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Introduction

In recent years, the study of Unmanned Air Vehicles (UAV) has attracted much attention due to their vast range of applications in defence, agriculture, transportation, disaster management, entertainment etc. (see for instance [START_REF] Zhao | High-order sliding mode observerbased trajectory tracking control for a quadrotor uav with uncertain dynamics[END_REF][START_REF] Shakhatreh | Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges[END_REF][START_REF] Mishra | Drone-surveillance for search and rescue in natural disaster[END_REF]). Quadrotor UAV is more popular among other UAVs due to its distinctive characteristics like simple structure, fast maneuverability and vertical take off and landing ability [START_REF] Eskandarpour | A constrained error-based mpc for path following of quadrotor with stability analysis[END_REF]. Compared to a single quadrotor operation, the use of multiple quadrotors working in a cooperative manner has some clear advantages such as high efficiency, flexibility, wide coverage area, robustness, etc.

Formation control or formation tracking of cooperative Multi-Agent System (MAS) is considered as one of the fundamental problems in which agents are required to produce a desired geometric shape in order to accomplish some tasks. Multi-quadrotor formation tracking has various applications both in civilian and military domains. These applications include (but are not limited to) target enclosure and tracking, search and rescue, surveillance, heavy payload transportation and telecommunication relay [START_REF] Iskandarani | Using multiple quadrotor aircraft and linear model predictive control for the encirclement of a target[END_REF][START_REF] Hou | A survey on the formation control of multiple quadrotors[END_REF][START_REF] Sivakumar | Uav swarm coordination using cooperative control for establishing a wireless communications backbone[END_REF]. The problem of formation control and tracking has been extensively studied in the literature [START_REF] Yao | Fully distributed control for task-space formation tracking of nonlinear heterogeneous robotic systems[END_REF][START_REF] Lippay | Leader-following formation control with timevarying formations and bounded controls for agents with double-integrator dynamics[END_REF][START_REF] Van Vu | Distance-based formation control with bounded disturbances[END_REF][START_REF] Li | Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties[END_REF][START_REF] Yu | Practical time-varying formation tracking for high-order nonlinear multi-agent systems based on the distributed extended state observer[END_REF]. Formation control techniques are usually categorized as virtual structure [START_REF] Qin | Formation control of mobile robot systems incorporating primal-dual neural network and distributed predictive approach[END_REF], behavior-based [START_REF] Nag | Behaviour based, autonomous and distributed scatter manoeuvres for satellite swarms[END_REF] and leader-follower [START_REF] Mercado | Quadrotors flight formation control using a leader-follower approach[END_REF]. Distributed consensus based formation control is another interesting approach in which all above mentioned categories can be incorporated [START_REF] Ren | Consensus strategies for cooperative control of vehicle formations[END_REF]. A consensus-based formation tracking algorithm for second-order MAS has been proposed in [START_REF] Du | Finite-time formation control of multiagent systems via dynamic output feedback[END_REF].

In [START_REF] Dong | Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[END_REF], the formation control problem of MAS with switching topology has been discussed for second-order agent dynamics. A fixed-time formation tracking controller has been proposed for MAS using adaptive neural networks and minimal learning parameter based approach [START_REF] Xiong | Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach[END_REF]. The problem of formation control for high-order nonlinear systems has been studied in [START_REF] Yu | Practical time-varying formation tracking for high-order nonlinear multi-agent systems based on the distributed extended state observer[END_REF][START_REF] Lai | Formation tracking for nonlinear multiagent systems with delays and noise disturbance[END_REF].

Nevertheless, it should be noted that the extension of formation tracking algorithms designed for first-order, second-order or even high-order nonlinear MAS to multi-quadrotor systems is not trivial. Indeed, the control design for quadrotors is considered as a complex problem because such systems are not only inherently nonlinear but also under-actuated. The control of multiple quadrotors in a distributed manner becomes even more complex. There exist some works in the literature dealing with the problem of formation control for multi-quadrotors. For instance, a consensus based fixed formation tracking controller has been proposed for multi-quadrotor systems in [START_REF] Kuriki | Consensus-based cooperative formation control with collision avoidance for a multi-uav system[END_REF]. In this work, it was considered that the quadrotor flies slowly and propeller respond is very high. The nonlinearity of the system was ignored by linearizing its vertical model around the equilibrium point and the horizontal movement was described as a fourth-order system. A consensus based formation tracking controller has been designed in [START_REF] Wang | Distributed cooperative control for multiple quadrotor systems via dynamic surface control[END_REF] where the quadrotor dynamics was divided into two subsystems describing horizontal and vertical motion separately. The formation tracking problem of multi-quadrotor systems in the presence of switching topology has been discussed in [START_REF] Zou | Distributed formation control for multiple vertical takeoff and landing uavs with switching topologies[END_REF] using a hierarchical controller for each quadrotor based on position and attitude loops. In [START_REF] Zhang | Fully distributed timevarying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[END_REF], a formation tracking algorithm for time-varying formation has been presented. A formation tracking control scheme has been proposed in [START_REF] Cong | Formation control for multiquadrotor aircraft: Connectivity preserving and collision avoidance[END_REF] where the position and attitude dynamics are considered as two subsystems and two controllers are designed separately to control both subsystems. However, the closed-loop stability analysis was not provided.

Another important issue in the above mentioned algorithms is the assumption that both position and velocity states are shared between the neighbours in continuous time. However, in order to reduce the cost and size of the quadrotor, it is of great interest to use a minimum number of sensors. Furthermore, the network may have limited communication resources. It is always more cost effective if the neighbors only share partial data as it requires less communication bandwidth. Therefore, it is not always possible or feasible to transmit the whole state. Similarly, only discrete data can be shared due to digital nature of the communication equipment. Furthermore, transmitting data with uniform and synchronized sampling time is also not possible in many practical applications. To deal with these above mentioned communication constraints, a continuous-discrete time observer based algorithm for consensus (resp. formation tracking) has been proposed [START_REF] Ajwad | Observer based leader-following consensus of second-order multi-agent systems with nonuniform sampled position data[END_REF] (resp. [START_REF] Ajwad | Outputfeedback formation tracking of second-order multi-agent systems with asynchronous variable sampled data[END_REF][START_REF] Ajwad | Collisionfree formation tracking of multi-agent systems under communication constraints[END_REF]). However, these articles only focus on double-integrator MAS systems. A leader-following consensus algorithm for a fully actuated N -order MAS with Lipschitz nonlinearities is presented in [START_REF] Menard | Leaderfollowing consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF]. However, it is not straightforward to extend this technique for the time-varying formation tracking problem of under-actuated nonlinear multi-quadrotor systems.

