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Abstract In this article, a distributed formation tracking controller is pro-9

posed for Multi-Agent Systems (MAS) consisting of quadrotors. It is con-10

sidered that each quadrotor in the MAS only shares its translation position11

information with its neighbors. Moreover, position information is transmitted12

at nonuniform and asynchronous time instants. The control system is divided13

into an outer-loop for the position control and an inner-loop for the attitude14

control. A continuous-discrete time observer is used in the outer-loop to esti-15

mate both position and velocity of the the quadrotor and its neighbors using16

discrete position information it receives. Then, these estimated states are used17

to design the position controller in order to enable quadrotors to generate the18

required geometric shape. A finite-time attitude controller is designed to track19

the desired attitude as dictated by the position controller. Finally, a closed-20
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loop stability analysis of the overall system including nonlinear coupling is21

performed.22

Keywords Multi-agent systems, Quadrotor, Continuous-discrete time23

observers, Distributed control, Under-actuated system.24

1 Introduction25

In recent years, the study of Unmanned Air Vehicles (UAV) has attracted26

much attention due to their vast range of applications in defence, agriculture,27

transportation, disaster management, entertainment etc. (see for instance [1, 2,28

3]). Quadrotor UAV is more popular among other UAVs due to its distinctive29

characteristics like simple structure, fast maneuverability and vertical take30

off and landing ability [4]. Compared to a single quadrotor operation, the31

use of multiple quadrotors working in a cooperative manner has some clear32

advantages such as high efficiency, flexibility, wide coverage area, robustness,33

etc.34

Formation control or formation tracking of cooperative Multi-Agent Sys-35

tem (MAS) is considered as one of the fundamental problems in which agents36

are required to produce a desired geometric shape in order to accomplish37

some tasks. Multi-quadrotor formation tracking has various applications both38

in civilian and military domains. These applications include (but are not lim-39

ited to) target enclosure and tracking, search and rescue, surveillance, heavy40

payload transportation and telecommunication relay [5, 6, 7]. The problem of41

formation control and tracking has been extensively studied in the literature42

[8, 9, 10, 11, 12]. Formation control techniques are usually categorized as vir-43

tual structure [13], behavior-based [14] and leader-follower [15]. Distributed44

consensus based formation control is another interesting approach in which all45

above mentioned categories can be incorporated [16]. A consensus-based for-46

mation tracking algorithm for second-order MAS has been proposed in [17].47

In [18], the formation control problem of MAS with switching topology has48

been discussed for second-order agent dynamics. A fixed-time formation track-49

ing controller has been proposed for MAS using adaptive neural networks and50

minimal learning parameter based approach [19]. The problem of formation51

control for high-order nonlinear systems has been studied in [12, 20].52

Nevertheless, it should be noted that the extension of formation tracking53

algorithms designed for first-order, second-order or even high-order nonlinear54

MAS to multi-quadrotor systems is not trivial. Indeed, the control design for55

quadrotors is considered as a complex problem because such systems are not56

only inherently nonlinear but also under-actuated. The control of multiple57

quadrotors in a distributed manner becomes even more complex. There exist58

some works in the literature dealing with the problem of formation control59

for multi-quadrotors. For instance, a consensus based fixed formation track-60

ing controller has been proposed for multi-quadrotor systems in [21]. In this61

work, it was considered that the quadrotor flies slowly and propeller respond62

is very high. The nonlinearity of the system was ignored by linearizing its63
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vertical model around the equilibrium point and the horizontal movement64

was described as a fourth-order system. A consensus based formation track-65

ing controller has been designed in [22] where the quadrotor dynamics was66

divided into two subsystems describing horizontal and vertical motion sep-67

arately. The formation tracking problem of multi-quadrotor systems in the68

presence of switching topology has been discussed in [23] using a hierarchical69

controller for each quadrotor based on position and attitude loops. In [24], a70

formation tracking algorithm for time-varying formation has been presented. A71

formation tracking control scheme has been proposed in [25] where the position72

and attitude dynamics are considered as two subsystems and two controllers73

are designed separately to control both subsystems. However, the closed-loop74

stability analysis was not provided.75

Another important issue in the above mentioned algorithms is the assump-76

tion that both position and velocity states are shared between the neighbours77

in continuous time. However, in order to reduce the cost and size of the quadro-78

tor, it is of great interest to use a minimum number of sensors. Furthermore,79

the network may have limited communication resources. It is always more cost80

effective if the neighbors only share partial data as it requires less communica-81

tion bandwidth. Therefore, it is not always possible or feasible to transmit the82

whole state. Similarly, only discrete data can be shared due to digital nature of83

the communication equipment. Furthermore, transmitting data with uniform84

and synchronized sampling time is also not possible in many practical appli-85

cations. To deal with these above mentioned communication constraints, a86

continuous-discrete time observer based algorithm for consensus (resp. forma-87

tion tracking) has been proposed [26] (resp. [27, 28]). However, these articles88

only focus on double-integrator MAS systems. A leader-following consensus89

algorithm for a fully actuated N -order MAS with Lipschitz nonlinearities is90

presented in [29]. However, it is not straightforward to extend this technique91

for the time-varying formation tracking problem of under-actuated nonlinear92

multi-quadrotor systems.93

Inspired by the above discussion, in this paper, a distributed time-varying94

formation tracking strategy is designed for under-actuated multi-quadrotor95

systems with communication constraints. It is considered that each quadrotor96

only shares its translation position information with its neighbors. Velocity and97

acceleration information is not available. Moreover, the sampling rate at which98

the position data is transmitted is nonuniform and asynchronous. As men-99

tioned above, irregular and asynchronous sampling is inevitable in all practical100

applications and exchange of partial state is always cost effective. Therefore,101

our designed algorithm is useful in all practical applications of multi-quadrotor102

formation tracking. In the current article, the control system of each quadrotor103

in the network is divided into a position subsystem (outer-loop) and an atti-104

tude subsystem (inner-loop). Both subsystems are coupled with a nonlinear105

coupling term. First, in the outer-loop, a distributed consensus based position106

formation tracking algorithm is designed. A continuous-discrete time observer107

is used to reconstruct both position and velocity in continuous time using108

the available discrete position data. Then, a finite-time control algorithm is109
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used in the inner-loop to track the desired attitude. Finally, the stability of110

the closed-loop system, which includes the nonlinear coupling term, is proved.111

