
STAR SORTS, LELEK FANS, AND THE RECONSTRUCTION OF NON-ℵ0-CATEGORICAL

THEORIES IN CONTINUOUS LOGIC

ITAÏ BEN YAACOV

ABSTRACT. We prove a reconstruction theorem valid for arbitrary theories in continuous (or classical) logic in a
countable language, that is to say that we provide a complete bi-interpretation invariant for such theories, taking the
form of an open Polish topological groupoid.

More explicitly, for every such theory T we construct a groupoid G∗(T) that only depends on the bi-interpretation
class of T, and conversely, we reconstruct from G∗(T) a theory that is bi-interpretable with T. The basis of G∗(T)
(namely, the set of objects, when viewed as a category) is always homeomorphic to the Lelek fan.

We break the construction of the invariant into two steps. In the second step we construct a groupoid from any sort
of codes for models, while in the first step such a sort is constructed. This allows us to place our result in a common
framework with previously established ones, which only differ by their different choice of sort of codes.
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INTRODUCTION

This paper deals with what we have come to refer to as reconstruction theorems. By this we mean a procedure
that associates to a theory T (possibly under some hypotheses) a topological group-like object that is a complete
bi-interpretation invariant for T. In other words, if T′ is bi-interpretable with T, then we associate to it the
same object (up to an appropriate notion of isomorphism), and conversely, the isomorphism class of this object
determines the bi-interpretation class of T.

The best-known result of this kind is due to Coquand, and appears in Albrandt & Ziegler [AZ86]. It states
that if T is an ℵ0-categorical theory (in a countable language), then the topological group G(T) = Aut(M),
where M is the unique countable model, is such an invariant. This was originally proved for theories in
classical (Boolean-valued) logic, and subsequently extended by Kaïchouh and the author [BK16] to continuous
(real-valued) logic.

In [Ben] we proposed a reconstruction result that also covers some non-ℵ0-categorical theories, using a
topological groupoid (rather than a group) as invariant. The result was presented in two times, first for classical
logic and then for the more general continuous logic. This was not done for the sake of presentation (do the
more familiar case first), but because of a fundamental difference between the two cases. In classical logic, we
have a straightforward construction of a sort of “codes of models” (more about this later). In continuous logic,
on the other hand, no such construction exists in general, and we were reduced to assuming that such a sort
(satisfying appropriate axioms) existed, and was given to us. Worse still, we gave an example of a theory for
which no such sort existed, and consequently, for which our reconstruction theorem was inapplicable.

In the present paper we seek to remedy this deficiency, proposing a reconstruction theorem that holds for
all theories (in a countable language). This time, we work exclusively in continuous logic, keeping in mind
that this contains classical logic as a special case.
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In Section 1 we provide a few reminders regarding continuous logic in general, and interpretable sorts in
particular. We (re-)define the notions of interpretation and bi-interpretation, in a manner that is particularly
appropriate for the use we shall make of them, and that avoids the rather tedious notions of interpretation
schemes.

In Section 2 we discuss various ways in which one sort E can be “coded” in another sort D, both uniform
(e.g., E is interpretable in D) and non-uniform (e.g., each a ∈ E is in the definable closure of some b ∈ D).
We define a coding sort D as a sort which codes models. Every sort is coded in a coding sort in a non-uniform
fashion, and therefore in a uniform fashion as well.

In Section 3 we associate to a coding sort D a topological groupoid GD(T), from which a theory T2D, bi-
interpretable with T, can be recovered. In particular, GD(T) determines the bi-interpretation class of T. If,
in addition, D only depends on the bi-interpretation class of T, then so does GD(T), in which case it is a
complete bi-interpretation invariant. We point out, rather briefly, how previous reconstruction theorems fit in
this general setting.

In Section 4 and Section 5 we define star spaces and star sorts. These, by their very nature, require us to work
in continuous (rather than classical) logic. In particular, we define a notion of a universal star sort, and show
that if it exists, then it is unique up to definable bijection, and only depends on the bi-interpretation class of T.

In Section 6 we use the star sort formalism to give a construction that is analogous to, though not a direct
generalisation of, the construction of the coding sort for classical theories in [Ben]. We then prove that the
resulting sort is a universal star sort, so one always exists. Moreover, the construction is independent of the
theory: we simply construct, for any countable language L, a star sort D∗ that is universal in any L-theory,
complete or incomplete.

We conclude in Section 7, showing that the universal star sort must be a coding sort, whence our most
general reconstruction theorem: in a countable language, the groupoid GD∗(T) is a complete bi-interpretation
invariant for T. We also show that the type-space of the sort D∗, relative to any complete theory T, is the Lelek
fan L. Finally, in case T does fall into one of the cases covered by previous results, we show that our last result
can be viewed as some kind of generalisation. More precisely, using the Lelek fan, we can recover the coding
sort D∗, and therefore the corresponding groupoid GD∗(T), from those given by the earlier results.

1. SORTS AND INTERPRETATIONS

As said in the introduction, we are going to work exclusively in continuous first order logic, and assume that
the reader is familiar with it. For a general exposition, see [BU10, BBHU08]. We allow formulas to take truth
values in arbitrary compact subsets of R, so connectives are arbitrary functions from Rn to R. For a countable
family of connectives, it will suffice to take all rational constants, addition and multiplication, to which we add
the absolute value operation. Closing these under composition yields a (countable) family of functions that is
dense among all continuous functions on each compact subset of Rn.

Notation 1.1. Using the absolute value operation we may define maximum and minimum directly (i.e.,
without passing to a limit). We shall use infix notation ∨ and ∧ for those. We shall also write t −. s for the
truncated subtraction (t− s) ∨ 0.

We allow the language to be many-sorted. Some of the time we also require the language to be countable,
which means in particular that the set of sorts is countable, although this will not be a requirement for the
present section.

We are going to talk quite a bit about sorts and interpretations, so let us begin with a few reminders. By a
sort we mean an interpretable sort in the sense of continuous logic, as discussed, for example, in [BK16, Ben].
Sorts are obtained by closing the family of basic sorts (namely, sorts named in the language) by

• adding the constant sort {0, 1} (so it is always implicitly interpretable),
• countable product,
• quotient by a definable pseudo-distance (in a model that is not saturated, this may also require a

passage to the completion), and
• non-empty definable subset.

We follow the convention that natural numbers are coded by sets n = {0, . . . , n− 1} ∈ N, so {0, 1} may
sometimes be denoted by 2 (this is especially true of its powers: the Cantor space is 2N).

Throughout, by definable we mean definable by a formula, without parameters (unless parameters are given
explicitly). Any function {0, 1} → R is a formula on the sort {0, 1}. Formulas on a finite product of sorts are
constructed in the usual way, using function and predicate symbols, connectives and quantifiers, and closing
the lot under uniform limits. In particular, if ϕi(x) are formulas on a sort D for i < 2n, then ϕ(i, x) = ϕi(x)
is a formula on 2n × D. Formulas on an infinite product of sorts consist of all formulas on finite sub-products
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(extended to the whole product through the addition of dummy variables), as well as all uniform limits of such
(where the sub-products through which they factor may vary). If d is a definable pseudo-distance on a sort D
(defined by a formula on D× D), then formulas on the quotient (D, d) are formulas on D that are uniformly
continuous with respect to d. Similarly, for formulas on a product of several quotient sorts.

Finally, we recall that a definable subset of a sort D is a subset E ⊆ D, the distance to which is definable
(this is significantly more involved than the notion of a definable subset in classical logic). Equivalently, if
for every formula ϕ(x, y), where x is a variable in D and y is a tuple of variables in arbitrary sorts, the pre-
dicate supx∈E ϕ(x, y) is definable by a formula ψ(y). Formulas on a product of definable subsets of sorts are
restrictions of formulas on the corresponding product of ambient sorts.

Notice that every compact metric space is a quotient space of 2N by a continuous pseudo-distance, and
therefore a sort, on which the formulas are the continuous functions. Conversely, we could have chosen any
non-trivial compact metric space as a basic constant sort in place of {0, 1} (the other obvious candidate being
[0, 1]), and realise {0, 1} as any two-point set therein.

Remark 1.2. An obvious, yet crucial remark, is that if ϕ(x, y) is an arbitrary formula on E× D, then

dϕ(y, y′) = sup
x∈E

|ϕ(x, y)− ϕ(x, y′)|

defines a pseudo-distance on D. In addition, if D = E, and ϕ happens to define a pseudo-distance on D, then
it agrees with dϕ.

This has numerous useful consequences, let us state two of them explicitly. First of all, one may be bothered
by the fact that a formula ϕ(x, y) defining a pseudo-distance on a sort D may depend on the structure(s) under
consideration. However, we may restrict the “quotient by a pseudo-distance” step to pseudo-distances of the
form dϕ, that always define pseudo-distances, without any loss of generality.

A second consequence is that if E ⊆ D are two sorts, then every definable pseudo-distance d on E extends
to one on D. Indeed, extend it first in an arbitrary fashion to a formula ϕ(x, y) on E× D. Then dϕ is a pseudo-
distance on D, and it agrees with d on E.

Remark 1.3. A formula ψ(x) defining the distance to a subset is another property that depends on the structure
under consideration, or on its theory. However, we do not know a general construction of definable sets from
arbitrary formulas, analogous to that of Remark 1.2, and have good reason to believe that none such exists.

In other words, as far as we know, the set of interpretable sorts depends in a non-trivial way on the theory.
This makes it all the more noteworthy that our construction of the universal star sort as D∗Φ can be carried out
in a manner that depends only on the language, and not on the theory.

A definable map between two sorts σ : D → E is one whose graph is the zero-set of some formula. Composing
a formula with a definable map yields another formula. A special case of such a composition is the formula
d
(
σ(x), y

)
, on the product D× E, whose zero-set is indeed the graph of σ.

Two sorts that admit a definable bijection are, for most intents and purposes (in particular, for those of the
present paper) one and the same. Under this convention, any sort can be obtained from the basic sorts by
applying each of the operations once, in the given order. By the same convention, we may also that a sort D
(which may be a basic sort, or one that has already been obtained through some interpretation procedure) is
interpretable in a family of sorts (Ei) if we can construct from this family (Ei) a sort D′ that admits a definable
bijection with D.

