6% increase compared with the pretreat-
ment period; p, 0.05; n= 6 mice; vehicle: 4.76 11.4%; p. 0.05;
n= 6), whereas vehicle administration did not result in any sig-
nificant change in spiking activity (Fig. 1C). To further examine
the potential of ODN to boost neuronal excitability, the effect of
ODN was also tested during a somatosensory stimulation. A sin-
gle deflection of the whiskers pad triggered a SEP in layer 4 of
the contralateral barrel cortex (Fig. 1D,E). As a result of ODN

Figure 1. The gliopeptide ODN enhances neuronal and astrocytic activity in the cortex in vivo. A, Experimental arrangement showing pipette positions for microinjection of ODN in the vicinity
(;100mm) of the recording pipette (layer 4). B, Top, Representative EU recording trace comparing spontaneous neuronal spiking activity before and after ODN infusion (350ms epoch). The
post-treatment period recording started 6 min after the start of the infusion. Vertical green lines underneath the trace indicate the occurrence of spikes. Bottom, Representative examples of a
detected spike (left) and a superimposed spike waveform showing 3 clusters of spikes (green, red, and blue). C, The infusion of the vehicle solution did not change the number of spikes
detected during the 12 min post-vehicle period (p. 0.05 vs 12min pre-vehicle period, n= 6 mice). ODN significantly increased spiking (p, 0.05 vs pre-ODN period, n= 6 mice). D,
Experimental setup for SEP recorded in the whisker barrel cortex. The contralateral whisker pad was mechanically stimulated every 10 s evoking the typical negative shift of the LFP trace (E).
F, Representative SEP obtained after the average of 100 stimulations. G, The SEP slope of the control group remained unchanged after the infusion of vehicle (p. 0.05, pre- vs post-treatment,
n= 6 animals), whereas ODN treatment significantly increased the SEP slope (p, 0.05, pre- vs post-treatment, n= 6 animals). H, Experimental setup for 2-photon imaging of astrocyte activ-
ity. ODN or its vehicle was administered by the cisterna magna route. I, Astrocytes (white arrowheads) were double-labeled with Ca21-sensitive and Ca21-insensitive dyes (OGB-1 and SR-101,
respectively). Scale bar, 10mm. Depth: ;�250mm. J, Example of spontaneous somatic Ca21 activity showing the occurrence of Ca21 surges (red highlight). K, The infusion of the vehicle
did not change the frequency of astrocyte Ca21 transients (p. 0.05 vs pre-vehicle period, n= 5 mice), whereas ODN significantly increased their frequency (p, 0.05 vs pre-ODN period,
n= 6 mice). Data are represented as box-and-whisker plot (box = first and third quartiles; whisker = range). Mean values were compared using paired, two-tailed t test.

Lamtahri et al. · Normalization of Poststroke Excitability by ODN J. Neurosci., August 18, 2021 • 41(33):7148–7159 • 7151



treatment, SEP slopes increased by 147.86 71.8% showing that
ODN increases neuronal excitability (p, 0.05 vs pretreatment
period; n= 6 mice; vehicle group: 4.76 26.4%; p. 0.05 vs pre-
treatment period; n= 6; Fig. 1F,G). Furthermore, the positive
effect of ODN on cortical activity was also revealed by the
increase of astrocytic network activity seen by intravital calcium
imaging using a two-photon microscope (Fig. 1H–J). Astrocytes
displayed spontaneous calcium transients at 3.66 1.4 mHz dur-
ing baseline as previously described (Chuquet et al., 2007). After
ODN administration, transient frequency rose to 7.56 0.8 mHz
(p, 0.05; n=23 cells from 6 animals), whereas calcium activity
was unaffected following vehicle administration (3.16 0.7 mHz
vs 3.16 0.8 mHz; p. 0.05; n= 16 cells from 5 animals; Fig.
1J,K). Overall, these results show, for the first time, that the
endozepine ODN acts as an excitability-enhancer of the cerebral
cortex in vivo.