This kind of cascaded controller architecture for a single quadrotor can be112

found in the literature [30, 31]. However, the closed-loop stability for multi-113

quadrotor systems with two coupled control loops has never been carefully114

analyzed. The stability analysis of multi-quadrotor systems is always more115

complex when compared to single quadrotor systems especially when multi-116

quadrotor systems are subjects to communication constraints. The proposed117

strategy yields first results of outer-inner loop based multi-quadrotor forma-118

tion control in the presence of communication constraints. The efficiency of119

the proposed algorithm is shown through simulation results.120

The remaining of the paper is organized as follows. Section 2 provides some121

preliminaries on graph theory while Section 3 describes the system modeling122

and problem statement. Main results are presented in Section 4 which in-123

clude controller design and stability analysis. Simulation results are given in124

Section 5 while the paper is concluded in Section 6.125

2 Preliminaries126

The communication topology among the agents in a MAS can be described by127

a graph. Let G = (V, E) be a N -order directed graph with V = {v1, v2 . . . vN}128

denoting a nonempty and finite set of nodes while E ⊆ V × V represents a set129

of edges. (vi, vj) is an edge of G which describes that node vj can receive data130

from node vi. In a directed graph, (vi, vj) ∈ E does not imply that (vj , vi) ∈ E .131

A = [aij ]N×N is the adjacency matrix with aij = 1 if (vi, vj) ∈ E and aij = 0132

otherwise. L = [lij ]N×N is the Laplacian matrix given as lii =
∑
j ̸=i aij ,133

lij = −aij for i ̸= j. The connectivity between the leader and the N followers134

is given by a diagonal matrix B = diag(b1, b2, . . . , bN ) such that bi = 1 if135

follower i can receive information from the leader and bi = 0 otherwise. A136

graph has a directed spanning tree if there exists a directed path from the137

root to all other nodes. See Appendix B of [32] for further details on graph138

theory.139

Assumption 1 It is assumed that there exists at least one directed spanning140

tree with the leader as a root, i.e there is at least one directed path from the141

leader to all the followers.142

Matrix H = L + B is a nonsingular M-matrix due to Assumption 1 [33].143

Furthermore, there exists a diagonal matrix Ω = diag(ω1, . . . , ωN ) such that144

HTΩ +ΩH > 0 [34]. Let145

ωmax = max{ω1, . . . , ωN} (1)

ρ = λmin(HTΩ +ΩH) (2)

where λmin(.) represents the corresponding smallest eigenvalue.146
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3 Problem statement147

3.1 System modeling148

Let us consider a multi-quadrotor system consisting of N quadrotors. Let the149

position of the i−th quadrotor in the inertial frame {I} be represented as150

ξi = [xi yi zi]
T while the Euler angles are ηi = [ϕi θi ψi]

T where ϕi, θi and151

ψi represent roll, pitch and yaw angles respectively in the body frame {B} as152

shown in Figure 1.153

Fig. 1: Inertial and body frames for a quadrotor system.

The quadrotor position dynamics is given as154 
ẍi =

Ti

mi
(cosϕi sin θi cosψi + sinϕi sinψi), i = 1, . . . , N

ÿi =
Ti

mi
(cosϕi sin θi sinψi − sinϕi cosψi)

z̈i =
Ti

mi
(cosϕi cos θi)− g

(3)

where Ti is the total thrust, mi represents the mass of quadrotor i while g155

denotes the acceleration due to gravity. The attitude dynamics of quadrotor i156

can be represented as157 {
η̇i =WiΩi

IiΩ̇i = Ω∗
i IiΩi + τi

(4)

where Ωi = [ωi,1 ωi,2 ωi,3]
T represents angular velocities in the body frame158

while Ω∗
i is its skew-symmetric matrix159

Ω∗
i =

 0 −ωi,3 ωi,2
ωi,3 0 −ωi,1
−ωi,2 ωi,1 0

 (5)
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Ii = diag{Ii,1, Ii,2, Ii,3} is the inertia matrix in the body frame, τi = [τϕi τθi τψi ]
T

160

represents the torque vector and Wi is the orthogonal rotation matrix given161

as162

Wi =

1 sinϕi tan θi cosϕi tan θi
0 cosϕi − sinϕ

0 sinϕi

cos θi

cosϕi

cos θi

 (6)

The quadrotors dynamics (3) and (4) can be written in a more compact form163

as164 {
ξ̈i =

Ti

mi
RI

Be3 − ge3, i = 1, . . . , N

η̈i = ẆiΩi +WiI
−1
i Ω∗

i IiΩi +WiI
−1
i τi

(7)

where e3 = [0, 0, 1]T while RI
B ∈ SO(3) denotes the rotation matrix between165

the body frame and the inertial frame166

RI
B =

 cθicψi sϕisθicψi − cϕisψi cϕisθicψi + sϕisψi
cθisψi sϕisθicψi + cϕisψi cϕisθicψi − sϕisψi
−sθi sϕicθi cϕicθi

 (8)

where c and s represent cos(.) and sin(.), respectively.167

The overall quadrotor system is under-actuated since there are four control168

inputs (Ti, τϕi
, τθi , τψi

) and six outputs (xi, yi, zi, ϕi, θi, ψi). Therefore, it is169

not possible to control all the outputs directly. However, if only the attitude170

dynamics is considered, it is clear that it is fully actuated. Hence, (7) can be171

written as172 {
ξ̈i =

Ti

mi
RI

Be3 − ge3

η̈i = τ̃i
(9)

with τ̃i = ẆiΩi +WiI
−1
i Ω∗

i IiΩi +WiI
−1
i τi.173

3.2 Problem formulation174

The desired formation pattern can be defined by a formation vector F (t) =175

[f1(t)
T . . . fN (t)T ] where fi(t) = [fTi,ξ, f

T
i,v] satisfies176

ḟi,ξ = fi,v

for i = 1, . . . , N . fi,ξ, fi,v ∈ R3 are the corresponding position and velocity177

offsets of quadrotor i with respect to the reference trajectory r0 = [ξ0 ξ̇0]
T

178

where ξ0 = [x0 y0 z0]. The reference trajectory can be independently produced179

by a real or virtual leader denoted with 0. It is worth noting that the formation180

vector fi only describes the offset with respect to the leader and does not181

represent formation coordinates in the global frame. To further explain the182



Title Suppressed Due to Excessive Length 7

notation of formation vector fi(t), let us consider a network of quadrotors183

with a leader and three followers. Let the formation vector be chosen as184

fi(t) =


10 cos(0.1t+ 2π(i− 1)/3)
10 sin(0.1t+ 2π(i− 1)/3)