Consider two languages L ⊆ L′, where L′ is allowed to add not only symbols, but also sorts. If M′ is an
L′-structure, and M is the L-structure obtained by dropping the sorts and symbols not present in L, then M is
the L-reduct of M′ and M′ is an L′-expansion of M. If T′ is an L′-theory and T is the collection of L-sentences
in T′, then T is also the theory of all L-reducts of models of T′ (notice, however, that an arbitrary model of T
need only admit an elementary extension that is a reduct of a model of T′). In this situation we say that T is
the L-reduct of T′ and that T′ is an L′-expansion of T.

One special case of an expansion is a definitional expansion, in which L and L′ have the same sorts, and
each new symbol of L′ admits an L-definition in T′. In this case, T′ is entirely determined by T together with
these definitions. A more general case is that of an interpretational expansion of T, where T′ identifies each new
sort of L′ with an interpretable sort of T, and gives L-definitions to all new symbols in L′ (for this to work
we also require L′ to contain, in particular, those new symbols that allow T′ to identify the new sorts with
the corresponding interpretable ones). Again, T, together with the list of interpretations of the new sorts and
definitions of the new symbols, determine T′. Moreover, unlike the general situation described in the previous
paragraph, here every model of T expands to a model of T′.
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Definition 1.4. Let T and T′ be two theories, say in disjoint languages. We say that T′ is interpretable in T if T′

is a reduct of an interpretational expansion of T. The two theories are bi-interpretable if they admit a common
interpretational expansion (which is stronger than just being each interpretable in the other).

A theory has the same sorts (up to a natural identification) as an interpretational expansions. Therefore,
somewhat informally, we may say that two theories are bi-interpretable if and only if they have the same sorts.

Let us consider a few more possible constructions of sorts that will become useful at later stages, and show
that they can be reduced to the basic construction steps that we allow.

Lemma 1.5. Let

D0
π0
և D1

π1
և · · ·

be an inverse system of sorts with surjective maps πn : Dn+1 ։ Dn. Then the inverse limit D = lim
←−

Dn ⊆ ∏ Dn is

again a sort, which we may equip with the distance

d(x, y) = ∑
n

(
2−n ∧ d(xn, yn)

)
(1)

(or with the restriction of any other definable distance on ∏ Dn).

Proof. Indeed, D is the zero-set in ∏ Dn of the formula

ϕ(x) = ∑
n

(
2−n ∧ d

(
xn, πn(xn+1)

))
.

Let ε > 0, and choose N ∈ N large enough depending on ε, and δ > 0 small enough depending on both. Let
a ∈ ∏ Dn, and assume that ϕ(a) < δ. Since the maps are surjective, there exists b ∈ D such that bN = aN . This
determines bn for all n ≤ N, and having chosen δ small enough, we have d(an, bn) as small as desired for all
n ≤ N. Having chosen N large enough, this yields d(a, D) ≤ d(a, b) < ε.

In other words, we have found a formula ϕ(x) that vanishes on D, such that satisfies ϕ(x) < δ = δ(ε)
implies ϕ(x, D) < ε. This implies that D is a definable subset (see [BBHU08]). �

Proposition 1.6. Assume that (Dn) is a sequence of sorts, equipped with isometric definable embeddings Dn →֒ Dn+1.
For convenience, let us pretend these embeddings are the identity map, so D0 ⊆ D1 ⊆ · · · ⊆ Dn ⊆ · · · is a chain.
Assume moreover that the sequence is Cauchy in the Hausdorff distance. In other words, assume that if n is large enough
and n ≤ m, then

dH(Dn, Dm) = sup
x∈Dm

inf
y∈Dn

d(x, y)

is as small as desired.
Then E =

⋃̂
Dk is a sort (with definable isometric embedding Dn ⊆ E). If ϕ(x, y) is a formula on E× F, for some

sort (or product of sorts) F, and ϕn is its restriction to Dn × F, then (ϕn) is an equicontinuous compatible family (by
compatible, we mean that each ϕn is the restriction of ϕn+1). Conversely, every such family arises from a unique formula
on E× F.

Proof. Assume first that we have a large ambient sort E1 and compatible isometric embeddings Dn ⊆ E1. Since
each Dn is a sort, the distance d(x, Dn) = infy∈Dn d(x, y) is definable in E1. By hypothesis, these formulas
converge uniformly, and their limit is d(x, E). Then E is a definable subset of E1, and therefore a sort.

In the general case, we are going to construct E1 as a quotient of E0 = ∏ Dn, whose members we may view
as sequences in E. We may freely pass to a sub-sequence, and assume that dH(Dn, Dn+1) < 2−n−1. Say that
a ∈ E0 converges quickly if d(an, am) ≤ 2−n whenever n < m, or equivalently, if d(an, b) ≤ 2−n where an → b in
E. By our hypothesis regarding the rate of convergence of (Dn), every b ∈ E is the limit of a quickly converging
sequence.

Recall the forced limit construction from [BU10]. Formally, it consists of a continuous function limF : RN → R,
which is monotone, 1-Lipschitz in the supremum norm on RN, and most importantly, if tn → s fast enough,
say |tn − s| ≤ 2−n, then limF(tn : n ∈ N) = s. We render the expression limF(tn : n ∈ N) as limF

n→∞ tn,
considering it a limit construct. Since limF is continuous, we may apply it to formulas.

Let us fix n, and define on Dn × E0 a formula

ρn(x, y) = limF
m→∞

d(x, ym).

If b ∈ E0 converges quickly to c ∈ E, then ρn(a, b) = d(a, c) for every a ∈ Dn. When b ∈ E0 does not converge
quickly (or possibly, at all), the value ρn(a, b) is well defined, but potentially meaningless. If n ≤ k, then ρn is
the restriction of ρk, so we may just denote all of them by ρ.
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As in Remark 1.2, we define pseudo-distances on E0 by

dρn(y, y′) = sup
x∈Dn

|ρ(x, y)− ρ(x, y′)|.

The sequence of formulas (dρn) is increasing. Moreover, if x, y ∈ Dn and z ∈ E0, then

|ρ(x, z)− ρ(y, z)| ≤ sup
m
|d(x, zm)− d(y, zm)| ≤ d(x, y),

so dρn ≤ dρn+1 ≤ dρn + 2−n. Therefore the sequence (dρn) converges uniformly to a formula dρ on E0 × E0,
which must define a pseudo-distance as well. Let E1 = (E0, dρ) be the quotient sort. By definition, each
ρn(x, y) is 1-Lipschitz in y with respect to dρ, so it may be viewed as a formula on Dn× E1. It is also 1-Lipschitz
in x with respect to the distance on Dn.

Consider a ∈ Dk and b, c ∈ E1, and assume that bn → a quickly (but c may be quite arbitrary). We have
already observed that ρ(x, b) = d(x, a) for every x ∈ Dn, for every n. Then, for every n ≥ k:

dρn(b, c) = sup
x∈Dn

|ρ(x, b)− ρ(x, c)| = sup
x∈Dn

|d(x, a)− ρ(x, c)| = ρ(a, c),

so dρ(b, c) = ρ(a, c) = ρk(a, c). If follows that the class of b in E1 only depends on a. Moreover, the map
σk : Dk → E1, that sends a to the class of any b ∈ E0 that converges quickly to a, is definable, by dρ

(
σk(x), y

)
=

ρk(x, y).
If b, b′ ∈ E0 both converge quickly to a, a′ ∈ Dk, respectively, then the same reasoning as above yields

dρn(b, b′) = d(a, a′) for every n ≥ k, and therefore dρ(b, b′) = d(a, a′). Therefore, σk : Dk → E1 is an isometric
embedding for each k. Since the ρk are restrictions of one another, these embeddings are compatible, and we
have successfully reduced to the special case treated in the beginning of the proof.

Regarding formulas, the only thing we need to prove is that any compatible equicontinuous family of for-
mulas ϕn(x, y) on Dn × F, is the restriction of a formula on E× F. Notice that our hypotheses imply that the
formula ϕn are uniformly bounded, say |ϕn| ≤ M. We may now construct an inverse modulus of continu-
ity, namely a continuous function ∆−1 : (0, ∞) → (0, ∞) such that |ϕn(x, y)− ϕn(x′, y)| ≤ ∆−1 ◦ d(x, x′) (see
[BU10]; since the family is equicontinuous, we can do this simultaneously for all ϕn). Define on E× F formulas

ψn(x, y) = inf
x′∈Dn

(
ϕn(x′, y) + ∆−1 ◦ d(x, x′)

)
.

Then ψn agrees with ϕn on Dn × F, and equicontinuity together with the convergence of (Dn) in dH implies
that (ψn) converge uniformly to a formula ψ(x, y) on E× F, that must extend each ϕn, as claimed. �

2. CODING SORTS IN OTHER SORTS

If a and b are two elements in sorts E and D in some structure (model of T), then a is definable from b, or
lies in the definable closure of b, in symbols a ∈ dcl(b), if a is the unique realisation of tp(a/b) in that structure,
as well as in any elementary extension. This implies, and indeed, equivalent to, the predicate d(x, a) being
definable with b as parameter, say by a formula ϕ(x, b) (see [Ben10]).

Let us consider two sorts D and E. In what sense(s) can E be coded in D? A fairly uniform fashion for this
to happen is if E is interpretable in D, i.e., if it embeds in a quotient of DN, or, at the very worst, D× 2N. This
would imply a non-uniform version: for every a ∈ E there exists b ∈ DN such that that a ∈ dcl(b). In fact, the
converse implication holds as well, but we leave this unproved as we shall not require it. Instead, we want to
explore a stronger condition of “non-uniform coding”, by singletons in D.

Proposition 2.1. Let E and D be sorts of a theory T. Assume that for every a ∈ E (in a model of T) there exists b ∈ D

(possibly in an elementary extension) such that a ∈ dcl(b). Then E can be embedded in a limit sort of the form
⋃̂

Dn, as
per Proposition 1.6, where each Dn is a quotient of D× 2N.

Proof. Consider a type p ∈ SE(T), so p = tp(a) for some a ∈ E in a model of T. We may assume that b ∈ D in
the same model is such that a ∈ dcl(b), as witnessed by d(x, a) = ϕp(x, b).

Let (with ε > 0)

ψp(x, y) = sup
x′
|d(x, x′)− ϕp(x′, y)|,

χp,ε(y) = 1−.
(
inf

x
ψp(x, y)/ε−. 1

)
.

The formula ψp(x, y) measures the extent to which ϕp(x′, y) fails to give us the distance to x. The formula
χp,ε(y) tells us whether x′ 7→ ϕp(x′, y) is close to being the distance to some x ∈ E: χp,ε(y) = 1 if y codes some
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x quite well (error less than ε), vanishes if y does not code anything well enough (error at least 2ε), and in all
cases its value lies in [0, 1]. Of course, ψp(a, b) = 0, so infy ψ(x, y) < ε defines an open neighbourhood of p.