Acute effect of ODN during cerebral ischemia
Within the first minutes to hours after stroke onset, depolariza-
tion and hyperexcitability are the primary culprits for the mas-
sive necrotic neuronal loss. Although ODN has a potent
neuroprotective effect in vitro (Hamdi et al., 2011), enhancing
cortical excitability in the acute phase of brain ischemia, when
excitation is already lethal for neurons, may be inimical to cell
survival. In order to examine whether the subtle changes of corti-
cal activity elicited by ODN could influence ischemic neuronal
death processes, we administered ODN (1mg intracerebroven-
tricular [i.c.v.]) during the acute phase of a focal brain ischemia
elicited by intraluminal occlusion of the right middle cerebral ar-
tery (MCAO). The transient ischemia (60min followed by reper-
fusion) produced a reproducible infarct 48 h later (Fig. 2A).
Continuous laser Doppler flowmetry monitoring of the cerebral
blood flow (CBF) confirmed that all animals underwent a similar
ischemia and that ODN had no impact on residual CBF

(p. 0.05 at any time point; Fig. 2C). The treatment with ODN
resulted in a severe aggravation of the mean infarction volume
(ODN group 140.356 14.61 mm3 vs vehicle group 92.326 8.61
mm3; p, 0.05; n=8; Fig. 2A). Physiologic parameters well known
to have a determinant impact on neuronal survival in stroke (arte-
rial pressure, temperature, food intake) were not affected by central
administration of ODN (Fig. 2C–F). Flumazenil, a selective antago-
nist of the benzodiazepine-binding site of the GABAAR, fully
reversed ODN-induced exacerbation (ODN1FLZ group
93.876 8.70 mm3 vs vehicle group 92.326 8.61mm3; p. 0.05;
n=8; Fig. 2A), confirming the involvement of the GABAergic sig-
naling. MCAO was also conducted on KO mice for the DBI gene
(DBI�/�); and consistent with the above observations, DBI�/� ani-
mals appeared to be more resistant to MCAO than their WT coun-
terparts (WT group 80.086 8.73 mm3 vs DBI�/� group
47.026 7.30 mm3; p, 0.05; n=6; Fig. 2B). This result suggests that
the endogenous production of the ODN precursor plays a role in
the pathophysiology of stroke. In view of the above results, the most
likely hypothesis for the ODN aggravated neuronal cell death is
because of a decrease in GABAergic inhibition, a well-documented
pathway in neuroprotection and recovery (Green et al., 2000;
Clarkson et al., 2010). This was further corroborated by two other
observations. First, we examined the effect of ODN in the case of a
pure excitotoxic neuronal cell death induced by a microinjection of
NMDA. The coadministration of ODN with NMDA significantly
increased the size of the excitotoxic lesion (3.56 0.4 mm3 vs
6.46 0.9 mm3; p, 0.05; Fig. 3A,B). Second, another, albeit closely
related pathophysiologic event, is spreading depressions, that is,
waves of transient depolarization preceding cell damage in the com-
promised brain (Hartings et al., 2017). Local application of KCl on
the healthy cortical tissue triggers such spreading depression events,
as described previously (Chuquet et al., 2007). We found that cen-
tral administration of ODN 10min before the induction of a train
of 2 or 3 spreading depressions, increased the number of events by
61.8% (p, 0.05 vs vehicle group; n=6; Fig. 3C,D). The amplitude

Figure 2. ODN exacerbates ischemic damages. A, Average infarction volume when treatments are provided during the acute phase of focal cerebral ischemia, by intracerebroventricular injec-
tion. ODN significantly increased the volume of the lesion (p, 0.05 vs vehicle group; n= 8 animals/group). This effect was reversed by the selective GABAAR benzodiazepine site antagonist
flumazenil (FLZ, p. 0.05 vs vehicle group, n= 8 animals). Right, Representative histologic analysis showing the infarction, unstained by thionine. B, KO mice for DBI (DBI�/�, the peptide pre-
cursor of ODN) were less vulnerable than WT mice to brain focal ischemia (p, 0.05 vs WT; n= 6 animals/group). Right, Representative lesions. C–F, The exacerbation of the damage could
not be attributed to a difference in the severity of cerebral blood flow decrease between groups during the procedure (C, p. 0.05 vs vehicle, n= 8 animals/group). Intracerebroventricular
administration of ODN produced no effect on systemic physiological parameters (D), such as mean arterial pressure (MAP, p. 0.05) or heart rate (beats/min, p. 0.05 vs vehicle, vehicle
n= 3; ODN n= 4), body temperature (E, p. 0.05 vs vehicle, n= 8/group), or post-stroke weight loss (F, p. 0.05 vs vehicle, n= 8/group). Data are mean6 SEM. Mean values were com-
pared using unpaired, two-tailed Mann–Whitney test (A,B,E,F) followed by Bonferroni’s post hoc testing for multiple comparison (A) or one-way ANOVA (C,D).
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and temporal features of spreading depressions were unchanged by
ODN (p. 0.05; n=6; Fig. 3E). In a condition of hyperexcitability,
such as the one observed during the acute phase of ischemia, the
neuroprotective features of the gliopeptide ODN are surpassed by
its pro-excitotoxic effect. Together, these observations are fully con-
sistent with the view that the negative allosteric modulation of the
GABAAR is not safe in the acute phase of stroke (Clarkson et al.,
2010).