Inspired by the above discussion, in this paper, a distributed time-varying formation tracking strategy is designed for under-actuated multi-quadrotor systems with communication constraints. It is considered that each quadrotor only shares its translation position information with its neighbors. Velocity and acceleration information is not available. Moreover, the sampling rate at which the position data is transmitted is nonuniform and asynchronous. As mentioned above, irregular and asynchronous sampling is inevitable in all practical applications and exchange of partial state is always cost effective. Therefore, our designed algorithm is useful in all practical applications of multi-quadrotor formation tracking. In the current article, the control system of each quadrotor in the network is divided into a position subsystem (outer-loop) and an attitude subsystem (inner-loop). Both subsystems are coupled with a nonlinear coupling term. First, in the outer-loop, a distributed consensus based position formation tracking algorithm is designed. A continuous-discrete time observer is used to reconstruct both position and velocity in continuous time using the available discrete position data. Then, a finite-time control algorithm is used in the inner-loop to track the desired attitude. Finally, the stability of the closed-loop system, which includes the nonlinear coupling term, is proved. This kind of cascaded controller architecture for a single quadrotor can be found in the literature [START_REF] Kendoul | Nonlinear hierarchical flight controller for unmanned rotorcraft: design, stability, and experiments[END_REF][START_REF] Zhao | Nonlinear robust adaptive tracking control of a quadrotor uav via immersion and invariance methodology[END_REF]. However, the closed-loop stability for multiquadrotor systems with two coupled control loops has never been carefully analyzed. The stability analysis of multi-quadrotor systems is always more complex when compared to single quadrotor systems especially when multiquadrotor systems are subjects to communication constraints. The proposed strategy yields first results of outer-inner loop based multi-quadrotor formation control in the presence of communication constraints. The efficiency of the proposed algorithm is shown through simulation results.

The remaining of the paper is organized as follows. Section 2 provides some preliminaries on graph theory while Section 3 describes the system modeling and problem statement. Main results are presented in Section 4 which include controller design and stability analysis. Simulation results are given in Section 5 while the paper is concluded in Section 6.

Preliminaries

The communication topology among the agents in a MAS can be described by a graph. Let G = (V, E) be a N -order directed graph with V = {v 1 , v 2 . . . v N } denoting a nonempty and finite set of nodes while E ⊆ V × V represents a set of edges. (v i , v j ) is an edge of G which describes that node v j can receive data from node v i . In a directed graph, graph has a directed spanning tree if there exists a directed path from the root to all other nodes. See Appendix B of [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF] for further details on graph theory.

(v i , v j ) ∈ E does not imply that (v j , v i ) ∈ E. A = [a ij ] N ×N is the adjacency matrix with a ij = 1 if (v i , v j ) ∈ E and a ij = 0 otherwise. L = [l ij ] N ×N is the Laplacian matrix given as l ii = j̸ =i a ij , l ij = -a ij for i ̸ = j.
Assumption 1 It is assumed that there exists at least one directed spanning tree with the leader as a root, i.e there is at least one directed path from the leader to all the followers.

Matrix H = L + B is a nonsingular M-matrix due to Assumption 1 [START_REF] Song | Pinning-controllability analysis of complex networks: an m-matrix approach[END_REF].

Furthermore, there exists a diagonal matrix Ω = diag(ω 1 , . . . , ω N ) such that

H T Ω + ΩH > 0 [34].
Let

ω max = max{ω 1 , . . . , ω N } (1) 
ρ = λ min (H T Ω + ΩH) (2) 
where λ min (.) represents the corresponding smallest eigenvalue.

3 Problem statement

System modeling

Let us consider a multi-quadrotor system consisting of N quadrotors. Let the position of the i-th quadrotor in the inertial frame {I} be represented as

ξ i = [x i y i z i ]
T while the Euler angles are η i = [ϕ i θ i ψ i ] T where ϕ i , θ i and

ψ i represent roll, pitch and yaw angles respectively in the body frame {B} as shown in Figure 1.

Fig. 1: Inertial and body frames for a quadrotor system.

The quadrotor position dynamics is given as

     ẍi = Ti mi (cos ϕ i sin θ i cos ψ i + sin ϕ i sin ψ i ), i = 1, . . . , N ÿi = Ti mi (cos ϕ i sin θ i sin ψ i -sin ϕ i cos ψ i ) zi = Ti mi (cos ϕ i cos θ i ) -g (3) 
where T i is the total thrust, m i represents the mass of quadrotor i while g denotes the acceleration due to gravity. The attitude dynamics of quadrotor i can be represented as

ηi = W i Ω i I i Ωi = Ω * i I i Ω i + τ i (4) 
where

Ω i = [ω i,1 ω i,2 ω i,3
] T represents angular velocities in the body frame while Ω * i is its skew-symmetric matrix

Ω * i =   0 -ω i,3 ω i,2 ω i,3 0 -ω i,1 -ω i,2 ω i,1 0   (5) 
I i = diag{I i,1 , I i,2 , I i,3 } is the inertia matrix in the body frame, τ i = [τ ϕi τ θi τ ψi ] T
represents the torque vector and W i is the orthogonal rotation matrix given as

W i =   1 sin ϕ i tan θ i cos ϕ i tan θ i 0 cos ϕ i -sin ϕ 0 sin ϕi cos θi cos ϕi cos θi   (6) 
The quadrotors dynamics ( 3) and ( 4) can be written in a more compact form

as ξi = Ti mi R I B e 3 -ge 3 , i = 1, . . . , N ηi = Ẇi Ω i + W i I -1 i Ω * i I i Ω i + W i I -1 i τ i (7) 
where e 3 = [0, 0, 1] T while R I B ∈ SO(3) denotes the rotation matrix between the body frame and the inertial frame

R I B =   cθ i cψ i sϕ i sθ i cψ i -cϕ i sψ i cϕ i sθ i cψ i + sϕ i sψ i cθ i sψ i sϕ i sθ i cψ i + cϕ i sψ i cϕ i sθ i cψ i -sϕ i sψ i -sθ i sϕ i cθ i cϕ i cθ i   (8) 
where c and s represent cos(.) and sin(.), respectively.