3(i− 1)− 3
− sin(0.1t+ 2π(i− 1)/3)
cos(0.1t+ 2π(i− 1)/3)

0

 (10)

for i = 1, 2, 3. This formation vector defines that the followers move around the185

leader in a circle of radius 10m with a phase difference of 2π/3. The altitude186

position offsets are constant with values −3m, 0m and 3m for follower 1, 2 and187

3 respectively. A visual illustration of this formation is provided in Figure 2.188

Fig. 2: Example of time-varying formation.

Definition 1 The formation tracking problem of a multi-quadrotor system is189

said to be practically solved if there exists ϵ̄ ≥ 0 such that190

lim sup
t→+∞

∥ri(t)− fi − r0(t)∥ ≤ ϵ̄, i = 1, . . . , N

where ri = [ξi ξ̇i]
T for i = 1, . . . , N .191

The objective of quadrotors is to achieve time-varying formation in the 3D192

plane. It is considered that each quadrotor in the network sends only its po-193

sition state to its neighbors at nonuniform and asynchronous sampling times.194

Only a few quadrotors in the network have access to the discrete reference195

position. Let ti,jk be the instant when quadrotor j transmits its position infor-196

mation to quadrotor i where i = 1, . . . , N , j = 0, . . . , N (j ̸= i) and k ∈ N197

such that198

0 < ti,jk+1 − ti,jk < τM

where τM is the maximum allowable sampling time.199
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4 Distributed time-varying formation tracking controller200

Let us set ξdi = fi,ξ + ξ0. Then, the tracking error vector can be defined as201

eξi = [ξi − ξdi, ξ̇i − ξ̇di]
T (11)

Now let ηdi = [ϕdi θdi ψdi]
T be the desired attitude. The attitude error vector202

can be given as203

eηi = [ηi − ηdi η̇i − η̇di]
T (12)

Therefore, one can obtain the following expressions204 {
ėξi = Aeξi +B(ξ̈i − ξ̈di)

ėηi = Aeηi +B(η̈i − η̈di)
(13)

with A =

(
03 I3
03 03

)
, B =

(
03
I3

)
. Dynamics (9) can be seen as a cascaded205

structure where position and attitude subsystems are coupled through the206

rotation matrixRI
B. Indeed, let us define the virtual control µi = [µxi µyi µzi]

T
207

as in [30]208 
µxi

= Ti

mi
(cϕdisθdicψdi + sϕdisψdi)

µyi =
Ti

mi
(cϕdisθdisψdi − sϕdisψdi)

µzi =
Ti

mi
(cϕdicθdi)− g

(14)

The thrust and desired angles can be obtained as209

Ti = mi

√
µ2
xi

+ µ2
yi + (µzi + g)2 (15)

ϕdi = sin−1

(
mi

Ti
(µxi sinψdi − µyi cosψdi)

)
(16)

θdi = tan−1

(
µxi cosψdi + µyi sinψdi

µzi + g

)
(17)

while the desired yaw angle ψdi is independant of other states. Now introducing210

µi and replacing (9) in (13), one can get211 
ėξi = Aeξi +B

(
µi − ξ̈di

)
︸ ︷︷ ︸

fξi

+
Ti
mi

BHi(ηi, ηdi)︸ ︷︷ ︸
f∆i

ėηi = Aeηi +B (τ̃i − η̈di)︸ ︷︷ ︸
fηi

(18)

where Hi(ηi, ηdi) = [h1 h2 h3]
T and212 

h1 = cϕisθicψi + sϕisψi − (cϕdisθdicψdi + sϕdisψdi)

h2 = cϕisθicψi − sϕisψi − (cϕdisθdicψdi − sϕdisψdi)

h3 = cϕicθi − cϕdicθdi

(19)
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Fig. 3: Overall control architecture of quadrotor i

System (18) can be seen as two linear subsystems coupled by a nonlinear term213

f∆i. The control objective then becomes to design µi and τ̃i such that the214

position and attitude errors converge asymptotically.215

The overall control design of quadrotor i can be obtained in the following216

steps:217

1. Design a distributed control scheme µi for the subsystem ėξi = fξi while218

first ignoring the coupling term f∆i;219

2. Design a control law τ̃ for the subsystem ėηi = fηi such that the tracking220

error eηi converges to zero asymptotically;221

3. Finally, consider the closed-loop system including the coupling term f∆i222

and show that eξi and eηi still converge to zero.223

Figure 3 shows the control architecture of the ith quadrotor in the network.224

4.1 Controller Design225

4.1.1 Position controller design226

Let us first consider the position subsystem. It can be seen that the subsystem227

ėξi = fξi corresponds to the following dynamics228

ξ̈i = µi (20)

It is considered that each quadrotor can measure and transmit its position229

state ξi only. The velocity ξ̇i and the acceleration ξ̈i are not available. The230

position ξi is transmitted only at irregular and nonuniform time instants. The231

state-space representation of (20) can be given as232 {
ṙi = Ari +Bµi

yi = Cri
(21)

with C = [I3 03]. Let us consider that the reference trajectory is produced by233

a virtual leader with the same dynamics, i.e.,234 {
ṙ0 = Ar0 +Bµ0

y0 = Cr0
(22)
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The input of the leader, i.e. µ0, is not affected by other quadrotors in the235

network. It can be designed to achieve any required reference trajectory for236

the following quadrotors. Only the following assumption is made.237

Assumption 2 The input of the leader µ0(t) is bounded by a constant δ0 ≥ 0,238

i.e. one has ∥µ0(t)∥ ≤ δ0 for all t ≥ 0.239

The control input for formation tracking is given by240

µi(t) =ḟi,v − c̄K2
1

 N∑
j=1

aij

(
ξ̂i,i(t)− fi,ξ − ξ̂i,j(t) + fj,ξ

)