Let us fix ε > 0 and let p vary. Then the conditions infy ψp(x, y) < ε define an open covering of SE(T). By
compactness, there exists a family (pi : i < n) such that for every q ∈ SE(T), infy ψpi

(q, y) < ε for at least one
i < n. Repeating this, with smaller and smaller ε, we may construct a sequence of types (pn), as well as εn → 0
such that for every n0, the open conditions infy ψpn(x, y) < εn for n ≥ n0 cover SE(T).

Let n ∈ N. We may view n = {0, . . . , n− 1} as a quotient of 2N, and similarly for [0, 1]. Therefore, D× n×
[0, 1] is a quotient of D× 2N. For (x, y, k, t) ∈ E× D× n× [0, 1], define

ρn(x, y, k, t) = t · χpk ,εk
(y) · ϕpk

(x, y).

This is indeed a formula, giving rise to a pseudo-distance on D× n× [0, 1]:

dn(y, k, t, y′, k′, t′) = sup
x∈E

|ρn(x, y, k, t)− ρn(x, y′, k′, t′)|.

In fact, we may drop n and just write ρ and d: the only role played by n is being greater than k.
Let Dn be the quotient

(
D× n× [0, 1], d

)
(which is, in turn, a quotient of D × 2N). The inclusion D × n×

[0, 1] ⊆ D× (n + 1)× [0, 1] induces an isometric embedding Dn →֒ Dn+1. Therefore, in order to show that the
hypotheses of Proposition 1.6 are satisfied, all we need to show is that for n ≤ m large enough, every member
of Dm is close to some member of Dn.

Let ε > 0 be given. Find n0 such that εn < ε for n ≥ n0. Then, by compactness, find n1 > n0 such
that infy ψpn(x, y) < εn for n0 ≤ n < n1 cover SE(T). Assume now that n1 ≤ m, and let [b, k, t] be some
class in Dm. If k < n1, then [b, k, t] ∈ Dn1 . If infx ψpk

(x, b) ≥ 2εk, then ρn(x, b, k, t) = 0 regardless of x,
so [b, k, t] = [b, 0, 0] ∈ Dn1. We may therefore assume that n1 ≤ k < m and there exists a ∈ E such that
ψpk

(a, b) < 2εk.
By our hypothesis regarding the covering of SE(T), there exists n0 ≤ ℓ < n1 such that infy ψpℓ(a, y) < εℓ.

Let c ∈ D be such that ψpℓ(a, c) < εℓ, and let s = t · χpk ,εk
(b). Then

inf
x

ψpℓ(x, c) < εℓ, χpℓ,εℓ(c) = 1, ρ(x, c, ℓ, s) = s · ϕkℓ
(x, c),

so

d(b, k, t, c, ℓ, s) = s · sup
x

∣∣ϕpk
(x, b)− ϕpℓ(x, c)

∣∣

≤ sup
x

∣∣ϕpk
(x, b)− d(x, a)

∣∣+ sup
x

∣∣d(x, a)− ϕpℓ(x, c)
∣∣

= ψpk
(a, b) + ψpℓ(a, c) < 2εk + εℓ < 3ε.

Then [c, ℓ, s] ∈ Dn1 is close enough to [b, k, t]. By Proposition 1.6, a limit sort F =
⋃̂

Dn exists.
Now let us embed E →֒ F. We have already constructed a family (ρn) of formulas on E× Dn, let us write

them as ρn(x, z). Each is 1-Lipschitz in z by definition of the distance on Dn, and they are compatible, so they
extend to a formula ρ(x, z) on E× F.

Consider a ∈ E, and let ε > 0. As above, there exists ℓ such that εℓ < ε, and c ∈ D such that ψpℓ(a, c) < εℓ.
Let a′ = [c, ℓ, 1] ∈ Dℓ+1 ⊆ F. Again, as above, χpℓ,εℓ(c) = 1, so ρ(x, a′) = ϕpℓ(x, c), and

sup
x
|d(x, a)− ρ(x, a′)| = sup

x
|d(x, a)− ϕpℓ(x, c)| = ψpℓ(a, c) < εℓ < ε.

Doing this with ε → 0 we obtain a sequence (an) in F such that ρ(x, an) converges uniformly to d(x, a). By
definition of the distance on F as dρ, this sequence is Cauchy, with limit ã ∈ F, say, and ρ(x, ã) = d(x, a). In
particular, for z ∈ F,

d(z, ã) = sup
x
|ρ(x, z)− ρ(x, ã)| = sup

x
|ρ(x, z)− d(x, a)|,

so a 7→ ã is definable. By the same reasoning, if a, a′ ∈ E, then

d(ã, ã′) = sup
x
|ρ(x, ã)− ρ(x, ã′)| = sup

x
|d(x, a)− d(x, a′)| = d(a, a′),

so the embedding is isometric, completing the proof. �

Remark 2.2. A closer inspection of the proof can yield a necessary and equivalent condition (but we shall not
use this): A sort E can be embedded in a limit sort of the form

⋃̂
Dn, where each Dn is a quotient of D× 2N, if

and only if, for every a ∈ E and ε > 0, there exists b ∈ D and a formula ϕ(x, b) that approximates d(x, a) with
error at most ε.
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In Proposition 2.1, we cannot replace D × 2N with just D. Instead, let us prove that this does not change
much, in the sense that formulas on D× 2N or on just D are almost the same thing.

Lemma 2.3. Let D and E be sorts, and let ϕ(x, t, y) be a formula on D× 2N × E. Then ϕ can be expressed as a uniform

limit of continuous combinations of formulas on D× E and on 2N separately (where we recall that formulas on 2N are
just continuous functions 2N → R).

Proof. For n ∈ N and k ∈ 2n, let δn,k(t) = 1 if t extends k, and 0 otherwise. Let also k̃ ∈ 2N be the extension of
k by zeros, and ϕn,k(x, y) = ϕ(x, k̃, y).

Then ϕn,k is a formula on D× E and δn,k is a formula on 2N, so we may define a formula

ϕn(x, t, y) = ∑
k∈{0,1}n

δn,k(t)ϕn,k(x, y).

Since ϕ(x, t, y) is uniformly continuous in t, ϕn → ϕ uniformly. �

Definition 2.4. Let T be a theory, D a sort, and D0 ⊆ D a definable subset (or even type-definable, namely, the
zero-set of a formula). We say that D is a coding sort, with exceptional set D0, if the following holds:

(i) Coding models: if M � T and a ∈ D(M)r D0(M), then there exists N � M such that dcl(a) = dcl(N).
We then say that a codes N.

(ii) Density: if M � T is separable, then the set of a ∈ D(M)r D0(M) that code M is dense in D(M).

We may denote a coding sort by D alone, considering D0 as implicitly given together with D.

The need for an exceptional set will arise at a later stage – for the time being, we are simply going to ensure
that its presence does not cause any trouble.

Definition 2.5. Let T be a theory, say in a language L, and let D be a coding sort for T.
We define a single-sorted language L2D to consist of a binary predicate symbol for each definable predicate

on D× D (possibly restricting this to a dense family of such predicates). We define T2D as the L2D-theory of D
– namely, the theory of all D(M), viewed naturally as an L2D-structure, where M varies over models of T.

Clearly, T2D is interpretable from T. The 2 is there to remind us that only binary (and unary) predicates on
D are named in the language.

Our aim, in the end, is to recover from a groupoid the theory of some sort D, and show that is bi-
interpretable with T. In particular we need to recover the definable predicates on D from the groupoid. In
[Ben] we managed to recover predicates of all arities, at the price of some additional work. In the present
paper we choose to follow a different path, recovering only binary predicates (i.e., only T2D), and instead show
that these suffice.

Proposition 2.6. Let T be a theory, say in a language L, and let D be a coding sort for T. Then T2D is bi-interpretable
with T.

Proof. Consider T′, obtained from T by adjoining D as a new sort, and naming the full induced structure. It is,
by definition, an interpretational expansion of T, and it will suffice to show that it is also an interpretational
expansion of T2D.

By Lemma 2.3, every formula on
(

D× 2N
)
×

(
D× 2N

)
is definable in T2D. In particular, every quotient of

D × 2N is interpretable in T2D, as is every embedding of one such quotient in another. Therefore, if (Dn) is
an increasing chain of quotients of D × 2N, that converges in the sense of Proposition 1.6, then E =

⋃̂
Dn is

interpretable in T2D.
Consider now a sort E of T. Since D is a coding sort, every member of E is definable from a member of D, so

by Proposition 2.1, we may embed E in a sort Ẽ which is of the form
⋃̂

Dn, for appropriate quotients of D× 2N,
as in the previous paragraph. This presentation of E need not be unique, so let us just fix one such.

Say E′ is another sort of T, so E′ ⊆ Ẽ′ =
⋃̂

D′n as above. Any formula on Ẽ × Ẽ′ is, by Proposition 1.6,
coded by a sequence of formulas on Dn × D′n (its restrictions), i.e., by formulas on

(
D × 2N

)2. It is therefore
definable in T2D. In particular, the distance to (the copy of) E in Ẽ is definable in T2D, so each sort E of T can be
interpreted in T2D (or at least, some isometric copy of E is interpretable). Similarly, every formula on E × E′,
can be extended to a formula on Ẽ× Ẽ′, so it is definable in T2D (on the copies of E and E′).

Consider now a finite product E = ∏i<n Ei of sorts of T. We have already chosen embeddings E ⊆ Ẽ and
Ei ⊆ Ẽi as above. The projection map πi : E→ Ei can be coded by a formula on E× Ei, namely

Γπi
(x, y) = dEi

(xi, y),
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where Γ stands for “Graph”. We have already observed that such a formula is definable in T2D. It follows that
the structure of E as a product of the Ei is definable in T2D. Finally, any formula on E0 × · · · × En−1 can be
viewed as a unary formula on the product E, which is, again, definable in T2D.

In conclusion, we can interpret every sort of T in T2D, and recover the full structure on these sorts. In other
words, T′ is indeed an interpretational expansion of T2D, completing the proof. �

3. GROUPOID CONSTRUCTIONS AND RECONSTRUCTION STRATEGIES

In this section we propose a general framework for “reconstruction theorems”. To any coding sort D (see
Definition 2.4) we associate a topological groupoid GD(T) from which the theory T2D of Proposition 2.6 can
be reconstructed. Since T is bi-interpretable with T2D, the groupoid GD(T) determines the bi-interpretation
class of T. If the coding sort is moreover determined by the bi-interpretation class of T (up to definable bijec-
tion), then the groupoid is a bi-interpretation invariant. Various previously known constructions fit in this
framework, as well as the one towards which aims the present paper.