The overall quadrotor system is under-actuated since there are four control inputs (T i , τ ϕi , τ θi , τ ψi ) and six outputs (x i , y i , z i , ϕ i , θ i , ψ i ). Therefore, it is not possible to control all the outputs directly. However, if only the attitude dynamics is considered, it is clear that it is fully actuated. Hence, ( 7) can be written as

ξi = Ti mi R I B e 3 -ge 3 ηi = τi (9) with τi = Ẇi Ω i + W i I -1 i Ω * i I i Ω i + W i I -1 i τ i .

Problem formulation

The desired formation pattern can be defined by a formation vector where ξ 0 = [x 0 y 0 z 0 ]. The reference trajectory can be independently produced by a real or virtual leader denoted with 0. It is worth noting that the formation vector f i only describes the offset with respect to the leader and does not represent formation coordinates in the global frame. To further explain the notation of formation vector f i (t), let us consider a network of quadrotors with a leader and three followers. Let the formation vector be chosen as

F (t) = [f 1 (t) T . . . f N (t) T ] where f i (t) = [f T i,ξ , f T i,v ] satisfies ḟi,ξ = f i,v for i = 1, . . . , N . f i,ξ , f i,v ∈ R
f i (t) =        
10 cos(0.1t + 2π(i -1)/3) 10 sin(0.1t + 2π(i -1)/3)

3(i -1) -3 -sin(0.1t + 2π(i -1)/3) cos(0.1t + 2π(i -1)/3) 0         (10) 
for i = 1, 2, 3. This formation vector defines that the followers move around the leader in a circle of radius 10m with a phase difference of 2π/3. The altitude position offsets are constant with values -3m, 0m and 3m for follower 1, 2 and 3 respectively. A visual illustration of this formation is provided in Figure 2. Definition 1 The formation tracking problem of a multi-quadrotor system is said to be practically solved if there exists ε ≥ 0 such that lim sup

t→+∞ ∥r i (t) -f i -r 0 (t)∥ ≤ ε, i = 1, . . . , N
where

r i = [ξ i ξi ] T for i = 1, . . . , N .
The objective of quadrotors is to achieve time-varying formation in the 3D plane. It is considered that each quadrotor in the network sends only its position state to its neighbors at nonuniform and asynchronous sampling times.

Only a few quadrotors in the network have access to the discrete reference position. Let t i,j k be the instant when quadrotor j transmits its position information to quadrotor i where i = 1, . . . , N , j = 0, . . . , N (j ̸ = i) and k ∈ N such that 0 < t i,j k+1 -t i,j k < τ M where τ M is the maximum allowable sampling time.

Distributed time-varying formation tracking controller

Let us set ξ di = f i,ξ + ξ 0 . Then, the tracking error vector can be defined as

e ξi = [ξ i -ξ di , ξi -ξdi ] T (11) 
Now let η di = [ϕ di θ di ψ di ] T be the desired attitude. The attitude error vector can be given as

e ηi = [η i -η di ηi -ηdi ] T (12) 
Therefore, one can obtain the following expressions

ėξi = Ae ξi + B( ξi -ξdi ) ėηi = Ae ηi + B(η i -ηdi ) (13) 
with

A = 0 3 I 3 0 3 0 3 , B = 0 3 I 3
. Dynamics ( 9) can be seen as a cascaded structure where position and attitude subsystems are coupled through the rotation matrix R I B . Indeed, let us define the virtual control

µ i = [µ xi µ yi µ zi ] T as in [30]      µ xi = Ti mi (cϕ di sθ di cψ di + sϕ di sψ di ) µ yi = Ti mi (cϕ di sθ di sψ di -sϕ di sψ di ) µ zi = Ti mi (cϕ di cθ di ) -g (14) 
The thrust and desired angles can be obtained as

T i = m i µ 2 xi + µ 2 yi + (µ zi + g) 2 (15) 
ϕ di = sin -1 m i T i (µ xi sin ψ di -µ yi cos ψ di ) (16 
)

θ di = tan -1 µ xi cos ψ di + µ yi sin ψ di µ zi + g (17) 
while the desired yaw angle ψ di is independant of other states. Now introducing µ i and replacing (9) in [START_REF] Qin | Formation control of mobile robot systems incorporating primal-dual neural network and distributed predictive approach[END_REF], one can get

             ėξi = Ae ξi + B µ i -ξdi f ξ i + T i m i BH i (η i , η di ) f ∆i ėηi = Ae ηi + B (τ i -ηdi ) fη i (18) 
where The overall control design of quadrotor i can be obtained in the following steps:

H i (η i , η di ) = [h 1 h 2 h 3 ] T and      h 1 = cϕ i sθ i cψ i + sϕ i sψ i -(cϕ di sθ di cψ di + sϕ di sψ di ) h 2 = cϕ i sθ i cψ i -sϕ i sψ i -(cϕ di sθ di cψ di -sϕ di sψ di ) h 3 = cϕ i cθ i -cϕ di cθ di (19) 
1. Design a distributed control scheme µ i for the subsystem ėξi = f ξi while first ignoring the coupling term f ∆i ;

2. Design a control law τ for the subsystem ėηi = f ηi such that the tracking error e ηi converges to zero asymptotically;

3. Finally, consider the closed-loop system including the coupling term f ∆i and show that e ξi and e ηi still converge to zero.