+bi

(
ξ̂i,i(t)− fi,ξ − ξ̂i,0(t)

)]

− 2̄cK1

 N∑
j=1

aij (v̂i,i(t)− fi,v − v̂i,j(t) + fj,v)

+bi (v̂i,i(t)− fi,v − v̂i,0(t))

]
(23)

where K1 and c̄ denote the controller gain and coupling strength respectively241

while ξ̂i,j ∈ R3 and v̂i,j ∈ R3 are the estimated position and velocity of242

quadrotor j by quadrotor i and are given by243

˙̂ri,j(t) =Ar̂i,j(t)−K2∆
−1Koe

−2K2(t−κi,j(t))
(
ξ̂i,j(κi,j(t))− ξj(κi,j(t))

)
(24)

with r̂i,j(t) =
[
ξ̂Ti,j v̂

T
i,j

]T
, ∆ =

(
Im 0m
0m

1
K2
Im

)
, Ko =

[
2Im Im

]T
while K2 rep-244

resents the observer tuning parameter. κi,j(t) = max
{
ti,jk | ti,jk ≤ t, k ∈ N

}
is245

the last instant when quadrotor i receives the position data of quadrotor j. The246

above expression (24) represents a high-gain continuous-discrete time observer247

which estimates position and velocity of a quadrotor as well as its neighbors248

in continuous time from discrete position data.249

Remark 1 Here, the coupling strength c̄ is chosen beforehand and remains250

constant for all t ≥ 0 since only fixed topology is considered. Therefore, for251

all t ≥ 0, quadrotors only use local information to achieve the required forma-252

tion pattern. The requirement of knowing the communication topology for the253

controller parameters is a common practice in cooperative control. In future254

work, one may investigate the use of adaptive gains to avoid such assumption.255



Title Suppressed Due to Excessive Length 11

4.1.2 Attitude controller design256

First, the following notations are introduced. For any non-negative real number257

α and for any x ∈ R,258

sigα(x) = sign(x)|x|α (25)

fsigα(x) =

{
x, |x| > 1

sigα(x), |x| ≤ 1
(26)

Let us now consider the attitude subsystem259

ėηi = fηi = Aeηi +B (τ̃i − η̈di) (27)

with the following attitude input260

τ̃i = η̈di −K3fsig
α3(ηi − ηdi)−K4fsig

α4(η̇i − η̇di) (28)

where K3,K4 > 0.261

Lemma 1 [25] For the attitude error dynamics (27) with control law (28),262

the desired attitude is achieved in finite time, i.e. ∥ηi − ηdi∥ → 0 if α3 and α4263

are chosen as 0 < α3 < 1 and α4 = 2α3/(1 + α3).264

4.2 Closed-loop stability analysis265

The following is an important lemma for stability analysis of cascade systems.266

Lemma 2 Let v1(t) and v2(t) be real valued functions verifying267

d

dt

(
v21(t) + v22(t)

)
≤ −av21(t)− bv22(t) + c

∫ t

t−δ
v22(s)ds

+g(t)(v21(t) + v22(t)) + k, (29)

for all t ≥ 0, a, b, c, δ > 0, k ≥ 0 and g(t) is a decaying function such that for268

some t∗ ≥ 0 g(t) ≥ 0 if 0 ≤ t ≤ t∗ and g(t) = 0 if t > t∗ . There exist γ ≥ 1,269

ϱ > 0, independent of a, b, c, k, and ᾱ ≥ 0 such that if δ < ϱmin
(
b
c ,

1
σ

)
, then270

v1(t) and v2(t) verify the following inequality271

v21(t) + v22(t) ≤ ᾱe−σt +
γk

σ
, ∀t ≥ 0 (30)

where σ is given by272

σ =
1

2
min (a, b) (31)

The proof of Lemma 2 is provided in Appendix A.273
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Remark 2 It is worth mentioning that Lemma 2 is more general than Lemma274

2 from [29] due to the presence of term g(t)(v21(t) + v22(t)) in (29). Such term275

should be here considered due to the coupling between position subsystem276

(outer-loop) and attitude subsystem (inner-loop), making the stability analysis277

of the closed-loop system in the current paper different from [29].278

Theorem 1 Given the position controller (23) and the attitude controller279

(28), if Assumptions 1-2 hold and if the control parameters satisfy280

K2 ≤ ϱ̄

τM
(32)

c̄ ≥ ωmax
ρ

(33)

K1 = ϵK2 (34)

with ϵ ∈ (0, 1) and ϱ̄ > 0, then the formation tracking of the multi-quadrotor281

system (9) is achieved in the sense of Definition 1.282

Proof It is clear from Lemma 1 that the attitude error dynamics ėηi = Aeηi +283

B (τ̃i − η̈di) (given in (18)) using attitude control input (28), converges to zero284

in finite time. Now, it is needed to show that the position error dynamics285

including the coupling term also converges. It is worth mentioning that this286

coupling makes the stability analysis of the closed-loop system in the current287

paper different from [29].288

The remaining of the proof is divided into several steps. In the first step,289

the dynamics of the position and estimation errors are derived and written290

in a compact form along with the time-varying formation controller (23). Ap-291

propriate coordinate transformation is also introduced in step 1. Position and292

observer errors are combined in new variables in step 2 to get a more compact293

form. In step 3, candidate Lyapunov functions are introduced and inequalities294

involving their derivatives are derived. Lemma 2 is applied in step 4 to show295

the convergence of the formation tracking error with formation controller (23)296

and (28).297

Step 1. Consider the position error dynamics with the coupling term from (18)298

ėξi = Aeξi +Bµi −Bµ0︸ ︷︷ ︸
fξi

+
Ti
mi

BHi(ηi, ηdi)︸ ︷︷ ︸
f∆i

(35)