For a general treatment of topological groupoids, we refer the reader to Mackenzie [Mac87], or, for the bare
essentials we shall need here, to [Ben]. We recall that a groupoid G is defined either as a small category in
which all morphisms are invertible, or algebraically, as a single set (of all morphisms), equipped with a partial
composition law and a total inversion map, satisfying appropriate axioms. When viewed as a category, the set
of objects can be identified with the set of identity morphisms, and we call it the basis B of G. In the algebraic
formalism, which we follow here, the basis is B = {e ∈ G : e2 = e} ⊆ G. If g ∈ G, then s(g) = g−1g and
t(g) = gg−1 are both defined, and belong to B, being the source and target of g, respectively. The domain of the
composition law is

dom(·) =
{
(g, h) ∈ G : s(g) = t(h)

}
.

A topological groupoid is a groupoid equipped with a topology in which the partial composition law and
total inversion map are continuous. In a topological groupoid the source and target maps s, t : G → B are
continuous as well, B is closed in G, and dom(·) closed in G2. A topological groupoid G open if, in addition,
the composition law · : dom(·) → G is open, or equivalently, if the source map s : G → B (or target map
t : G→ B) is open.

A (topological) group is a (topological) groupoid whose basis is a singleton. Such a topological groupoid is
always open.

Definition 3.1. Let T be a theory in a countable language, and D a coding sort. We let SD×D(T) denote the
space of types of pairs of elements of D. We define the following two subsets of SD×D(T):

G0
D(T) =

{
tp(a, a) : a ∈ D0},

GD(T) = G0
D(T) ∪

{
tp(a, b) : a, b ∈ D r D0 & dcl(a) = dcl(b)

}
,

where a and b vary of all members of D (or D0) in models of T. We equip GD(T) with the induced topology,
as well as with the following inversion law and partial composition law:

tp(a, b)−1 = tp(b, a), tp(a, b) · tp(b, c) = tp(a, c).

We also write BD(T) for SD(T), and identify tp(a) ∈ BD(T) with tp(a, a) ∈ GD(T). This identifies B0
D(T) =

SD0(T) with G0
D(T).

Notice that the density hypothesis in Definition 2.4 implies that GD(T) is dense in SD×D(T).

Convention 3.2. We usually consider the theory T and the coding sort D to be fixed and drop them from
notation, so G = GD(T), B = BD(T), and so on.

Lemma 3.3. Let D be a coding sort for T.

(i) As defined above G = GD(T) is a Polish open topological groupoid over B = BD(T).
(ii) If g = tp(a, b) ∈ G, then s(g) = tp(b) ∈ B is its source, and t(g) = tp(a) ∈ B its target.

(iii) If d is a definable distance on D, then the family of sets

Ur =
{

tp(a, b) ∈ G : d(a, b) < r
}

,

for r > 0, forms a basis of open neighbourhoods for B in G.

Proof. It is easy to check that G is a topological groupoid over B, with the stated source and target. Since
the language is countable, the space SD×D(T) is compact metrisable and dcl(a) = dcl(b) is a Gδ condition on
tp(a, b), so G is Polish. Each set Ur is open and contains B. On the other hand, if U is any open neighbourhood
of B in G, then it must be of the form U1 ∩G, where U1 is an open neighbourhood of B in SD×D(T). Since B is
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defined there by the condition d(x, y) = 0, and by compactness, U1 must contains
[
d(x, y) < r

]
for some r > 0,

so U contains Ur.
It is left to show that the target map t : G→ B is open. Since G0 is compact, a neighbourhood of g ∈ GrG0

may always be assumed to be disjoint from G0. We have a basis of open sets U ⊆ G r G0 of the form[
ϕ(x, y) > 0

]
∩G, where [ϕ(x, y) > 0] ⊆ SD×D(T) is the corresponding basic open set in the type space. We

may further require that ϕ(x, y) = 0 if either x or y belongs to D0.

Given such U, let V =
[
supy ϕ(x, y) > 0

]
⊆ SD(T). Then V is open, and clearly t(U) ⊆ V. Conversely,

assume that tp(a) ∈ V, where a ∈ D(M) for some M � T. Then there exists b ∈ D such that ϕ(a, b) > 0. It
follows that a /∈ D0, so we may even assume that a codes M. We may assume that b ∈ D(M), and necessarily
b /∈ D0. Now, by the density property and the uniform continuity of ϕ, we may assume that b also codes M,
so tp(a, b) ∈ U. This proves that t(U) = V.

Now let g = tp(a, a) ∈ G0. We have a basis of neighbourhoods of g in G consisting of sets of the form

U =
[
ϕ(x) > 0

]
∩
[
d(x, y) < r

]
∩G,

where ϕ(a) > 0. It is then easily checked that t(U) =
[
ϕ(x) > 0

]
, since we may always take y = x as witness.

This completes the proof. �

Definition 3.4. Let G be a topological groupoid. Say that a function ϕ : G → R is uniformly continuous and
continuous (UCC) if it is continuous on G, and in addition satisfies the following uniform continuity condition:
for every ε > 0 there exists an open neighbourhood U of the basis B such that for every g ∈ G,

h ∈ UgU =⇒ |ϕ(g)− ϕ(h)| < ε

Notice that unlike the situation for groups, the uniform continuity condition does not imply continuity (it
is very well possibly that gn → h while h /∈ GgnG for any n).

Proposition 3.5. Assume that D is a coding sort for T, and let G = GD(T). Let ϕ(x, y) be a formula on D× D, and
let ϕG : G→ R be the naturally induced function

g = tp(a, b) =⇒ ϕG(g) = ϕ(a, b).

Then the map ϕ 7→ ϕG defines a bijection between formulas on D× D, up to equivalence, and UCC functions on G.

Proof. Let us first check that if ϕ is a formula, then ϕG is UCC. It is clearly continuous. The uniform continuity
condition follows from the fact that ϕ is uniformly continuous in each argument, together with the fact that for
any δ > 0 we may take choose U =

[
d(x, y) < δ

]
∩G.

Conversely, assume that ψ : G → R is UCC. By density, the function ψ admits at most one continuous
extension to SD×D(T), and we need to show that one such exists. In other words, given p ∈ SD×D(T) and
ε > 0, it will suffice to find a neighbourhood p ∈ V ⊆ SD×D(T) such that ψ varies by less than ε on V ∩G. If
p ∈ G this is easy, so we may assume that p /∈ G.

Let us fix ε > 0 first. By uniform continuity of ψ and Lemma 3.3(iii), there exists δ > 0 such that |ψ(g)−
ψ(ugv)| < ε whenever g ∈ G, u, v ∈

[
d(x, y) < δ

]
∩G, and ugv is defined.

Given p = tp(a0, b0), we may assume that a0, b0 ∈ D(M) for some separable model M. Since p /∈ G, we
must have a0 6= b0, and (possibly decreasing δ) we may assume that d(a0, b0) > 2δ. By the density property,
there exist a1, b1 ∈ D(M) that code M, with d(a0, a1) + d(b0, b1) < δ, so d(a1, b1) > δ. Let g1 = tp(a1, b1) ∈ G.
By continuity, there exists an open neighbourhood g1 ∈ V1 ⊆ SD×D(T) such that |ψ(g1)− ψ(h)| < ε for every
h ∈ V1 ∩G. Possibly decreasing V1, we may further assume that tp(a, b) ∈ V1 implies d(a, b) > δ We may even
assume that V1 is of the form [χ < δ], where χ(x, y) ≥ 0 is a formula and χ(a1, b1) = χ(g1) = 0. Define

χ′(x, y) = inf
x′,y′

[
d(x, x′) + d(y, y′) + ψ(x′, y′)

]
,

V =
[
χ′(x, y) < δ

]
⊆ SD×D(T).

Then V is open, p ∈ V, and tp(a, b) ∈ V implies a 6= b (in other words, V ∩ B = ∅).
In order to conclude, consider any g2 = tp(a2, b2) ∈ V ∩ G. Since a2 6= b2, they cannot belong to the

exceptional set, so both code some separable model N. By definition of V, there exist a3, b3 ∈ D(N) such that
χ(a3, b3) + d(a2, a3) + d(b2, b3) < δ. By the density property, and uniform continuity of χ, we may assume that
a3 and b3 code N as well. Let g3 = tp(a3, b3), u = tp(a3, a2), v = tp(b2, b3). Then g3 = ug2v ∈ V1, so

|ψ(g2)− ψ(g1)| ≤ |ψ(g2)− ψ(g3)|+ |ψ(g3)− ψ(g1)| ≤ 2ε.

Therefore ψ varies by less than 4ε on V ∩G, which is good enough. �

Corollary 3.6. Every UCC function on GD(T) is bounded.
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Definition 3.7. Let G be a groupoid. A semi-norm on G is a function ρ : G→ R+ that satisfies

• ρ↾B = 0, and
• ρ(gh) ≤ ρ(g) + ρ(h−1), when defined.

It is a norm if ρ(g) = 0 implies g ∈ B.
A norm ρ is compatible with a topology on G if it is continuous, and the sets

{ρ < r} =
{

g ∈ G : ρ(g) < r
}

,

for r > 0, form a basis of neighbourhoods for B.

The axioms of a semi-norm imply that ρ(h) = ρ(h−1).

Corollary 3.8. The correspondence of Proposition 3.5 restricts to a one-to-one correspondence between definable distances
d on D and compatible norms on G = GD(T).

Proof. Let d be a definable distance on D× D and ρd the corresponding UCC function on G. Then ρd is clearly
a continuous norm, and it is a compatible norm by Lemma 3.3(iii).

The converse is more delicate. Let ρ be a compatible norm. Then it is continuous, and it is easy to see that
every continuous semi-norm is UCC, so ρ = ϕG (in the notations of Proposition 3.5) for some formula ϕ(x, y).
If a, b, c ∈ D all code the same separable model, then ϕ(a, a) = 0 and ϕ(a, b) ≤ ϕ(a, c) + ϕ(b, c). The set of
types of such triplets is dense in SD×D×D(T), by the density property, so the same holds throughout and ϕ
defines a pseudo-distance.

