
Powerful tests and reproducible benchmarks
with pytest-cases

EuroPython 2021 - Sylvain Marié, Schneider Electric

2021-07-28 – Sylvain Marié Senior Group Expert, IoT & Digital Offers > Analytics & AI



• (reminder) pytest basics

• pytest-cases

• Under the hood

• Benchmarking

Agenda

Page 2EuroPython 2021 - Sylvain Marié, Schneider Electric |



• (reminder) pytest basics

• pytest-cases

• Under the hood

• Benchmarking

Agenda

Page 3EuroPython 2021 - Sylvain Marié, Schneider Electric |



• « the » test framework for python, now far more widely used than unittest & nose

• Philosophy: you can reduce boilerplate and copy-paste code in tests to zero

• A test is a plain old python function def test_foo():

• A test parameter is a function argument @pytest.mark.parametrize("param1",[0, 1])

def test_foo(param1):

• Tests can reuse shared tools, objects, features with setup/teardown mechanisms: « fixtures »

def test_foo(tmpdir):

> (+ Many other features + Great IDE integration) = Making tests becomes easy and fun !

pytest basics

Creates a temporary directory before

test runs, and deletes it afterwards.

The argument contains the path.

Page 4EuroPython 2021 - Sylvain Marié, Schneider Electric |



• Test configuration files named conftest.py can be placed in any test folder to declare common

mechanisms (fixtures, custom hooks)

• A very wide range of customization hooks is available to plugins, so that they can modify almost

everything. This is the reason why the ecosystem of plugin is so great ! 

(https://docs.pytest.org/en/latest/reference/plugin_list.html ). For example distributed testing, etc.

pytest basics: misc

Page 7EuroPython 2021 - Sylvain Marié, Schneider Electric |

https://docs.pytest.org/en/latest/reference/plugin_list.html


• (reminder) pytest basics

• pytest-cases

• Under the hood

• Benchmarking

Agenda

Page 8EuroPython 2021 - Sylvain Marié, Schneider Electric |



Page 9EuroPython 2021 - Sylvain Marié, Schneider Electric |

• A plugin for pytest ☺

• Main goal: make pytest easier to use in the context of data science 

(test data from files and simulation, benchmarks, etc.)

• Secondary goal: make pytest easier to use in general

(propose innovative ideas that may end up in pytest in the future)

• A mature project, with active users:

• 648 commits since June 2018

• 103 version tags

• Very low bugfix latency

pytest-cases https://smarie.github.io/python-pytest-cases/

https://smarie.github.io/python-pytest-cases/
https://smarie.github.io/python-pytest-cases/


Tested code: analytics libraries

e.g. Machine Learning: Predictive Maintenance, Energy Cons/Prod Forecasting…

Typical inputs: 
data frames (= 2-dimensional tables, n rows x m columns) > "complex" python objects

Test data used to create these inputs: 

simulated (nominal, edge cases) + files/other storage (realistic nominal/customer feedback)

Extra need: benchmarking

compare several algorithms/versions on a reference collection of datasets

Initial use-case: testing Analytics & AI libraries

Page 10EuroPython 2021 - Sylvain Marié, Schneider Electric |



Page 11EuroPython 2021 - Sylvain Marié, Schneider Electric |

Complex test parameters: e.g. 20+ DataFrames, each

• Requiring a few lines of code to be generated

• Requiring a detailed documentation for maintenance purposes

• Possibly parametrized (several simulation variants, several data files…)

• Possibly requiring resources (fixtures, but used by a parameter not by a test)

• Requiring a user-friendly readable test node id !

Initial use-case

Simple test parameters: 

e.g. 2 tuples

How to integrate complex test parameters in our tests ?



Proposed solution: case functions

Page 12EuroPython 2021 - Sylvain Marié, Schneider Electric |

Iterable of parameter values

Collection* of « case functions » returning the values

pytest-cases

*Collection per se is described later



Case functions – ids and marks

Page 13EuroPython 2021 - Sylvain Marié, Schneider Electric |

ids = Iterable or callable

pytest-cases

Marks and ids can be

set using pytest.param

around each param value

The mark decorator can be used

custom id

default id extracted from the function name



In pytest, parameters can not be parametrized, and parameters can not use fixtures. 

This is possible with pytest-cases.

Case functions – parametrization and fixtures

Page 14EuroPython 2021 - Sylvain Marié, Schneider Electric |

parametrized case case requiring a fixture 

Note: you can parametrize cases with cases (recursion)



• Laziness

• All case functions are lazily called during the test node setup phase before the test is run

• Case functions that require fixtures are transformed into fixtures, which behave also this way.

• Caching

• if a case function result is needed several time during a single test node run (for example by plugins), 

the case function is guaranteed to be called only once.