Define the estimation error as x̃i,j = r̂i,j − ri for i = 1, . . . N and j = 0, . . . N ,299

one has300

˙̃xi,j(t) = (A− θ∆−1KoC)x̃i,j(t)− θ∆−1Kozi,j(t)−Bµj(t)

where zi,j(t) =
[
e−2θ(t−κi,j(t))Cx̃i,j(κi,j(t))− Cx̃i,j(t)

]
.301

The position control input can be written as302

µi = −c̄KcΓ

N∑
k=1

Hikeξk − c̄KcΓ

N∑
k=1

Hikx̃i,k + bic̄KcΓ x̃i,0
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for i = 1, . . . , N and Kc = BTQ =
(
I3 2I3

)
with Q the symmetric positive303

definite matrix solution of Q+QA+ATQ = QBBTQ and Γ =

(
K2

1I3 03
03 K1I3

)
304

Applying the coordinate transformation for high-gain design as ēξi = Γeξi305

and x̄i,j = ∆x̃i,j , one has306

˙̄eξi(t) = K1Aēξi(t) +K1Bµi(t)−K1Bµ0(t) +
K1Ti
mi

BHi

˙̄xi,j(t) = K2(A−KoC)x̄i,j(t)−K2Kozi,j(t)−
1

K2
Bµj(t)

µi = −c̄Kc

N∑
k=1

Hikēξk − c̄KcΓ∆
−1

N∑
k=1

Hikx̄i,k + bic̄KcΓ∆
−1x̄i,0

Step 2. Let ecξ = [ēTξ1 . . . ē
T
ξN

]T , x̄oi = [(x̄i,1)
T . . . (x̄i,N )T ]T , i = 1 . . . N and307

x̄o0 = [(x̄1,0)
T . . . (x̄N,0)

T ]. The tracking error dynamics can be written in a308

more compact form as309

ėcξ = K1[IN ⊗A]ecξ − c̄K1[H⊗ (BKc)]e
c
ξ − c̄K1

N∑
i=1

[(DN
i H)⊗ (BKcΓ∆

−1)]x̄oi

+c̄K1[IN ⊗ (BKcΓ∆
−1)][B ⊗ I6]x̄

o
0 −K1[1N ⊗B]µ0 +K1[IN ⊗B]F∆

where F∆ = [ T1

m1
H1, . . . ,

TN

mN
HN ]T .310

Step 3. Now, let us define the following Lyapunov functions311

V̄c(eξ) = eTξ [Ω ⊗Q]eξ (36)

Vo(x̄i,j) = (x̄i,j)
TP (x̄i,j) (37)

V̄o(x̄
o) =

N∑
i=1

N∑
j=0

sijVo(x̄i,j) (38)

sij = 1 if quadrotor i receives information from quadrotor j and 0 otherwise312

for i = 1, . . . , N , j = 0, . . . , N and x̄o is the vector containing all the x̄i,j such313

that sij = 1.314

The derivative of V (eξ) can be computed as315

˙̄Vc(e
c
ξ) = K1(e

c
ξ)
T [Ω ⊗ (ATQ+QA)]ecξ − c̄K1(e

c
ξ)
T [(HTΩ)⊗ ((BKc)

TQ)]ecξ

−c̄K1(e
c
ξ)
T [(ΩH)⊗ (QBKc)]e

c
ξ + 2c̄K1(e

c
ξ)
T [Ω ⊗ (QBKcΓ∆

−1)][B ⊗ I2m]x̄o0

−2c̄K1

N∑
i=1

(ecξ)
T [(ΩDN

i H)⊗ (QBKcΓ∆−1)]x̄oi

−2K1(e
c
ξ)
T [(Ω1N )⊗ (QB)]µ0 + 2K1(e

c
ξ)
T [(Ω ⊗ (QB)]F∆

One can show that316

2K1(e
c
ξ)
T [(Ω ⊗ (QB)]F∆

≤ 2K1k̄3
√
Vc

N∑
i=1

χ∥eηi∥

[√
Vc(ecξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]
(39)
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where k̄3 =
√
ωmaxλmax(Q). The derivation of (39) is given in Appendix B.317

Similarly, one has318

2c̄K1(e
c
ξ)
T [Ω ⊗ (QBKcΓ∆

−1)][B ⊗ I2m]x̄o0

−2c̄K1

N∑
i=1

(ecξ)
T [(ΩDN

i H)⊗ (QBKcΓ∆
−1)]x̄oi

≤ 2k1K1∥Γ∆−1∥
√
V̄c(eξ)

√
V̄o(x̄o) (40)

−2K1(eξ)
T [(Ω1N )⊗ (QB)]µ0 ≤ 2K1k̄2δ0

√
Vc(ecξ). (41)

with k1, k̄2 ≥ 0 where k1 and k2 are independent of the tuning parameters.319

and if c̄ ≥ ωmax/ρ, then one has320

K1(eξ)
T [Ω ⊗ (AQT +QA)]eξ − c̄K1(eξi)

T [(HTΩ)⊗ ((BKc)
TQ)]eξ

−c̄K1(eξi)
T [(ΩH)⊗ (QBKc)]eξ ≤ −K1V̄c(eξ) (42)

These inequalities lead to321

˙̄Vc(e
c
ξ) ≤ −K1V̄c(e

c
ξ) + 2k1K1∥Γ∆−1∥

√
V̄c(eξ)

√
V̄o(x̄o) + 2k̄2K1δ0

√
V̄c(eξ)

+2k̄3K1

√
V̄c(ecξ)

N∑
i=1

χ∥eηi∥

[√
Vc(eξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]

Similarly,322

˙̄Vo(x̄
o) ≤ −K2V̄o(x̄

o) + 2K2
2k4

√
V̄o(x̄o)

∫ t

t−τM

√
V̄o(x̄o(s))ds

+2K1k6V̄o(x̄
o) + 2

k5
K2

√
V̄o(x̄o)

√
V̄c(eξ) + 2

k7
K2

δ0

√
V̄o(x̄o) (43)
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with k4, k5, k6, k7 ≥ 0 are independent of the tuning parameters.323

Step 4. One has324

d

dt

(√
V̄c(ecξ) + ϵ

3
2K2

2

√
V̄o(x̄o)