It is left to show that ϕ defines a distance (and not merely a pseudo-distance). Let d be any definable distance
on D, say the one distinguished in the language. We already know that ρd is a compatible norm. Therefore,
for every ε > 0 there exists δ > 0 such that {ρ < δ} ⊆ {ρd < ε}. As in the previous paragraph, this means that
the (closed) condition ϕ(a, b) < δ =⇒ d(a, b) ≤ ε holds on a dense set of types, and therefore throughout. In
particular, if ϕ(a, b) = 0, then a = b, and the proof is complete. �

Let T be a theory, D a coding sort for T, and G = GD(T). Then from G, given as a topological groupoid, we
can essentially recover the language LD and the theory T2D, as follows.

(i) We choose, arbitrarily, a compatible norm ρ on G (which exists, by Corollary 3.8).
(ii) We let LG consists of a single sort, also named D, together with a binary predicate symbol Pψ for each

UCC function ψ on G. We know that ψ is bounded (Corollary 3.6), and we impose the same bound
on Pψ. We also know that for every ε > 0 there exists a neighbourhood U of B such that h ∈ UgU
implies |ψ(g)− ψ(h)| < ε, and since ρ is compatible, there exists δ = δψ(ε) > 0 such that the same
holds when U = {ρ < δ}. We then impose the corresponding modulus of uniform continuity on Pψ,
namely, requiring that

d(x, x′) ∨ d(y, y′) < δψ(ε) =⇒ |Pψ(x, y)− Pψ(x′, y′)| ≤ ε.

We also use the bound on ρ as bound on the distance predicate.
(iii) Let us fix e ∈ B, and consider the set

eG = {g ∈ G : tg = e}.

If g, h ∈ eG, then g−1h is defined, and for any UCC ψ we let:

Pψ(g, h) = ψ(g−1h).

In particular, d(g, h) = Pρ(g, h) = ρ(g−1h) is a distance function on eG.
Assume now that g′, h′ ∈ eG as well, and d(g, g′) ∨ d(h, h′) < δ = δψ(ε). Let u = g′−1g and

v = h−1h′. Then g′−1h′ = ug−1hv, and u, v ∈ {ρ < δ}, so indeed

|Pψ(g, h)− Pψ(g′, h′)| ≤ ε,

as required. The bounds are also respected, so eG, equipped with the distance and interpretations of
Pψ, is an LG-pre-structure, and its completion êG is an LG-structure.

(iv) We define TG as the theory of the collection of all LG-structures of this form:

TG = ThLG

(
êG : e ∈ B

)
.

By “essentially recover”, we mean the following.
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Theorem 3.9. Let T be a theory, D a coding sort for T, and G = GD(T). Let LG and TG be constructed as in the
preceding discussion. Then TG and T2D are one and the same, up to renaming the binary predicate symbols, and up to an
arbitrary choice of the distance on the sort D (from among all definable distances).

In particular, this procedure allows us to recover from G a theory TG that is bi-interpretable with T.

Proof. By Corollary 3.8, step (i) consists exactly of choosing a definable distance d on D, and the corresponding
norm ρ = dG. This choice is irremediably arbitrary. By Proposition 3.5, in step (ii) there is a natural bijection
between symbols of LD (corresponding to formulas ϕ(x, y) on D× D, up to equivalence) and symbols of LG:
to ϕ we associate the UCC function ψϕ = ϕG, to which in turn we associate the symbol Pψϕ .

Finally, let M � T be separable, let a ∈ D(M) be a code for M, and let e = tp(a) ∈ B. Let D(M)1 denote the
set of b ∈ D(M) that also code M. If b ∈ D(M)1, then gb = tp(a, b) ∈ eG. Moreover, if b, c ∈ D(M)1 and ϕ is a
formula on D× D, then tp(b, c) = g−1

b gc ∈ G, so

ϕ(b, c) = ψϕ(g−1
b gc) = Pψϕ(gb, gc).

In particular, d(b, c) = d(gb, gc) (where the first is the distance we chose on D, and the second the distance
we defined on eG in step (iii)). Thus, up to representing ϕ by the symbol Pψϕ , the map b 7→ gb defines an
isomorphism of the LD-pre-structure D(M)1 with the LG-pre-structure eG. This extends to an isomorphism
of the respective completions: D(M) ≃ êG.

It follows that, up to this change of language (and choice of distance), the theory TG defined in step (iv) is
the theory of all separable models of T2D. Since T is in a countable language, T2D is in a “separable language”,
so it is equal to the theory of all its separable models.

By Proposition 2.6, T is bi-interpretable with T2D, and therefore also with TG. �

Having achieved this, we are ready to start producing reconstruction theorems: all we need is a coding sort
that only depends (up to definable bijection) on the bi-interpretation class of T.

Example 3.10. Let T be an ℵ0-categorical theory. Let M be its unique separable model, and let a be any sequence
(possibly infinite, but countable), in any sort or sorts, such that dcl(a) = dcl(M) (for example, any dense
sequence will do). Let DT,0 be the set of realisations of p = tp(a). Since T is ℵ0-categorical, DT,0 is a definable
set, i.e., a sort. It is easy to check that it is a coding sort (with no exceptional set).

If b is another code for M, and D′T,0 is the set of realisations of tp(b), then dcl(a) = dcl(b) and tp(a, b) defines
the graph of a definable bijection DT,0 ≃ D′T,0. Therefore, DT,0 does not depend on the choice of a. Moreover,
assume that T′ is an interpretational expansion of T. Then it has a model M′ that expands M accordingly. But
then dcl(M′) = dcl(M) = dcl(a) (as calculated when working in T′), so DT′,0 = DT,0. It follows that DT,0 only
depend on the bi-interpretation class of T.

Since SDT,0(T) = {p} is a singleton, the groupoid

G(T) = GDT,0 (T)

is in fact a group. It only depends on the bi-interpretation class of T (since DT,0 only depends on it) and by
Theorem 3.9, it is a complete bi-interpretation invariant for T.

We leave it to the reader to check that

G(T) ≃ Aut(M),

and that the reconstruction result is just a complicated restatement of those of [AZ86, BK16].

Example 3.11. Let T be a theory in classical logic. In [Ben], using an arbitrary parameter Φ, we gave an explicit
construction of a set of infinite sequences DΦ. We showed that it is a definable set in the sense of continuous
logic, and that its interpretation in models of T only depend on the bi-interpretation class of T (up to a definable
bijection). It also follows from what we showed that it is a coding sort (without exceptional set). Since it is
unique, let us denote it by DT (in fact, we could also just denote it by D: its construction only depends on
the language, and then we simply restrict our consideration of it to models of T). We then proved that the
groupoid

G(T) = GDT
(T)

is a complete bi-interpretation invariant for T. This is a special case of Theorem 3.9.

Example 3.12. Let T be a (complete) theory in continuous logic. In [Ben] we defined when a sort DT is a universal
Skolem sort, and proved that if such a sort exists, then it is unique, and only depends on the bi-interpretation
class of T (in contrast with the previous example, here we do not have a general construction for such a sort,
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let alone a uniform one, so it really does depend on T). We proved that if T admits a universal Skolem sort DT,
then

G(T) = GDT
(T)

is a complete bi-interpretation invariant for T.
Again, we also proved that DT is a coding sort, so this is a special case of Theorem 3.9.

Remark 3.13. Example 3.12 encompasses the two previous examples in the following sense.
• If T is classical, then the sort DT of Example 3.11 is a universal Skolem sort, so Example 3.11 is a special

case of Example 3.12.
• If T is ℵ0-categorical, then DT = DT,0× 2N is a universal Skolem sort, so

G(T) ≃ 2N × G(T)× 2N, with groupoid law (α, g, β) · (β, h, γ) = (α, gh, γ),

and conversely,

e ∈ B(T) =⇒ G(T) ≃ eG(T)e.

Therefore, the reconstruction of Example 3.10 can be recovered from a special case of Example 3.12.

In both Example 3.11 and Example 3.12, the basis SDT
(T) is homeomorphic to the Cantor space 2N.

However, in [Ben] we also gave an example of a continuous theory which does not admit a universal Skolem
sort. In particular, the explicit construction of DT as DΦ in the case of a classical theory simply does not
extend, as is, to continuous logic. The rest of this article is dedicated to presenting a modified version of this
construction, giving rise to a coding sort that does have an exceptional set (a very simple one, consisting of a
single point), allowing us to prove a reconstruction theorem for every first order theory in a countable language
(in continuous logic, or classical one).

4. STAR SPACES

Definition 4.1. A retraction set is a set X equipped with an action of the multiplicative monoid [0, 1]. In partic-
ular, 1 · x = x for all x ∈ X, and α(βx) = (αβ)x (so this is a little stronger than a homotopy).

It is a star set if 0 · x does not depend on X. We then denote this common value by 0 ∈ X, and call it the root
of X.

A topological retraction (star) space is one equipped with a topology making the action [0, 1]× X → X con-
tinuous.

A metric retraction (star) space is one equipped with a distance function satisfying d(αx, αy) ≤ αd(x, y). If it
is a star space, then we denote d(x, 0) by ‖x‖.

Notice that a retraction set X can be fibred over 0 · X, with each fibre a star set.

Example 4.2. The real half line R+ is naturally a topological and metric star space. The interval [0, 1] (or [0, r]
for any r > 0) is a compact topological and bounded metric star space.

Example 4.3. If X and Y are two star sets, then X × Y, equipped with the diagonal action α(x, y) = (αx, αy), is
again a star set. If both are metric star spaces, then equipping the product with the sum or maximum distance
makes it a metric star space as well.

Example 4.4. Let X be a set, and equip [0, 1]× X with the equivalence relation

(α, x) ∼ (β, y) ⇐⇒ (α, x) = (β, y) or α = β = 0.

The cone of X is the quotient space

∗X =
(
[0, 1]× X

)
/∼.

A member of ∗X will be denoted [α, x]. We equip it with the action α · [β, x] = [αβ, x]. This makes it a star set,
with [0, x] = 0 regardless of x.

We shall tend to identify x ∈ X with [1, x] ∈ ∗X, so [α, x] may also be denoted by αx.
When X is a compact Hausdorff space, the relation∼ is closed, ∗X is again compact and Hausdorff, and the

identification X ⊆ ∗X is a topological embedding. When X is a bounded metric space, say diam(X) ≤ 2, we
propose to metrise ∗X by

d(αx, βy) = |α− β|+ (α ∧ β)d(x, y).(2)

In particular, if either α or β vanishes, then the right hand side does not depend on either x or y, so d is well
defined.
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The only property that is not entirely obvious is the triangle inequality, namely

|α− γ|+ (α ∧ γ)d(x, z) ≤ |α− β|+ (α ∧ β)d(x, y) + |β− γ|+ (β ∧ γ)d(y, z).(3)

We may assume that α ≥ γ, so α ∧ γ = γ. If β ≥ γ, then (3) holds trivially since α ∧ β ≥ γ = β ∧ γ. If β ≤ γ,
then the right hand side evaluates to

(α− γ) + 2(γ− β) + βd(x, y) + βd(y, z).