Effect of ODN on functional recovery after MCAO stroke
In the weeks following stroke, the peri-infarct surviving tissue is
in a state of heightened neuronal plasticity, which is intended to
promote the recovery of lost functions. Some of the repair proc-
esses that are altered rely on an increase in synaptic transmission
and therefore depend on an optimal excitation/inhibition bal-
ance. Contrary to the acute phase of stroke (hours) where excita-
tion must be decreased to maintain neuronal survival, in the
chronic phase (weeks), an excess of GABAergic inhibition pre-
vents optimal recovery (Clarkson et al., 2010). Spurred by recent
studies demonstrating that the exogenous benzodiazepine

inverse agonist L655,708 is efficient in correcting this imbalance
and improving the recovery of mice after stroke (Clarkson et al.,
2010; Lake et al., 2015), we made a similar hypothesis that
chronic treatment with the endozepine ODN would promote
enhanced neuronal plasticity. To avoid any interactions of ODN
with its effects on cell death during the acute phase of stroke, we
began the treatment with the gliopeptide (or its vehicle) 72 h af-
ter the onset of stroke (Fig. 4A,B), a sufficient delay for the lesion
to be fully formed and no further expansion observed beyond
this period. Preoperative performances in the “latency to turn”
task, the “latency to descend” task, and the “latency to cross” task
did not differ between the four different groups. Together, these
three behavioral tasks provided a well-established method for
measuring weekly evolution of sensorimotor coordination and
balance following extended ischemic lesion (e.g., cortex and
striatum) in rodents over a period of weeks following the initial
insult (Matsuura et al., 1997; Carter et al., 2001). Unlesioned
sham mice were not affected at any time points, reporting that
neither the surgical procedure, the ODN treatment, nor a learn-
ing effect interfered in the observations made from MCAO ani-
mals. Stroke induced a severe decrease in the ability to execute all
three tasks (Fig. 4C–E), with only a small spontaneous gain of
function observed over weeks 1 and 2 in the vehicle-treated
group. ODN treatment, however, resulted in a marked improve-
ment on all three task functions, with significance observed by
weeks 3 and 4 post-stroke (Fig. 4C–E). Assessment on two
of the three tasks revealed that the MCAO1ODN treatment
group was not significantly different compared with unle-
sioned controls at day 28 post-stroke. ODN had no impact
on stroke-induced weight loss, and mortality rate remained
similar between ODN- and vehicle-treated groups (Fig. 4F).
At 28 d post-stroke, brains were collected for further histo-
logical analysis. The lesion characteristics (i.e., extent, cav-
ities, and ipsilateral atrophy) revealed no differences
between MCAO-vehicle and MCAO-ODN groups, high-
lighting that ODN treatment was safe when administered
from 3 d after the stroke onset (Fig. 4G–I).

Effect of ODN on functional recovery after photothrombotic
stroke
Although the intra-arterial filament occlusion is the gold-stand-
ard model for preclinical investigation, a way to strengthen the
preclinical evidence of a drug is to challenge it in multiple experi-
mental paradigms. Indeed, the intra-arterial filament occlusion
model results in a large corticostriatal infarction, mimicking ma-
lignant infarction, while human strokes are mostly small in size.
The photothrombotic model produces a small cortical infarction
with well-delimited boundaries useful for modeling post-stroke
impairments (Corbett et al., 2017). Furthermore, this model is
well suited for hydrogel delivery of peptides and small proteins
diffusing over several weeks from the stroke cavity into peri-
infarct tissue (Overman et al., 2012; Clarkson et al., 2015; Cook
et al., 2017). To further differentiate this second model and com-
ply with stroke basic research recommendation (Bernhardt et al.,
2017), we used aged female mice (206 2months) representing a
population of stroke sufferers with more severe damage and
poorer recovery after the event compared with aged men
(Koellhoffer and McCullough, 2013). Hydrogel impregnated
with ODN was one-time injected into the infarction cavity 5 d af-
ter the onset of stroke (Fig. 5A). In this protocol of progressive
diffusion from a single depot of gel (7.5ml), 2 doses of ODN
were tested (1 and 5mg). Photothrombosis produced a well-cir-
cumscribed cortical lesion of 3.686 0.43 mm3 (n= 5 mice), as
assessed 2weeks post-stroke, that resulted in some spontaneous