)
≤ −ϵK2

4

(
1− 4k5ϵ

1
2

)√
V̄c(ecξ)−

ϵ
3
2K3

2

4

(
1− 4k1ϵ

1
2 − 4k6ϵ

)√
V̄o(x̄o)

−ϵK2

4

√
V̄c(ecξ)−

ϵ
3
2K3

2

4

√
V̄o(x̄o) + k4ϵ

3
2K4

2

∫ t

t−τM

√
V̄o(x̄o(s))ds

+k̄3ϵK2

N∑
i=1

χ∥eηi∥

[√
Vc(eξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]
+ k̄2ϵK2δ0 + k7ϵ

3
2K2δ0

≤ −ϵK2

4

(
1− 4k5ϵ

1
2

)√
V̄c(ecξ)−

ϵ
3
2K3

2

4

(
1− 4k1ϵ

1
2 − 4k6ϵ

)√
V̄o(x̄o)

−ϵK2

4

√
V̄c(ecξ)−

ϵ
3
2K3

2

4

√
V̄o(x̄o) + k4ϵ

3
2K4

2

∫ t

t−τM

√
V̄o(x̄o(s))ds

+k3ϵK2

N∑
i=1

χ∥eηi∥
[√

Vc(eξ) +
√
Vo(x̄o)

]
+ k̄2ϵK2δ0 + k7ϵ

3
2K2δ0

with k3 = k̄3
√
N
√
N + 1.325

Selecting ϵ < ϵ∗ where ϵ∗ = min
{
1, 1

(4k4)2
, 1
(8k1)2

, 1
8k5

}
, one can achieve326

d

dt

(√
V̄c(ecξ) + ϵ

3
2K2

2

√
V̄o(x̄o)

)
≤ −ϵK2

4

√
V̄c(ecξ)−

ϵ
3
2K3

2

4

√
V̄o(x̄o) + k4ϵ

3
2K4

2

∫ t

t−τM

√
V̄o(x̄o(s))ds

+k3ϵK2

N∑
i=1

χ∥eηi∥
[√

Vc(eξ) +
√
Vo(x̄o)

]
+ k2ϵK2δ (44)

with k2 = max{k̄2, k7}. From Lemma 1, one knows that the attitude error327

eηi → 0 in finite time which implies that after some time t > ta ≥ 0, χ∥eηi∥ =328

0.329

Applying Lemma 2 on (44) with a = ϵK2

4 , b =
ϵ
3
2K3

2

4 , c = k4ϵ
3
2K4

2 , g(t) =330

k3ϵK2

∑N
i=1 χ∥eηi∥ and k = k2ϵK2δ, one has ᾱ > 0, ϱ > 0 and γ ≥ 1 such331

that for332

τM <
ϱ̄

K2

with ϱ̄ = ϱ
4k4

, the following inequality is achieved333

√
V̄c(ecξ) + ϵ

3
2K2

2

√
V̄o(x̄o) ≤ ᾱe−

K1
8 t + 8γk2δ0
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Over-evaluation of the above inequality gives334 √
V̄c(ecξ) ≤ ᾱe−

K1
8 t + 8γk2δ0

K1k8

N∑
i=1

∥ecξ∥ ≤ ᾱe−
K1
8 t + 8γk2δ0

with k8 =
√
λminQ

√
ωmin√

N
. Hence335

N∑
i=1

∥eξi∥ ≤ αe−
K1
8 t +

βδ0
K1

(45)

where α = ᾱ
K1k8

and β = 8k2γ
k8

.336

Remark 3 The structure of the proposed observer-based formation tracking337

controller has some advantages in the presence of communication delays and338

packet loss during communications. Since, for each agent, the corresponding339

controller only uses the estimated states provided by the continuous-discrete340

observers, the time-varying formation tracking is achieved even in the pres-341

ence of communication delays if measured position data is accurately time342

stamped. Indeed, in this case, the estimation can be provided as soon as the343

data is received. Similarly, in case of packet loss, the observer still provides344

the estimation if the next packet is received before the maximum sample time345

τM .346

Remark 4 Inequality (45) shows that the formation tracking error decays ex-347

ponentially and enters in a ball centered at the origin and will remain there348

for all future time. This means that practical formation tracking is achieved.349

One can observe that the radius of the ball is directly proportional to the up-350

per bound of the reference/leader acceleration, i.e. δ0. This implies that if the351

leader has a constant velocity then the multi-quadrotor system will achieve352

exponential stability. The final error can also be reduced by increasing the353

position controller gain K1. However, K1 should always remain less than the354

observer gain K2 to keep the controller dynamics slower than the observer355

dynamics.356

5 Simulation results357

Let us consider a multi-quadrotor system with three followers denoted from 1358

to 3 and a leader denoted as 0. The communication topology among them is359

shown in Figure 4. It is considered that all the quadrotors in the system have360

the same structure and modelling parameters. The mass of each quadrotor con-361

sidered ismi = 0.4 while the inertia matrix is Ii = diag{0.0025, 0.0026, 0.0028}.362

The sampling rate at which the position information is transmitted among the363
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0 1 2

3

Fig. 4: Communication topology

quadrotors is between 10ms and 100ms. The tuning gains for position con-364

troller are chosen as K1 = 0.6, K2 = 10 and c̄ = 1. The tuning parameters of365

the attitude controller are selected as α3 = 3
4 , α4 = 6

7 , K3 = 20 and K4 = 10.366

The desired time-varying formation vector is selected for i = 1, . . . , 3 as367

given in (10). In the first scenario, the leader is hovering at the altitude of368

10m while the followers start from their initial position and make the required369

formation. Figure 5 shows the formation tracking results while the tracking370

error is shown in Figure 6.

Fig. 5: Formation tracking with a hovering leader
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Fig. 6: Tracking error with a stationary leader

371
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In the second scenario, the leader is moving with µx0 = 0.03m/s2, µy0 =372

−0.01m/s2, and µz0 = 0.03cos(2πt/200)m/s2. Figure 7 depicts the formation373

tracking result. Since the leader is moving with some acceleration, only prac-374

tical formation tracking is achieved as discussed in Remark 4 and it is evident375

from the tracking error shown in Figure 8. An example of sampling periods at376

which the translation position is shared among the quadrotors is illustrated in377

Figure 9.