Applying the triangle inequality for X and the hypothesis that 2 ≥ d(x, z), we obtain (3) in this case as well.
We conclude that (∗X, d) is a metric space. The embedding X ⊆ ∗X is isometric, and diam(∗X) = 1 ∨

diam(X). If X is complete, then so is ∗X.
A special instance of this is the cone of a singleton, which can be identified with the interval [0, 1] equipped

with the natural star, topological or metric structures.

Example 4.5. More generally, let S be a star set, X an arbitrary set, and define

(s, x) ∼ (t, y) ⇐⇒ (s, x) = (t, y) or s = t = 0,

S ∗ X =
(
S× X

)
/∼.

As in the definition of a cone, a member of S ∗ X will be denoted [s, x] or s ∗ x (in analogy with the notation
αx). We make S ∗ X into a star set by defining α · (s ∗ x) = (αs) ∗ x.

This indeed generalises the cone construction, with ∗X = [0, 1] ∗ X.
When S and X are compact Hausdorff spaces, the relation ∼ is closed, and S ∗ X is again compact and

Hausdorff. When S and X are bounded metric spaces, say diam(X) ≤ 2 and ‖s‖ ≤ 1 for all s ∈ S, we equip
S ∗ X with the distance function

d(s ∗ x, t ∗ y) = d(s, t) ∨ d
(
‖s‖x, ‖t‖y

)
,

where the second distance is calculated in ∗X. Notice that ‖s ∗ x‖ = ‖s‖, and the distance functions on [0, 1] ∗X
and ∗X agree.

Definition 4.6. Let X and Y be two retraction (star) spaces. A map f : X → Y is homogeneous if f (αx) = α f (x).
It is sub-homogeneous if f (αx) = β f (x) for some β ≤ α.

The latter will be mostly used when Y = R+, in which sub-homogeneity becomes f (αx) ≤ α f (x).

We may also equip a retraction space with a partial order defined by αx ≤ x whenever α ∈ [0, 1]. This
induces the usual partial order on R+, and sub-homogeneity can be stated as f (αx) ≤ α f (x) for arbitrary
maps between retraction spaces. Notice also that our definition of a metric retraction space X simply requires
the distance function to be sub-homogeneous on X× X.

5. STAR SORTS

Definition 5.1. A star sort is a sort equipped with a definable structure of a metric star space. Star sorts will
usually be denoted by D∗, E∗, and so on.

Definition 5.2. Let D∗ be a star sort and ϕ(u, y) a formula on D∗ × E. We say that ϕ is sub-homogeneous if it
satisfies αϕ(u, y) ≥ ϕ(αu, y) ≥ 0.

We may specify that it is sub-homogeneous in the variable u, especially if u is not the first variable. More
generally, we may say that ϕ(u, v, . . .) is sub-homogeneous in (u, v) if αϕ(u, v, . . .) ≥ ϕ(αu, αv, . . .) ≥ 0, and
similarly for any other tuple of variables.

If it is sub-homogeneous in the tuple of all its variables, we just say that ϕ is jointly sub-homogeneous.

Example 5.3. • If D is any sort (of diameter at most two), then the cone ∗D, equipped with the distance
proposed in Example 4.4, is a star sort. More generally, if D∗ is a star sort and E an arbitrary sort, then
D∗ ∗ E, as per Example 4.5, is a star sort.

• Any finite product of star sorts, equipped with the diagonal action of [0, 1] and the maximum or sum
distance, is again a star sort. Similarly, any countable product of star sorts, equipped with d(u, v) =

∑n
dn(un,vn)

2n diam(dn)
, is again a star sort, and the same holds with supremum in place of sum.

• If D∗ is a star sort and d′(u, v) a jointly sub-homogeneous definable pseudo-distance on D∗, then the
quotient (D∗, d′) can be equipped with an induced star structure, making it again a star sort.
• Let D∗ be a star sort and E∗ ⊆ D∗ a definable subset. Then the distance d(u, E∗) is sub-homogeneous

if and only if E∗ is closed under multiplication by α ∈ [0, 1], in which case E∗ is again a star sort.
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Notice that ϕ(u, y) is sub-homogeneous in u if for every fixed parameter b, the formula ϕ(u, b) (in u alone)
is sub-homogeneous.

For an alternate point of view, notice that a sub-homogeneous formula ϕ(u, y) does not depend on y when
u = 0. It can therefore be viewed as a formula ϕ(u ∗ y) in the sort D∗ ∗ E (see Example 4.5). Since α(u ∗ y) =
(αu) ∗ y, a sub-homogeneous (in u) formula ϕ(u, y) is the same thing as a sub-homogeneous formula ϕ(u ∗ y)
in a single variable from the sort D∗ ∗ E.

Similarly, a formula ϕ(u, v) on D∗ × E∗ is jointly sub-homogeneous if and only if it is sub-homogeneous as
a formula on the product star sort.

Question 5.4. We ordered the clauses of Example 5.3 in order to reflect the three operations by which we
construct sorts in general. Still, something more probably needs to be said regarding the construction of sub-
homogeneous pseudo-distance functions. In the usual context of plain sorts (and plain pseudo-distances), to
every formula ϕ(x, t) on D× E we can associate a formula on D× D, defined by

dϕ(x, y) = sup
t
|ϕ(x, t)− ϕ(y, t)|.

This is always a definable pseudo-distance on D. Moreover, in the case where E = D and ϕ already defines a
pseudo-distance, dϕ agrees with ϕ.

Can something analogous be done in the present context as well?

The following essentially asserts that we can retract continuously (with Lipschitz constant one, even) all
formulas into sub-homogeneous ones. The analogous result for a formula in several variables, with respect to
joint sub-homogeneity in some of them, follows.

Proposition 5.5. Let D∗ be a star sort and ϕ(u, y) ≥ 0 a positive formula on D∗ × E. For k ∈ N, define

(SHk ϕ)(u, y) = inf
u′,α

(
αϕ(u′, y) + kd(αu′, u)

)
, where u′ ∈ D∗, α ∈ [0, 1].

(i) For any ϕ ≥ 0 and k, the formula (SHk ϕ)(u, y) is k-Lipschitz and sub-homogeneous in u, and SHk ϕ ≤ ϕ.
(ii) For any two formulas ϕ, ψ ≥ 0 and r ≥ 0, if ϕ ≤ ψ + r, then SHk ϕ ≤ (SHk ψ) + r. Consequently,
|(SHk ϕ)− (SHk ψ)| ≤ |ϕ− ψ|.

(iii) If ϕ is sub-homogeneous, then (SHk ϕ) → ϕ uniformly, at a rate that only depends on the bound and uniform
continuity modulus of ϕ.

Proof. Clearly, (SHk ϕ)(u, y) is k-Lipschitz in u. If (SHk ϕ)(u, y) < r and β ∈ [0, 1], then there exist u′ and α
such that αϕ(u′, y) + d(αu′, u) < r. Then αβϕ(u′, y) + d(αβu′, βu) < βr, showing that (SHk ϕ)(βu) < βr. This
proves sub-homogeneity. We also always have (SHk ϕ)(u, y) ≤ 1 · ϕ(u, y) + d(1 · u, u) = ϕ(u, y).

The second item is immediate.
For the third item, we assume that ϕ is sub-homogeneous, in which case

(SHk ϕ)(u, y) = inf
u′

(
ϕ(u′, y) + kd(u′, u)

)
≤ ϕ(u).

Say that |ϕ| ≤ M and d(u, u′) < δ implies |ϕ(u, y)− ϕ(u′, y)| < ε, and let k > 2M/δ. If d(u′, u) ≥ δ, then
ϕ(u′, y) + kd(u′, u) ≥ ϕ(u), so such u′ may be ignored. Restricting to those where d(u′, u) < δ, we see that
(SHk ϕ) ≥ ϕ− ε. �

Definition 5.6. We say that a formula ϕ(x, y) is witness-normalised (in x, unless another variable is specified
explicitly) if infy ϕ = 0 (equivalently, if ϕ ≥ 0 and supx infy ϕ = 0).

More generally, for ε > 0, we say that ϕ(x, y) is ε-witness-normalised (in x) if 0 ≤ infy ϕ ≤ ε.

Witness-normalised formulas are analogous to formulas ϕ(x, y) in classical logic for which ∃yϕ is valid:
in either case, we require that witnesses exist. If ϕ(x, y) is any formula, then ϕ(x, y)− infz ϕ(x, z) is witness-
normalised (we may say that it is syntactically witness normalised), where we subtract a “normalising” term.

By definition, a sub-homogeneous or a witness-normalised formula is positive. If ϕ is witness-normalised in
any of its arguments and ϕ ≥ ψ ≥ 0, then so is ψ. This applies in particular to the formulas SHk ϕ constructed
in Proposition 5.5, assuming ϕ is witness-normalised.

Definition 5.7. Let D∗ and E∗ be two star sorts. A star correspondence between D∗ and E∗ is a formula ϕ(u, v)
on D∗ × E∗ that is sub-homogeneous in (u, v) and witness-normalised in each of u and v.

Similarly, an ε-star correspondence is a jointly sub-homogeneous formula that is ε-witness-normalised in each
argument.



STAR SORTS, LELEK FANS, AND THE RECONSTRUCTION OF NON-ℵ0-CATEGORICAL THEORIES IN CONTINUOUS LOGIC 15

Remark 5.8. If ϕ is ε-witness-normalised (in one of its variables), then ϕ′ = ϕ−. ε is witness-normalised (in the
same), and |ϕ− ϕ′| ≤ ε. If ϕ is sub-homogeneous, then so is ϕ−. ε,

Therefore, if ϕ is an ε-star correspondence, then ϕ′ = ϕ−. ε is a star correspondence, and |ϕ− ϕ′| ≤ ε.

Say that a definable map σ : D → E is densely surjective if it is surjective in every sufficiently saturated
model of the ambient theory, or equivalently, if σ has dense image in every model. Recall that a definable map
σ : D∗ → E∗ between star sorts is homogeneous if σ(αu) = ασ(u).