Figure 3. ODN enhances excitotoxicity and spreading depolarization waves. A, NMDA-
induced striatal damages were exacerbated by coadministration of the gliopeptide ODN
(p, 0.05; NMDA, n= 14; and NMDA1ODN, n= 13). B, Right, Representative lesions. C,
Intracortical infusion of KCl induced recurrent spreading depression (SD) waves: representa-
tive LFP traces showing the typical negative shift of spreading depressions, whose number
was increased in the presence of ODN (p, 0.05, vehicle, n= 6; ODN, n= 6) while their am-
plitude remained unchanged (D,E; p. 0.05). Data are mean 6 SEM. Mean values were
compared using two-tailed Mann–Whitney test.
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resolution over time with the infarct volume being 2.96 0.6
mm3 (n=10 mice), as assessed 6weeks post-stroke at the com-
pletion of the behavioral experiments. Treatment with ODN
resulted in a dose-dependent decrease in infarct volume (F(2,40) =
6.74, p, 0.003: ODN (1mg), 3.446 0.54 mm3, and 1.866 0.50
mm3 for weeks 2 and 6, respectively; ODN (5mg), 2.736 0.84
mm3, and 1.516 0.39 mm3; p, 0.05, for weeks 2 and 6, respec-
tively; Fig. 5B,C).

We next tested the mice behaviorally on both the gridwalking
(forelimb function) and cylinder (forelimb asymmetry) tasks.
Behavioral assessments revealed an increase in the number of
footfaults on the gridwalking test (n=10 per group; Fig. 5D) and
an increase in spontaneous forelimb asymmetry in the cylinder
task (n= 10 per group; Fig. 5E) from 1 week post-stroke. ODN
treatment resulted in a dose-dependent decrease in the number
of footfaults on the gridwalking task (time effect: F(4,150) = 33.56,
p, 0.0001; treatment effect: F(2,150) = 28.22, p, 0.0001) and an
improvement in forelimb asymmetry in the cylinder task (time
effect: F(4,150) = 48.54, p, 0.0001; treatment effect: F(2,150) =
18.73, p, 0.0001).

Effects of ODN on modulation of the glial scar
As ODN is a gliopeptide with astrocyte-protective feature
(Hamdi et al., 2011), we next investigated whether exogenous
administration of ODN has an effect on the glial scar. The glial
scar has many roles after a brain ischemia has occurred, both as a
regulator of inflammation, but also as a regulator of axonal
sprouting and brain excitability, which are critical processes for
cortical remapping (Brown et al., 2009; Clarkson et al., 2010;
Sofroniew, 2015; Anderson et al., 2016; Lie et al., 2019). We
observed a clear upregulation in GFAP expression in the peri-
infarct region at both 2 and 6weeks post-stroke, with expression
levels decreasing further away from the stroke border we exam-
ined (Fig. 5F–H). Chronic treatment with ODN resulted in a
dose-dependent decrease in the expression of GFAP in the peri-
infarct in both layers 2/3 (both 1mg, p, 0.001; and 5mg,
p, 0.001), and 5 (only for 5mg, p, 0.001) as assessed 2weeks
post-stroke (Fig. 5G). Assessment of GFAP expression in peri-
infarct regions 6weeks post-stroke revealed no differences in
expression between vehicle- and ODN-treated animals in either
layers 2/3 or 5 (Fig. 5H).