Fig. 7: Formation tracking with a moving leader

Fig. 8: Tracking error with a moving leader

378

6 Conclusion379

In this paper, a time-varying formation tracking controller for multi-quadrotor380

systems is discussed. The quadrotors can only send their translation position381

information to their neighbors at asynchronous and nonuniform sampling rate.382

The overall control of quadrotor is divided into a position and an attitude con-383

trol loops. An observer-based position controller is used to achieve the desired384

formation, while a finite-time controller is used to control the Euler angles385
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Fig. 9: Sampling periods

of the quadrotor such that it follows the required translation trajectory. A386

closed-loop stability analysis which includes both position and attitude con-387

trollers and the nonlinear coupling strength is provided. Simulation results388

show the efficiency of the proposed algorithm. The case of switching topology389

with adaptive gains is planned in the future.390
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Appendix A409

Proof Let v = min
(
a√
2
, b√

2

)
, ξ = 2 cδb and κ = 1−ξ. Since δ ∈

(
0, ϱmin

(
b
c ,

1
σ

))
,410

one has411

0 < 2
cδ

b
< 2

c

b
ϱmin

(
b

c
,
1

σ

)
≤ 2ϱ ⇒ 1− 2ϱ < 1− ξ︸ ︷︷ ︸

=κ

< 1 (46)

0 < vκδ < vδ < vϱmin

(
b

c
,
1

σ

)
≤

√
2ϱ (47)

Then ϱ > 0 can be chosen, independently of a, b, c, k such that for all δ ∈412 (
0, ϱmin

(
b
c ,

1
σ

))
we have413

κ ∈
(

1√
2
, 1

)
(48)

evκδ ≤ 1 + 2vκδ (49)

Consider the following Lyapunov function414

W (vt) = v21(t) + v22(t) + c

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds (50)

where vt(s) = [v1(t+ s), v2(t+ s)]
T
, s ∈ [−δ, 0]. One has415

Ẇ (vt) =
d

dt

(
v21(t) + v22(t)

)
+ c

∫ δ

0

d

dt

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds.
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Applying Leibniz integration leads to416

Ẇ (vt) =− av21(t)− bv22(t) + g(t)(v21(t) + v22(t))− vκc

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds

+ c

∫ δ

0

evκsv22(t)− v22(t− s)ds

≤ −av21(t)− bv22(t) + c

∫ t

t−δ
v22(s)ds+ g(t)(v21(t) + v22(t)) + k

− vκc

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds+ c

∫ δ

0

evκsv22(t)ds− c

∫ δ

0

v22(t− s)ds

≤− av21(t)− bv22(t) + g(t)W (vt) + k + c

(
evκδ − 1

vκ

)
v22(t)

− vκ
(
W (vt)− v21(t)− v22(t)

)
Since evκδ−1

vκ ≤ 2δ and given the definition of v, the following inequalities are417

achieved418

Ẇ (vt) + (vκ− g(t))W (vt) ≤ (−a+ vκ) v21(t) + (−b+ 2cδ + vκ)v22(t) + k

Ẇ (vt) + (vκ− g(t))W (vt) ≤ −a
(
1− 1√

2

)
v21(t)− b

(
1− (1− κ)− κ√

2

)
v22(t) + k

Ẇ (vt) + (vκ− g(t))W (vt) ≤ −a

(√
2− 1√
2

)
v21(t)− bκ

(√
2− 1√
2

)
v22(t) + k

Ẇ (vt) ≤ (−vκ+ g(t))W (vt) + k

since vκ ≥ σ, so419

Ẇ (vt) ≤ (−σ + g(t))W (vt) + k

To get over-estimation of W (t), let us consider the following differential equa-420

tion421

Ẇ (vt) + (σ − g(t))W (vt) = k

The solution of the above differential equation can be given as422

W (vt) = e
∫ t
0
−σ+g(µ)dµW (0) + e

∫ t
0
σ+g(µ)dµ

∫ t

0

e
∫ s
0
σ−g(µ)dµkds

= e
∫ t
0
−σ+g(µ)dµW (0) +

∫ t

0

e
∫ t
s
−σ̄+g(µ)dµkds (51)
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Furthermore, one has423 ∫ t

0

e
∫ t
s
−σ+g(µ)dµkds =

∫ t

0

e−σ(t−s)e
∫ t
s
g(µ)dµkds

and since g(t) = 0 for t > t∗,∫ t

0

e
∫ t
s
−σ+g(µ)dµkds =

∫ t∗

0

e−σ(t−s)e
∫ t∗
s
g(µ)dµkds+

∫ t

t∗
e−σ(t−s)kds

≤ γ̄

∫ t∗

0

e−σ(t−s)kds+

∫ t

t∗
e−σ(t−s)kds

where γ̄ = e
∫ t∗
0
g(µ)dµ. Hence, we have424 ∫ t

0

e
∫ t
s
−σ+g(µ)dµkds ≤ γ̄e−σt

[
eσt

∗

σ
k − k

σ

]
+ e−σt

[
eσt

σ̄
k − eσt

∗

σ
k

]
≤ γ̄k

σ

[
eσ(t

∗−t) − e−σt
]
+
k

σ

[
1− eσ(t

∗−t)
]

(52)

Using (52), (51) becomes425

W (vt) ≤ γ̄e−σtW (0) +
γ̄k

σ̄

[
eσ(t

∗−t) − e−σ̄t
]
+
k

σ̄

[
1− eσ(t

∗−t)
]

≤ γe−σtW (0) +
γ̄k

σ

[
1− e−σt

]
≤
(
γ̄W (0)− γk

σ

)
e−σt +

γk

σ
(53)

where γ = max{1, γ̄}. Choosing ᾱ = γ̄W (0)− γk
σ finishes the proof.426

Appendix B427

One has428

2K1(eξ)
T [Ω ⊗QB]F∆

= 2K1(eξ)
T [Ω ⊗Q][IN ⊗B]F∆

≤ 2K1

√
(eξ)T [Ω ⊗Q]eξ

√
[(IN ⊗B]F∆]T [Ω ⊗Q](IN ⊗B]F∆

Using the Cauchy-Schwarz inequality one obtains429

K1(eξ)
T [(Ω ⊗ (QB)]F∆ ≤ 2K1

√
Vc
√
λmax(Ω ⊗Q)∥IN ⊗B∥∥F∆∥

and using Rayleigh inequality one has430

K1(eξ)
T [(Ω ⊗ (QB)]F∆ ≤ 2K1

√
Vc
√
ωmaxλmax(Q)∥F∆∥ (54)
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Over estimation of term ∥F∆∥ gives431