Figure 3 shows the control architecture of the i th quadrotor in the network. 

The input of the leader, i.e. µ 0 , is not affected by other quadrotors in the network. It can be designed to achieve any required reference trajectory for the following quadrotors. Only the following assumption is made.

Assumption 2

The input of the leader µ 0 (t) is bounded by a constant δ 0 ≥ 0,

i.e. one has ∥µ 0 (t)∥ ≤ δ 0 for all t ≥ 0.

The control input for formation tracking is given by

µ i (t) = ḟi,v -cK 2 1   N j=1 a ij ξi,i (t) -f i,ξ -ξi,j (t) + f j,ξ +b i ξi,i (t) -f i,ξ -ξi,0 (t) -2cK 1   N j=1 a ij (v i,i (t) -f i,v -vi,j (t) + f j,v ) +b i (v i,i (t) -f i,v -vi,0 (t)) (23) 
where K 1 and c denote the controller gain and coupling strength respectively while ξi,j ∈ R 3 and vi,j ∈ R 3 are the estimated position and velocity of quadrotor j by quadrotor i and are given by ṙi,j (t) =Ar i,j (t) -K 2 ∆ -1 K o e -2K2(t-κi,j (t)) ξi,j (κ i,j (t)) -ξ j (κ i,j (t)) [START_REF] Zhang | Fully distributed timevarying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[END_REF] with ri,j (t) = ξT i,j

vT i,j T , ∆ = I m 0 m 0 m 1 K2 I m , K o = 2I m I m T while K 2 rep-
resents the observer tuning parameter. κ i,j (t) = max t i,j k | t i,j k ≤ t, k ∈ N is the last instant when quadrotor i receives the position data of quadrotor j. The above expression [START_REF] Zhang | Fully distributed timevarying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[END_REF] represents a high-gain continuous-discrete time observer which estimates position and velocity of a quadrotor as well as its neighbors in continuous time from discrete position data.

Remark 1 Here, the coupling strength c is chosen beforehand and remains constant for all t ≥ 0 since only fixed topology is considered. Therefore, for all t ≥ 0, quadrotors only use local information to achieve the required formation pattern. The requirement of knowing the communication topology for the controller parameters is a common practice in cooperative control. In future work, one may investigate the use of adaptive gains to avoid such assumption.

Attitude controller design

First, the following notations are introduced. For any non-negative real number α and for any x ∈ R,

sig α (x) = sign(x)|x| α (25) 
f sig α (x) = x, |x| > 1 sig α (x), |x| ≤ 1 ( 26 
)
Let us now consider the attitude subsystem

ėηi = f ηi = Ae ηi + B (τ i -ηdi ) ( 27 
)
with the following attitude input

τi = ηdi -K 3 f sig α3 (η i -η di ) -K 4 f sig α4 ( ηi -ηdi ) ( 28 
)
where K 3 , K 4 > 0.

Lemma 1 [START_REF] Cong | Formation control for multiquadrotor aircraft: Connectivity preserving and collision avoidance[END_REF] For the attitude error dynamics [START_REF] Ajwad | Outputfeedback formation tracking of second-order multi-agent systems with asynchronous variable sampled data[END_REF] with control law (28), the desired attitude is achieved in finite time, i.e. ∥η i -η di ∥ → 0 if α 3 and α 4 are chosen as 0 < α 3 < 1 and α 4 = 2α 3 /(1 + α 3 ).

Closed-loop stability analysis

The following is an important lemma for stability analysis of cascade systems.

Lemma 2 Let v 1 (t) and v 2 (t) be real valued functions verifying

d dt v 2 1 (t) + v 2 2 (t) ≤ -av 2 1 (t) -bv 2 2 (t) + c t t-δ v 2 2 (s)ds +g(t)(v 2 1 (t) + v 2 2 (t)) + k, (29) 
for all t ≥ 0, a, b, c, δ > 0, k ≥ 0 and g(t) is a decaying function such that for some t * ≥ 0 g(t) ≥ 0 if 0 ≤ t ≤ t * and g(t) = 0 if t > t * . There exist γ ≥ 1, ϱ > 0, independent of a, b, c, k, and ᾱ ≥ 0 such that if δ < ϱ min b c , 1 σ , then v 1 (t) and v 2 (t) verify the following inequality

v 2 1 (t) + v 2 2 (t) ≤ ᾱe -σt + γk σ , ∀t ≥ 0 ( 30 
)
where σ is given by

σ = 1 2 min (a, b) (31) 
The proof of Lemma 2 is provided in Appendix A.

Remark 2 It is worth mentioning that Lemma 2 is more general than Lemma 2 from [START_REF] Menard | Leaderfollowing consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF] due to the presence of term g(t)(v 2 1 (t) + v 2 2 (t)) in [START_REF] Menard | Leaderfollowing consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF]. Such term should be here considered due to the coupling between position subsystem (outer-loop) and attitude subsystem (inner-loop), making the stability analysis of the closed-loop system in the current paper different from [START_REF] Menard | Leaderfollowing consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF].

Theorem 1 Given the position controller [START_REF] Zou | Distributed formation control for multiple vertical takeoff and landing uavs with switching topologies[END_REF] and the attitude controller [START_REF] Ajwad | Collisionfree formation tracking of multi-agent systems under communication constraints[END_REF], if Assumptions 1-2 hold and if the control parameters satisfy

K 2 ≤ ρ τ M (32) c ≥ ω max ρ (33) 
K 1 = ϵK 2 (34) 
with ϵ ∈ (0, 1) and ρ > 0, then the formation tracking of the multi-quadrotor system (9) is achieved in the sense of Definition 1.

Proof It is clear from Lemma 1 that the attitude error dynamics ėηi = Ae ηi + B (τ i -ηdi ) (given in ( 18)) using attitude control input [START_REF] Ajwad | Collisionfree formation tracking of multi-agent systems under communication constraints[END_REF], converges to zero in finite time. Now, it is needed to show that the position error dynamics including the coupling term also converges. It is worth mentioning that this coupling makes the stability analysis of the closed-loop system in the current paper different from [START_REF] Menard | Leaderfollowing consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF].