Figure 4. Delayed and chronic treatment with ODN promotes functional recovery after stroke in young adult male mice. A, Timeline diagram of the protocol. Treatment started 3 d after the
MCAO procedure (MCAO ODN, n= 7; MCAO vehicle, n= 6) or the surgery procedure without the MCAO (sham ODN, n= 6; and sham vehicle, n= 6). ODN or its vehicle was intracerebroventric-
ularly injected every day during the next 25 d (dark blue arrows). Behavioral tests were conducted at the end of each week (light blue arrows). MCAO was similar in the ODN-treated group
and the vehicle-treated group (B). Mice treated with ODN progressively improved their performances in the execution of (C) the turning movement at the top of the vertical pole
(p, 0.05 at week 4 relative to vehicle-treated animals), (D) the descent of the vertical pole (p, 0.05 at week 4 relative to vehicle-treated animals), and (E) the crossing of
the horizontal beam (p, 0.05 at week 3 and p, 0.01 at week 4 relative to vehicle-treated animals). Sham animals were not sensitive to ODN at any time point, and nei-
ther the surgical procedure nor the time affected their performance. Weight loss (F, left; p. 0.05 vs MCAO1vehicle or Sham1vehicle; MCAO1vehicle, n = 6; MCAO1ODN,
n = 7; Sham1vehicle, n = 6; Sham1ODN, n = 6) and mortality (F, right, Log-rank Mantel–Cox test p. 0.05 vs MCAO1vehicle, n = 6; MCAO1ODN, n = 7) were not differ-
ent between groups at any time point. At the end of the procedure, histologic analysis of mouse brain showed no difference between groups for the size of the residual
lesion (G; p. 0.05 vs MCAO1vehicle; MCAO1vehicle, n = 6; MCAO1ODN, n = 7), the total volume of cavities (H), and the atrophy of the ipsilateral hemisphere (I;
p. 0.05 vs MCAO1vehicle; MCAO1vehicle, n = 6; MCAO1ODN, n = 7). Data are mean 6 SEM. Data were compared using Mann–Whitney test (G–I) or nonparametric
two-way ANOVA followed by Bonferroni’s post hoc testing (B, F, left, C–E).

7154 • J. Neurosci., August 18, 2021 • 41(33):7148–7159 Lamtahri et al. · Normalization of Poststroke Excitability by ODN



Effects of ODN on tonic inhibitory currents
Given the profile of motor functional recovery, we next sought
to investigate the changes in tonic inhibitory currents following
treatment with ODN. This is also driven by the fact that we have
previously reported that tonic inhibitory currents are elevated

from 24 h after stroke and remain elevated for extended period
of time due in part to the formation of the glial scar (Clarkson et
al., 2010, 2019; Lie et al., 2019). Tonic inhibitory currents were
assessed in the peri-infarct cortex of mice after a photothrom-
botic stroke to the forelimb motor cortex. Layer 2/3 pyramidal

Figure 5. Delayed, chronic treatment with ODN-impregnated hydrogel promotes functional recovery after stroke in aged female mice. A, Schematic illustration of the injectable ODN-impreg-
nated hydrogel. Infarct volume was assessed at 2 (B) and 6 (C) weeks post-stroke using cresyl violet staining (n= 5 and n= 10, respectively). Assessment of 1mg ODN-treated animals showed
no differences in infarct volume compared with vehicle-treated controls. However, 5mg ODN-treated animals exhibited a progressive decrease in stroke volumes with infarct volume being sig-
nificantly different from vehicle-treated stroke controls 6 weeks post-stroke (1p, 0.05; n= 10 animals/group). Motor behavioral function was assessed using both the gridwalking (D) and cyl-
inder tasks (E). On both tasks, ODN (both 1 and 5mg) resulted in a decrease in the number of footfaults on the gridwalking task and an improvement in forelimb asymmetry in the cylinder
task. As ODN is a gliopeptide with astrocyte-protective features, we examined whether ODN treatment affected the extent of peri-infarct glial scarring as assessed by GFAP staining (F–H).
Representative GFAP- stained sections are shown for stroke1 vehicle (F, left), stroke1 1mg ODN (F, middle), and stroke1 5mg ODN (F, right) treated animals, 2 weeks post-stroke. Scale
bar, 200mm. GFAP staining intensity was assessed from layers 2/3 and 5, 0-200mm and 800-1000mm (each box represents 200� 200mm) from the stroke border at 2 (G) and 6 weeks (H)
post-stroke. Treatment with ODN resulted in a dose-dependent decrease in reactive astrogliosis as assessed by GFAP labeling 2 weeks post-stroke (G). No differences in GFAP labeling were
observed at 6 weeks post-stroke between treatment groups (H). 111p, 0.001, compared with pre-stroke baseline behavioral controls. 1p, 0.05, 11p, 0.01, 111p, 0.001, com-
pared with stroke1 vehicle controls.
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neuron whole-cell voltage-clamp recordings were obtained from
brain slices generated ex vivo 3-7 d after stroke (Fig. 6A,B).
Recordings obtained 3-7 d after stroke showed an increase in
GABAAR-mediated tonic inhibition (control: 53.136 20.04 pA
vs stroke: 130.906 39.01 pA; p, 0.001; Fig. 6B). As ODN is
released exclusively by astrocytes, extrasynaptic GABAARs recep-
tors are a likely candidate to mediate its effect on neuronal excit-
ability (Tonon et al., 2020). Therefore, we next examined
whether bath application of ODN could correct peri-infarct tonic
inhibition. Bath application of ODN to slices generated 3-7 d
post-stroke resulted in a significant decrease in GABAAR-medi-
ated tonic inhibition (stroke1ODN: 91.256 13.49 pA; p, 0.05;
Fig. 6B) compared with stroke controls. It should be noted, how-
ever, that this decrease in tonic inhibitory currents was only a
partial reversal with tonic inhibitory currents still significantly
elevated compared with sham controls (p, 0.05).