Notice that a definable map σ : D∗ → E∗ is homogeneous if and only if the formula d(σu, v) is sub-
homogeneous in (u, v), if and only if it is homogeneous, and it is always witness-normalised in u. If σ is
bijective, then it is homogeneous if and only if d(σu, v) is a star correspondence, if and only if d(u, σ−1v) is.

Definition 5.9. Say that a star sort D∗ is universal (as a star sort) if for every star sort E∗, every star correspond-
ence ϕ between D∗ and E∗, and every ε > 0, there exists a 1/2-star correspondence ψ such that, in addition, if
ψ(u, vi) < 1 for i = 0, 1, then ϕ(u, vi) < ε and d(v0, v1) < ε.

The choice of one and one half is quite arbitrary, and any two constants 0 < r1 < r2 would do just as well
(in the proof of Proposition 5.10(i) below, replace 2ψ−. 1 with (ψ−. r1)/(r2 − r1)).

Proposition 5.10. Let D∗ and E∗ be star sorts, ϕ(u, v) a star correspondence on D∗ × E∗, and ε > 0.

(i) If D∗ is a universal star sort, then there exists ψ as in Definition 5.9 that is a star correspondence (rather than
a mere ε-star correspondence).

(ii) If D∗ is a universal star sort, then there exists a densely surjective homogeneous definable map σ : D∗ → E∗

such that ϕ(u, σu) ≤ ε.
(iii) If both D∗ and E∗ are both universal star sorts, then the same can be achieved with σ bijective.

Proof. For (i), let ψ be as in the conclusion of Definition 5.9. Then 2ψ−. 1 will do.
For (ii), define a sequence of formulas ϕn(u, v) as follows. We start with ϕ0 = ϕ, and we may assume that

0 < ε < 1. Then, assuming that ϕn is a star correspondence, we find a star correspondence ϕn+1 such that
ϕn+1(u, vi) < 1 implies ϕn(u, vi) ≤ ε and d(v0, v1) < ε/2n. Let Xn ⊆ D∗ × E∗ be the (type-definable) set
defined by ϕn ≤ ε and X =

⋂
Xn. By hypothesis, for every u ∈ D∗ and n, there exists v ∈ E∗ such that

(u, v) ∈ Xn. We also have Xn+1 ⊆ Xn, so in a sufficiently saturated model there exists v ∈ E∗ such that
(u, v) ∈ X. By the second hypothesis on ϕn, such v is unique, so X is the graph of a definable map σ (and v
belongs to any model that contains u). By the same reasoning as above, for every v ∈ E∗ there exists u ∈ D∗

(not necessarily unique, so potentially only in a sufficiently saturated model) such that (u, v) ∈ X, so σ is
densely surjective.

Assume now that v = σu, i.e., (u, v) ∈ X. Since each ϕn is sub-homogeneous, (αu, αv) ∈ X for every
α ∈ [0, 1], i.e., αv = σ(αu), and σ is homogeneous. Finally, since ϕ0 = ϕ, we have (u, σu) ∈ X ⊆ X0, so
ϕ(u, σu) ≤ ε.

For (iii) we argue in the same fashion, exchanging the roles of D∗ and E∗ at odd steps. �

In particular, if a universal star sort exists, then it is unique, up to a homogeneous definable bijection.

Lemma 5.11. Let (D∗n) be an inverse system of star sorts, where each πn : D∗n+1 → D∗n is surjective and homogeneous.

(i) The inverse limit D∗ = lim
←−

D∗n is a star sort, with the natural action α(un) = (αun) and the distance proposed
in Example 5.3.

(ii) A star correspondence between D∗ and E∗ that factors through D∗n× E∗ is the same thing as a star correspond-
ence between D∗n and E∗.

(iii) In order for D∗ to be a universal star sort, it is enough for it to satisfy the condition of Definition 5.9 for
star-correspondences ϕ that factor through D∗n × E∗ for some n.

Proof. The first two assertions are fairly evident. In what follows, we are going to identify a formula ϕ(un, v)
on D∗n × E∗ with the formula ϕ

(
πn(u), v

)
on D∗ × E∗, which is essentially what the second point says.

For the last one, say that ϕ is a star correspondence between D∗ and E∗, and let ε > 0. For n large enough we
may find a formula ϕ1(un, v) on D∗n× E∗ such that ϕ ≥ ϕ1 ≥ ϕ−. ε (with the identification proposed in the pre-
vious paragraph). Both ϕ and ϕ−. ε are jointly sub-homogeneous, so using the construction of Proposition 5.5,
for large enough k we have

ϕ ≥ SHk ϕ ≥ SHk ϕ1 ≥ SHk(ϕ−. ε) ≥ ϕ−. 2ε.

Since ϕ′ = SHk ϕ1 is jointly sub-homogeneous, it a star correspondence, and it factors through D∗n × E∗. As-
sume now that ψ(u, v) exists, as per Definition 5.9, for ϕ′ and ε. In particular, if ψ(u, v) < 1, then ϕ′(u, v) < ε,
so ϕ(u, v) < 3ε, which is good enough. �
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6. SORTS WITH WITNESSES

In this section, we provide an explicit construction of a universal star sort. We follow a path similar to the
construction of DΦ in [Ben], seeking a sort that contains “all witnesses”.

Let us consider first the case of a single formula ϕ(x, y) on D×E, which we assume to be witness-normalised
(namely, such that infy ϕ = 0, see Definition 5.6). The sort D is viewed as the sort of parameters, and E is the
sort of potential witnesses. One may then wish to consider the set of “parameters with witnesses”, namely the
collection of all pairs (x, y) such that ϕ(x, y) = 0, but this may be problematic for several reasons.

First of all, in a fixed (non-saturated) structure, for all a there exist b such that ϕ(a, b) is arbitrarily small, but
not necessarily such that ϕ(a, b) = 0. This can be overcome by allowing an error, e.g., by considering all the
solution set of ϕ(x, y) ≤ ε for some ε > 0. In fact, it is enough to consider the solution set of ϕ(x, y) ≤ 1: if we
want a smaller error, we need only replace ϕ with ϕ/ε.

A second, and more serious issue, is that the resulting set(s) need not be definable. That is to say that it may
happen that 1 < ϕ(a, b) < 1 + ε for arbitrarily small ε > 0 without there existing a pair (a′, b′) close to (a, b)
such that ϕ(a′, b′) ≤ 1. We can solve this by allowing a variable error, considering triplets (r, x, y) where r ∈ R
and ϕ(x, y) ≤ r. Now, if ϕ(x, y) < r + ε, then the triplet (r, x, y) is very close to (r + ε, x, y), which does belong
to our set.

This may seem too easy, and raises some new issues. For example, if we allow errors greater than the bound
for ϕ, then the condition ϕ(x, y) ≤ r becomes vacuous. This is not, in fact, a real problem, since soon enough
we are going to let ϕ vary (or more precisely, consider an infinite family of formulas simultaneously), and
any finite bound r will be meaningful for some of the formulas under consideration. However, in order for
the previous argument to work, r cannot be bounded (we must always be able to replace it with r + ε). By
compactness, r = +∞ must be allowed as well – and now there is no way around the fact that ϕ(x, y) ≤ ∞ is
vacuous, regardless of ϕ.

We seem to be chasing our own tail, each time shovelling the difficulty underneath a different rug – indeed,
a complete solution is impossible, or else we could construct a universal Skolem sort, which was shown in
[Ben] to be impossible in general. What we propose here is a “second best”: allow infinite error, but use the
formalism of star sorts to identify all instances with infinite error as the distinguished root element. Thus, at
the root, all information regarding the (meaningless) witnesses will be lost, while every point outside the root
will involve finite error, and therefore meaningful witnesses. Since we want the root to be at zero, rather than
at infinity, we replace r ∈ [1, ∞] with α = 1/r ∈ [0, 1].

Let D∗ be a star sort, E a sort. The set D∗ ∗ E = {u ∗ y : u ∈ D∗, y ∈ E}, as per Example 4.5, is again a star
sort, in which 0 ∗ y = 0 regardless of y.

Lemma 6.1. Let D∗ be a star sort, E a sort, and let ϕ(u, y) a formula on D∗ × E, witness-normalised and sub-
homogeneous in u. Then

D∗ϕ =
{

u ∗ y : u ∈ D∗ and ϕ(u, y) ≤ 1
}
⊆ D∗ ∗ E

is again a star sort, and the natural projection map D∗ϕ → D∗, sending u ∗ y 7→ u, is surjective.

Proof. We may view ϕ as a formula on D∗ ∗ E, since, by sub-homogeneity, ϕ(0, y) = 0 regardless of y. The set
D∗ϕ is the zero-set in D∗ ∗ E of the formula ϕ−. 1. Assume now that a ∗ b ∈ D∗ ∗ E and ϕ(a, b)−. 1 < δ. Then
(1− δ)a ∗ b ∈ D∗ϕ, and it is as close as desired (given δ small enough) to a ∗ b. Therefore, D∗ϕ is definable. Since
ϕ is sub-homogeneous, D∗ϕ is closed under multiplication by α ∈ [0, 1] and is therefore a star sort. Since ϕ is
witness-normalised, the projection is onto. �

Let us iterate this construction. For this, notice that if D is a sort, then (∗D) ∗ E = ∗(D × E), identifying
(αx) ∗ y = α(x, y). Therefore, if D∗ ⊆ ∗D (with the induced star structure), then D∗ ∗ E ⊆ ∗(D× E).

Definition 6.2. Fix a sort D, as well as a sequence of formulas Φ = (ϕn), where each ϕn(x<n, y) is a witness-
normalised formula on Dn × D. Since Φ determines the sort D, we shall say that Φ is a sequence on D. We
then define

D∗n =
{

αx<n : αϕ(x<k, xk) ≤ 1 for all k < n
}
⊆ ∗(Dn),

D∗Φ =
{

αx : αϕ(x<n, xn) ≤ 1 for all n
}
⊆ ∗(DN).

In other words,

D∗0 = [0, 1] = ∗(singleton), D∗n+1 = (D∗n)ϕ′n
, D∗Φ = lim

←−
D∗n,

where ϕ′n(αx<n, y) = αϕ(x<n, y). By Lemma 6.1, each D∗n is a star sort, and the natural projection D∗n+1 → D∗n
is onto. By Lemma 1.5, D∗Φ = lim

←−
D∗n is also a sort, and therefore a star sort.
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Notice that any formula in D∗n can be viewed, implicitly, as a formula in D∗k for any k ≥ n, or even in D∗Φ, via
the projections D∗k ։ D∗n or D∗Φ ։ D∗n (this is, essentially, an addition of dummy variables). In what follows,
variables in D∗n will be denoted by un or αx<n (where x<n ∈ Dn), and similarly, variables in D∗Φ will be denoted
by u or αx.