Case functions – properties

Page 15EuroPython 2021 - Sylvain Marié, Schneider Electric |



Cases Collection – default 

Page 16EuroPython 2021 - Sylvain Marié, Schneider Electric |

test_foo_cases.py

OR

cases_foo.py

test_foo.py

Parametrized by

Initial idea: associate each test module with a separate cases module following a default naming convention.

This is still the default behaviour (two naming schemes are supported).



Page 17EuroPython 2021 - Sylvain Marié, Schneider Electric |

Cases Collection – explicit reference

module or module name class

You can also use a list of modules, classes, functions : 

Easier for daily use: simply reference some container explicitly and rely on  



Cases Collection – prefixes, filters and tags

Page 18EuroPython 2021 - Sylvain Marié, Schneider Electric |

The case_ prefix can be changed to collect

several « kind » of cases independently: 

Cases can be tagged

Advanced filtering using a callable filter

(a few useful filters are provided built-in)



• @parametrize_with_cases can be used on fixtures too ! 

thanks to @fixture (see next part):

• Built-in current_cases fixture

for debugging/reasoning on the current case (id, function)

Additional features

Page 19EuroPython 2021 - Sylvain Marié, Schneider Electric |



• (reminder) pytest basics

• pytest-cases

• Under the hood

• Benchmarking

Agenda

Page 20EuroPython 2021 - Sylvain Marié, Schneider Electric |



Page 21EuroPython 2021 - Sylvain Marié, Schneider Electric |

• pytest-cases features required a few major improvements in pytest mechanisms

• These are available independently of case functions: documentation here

• In particular

• fixture_union creates a fixture that will alternate between several fixtures

• @parametrize = @pytest.mark.parametrize++

‒ Supports an alternate way to define argname/argvalue (keyword-way). If you use it, the ids will also be auto-

generated in a more user-friendly way ☺

‒ Supports lazy parameter values (=functions), supports using a fixture as a parameter value

• @fixture = @pytest.fixture++

‒ Allows fixtures to be parametrized using @pytest.mark.parametrize (or @parametrize)

‒ Correctly supports fixture unions.

Under the hood: pytest goodies

https://smarie.github.io/python-pytest-cases/pytest_goodies/


Design choices at the beginning of pytest-cases:

- Do not try to do this as a pytest PR (too big, too blurry initially)

- Keep usage of pytest hooks to the bare minimum (too risky for compatibility with others)

Idea: dynamically create functions that wrap the user-written test and fixture functions,

possibly adding (injecting) or removing arguments. 
Since functools.wraps was not capable of this, I wrote makefun.

One of the key tools of pytest-cases: makefun

Page 22EuroPython 2021 - Sylvain Marié, Schneider Electric |



Page 23EuroPython 2021 - Sylvain Marié, Schneider Electric |

fixture_union

No union: one test function = one fixture closure With unions: one test function = several

alternative fixture closures, unioned

A glimpse on the challenge that was solved (detailed explanation on the documentation page)

https://smarie.github.io/python-pytest-cases/unions_theory/


• (reminder) pytest basics

• pytest-cases

• Under the hood

• Benchmarking

Agenda

Page 24EuroPython 2021 - Sylvain Marié, Schneider Electric |



Benchmarking - Does this look familiar ?

Page 25EuroPython 2021 - Sylvain Marié, Schneider Electric |

datasets algorithms evaluation protocol



Two kind of case functions: challengers (prefix algo_) and datasets (prefix data_)

One test representing the evaluation protocol (typically doing train/score/evaluate)

Results can be dumped to file by each test node, or collected in a result_bag using pytest-harvest

How to get there with pytest-cases

Page 26EuroPython 2021 - Sylvain Marié, Schneider Electric |

https://smarie.github.io/python-pytest-harvest/


Sketch of design: 

• @pytest.mark each « challenger » case function with a python virtual environment name

• For each virtual environment, only run the tests where the appropriate mark is set

• Combine results for all environments.

Useful tools:

• pytest-pilot to create a custom pytest mark and an easy to use CLI option to filter on it

• doit-api for nox-like orchestration of tasks using doit. (Unfortunately nox does not yet have all the 

features required for this, see nox issue tracker)

How to get there – multiple python environments

Page 27EuroPython 2021 - Sylvain Marié, Schneider Electric |

https://smarie.github.io/python-pytest-pilot/
https://smarie.github.io/python-doit-api/


pytest basics

Thanks for watching ! Questions ?

Page 28EuroPython 2021 - Sylvain Marié, Schneider Electric |

pytest-cases

pytest-cases under the hood Benchmarking

Before leaving, if I may ask for a favor: 
- if you like pytest-cases please give the github repo a star !

- if you use it for research, you may now cite it thanks to Zenodo (link on project web page) 

case functions

@parametrize

@fixture

@fixture_ref

@lazy_value

fixture_union

...

cases collection

https://smarie.github.io/python-pytest-cases/#citing