Discussion
Studies over recent years have shown that the peri-infarct cortex,
which is the tissue adjacent to the stroke, is in a state of height-
ened plasticity during the subacute period (Murphy and Corbett,
2009). The process of plasticity is highly influenced by GABAAR
signaling and tonic inhibition, which maintains and shapes the
level of neuronal excitability (Raimondo et al., 2017). Alteration
in GABAergic signaling has been previously reported to be trig-
gered by stroke in both animals and humans (Carmichael, 2012;
Johnstone et al., 2018). Accordingly, dampening tonic inhibitory
currents using a NAM targeting a5-containing GABAARs from
3-7 d post-stroke, but not acutely within hours, increases motor
functional recovery in animal stroke models (Clarkson et al.,
2010; Lake et al., 2015). Consistent with these observations, the
present findings demonstrate that exogenous administration of
ODN enhances cortical excitability in a magnitude that makes it
toxic when administered during the acute stage of stroke (within
hours of stroke onset) and, however, makes it instrumental to
safely boost functional recovery when administered during the
subacute (3-7 d) recovery stages of stroke.

The endozepine, ODN, has been repeatedly categorized as a
GABAAR NAM (Bormann et al., 1985; Costa and Guidotti, 1991;
Alfonso et al., 2012; Dumitru et al., 2017). Yet, all these experi-
ments have been conducted in vitro. Here, we report, for the first
time, in vivo, that ODN increases cortical neuronal activity and
excitability. Interestingly, we also report that astrocytes respond
to the treatment. The question of whether this activation is a
consequence of neuronal activity or a direct effect on astrocytes,
as previously found in cell culture, remains unclear (Gach et al.,
2015). However, it is possible that ODN works on both systems
as we reported herein that administration of ODN partially
dampens both the stroke-induced elevation in tonic inhibitory
currents as well as the level of reactive astrogliosis in the peri-
infarct cortex.

Capitalizing on our confirmation of ODN as an enhancer of
cortical excitability, we assessed the effect of a gain or loss of
ODN during the acute phase of brain ischemia/reperfusion. In
line with our predictions, when ODN was administered during
brain ischemia, cerebral damage was dramatically increased. In
addition, the finding that DBI�/� mice were less vulnerable to
transient focal ischemia than WTmice suggests that even the en-
dogenous production of DBI (and therefore ODN) during stroke
is deleterious.

In the acute stage of stroke, minor changes in various physio-
logical and metabolic parameters can have major consequences

on tissue viability. We first verified that i.c.v. administration of
ODN did not change body temperature, food intake, or cardio-
vascular activity. Second, it should be noted that ODN is not
pro-apoptotic or pro-inflammatory (Hamdi et al., 2011;
Kaddour et al., 2013). Third, although the quality of the brain
microcirculation is critical in the penumbra, we did not find any
evidence of a vasomotor activity of ODN, such as vasoconstric-
tions of brain arteries (our personal observations). Although
GABAARs are expressed in many cell types, only those contain-
ing the g2 subunit can bind benzodiazepines and potentially
ODN. Indeed, this subunit is very frequent in neurons but
weakly or not expressed in oligodendrocytes, microglia, astro-
cytes, and endothelial cells of adult brain mice (Cahoy et al.,
2008). We are left, then, with a primary effect of ODN on inhibi-
tory transmission and the most parsimonious explanation for
why ODN exacerbated the cellular damage following stroke is
because of an increase in neuronal excitation. This is in line with
the effect of the GABAAR NAM L655,708 when used too early
after a cortical ischemia (Clarkson et al., 2010). In support of this
view, we report here that ODN exacerbates NMDA-induced
excitotoxic damages. We also show that ODN increases the num-
ber of spreading depolarization waves. The trigger of spreading
depolarization waves is actually settled over the level of neuronal