The remaining of the proof is divided into several steps. In the first step, the dynamics of the position and estimation errors are derived and written in a compact form along with the time-varying formation controller [START_REF] Zou | Distributed formation control for multiple vertical takeoff and landing uavs with switching topologies[END_REF]. Appropriate coordinate transformation is also introduced in step 1. Position and observer errors are combined in new variables in step 2 to get a more compact form. In step 3, candidate Lyapunov functions are introduced and inequalities involving their derivatives are derived. Lemma 2 is applied in step 4 to show the convergence of the formation tracking error with formation controller [START_REF] Zou | Distributed formation control for multiple vertical takeoff and landing uavs with switching topologies[END_REF] and [START_REF] Ajwad | Collisionfree formation tracking of multi-agent systems under communication constraints[END_REF].

Step 1. Consider the position error dynamics with the coupling term from [START_REF] Dong | Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[END_REF] ėξi = Ae ξi + Bµ i -Bµ 0

f ξ i + T i m i BH i (η i , η di ) f ∆i (35) 
Define the estimation error as xi,j = ri,j -r i for i = 1, . . . N and j = 0, . . . N ,

one has ẋi,j (t) = (A -θ∆ -1 K o C)x i,j (t) -θ∆ -1 K o z i,j (t) -Bµ j (t)
where z i,j (t) = e -2θ(t-κi,j (t)) C xi,j (κ i,j (t)) -C xi,j (t) .

The position control input can be written as

µ i = -cK c Γ N k=1 H ik e ξ k -cK c Γ N k=1 H ik xi,k + b i cK c Γ xi,0 for i = 1, . . . , N and K c = B T Q = I 3 2I 3 with Q the symmetric positive definite matrix solution of Q + QA + A T Q = QBB T Q and Γ = K 2 1 I 3 0 3 0 3 K 1 I 3
Applying the coordinate transformation for high-gain design as ēξi = Γ e ξi and xi,j = ∆x i,j , one has

ėξi (t) = K 1 Aē ξi (t) + K 1 Bµ i (t) -K 1 Bµ 0 (t) + K 1 T i m i BH i ẋi,j (t) = K 2 (A -K o C)x i,j (t) -K 2 K o z i,j (t) - 1 K 2 Bµ j (t) µ i = -cK c N k=1 H ik ēξ k -cK c Γ ∆ -1 N k=1 H ik xi,k + b i cK c Γ ∆ -1 xi,0 Step 2. Let e c ξ = [ē T ξ1 . . . ēT ξ N ] T , xo i = [(x i,1 ) T . . . (x i,N ) T ] T , i = 1 . . . N and xo 0 = [(x 1,0 ) T . . . (x N,0 ) T ].
The tracking error dynamics can be written in a more compact form as

ėc ξ = K 1 [I N ⊗ A]e c ξ -cK 1 [H ⊗ (BK c )]e c ξ -cK 1 N i=1 [(D N i H) ⊗ (BK c Γ ∆ -1 )]x o i +cK 1 [I N ⊗ (BK c Γ ∆ -1 )][B ⊗ I 6 ]x o 0 -K 1 [1 N ⊗ B]µ 0 + K 1 [I N ⊗ B]F ∆ where F ∆ = [ T1 m1 H 1 , . . . , T N m N H N ] T .
Step 3. Now, let us define the following Lyapunov functions

Vc (e ξ ) = e T ξ [Ω ⊗ Q]e ξ (36) V o (x i,j ) = (x i,j ) T P (x i,j ) (37) Vo (x o ) = N i=1 N j=0 s ij V o (x i,j ) (38) 
s ij = 1 if quadrotor i receives information from quadrotor j and 0 otherwise for i = 1, . . . , N , j = 0, . . . , N and xo is the vector containing all the xi,j such that s ij = 1.

The derivative of V (e ξ ) can be computed as

Vc (e c ξ ) = K 1 (e c ξ ) T [Ω ⊗ (A T Q + QA)]e c ξ -cK 1 (e c ξ ) T [(H T Ω) ⊗ ((BK c ) T Q)]e c ξ -cK 1 (e c ξ ) T [(ΩH) ⊗ (QBK c )]e c ξ + 2cK 1 (e c ξ ) T [Ω ⊗ (QBK c Γ ∆ -1 )][B ⊗ I 2m ]x o 0 -2cK 1 N i=1 (e c ξ ) T [(ΩD N i H) ⊗ (QBK c Γ ∆ -1 )]x o i -2K 1 (e c ξ ) T [(Ω1 N ) ⊗ (QB)]µ 0 + 2K 1 (e c ξ ) T [(Ω ⊗ (QB)]F ∆ One can show that 2K 1 (e c ξ ) T [(Ω ⊗ (QB)]F ∆ ≤ 2K 1 k3 V c N i=1 χ∥e ηi ∥ V c (e c ξ ) + N k=0 s i,k V o (x i,k ) (39) 
where k3 = ω max λ max (Q). The derivation of (39) is given in Appendix B.