∥F∆∥ ≤
N∑
i=1

∥∥∥∥ Timi
Hi

∥∥∥∥
with432 ∥∥∥∥ Timi

Hi

∥∥∥∥ =
1

mi
|Ti(eξi)|∥Hi∥ (55)

=
1

mi
|Ti(eξi)|

√
h21 + h22 + h23 (56)

where433

|Ti(eξi)| = mi∥µi + ge3∥ = mi

√
µ2
xi

+ µ2
yi + (µzi + g)2. (57)

Following the proof of [26, Theorem 1], one has434

∥µi∥ = ∥µfi ∥ ≤ c4

N∑
i=1

∥eξi∥+ c5

N∑
k=0

si,k∥x̄i,k∥ (58)

where c4, c5 > 0. So, we obtain435

∥Ti∥ ≤ mi

(
g + c6

{
N∑
i=1

∥eξi∥+
N∑
k=0

si,k∥x̄i,k∥

})
(59)

≤ l1

(
r1 +

N∑
i=1

∥eξi∥+
N∑
k=0

si,k∥x̄i,k∥

)
(60)

where c6 = max(c4, c5), l1 = mic6 and r1 = mig/l1. From these inequalities,436

one can deduce that437

|Ti(eξi)| ≤
{
r2ēi for ēi ≥ r1
r1r2 for ēi < r1

(61)

where ēi =
∑N
i=1 ∥eξi∥+

∑N
k=0 ∥x̄i,k∥ and r2 = 2l1.438

Now replacing (ϕi, θi, ψi) with (ϕdi+ eϕi
, θdi+ eθi , ψdi+ eψi

) and using the439

following trigonometric equalities440

sin(a+ b) = sin(a) + sin

(
b

2

)
cos

(
a+

b

2

)
(62)

cos(a+ b) = cos(a)− sin

(
b

2

)
sin

(
a+

b

2

)
(63)

then h3 can be written as441

h3 = cϕicθi − cϕdicθdi

= c(ϕdi + eϕi
)c(θdi + eθi)− cϕdicθdi

= [cϕdi − s(eϕi
/2)s(ϕdi + eϕi

/2)][cθdi − s(eθi/2)s(θdi + eθi/2)]− cϕdicθdi

= −cϕdis(eθi/2)s(θdi + eθi/2)− cθdis(eϕi
/2)s(ϕdi + eϕi

/2)

+[−s(eϕi
/2)s(ϕdi + eϕi

/2)][s(eθi/2)s(θdi + eθi/2)]
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Using the following trivial inequalities442

| sin(a)| ≤ |a|, | sin(a)| ≤ 1, | cos(a)| ≤ 1

|a||b| ≤ 1

2
(|a|+ |b|) for |a| ≤ 1, |b| ≤ 1

|a||b||c| ≤ 1

2
(|a|+ |b|+ |c|) for |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 (64)

one gets443

|h3| ≤ |s(eϕi
/2)|+ |s(eθi/2)|+ |s(eϕi

/2)||s(eθi/2)|

≤ |s(eϕi/2)|+ |s(eθi/2)|+
1

2
(|s(eϕi/2)|+ |s(eθi/2)|)

≤ 3

2
(|s(eϕi/2)|+ |s(eθi/2)|)

≤ 3

4
(|eϕi

|+ |eθi |) (65)

Therefore, the following inequality can be obtained444

h23 ≤ 9

16
(e2ϕi

+ e2θi + 2|eϕi
||eθi |)

≤ 9

8
(e2ϕi

+ e2θi)

≤ ς3(e
2
ϕi

+ e2θi + e2ψi
) (66)

where ς3 = 9
8 . Similarly, one can show that445

h22 ≤ ς2(e
2
ϕi

+ e2θi + e2ψi
) (67)

h21 ≤ ς1(e
2
ϕi

+ e2θi + e2ψi
) (68)

Therefore, one gets446

∥H(eξi , eηi)∥ =
√
h21 + h22 + h23

≤
√
ς1(e2ϕi

+ e2θi + e2ψi
) + ς2(e2ϕi

+ e2θi + e2ψi
) + ς3(e2ϕi

+ e2θi + e2ψi
)

≤ c7∥ηi − ηdi∥ (69)

with c7 =
√
ς1 + ς2 + ς3447

From (61) and (69), one can show that for ēi ≥ r1448 ∥∥∥∥ Timi
Hi

∥∥∥∥ ≤ 1

mi
r2ēic7∥eηi∥

≤ c8∥eηi∥ēi

with c8 = 1
mi
r2c7. So one has449 ∥∥∥∥ Timi

Hi

∥∥∥∥ ≤ c8∥eηi∥

[
N∑
i=1

∥eξi∥+
N∑
k=0

si,k∥x̄i,k∥

]
(70)
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Since450

N∑
i=1

∥eξi∥ ≤
√
N√

λmin(Q)
√
ωmin

√
Vc(ecξ)

and451

∥x̄i,k∥ ≤ 1√
λmin(P )

√
Vo(x̄i,k)

inequality (70) becomes452 ∥∥∥∥ Timi
Hi

∥∥∥∥ ≤ c8c9∥eηi∥

[√
Vc(ecξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]

with c9 = max

( √
N√

λmin(Q)
√
ωmin

, 1√
λmin(P )

)
. On can write the above inequality453

as454 ∥∥∥∥ Timi
Hi

∥∥∥∥ ≤ χ∥eηi∥

[√
Vc(ecξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]
(71)

where χ = c8c9 which leads to455

∥F∆∥ ≤
N∑
i=1

χ(∥eηi∥)

[√
Vc(ecξ) +

N∑
k=0

si,k

√
Vo(x̄i,k)

]
(72)

Hence, inequality (54) is achieved.456
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