Figure 6. ODN dampens the stroke-induced elevation in tonic GABAAR currents in layer 2/
3 pyramidal neurons. Whole-cell patch-clamp recordings were made from post-stroke brain
slices, within 500mm of infarct, from layer 2/3 pyramidal neurons. Representative traces
showing the tonic inhibitory currents in control (n= 7), stroke (n= 6), and stroke 1 ODN
(n= 6) treated animals (A). Tonic currents were revealed by the shift in holding currents af-
ter blocking all GABAARs with gabazine (SR95531; 100 mM). Box plot (whiskers, minimum
and maximum; lines, median) represents an increase in tonic inhibitory currents in peri-
infarct cortical neurons that is partially dampened following exposure to ODN (B). Horizontal
bar represents the application of the GABAAR antagonist, SR95531. Cells were voltage-
clamped at 10 mV. *p, 0.05, ***p, 0.001, compared with tonic currents from control
animal. 1p, 0.05, compared with tonic currents from stroke animal.
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excitation, and their propagation out from the site of infarction
is known to be a leading cause of ischemic infarct growth
(Chuquet et al., 2007; von Bornstädt et al., 2015). Therefore, for
neurons at immediate threat of death during the acute phase
(,3 d), ODNmay amplify the depolarization and lead to an irre-
versible calcium overload. Our results indicate that there is a
need to develop specific endozepine blockers to prevent their
action on GABAARs during the acute phase of cerebral ischemia.

To date, no NAMs that target the benzodiazepine-binding
site to reduce GABAergic activity and that lack any proconvul-
sant or anxiogenic effects are available for clinical use. However,
clinical trials using a5-containing GABAAR NAMs for enhanc-
ing stroke recovery are being explored in phase II trials (www.
ClinicalTrials.gov: Hoffman La-Roche, NCT02928393; Servier
RESTORE BRAIN Study, NCT02877615). It is increasingly rec-
ognized that GABAergic NAMs used at a safe dosage and that
target specific subunit compositions will be therapeutically use-
ful, for example, to improve cognitive functions in brain condi-
tions where diminished excitability has to be boosted (Bolognani
et al., 2015; Soh and Lynch, 2015). There is also growing evidence
that impairment in GABA transporter (GAT-3/GAT-4) function
contributes to the peri-infarct zone changes in neuronal inhibi-
tion and post-stroke functional recovery (Clarkson et al., 2010;
Carmichael, 2012). As a consequence, the excessive GABAergic
tone inhibits sensorimotor recovery and is likely due in part to
synaptic plasticity and LTP, being suboptimal (Atack et al.,
2006). Two independent studies have demonstrated that the use
of a benzodiazepine site-specific NAM improves post-stroke
motor recovery in adult males (Clarkson et al., 2010; Lake et al.,
2015). In addition, a recent study showed that the treatment with
the GAT3 substrate, L-isoserine, administered directly into the
stroke cavity, can increase GAT3 expression and improve func-
tional recovery after focal ischemic stroke (Lie et al., 2019).
Following this idea and protocol, we found that daily administra-
tion of ODN started 3 d after ischemia or hydrogel delivery from
5d (i.e., when the risk of ODN-induced cell death had ceased)
remarkably improved motor coordination. Of note, the precur-
sor of ODN, DBI, is one of the most transcripted genes in astro-
cytes (Zhang et al., 2014). The fact that GABA inhibits the
release of ODN by astrocytes (Patte et al., 1999) suggests that, in
the neighborhood of the stroke lesion, the excess in ambient
GABA is likely preventing sufficient endozepine production.

This functional recovery cannot be because of a difference in
stroke severity between groups for the three following reasons:
(1) the average decrease of blood flow was identical over the
60min of ischemia, (2) the mean brain histologic sequelae were
similar at day 28, and (3) the mortality rate had the same kinetics
in both groups. Moreover, ODN-treated animals did not display
any obvious behavior indicative of anxiety, aggression, or hyper-
activity, suggesting that both the timing and dose of ODN
administered led to a safe and efficient treatment to promote
functional recovery.