Similarly, one has

2cK 1 (e c ξ ) T [Ω ⊗ (QBK c Γ ∆ -1 )][B ⊗ I 2m ]x o 0 -2cK 1 N i=1 (e c ξ ) T [(ΩD N i H) ⊗ (QBK c Γ ∆ -1 )]x o i ≤ 2k 1 K 1 ∥Γ ∆ -1 ∥ Vc (e ξ ) Vo (x o ) (40) -2K 1 (e ξ ) T [(Ω1 N ) ⊗ (QB)]µ 0 ≤ 2K 1 k2 δ 0 V c (e c ξ ). ( 41 
)
with k 1 , k2 ≥ 0 where k 1 and k 2 are independent of the tuning parameters.

and if c ≥ ω max /ρ, then one has

K 1 (e ξ ) T [Ω ⊗ (AQ T + QA)]e ξ -cK 1 (e ξi ) T [(H T Ω) ⊗ ((BK c ) T Q)]e ξ -cK 1 (e ξi ) T [(ΩH) ⊗ (QBK c )]e ξ ≤ -K 1 Vc (e ξ ) (42) 
These inequalities lead to

Vc (e c ξ ) ≤ -K 1 Vc (e c ξ ) + 2k 1 K 1 ∥Γ ∆ -1 ∥ Vc (e ξ ) Vo (x o ) + 2 k2 K 1 δ 0 Vc (e ξ ) +2 k3 K 1 Vc (e c ξ ) N i=1 χ∥e ηi ∥ V c (e ξ ) + N k=0 s i,k V o (x i,k ) Similarly, Vo (x o ) ≤ -K 2 Vo (x o ) + 2K 2 2 k 4 Vo (x o ) t t-τ M Vo (x o (s))ds +2K 1 k 6 Vo (x o ) + 2 k 5 K 2 Vo (x o ) Vc (e ξ ) + 2 k 7 K 2 δ 0 Vo (x o ) (43)
with k 4 , k 5 , k 6 , k 7 ≥ 0 are independent of the tuning parameters.

Step 4. One has

d dt Vc (e c ξ ) + ϵ 3 2 K 2 2 Vo (x o ) ≤ - ϵK 2 4 1 -4k 5 ϵ 1 2
Vc (e c ξ ) -

ϵ 3 2 K 3 2 4 1 -4k 1 ϵ 1 2 -4k 6 ϵ Vo (x o ) - ϵK 2 4 
Vc (e c ξ ) -

ϵ 3 2 K 3 2 4 Vo (x o ) + k 4 ϵ 3 2 K 4 2 t t-τ M Vo (x o (s))ds + k3 ϵK 2 N i=1 χ∥e ηi ∥ V c (e ξ ) + N k=0 s i,k V o (x i,k ) + k2 ϵK 2 δ 0 + k 7 ϵ 3 2 K 2 δ 0 ≤ - ϵK 2 4 1 -4k 5 ϵ 1 2
Vc (e c ξ ) -

ϵ 3 2 K 3 2 4 1 -4k 1 ϵ 1 2 -4k 6 ϵ Vo (x o ) - ϵK 2 4 
Vc (e c ξ ) -

ϵ 3 2 K 3 2 4 Vo (x o ) + k 4 ϵ 3 2 K 4 2 t t-τ M Vo (x o (s))ds +k 3 ϵK 2 N i=1 χ∥e ηi ∥ V c (e ξ ) + V o (x o ) + k2 ϵK 2 δ 0 + k 7 ϵ 3 2 K 2 δ 0 with k 3 = k3 √ N √ N + 1. Selecting ϵ < ϵ * where ϵ * = min 1, 1 (4k4) 2 , 1 (8k1) 2 , 1 8k5 
, one can achieve

d dt Vc (e c ξ ) + ϵ 3 2 K 2 2 Vo (x o ) ≤ - ϵK 2 4 
Vc (e c ξ ) -

ϵ 3 2 K 3 2 4 Vo (x o ) + k 4 ϵ 3 2 K 4 2 t t-τ M Vo (x o (s))ds +k 3 ϵK 2 N i=1 χ∥e ηi ∥ V c (e ξ ) + V o (x o ) + k 2 ϵK 2 δ (44) 
with k 2 = max{ k2 , k 7 }. From Lemma 1, one knows that the attitude error e ηi → 0 in finite time which implies that after some time t > t a ≥ 0, χ∥e ηi ∥ = 0.

Applying Lemma 2 on (44

) with a = ϵK2 4 , b = ϵ 3 2 K 3 2 4 , c = k 4 ϵ 3 2 K 4 2 , g(t) = k 3 ϵK 2 N i=1 χ∥e ηi ∥ and k = k 2 ϵK 2 δ, one has ᾱ > 0, ϱ > 0 and γ ≥ 1 such that for τ M < ρ K 2 with ρ = ϱ 4k4 , the following inequality is achieved Vc (e c ξ ) + ϵ 3 2 K 2 2 Vo (x o ) ≤ ᾱe -K 1 8 t + 8γk 2 δ 0
Over-evaluation of the above inequality gives

Vc (e c ξ ) ≤ ᾱe -K 1 8 t + 8γk 2 δ 0 K 1 k 8 N i=1 ∥e c ξ ∥ ≤ ᾱe -K 1 8 t + 8γk 2 δ 0 with k 8 = √ λminQ √ ωmin √ N . Hence N i=1 ∥e ξi ∥ ≤ αe -K 1 8 t + βδ 0 K 1 (45) 
where α = ᾱ K1k8 and β = 8k2γ k8 .

Remark 3 The structure of the proposed observer-based formation tracking controller has some advantages in the presence of communication delays and packet loss during communications. Since, for each agent, the corresponding controller only uses the estimated states provided by the continuous-discrete observers, the time-varying formation tracking is achieved even in the presence of communication delays if measured position data is accurately time stamped. Indeed, in this case, the estimation can be provided as soon as the data is received. Similarly, in case of packet loss, the observer still provides the estimation if the next packet is received before the maximum sample time

τ M .
Remark 4 Inequality (45) shows that the formation tracking error decays exponentially and enters in a ball centered at the origin and will remain there for all future time. This means that practical formation tracking is achieved.

One can observe that the radius of the ball is directly proportional to the upper bound of the reference/leader acceleration, i.e. δ 0 . This implies that if the leader has a constant velocity then the multi-quadrotor system will achieve exponential stability. The final error can also be reduced by increasing the position controller gain K 1 . However, K 1 should always remain less than the observer gain K 2 to keep the controller dynamics slower than the observer dynamics.

Simulation results

Let us consider a multi-quadrotor system with three followers denoted from 1 to 3 and a leader denoted as 0. The communication topology among them is shown in Figure 4. It is considered that all the quadrotors in the system have the same structure and modelling parameters. The mass of each quadrotor considered is m i = 0.4 while the inertia matrix is I i = diag{0.0025, 0.0026, 0.0028}.