To date, all translational studies have failed to treat stroke in
part because preclinical studies routinely failed to use clinically
relevant animal models. Several recommendations have been
made, among which was the use of aged animals of both sexes
since aging remains the major nonmodifiable risk factor for
stroke (Jolkkonen and Kwakkel, 2016; Corbett et al., 2017). Aged
females represent the greatest percentage of stroke sufferers, with
strokes in this population being more severe and recovery being
worse than males and younger females (Koellhoffer and
McCullough 2013). Therefore, to challenge ODN efficacy and
increase the translational value of our results, we studied the

effect of ODN in a radically different experimental paradigm.
Using the photothrombotic model of ischemia in aged female
mice, we obtained a small infarction circumscribed to the cortex.
We took advantage of the topology of the lesion to also test
whether a single depot of ODN into the infarction cavity on day
5 post-stroke would improve functional recovery. Although the
number of new peptides entering clinical trials continues to
grow, their therapeutic potential in neurology has not yet been
realized because they rarely get through the blood–brain barrier
and their half-life in vivo limits the time window to exert their
action (Penchala et al., 2015). Hydrogel impregnated with pep-
tides or small proteins has been extensively used as a system of
chronical delivery (for review, see Fernandez-Serra et al., 2020).
Specifically, we and others have shown that biomolecules embed-
ded into hydrogels have a sustained, consistent release into sur-
rounding tissue lasting ;3-4weeks (Tae et al., 2006; Li et al.,
2010; Overman et al., 2012; Clarkson et al., 2015; Cook et al.,
2017). For instance, cyclosporin, an 11-amino acid-long peptide
of 1.2 kDa (i.e., similar to ODN, 18-residue-long for 1.9 kDa) is
slowly released by the hydrogel in a 2 mm cortical zone around
the gel for at least 24d (Tuladhar et al., 2015). Therefore, the
hydrogel provides a protective micro-environment for ODN and
allows its controlled delivery around the lesion, where excitability
needs to be enhanced. In this second stroke model, ODN was
able to improve sensorimotor task performance as soon as week
1. These studies highlight a novel example for hydrogel delivery
systems offering a support for effective peptide biodisponibility
that bypasses the blood–brain barrier to achieve consistent re-
covery post-stroke. Although 1mg was effective in the MCAO
protocol, only the dose of 5mg was effective in the photothrom-
botic protocol. This is not surprising considering that, in the
MCAO protocol, a daily dose of 1mg was administered, while in
the photothrombotic protocol, ODN was delivered to the peri-
infarct cortex from a single depot of hydrogel. Furthermore,
others have also observed that, when hydrogel is used to vehicu-
late a bioactive molecule in the brain, such as neurotrophins, a
higher quantity of the latter is necessary (Ravina et al., 2018).

Overall, our data are strikingly reminiscent of the findings of
others (Clarkson et al., 2010; Lake et al., 2015). Using a small nat-
urally occurring peptide that is expressed and released by astro-
cytes and known to act as a GABAAR NAM, we found the same
versatile effect in stroke as with the synthetic GABAAR NAM,
L655-708: deleterious in the acute phase but promotor of recov-
ery in the chronic phase. L655-708 is an imidazobenzodiazepine
selective for the extrasynaptic GABAAR that contains the benzo-
diazepine-sensitive subunit a5 and, as an inverse agonist, reduces
the tonic inhibition. Interestingly, L655-708 has been shown to
facilitate LTP by shifting toward less inhibitory activity (Atack et
al., 2006). Similarly, we found that ODN was able to dampen the
ambient tonic inhibition surrounding the stroke lesion. This dis-
inhibition may be permissive for plastic rearrangements in the
peri-infarct cortex to occur (Ziemann et al., 2001; Cicinelli et al.,
2003; Clarkson and Carmichael, 2009). Therefore, one hypothe-
sis requiring future attention is that ODN selectively binds to a5-
containing GABAAR. It is also possible that these changes in
tonic inhibitory currents occur through changes in presynaptic
GABA signaling or astrocytic function, which is another two sug-
gested pathways that need to be explored in future experiments.
In parallel, another possible mechanism that needs to be exam-
ined is neurogenesis. The group of Monyer have recently shown
that ODN reduces the GABA-mediated current of neural stem/
progenitor cell of the subventricular, inducing their proliferation
and migration (Alfonso et al., 2012; Dumitru et al., 2017),
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supporting a role of endozepines in neurogenesis. Additional
work should be undertaken to test the hypothesis that poststroke
neurogenesis can be controlled by ODN to optimize functional
recovery.

The modification of network connections and synaptic
strength allowing functional recovery requires that homeostatic
mechanisms, such as the maintenance of excitation/inhibition
balance at the network, single-cell, and synapse level, be in their
operating range (Buzsáki, 2007). Our results suggest that endoze-
pines play a significant role to tuning this balance and reinforce
the idea that an appropriate correction of GABAergic tone at the
right time can facilitate functional recovery after stroke.
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