The sampling rate at which the position information is transmitted among the The desired time-varying formation vector is selected for i = 1, . . . , 3 as given in [START_REF] Van Vu | Distance-based formation control with bounded disturbances[END_REF]. In the first scenario, the leader is hovering at the altitude of 10m while the followers start from their initial position and make the required formation. Figure 5 shows the formation tracking results while the tracking error is shown in Figure 6. 

Appendix A Proof Let v = min a √ 2 , b √ 2 , ξ = 2 cδ b and κ = 1-ξ. Since δ ∈ 0, ϱ min b c , 1 σ , one has 0 < 2 cδ b < 2 c b ϱ min b c , 1 σ ≤ 2ϱ ⇒ 1 -2ϱ < 1 -ξ =κ < 1 (46) 0 < vκδ < vδ < vϱ min b c , 1 σ ≤ √ 2ϱ (47) 
Then ϱ > 0 can be chosen, independently of a, b, c, k such that for all δ ∈ 0, ϱ min b c , 1 σ we have

κ ∈ 1 √ 2 , 1 (48) 
e vκδ ≤ 1 + 2vκδ (49) 
Consider the following Lyapunov function

W (v t ) = v 2 1 (t) + v 2 2 (t) + c δ 0 t t-s e vκ(µ-t+s) v 2 2 (µ)dµds (50) where v t (s) = [v 1 (t + s), v 2 (t + s)] T , s ∈ [-δ, 0]. One has Ẇ (v t ) = d dt v 2 1 (t) + v 2 2 (t) + c δ 0 d dt t t-s e vκ(µ-t+s) v 2 2 (µ)dµds.
Applying Leibniz integration leads to

Ẇ (v t ) = -av 2 1 (t) -bv 2 2 (t) + g(t)(v 2 1 (t) + v 2 2 (t)) -vκc δ 0 t t-s e vκ(µ-t+s) v 2 2 (µ)dµds + c δ 0 e vκs v 2 2 (t) -v 2 2 (t -s)ds ≤ -av 2 1 (t) -bv 2 2 (t) + c t t-δ v 2 2 (s)ds + g(t)(v 2 1 (t) + v 2 2 (t)) + k -vκc δ 0 t t-s e vκ(µ-t+s) v 2 2 (µ)dµds + c δ 0 e vκs v 2 2 (t)ds -c δ 0 v 2 2 (t -s)ds ≤ -av 2 1 (t) -bv 2 2 (t) + g(t)W (v t ) + k + c e vκδ -1 vκ v 2 2 (t) -vκ W (v t ) -v 2 1 (t) -v 2 2 (t)
Since e vκδ -1 vκ ≤ 2δ and given the definition of v, the following inequalities are achieved

Ẇ (v t ) + (vκ -g(t)) W (v t ) ≤ (-a + vκ) v 2 1 (t) + (-b + 2cδ + vκ)v 2 2 (t) + k Ẇ (v t ) + (vκ -g(t)) W (v t ) ≤ -a 1 - 1 √ 2 v 2 1 (t) -b 1 -(1 -κ) - κ √ 2 v 2 2 (t) + k Ẇ (v t ) + (vκ -g(t)) W (v t ) ≤ -a √ 2 -1 √ 2 v 2 1 (t) -bκ √ 2 -1 √ 2 v 2 2 (t) + k Ẇ (v t ) ≤ (-vκ + g(t)) W (v t ) + k since vκ ≥ σ, so Ẇ (v t ) ≤ (-σ + g(t)) W (v t ) + k
To get over-estimation of W (t), let us consider the following differential equation

Ẇ (v t ) + (σ -g(t)) W (v t ) = k
The solution of the above differential equation can be given as 

W (v t ) = e
Using ( 52), (51) becomes

W (v t ) ≤ γe -σt W (0) + γk σ e σ(t * -t) -e -σt + k σ 1 -e σ(t * -t) ≤ γe -σt W (0) + γk σ 1 -e -σt ≤ γW (0) - γk σ e -σt + γk σ (53) 
where γ = max{1, γ}. Choosing ᾱ = γW (0) -γk σ finishes the proof.

Appendix B

One has

2K 1 (e ξ ) T [Ω ⊗ QB]F ∆ = 2K 1 (e ξ ) T [Ω ⊗ Q][I N ⊗ B]F ∆ ≤ 2K 1 (e ξ ) T [Ω ⊗ Q]e ξ [(I N ⊗ B]F ∆ ] T [Ω ⊗ Q](I N ⊗ B]F ∆
Using the Cauchy-Schwarz inequality one obtains

K 1 (e ξ ) T [(Ω ⊗ (QB)]F ∆ ≤ 2K 1 V c λ max (Ω ⊗ Q)∥I N ⊗ B∥∥F ∆ ∥
and using Rayleigh inequality one has . On can write the above inequality as

K 1 (e ξ ) T [(Ω ⊗ (QB)]F ∆ ≤ 2K 1 V c ω max λ max (Q)∥F ∆ ∥ ( 
T i m i H i ≤ χ∥e ηi ∥ V c (e c ξ ) + N k=0 s i,k V o (x i,k ) (71) 
where χ = c 8 c 9 which leads to

∥F ∆ ∥ ≤ N i=1 χ(∥e ηi ∥) V c (e c ξ ) + N k=0 s i,k V o (x i,k ) (72) 
Hence, inequality (54) is achieved.

  The connectivity between the leader and the N followers is given by a diagonal matrix B = diag(b 1 , b 2 , . . . , b N ) such that b i = 1 if follower i can receive information from the leader and b i = 0 otherwise. A
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 3 are the corresponding position and velocity offsets of quadrotor i with respect to the reference trajectory r 0 = [ξ 0 ξ0 ] T

Fig. 2 :

 2 Fig. 2: Example of time-varying formation.

Fig. 3 :

 3 Fig. 3: Overall control architecture of quadrotor i

4. 1

 1 Controller Design 4.1.1 Position controller design Let us first consider the position subsystem. It can be seen that the subsystem ėξi = f ξi corresponds to the following dynamics ξi = µ i (20) It is considered that each quadrotor can measure and transmit its position state ξ i only. The velocity ξi and the acceleration ξi are not available. The position ξ i is transmitted only at irregular and nonuniform time instants. The state-space representation of (20) can be given as ṙi = Ar i + Bµ i y i = Cr i (21) with C = [I 3 0 3 ]. Let us consider that the reference trajectory is produced by a virtual leader with the same dynamics, i.e., ṙ0 = Ar 0 + Bµ 0 y 0 = Cr 0

Fig. 4 :

 4 Fig. 4: Communication topology

Fig. 5 :Fig. 6 :

 56 Fig. 5: Formation tracking with a hovering leader

Fig. 7 :Fig. 8 :Fig. 9 :

 789 Fig. 7: Formation tracking with a moving leader

  (µ)dµ W (0) +

≤ l 1 r 1 c 6 =h 3 can be written as h 3 =

 163 ∥µ i ∥ = ∥µ f i ∥ ≤ c 4 N i=1 ∥e ξi ∥ + c 5 N k=0 s i,k ∥x i,k ∥(58)where c 4 , c 5 > 0. So, we obtain∥T i ∥ ≤ m i g + c 6 N i=1 ∥e ξi ∥ + N k=0 s i,k ∥x i,k ∥ (59) max(c 4 , c 5 ), l 1 = m i c 6 and r 1 = m i g/l 1 .From these inequalities, one can deduce that|T i (e ξi )| ≤ r 2 ēi for ēi ≥ r 1 r 1 r 2 for ēi < r 1(61)where ēi =N i=1 ∥e ξi ∥ + N k=0 ∥x i,k ∥ and r 2 = 2l 1 .Now replacing (ϕ i , θ i , ψ i ) with (ϕ di + e ϕi , θ di + e θi , ψ di + e ψi ) and using the following trigonometric equalitiessin(a + b) = sin(a) + sin b 2 cos a + b 2 (62) cos(a + b) = cos(a)cϕ i cθ i -cϕ di cθ di = c(ϕ di + e ϕi )c(θ di + e θi ) -cϕ di cθ di = [cϕ di -s(e ϕi /2)s(ϕ di + e ϕi /2)][cθ di -s(e θi /2)s(θ di + e θi /2)] -cϕ di cθ di = -cϕ di s(e θi /2)s(θ di + e θi /2) -cθ di s(e ϕi /2)s(ϕ di + e ϕi /2) +[-s(e ϕi /2)s(ϕ di + e ϕi /2)][s(e θi /2)s(θ di + e θi /2)] Using the following trivial inequalities | sin(a)| ≤ |a|, | sin(a)| ≤ 1, | cos(a)| ≤ 1

  54)Over estimation of term ∥F ∆ ∥ gives∥F ∆ ∥ ≤ (e ξi )| = m i ∥µ i + ge 3 ∥ = m i µ 2 xi + µ 2 yi + (µ zi + g) 2 .

				N i=1	T i m i	H i
	with				
	T i m i	H i =	1 m i	|T i (e ξi )|∥H i ∥	(55)
		=	1 m i	|T i (e ξi )| h 2 1 + h 2 2 + h 2 3	(56)
	where				
	|T i (57)
	Following the proof of [26, Theorem 1], one has

  | ≤ |s(e ϕi /2)| + |s(e θi /2)| + |s(e ϕi /2)||s(e θi /2)| ≤ |s(e ϕi /2)| + |s(e θi /2)| + 1 2 (|s(e ϕi /2)| + |s(e θi /2)|) From (61) and (69), one can show that for ēi ≥ r 1 ēi c 7 ∥e ηi ∥ ≤ c 8 ∥e ηi ∥ē i with c 8 = 1 mi r 2 c 7 . So one has T i m i H i ≤ c 8 ∥e ηi ∥

	Since and		|a||b| ≤ i=1 1 N (|a| + |b|) for |a| ≤ 1, |b| ≤ 1 ∥e ξi ∥ ≤ √ N λ min (Q) √ ω min 2 |a||b||c| ≤ 1 2 (|a| + |b| + |c|) for |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 V c (e c ξ ) ∥x i,k ∥ ≤ 1 λ min (P ) V o (x i,k )	(64)
	one gets inequality (70) becomes	
	|h 3 ≤ T i m i ≤ with c 9 = max √ H i ≤ c 8 c 9 ∥e ηi ∥ 3 2 (|s(e ϕi /2)| + |s(e θi /2)|) V c (e c ξ ) + 3 4 (|e ϕi | + |e θi |) √ N λmin(Q) √ ωmin 1 √ , λmin(P )	N k=0	s i,k V o (x i,k )	(65)
	Therefore, the following inequality can be obtained
			h 2 3 ≤	9 16	(e 2 ϕi + e 2 θi + 2|e ϕi ||e θi |)
			≤	9 8	(e 2 ϕi + e 2 θi )
			≤ ς 3 (e 2 ϕi + e 2 θi + e 2 ψi )	(66)
	where ς 3 = 9 8 . Similarly, one can show that
			h 2 2 ≤ ς 2 (e 2 ϕi + e 2 θi + e 2 ψi )	(67)
			h 2 1 ≤ ς 1 (e 2 ϕi + e 2 θi + e 2 ψi )	(68)
	Therefore, one gets	
	∥H(e ξi , e ηi )∥ = h 2 1 + h 2 2 + h 2 3
			≤ ς 1 (e 2 ϕi + e 2 θi + e 2 ψi ) + ς 2 (e 2 ϕi + e 2 θi + e 2 ψi ) + ς 3 (e 2 ϕi + e 2 θi + e 2 ψi )
			≤ c 7 ∥η i -η di ∥		(69)
	with c 7 =	√	ς 1 + ς 2 + ς 3	
			T i m i	H i ≤	1 m i r 2 N	N
					∥e ξi ∥ +	s i,k ∥x i,k ∥	(70)
					i=1	k=0