Definition 6.3. We say that the sequence Φ is rich if D admits a definable projection onto any countable product
of basic sorts, and for every witness-normalised formula ϕ(x<n, y) in Dn × D and every ε > 0 there exist
arbitrarily big k ≥ n such that |ϕk(x<k, y)− ϕ(x<n, y)| < ε (so ϕ is viewed as a formula in x<k, y through the
addition of dummy variables).

With our standing hypothesis that the language is countable, with countably many basic sorts, it is fairly
easy to construct a rich sequence. In particular, for D we may take the (countable) product of all infinite
countable powers of the basic sorts. We may even do this in a uniform manner, irrespective of the ambient
theory T, by considering only formulas of the form ϕ(x<n, y) − infz ϕ(x<n, z) (we may call such formulas
syntactically witness normalised).

Let Φ = (ϕn) (and D) be fixed, with Φ rich. We define a formula on Dn by

ρn(x<n) =
1

1 ∨
∨

k<n ϕk(x<k, xk)
.

In other words, ρn(x<n) is the maximal α ∈ [0, 1] such that αx<n ∈ D∗n, or equivalently, such that x<n can be
extended to x with αx ∈ D∗Φ.

Lemma 6.4. Let Φ = (ϕn) be rich. Let E∗ be another star sort, ψ(un, v) a star correspondence on D∗Φ× E∗ that factors
through D∗n× E∗, and ε > 0. Then ψ factors through D∗k × E∗ for every k ≥ n, and for every large enough k the formula

ψk
1(x<k, v) = ψ

(
ρk(x<k)x<n, v

)
is ε-witness-normalised in either argument.

Proof. If k ≥ n, then ρk(x<k) ≤ ρn(x<n), so ρk(x<k)x<n ∈ D∗n. Since ψ(un, v) is witness-normalised in un,
ψk

1(x<k, v) is in x<k. It is left to show that for k large enough, it is also ε-witness-normalised in v.
Our hypothesis regarding D implies, among other things, that there exists a surjective definable map

χ : D → [0, 1] (namely, a surjective formula). Therefore, for a constant C that we shall choose later, there
exists m ≥ n such that Cχ(y) ≥ ϕm(x<m, y) ≥ Cχ(y)− 1/C.

Assume that k > m. For every possible value of v ∈ E∗, which we consider as fixed, there exists αx<n ∈ D∗n
such that ψ(αx<n, v) < ε. We can always extend x<n to x<m in such a manner that ρm(x<m) = ρn(x<n) ≥ α, so
αx<m ∈ D∗m. We choose xm so χ(xm) = (αC ∨ 1)−1, and extend x≤m to x<k so ρk(x<k) = ρm+1(x≤m).

If αC ≥ 1, then 1/α ≥ ϕm(x<m, xm) ≥ 1/α− 1/C, so α ≤ ρm+1(x≤m) ≤ α(1− α/C)−1. Having chosen
C large enough, ρk(x<k) = ρm+1(x≤m) is as close to α as desired. If αC < 1, then 0 ≤ α ≤ 1/C and 0 <

ρk+1(x≤k) ≤ 1/(C− 1/C), so the same conclusion holds.
Either way, having chosen C large enough, ψk

1(x<k, v) is as close as desired to ψ(αx<n, v), and in particular
ψk

1(x<k, v) < 2ε, which is good enough. �

Given our hypothesis regarding D, every sort can be expressed as a definable subset of a quotient of D by a
pseudo-distance. Such a quotient will be denoted (D, d) (which includes an implicit step of identifying points
at d-distance zero).

Convention 6.5. From this point, and through the proof of Lemma 6.7, we fix a star sort E∗. By the preceding
remark, we may assume that (E∗, dE∗) ⊆ (D, d) isometrically, where d is a definable pseudo-distance on D

which we also fix. In particular, the distance on E∗ will also be denoted by d. If y ∈ D, we denote its image in
the quotient (D, d) by y.

It is worthwhile to point out that if αx ∈ D∗Φ, then for every k ∈ N and δ > 0,

(αδ/2)
(

ϕk(x<k, xk) + 1
)
= (δ/2)

(
αϕk(x<k, xk) + α

)
≤ δ.(4)

Given n ≤ k and δ > 0, let us define for αx ∈ D∗Φ, v ∈ E∗ and y ∈ D:

χn(αx, y, v) = inf
w∈E∗

[
d
(
αρn(x<n)

−1w, v
)
+ αd(y, w)

]
,

χn,k(αx, v) = χn(αx, xk, v) = inf
w∈E∗

[
d
(
αρn(x<n)

−1w, v
)
+ αd(xk, w)

]
.

Let us explain this. First of all, since αx ∈ D∗Φ, we must have α ≤ ρn(x<n), so the expression αρn(x<n)−1w
makes sense. Also, if α = 0, then χn(αx, y, v) = ‖v‖ does not depend on x, so this is well defined.



18 ITAÏ BEN YAACOV

Now, let y ∈ D (possibly, y = xk for some k ≥ n, but this will happen later). We want v to be equal to
αρn(x<n)−1y, and in particular, we want y to belong to E∗. We may not multiply by αρn(x<n)−1 outside E∗,
but we may quantify over E∗. Therefore, we ask for y to be very close to some w ∈ E∗, and for αρn(x<n)−1w,
which always makes sense, to be close to v.

Lemma 6.6. The formula χn,k(u, v) has the following properties:

(i) It is jointly sub-homogeneous in its arguments.

(ii) For every n, ε > 0 there exists δ = δ(n, ε) > 0 such that, if χn(u, y, vi) ≤ δ for i = 0, 1, then d(v0, v1) < ε.

In particular, for ant k, if χn,k(u, vi) ≤ δ for i = 0, 1, then d(v0, v1) < ε.

(iii) Assuming that ϕk(x<k, y) ≥ 2d(y, E∗)/δ− 1, the formula χn,k(u, v) is δ-witness-normalised in u.

Proof. Item (i) is immediate (among other things, we use the fact that d is sub-homogeneous on E∗).
For (ii), assume that χn(αx, y, vi) = 0. Then either α = 0, in which case vi = 0, or α > 0, in which case

we have y ∈ E∗ and vi = αρn(x<n)−1y. Either way, v0 = v1, and in particular d(v0, v1) < ε. The conclusion
follows by compactness.

For (iii), let u = αx ∈ D∗Φ. By (4) we have αd(xk, E∗) ≤ δ. Choose w ∈ E∗ such that αd(xk, w) ≤ δ, and let
v = αρn(x<n)−1w. Then χn,k(u, v) ≤ δ. �

Lemma 6.7. Let Φ = (ϕn) be rich. Let E∗ ⊆ (D, d) be a star sort, as per Convention 6.5, ψ(u, v) a star correspondence

on D∗Φ × E∗, and ε > 0. Then there exist n ≤ k and δ > 0 such that χn,k(u, v) is a δ-star correspondence between D∗Φ
and E∗, and in addition, if χn,k(u, vi) ≤ 2δ for i < 2, then ψ(u, vi) ≤ ε and d(v0, vi) < ε.

Proof. By Lemma 5.11 and Lemma 6.4, for some n (in fact, any n large enough), we may assume that ψ is
a star correspondence that factors as ψ(un, v) through D∗n × E∗, and that ψ1(x<n, v) = ψ

(
ρn(x<n)x<n, v

)
is

ε-witness-normalised in either argument. In particular, ψ1 −
. ε is witness-normalised.

We may extend ψ1 −
. ε to Dn × (D, d), obtaining a formula ψ2(x<n, y) on Dn × D, which is uniformly d-

continuous in y. Since ψ1 ≥ 0, we may assume that ψ2 ≥ 0, and even that

ψ2(x<n, y) ≥ d(y, E∗).

Let us choose δ > 0 small enough, based on choices made so far. Since ψ2(x<n, y) is witness-normalised
in x<n (choosing witnesses y ∈ E∗), there exists k ≥ n such that |ϕk − 2ψ2/δ| ≤ 1. By Lemma 6.6, having
chosen δ small enough, the formula χn,k(u, v) is jointly sub-homogeneous, δ-witness-normalised in u, and
χn,k(u, vi) ≤ 2δ implies d(v0, vi) < ε. There are two more properties we need to check.

First, we need to check that χn,k(u, v) is δ-witness-normalised in v. Indeed, given v = y ∈ E∗, we know that
there exists a sequence x<n ∈ Dn such that ψ1(x<n, v)−. ε = 0. Let α = ρn(x<n), so αx<n ∈ D∗n, and extend
the sequence x<n to x<k keeping αx<k ∈ D∗k . We now choose xk = y, so ψ2(x<n, xk) = 0 and ϕk(x<k, xk) ≤ 1.
Therefore, αx≤k ∈ D∗k+1, and we may complete the sequence to x ∈ DN such that αx ∈ D∗Φ. Then χn,k(αx, v) =
0, as witnessed by w = v (recalling that we chose α = ρn(x<n)).

Second, we need to check that, having chosen δ appropriately, χn,k(αx, v) ≤ 2δ implies ψ(αx, v) ≤ ε. Indeed,
following a path similar to the proof of Lemma 6.6(ii), assume that

χn(αx, y, v) = αψ2(x<n, y) = 0.

If α = 0, then v = 0 and ψ(αx, v) = ψ(0, 0) = 0. If α > 0, then y ∈ E∗, and v = αρn(x<n)−1y, and
ψ
(
ρn(x<n)x, y

)
−. ε = ψ2(x<n, y) = 0. Since (αx, v) = αρn(x<n)−1

(
ρn(x<n)x, y

)
, it follows that ψ(αx, v) ≤ ε

in this case as well. By compactness, for δ small enough, if χn(αx, y, v) ≤ 2δ and αψ2(x<n, y) ≤ δ, then
ψ(αx, v) < 2ε. This last argument does not depend on k, so we may assume that δ was chosen small enough
to begin with. By (4), the inequality αψ2(x<n, xk) ≤ δ is automatic when αx ∈ D∗Φ. If, in addition, we assume
that χn,k(αx, v) = χn(αx, xk, v) ≤ 2δ, then ψ(αx, v) < ε, completing the proof. �

Theorem 6.8. Let Φ be a rich sequence. Then D∗Φ is universal. In particular, a universal star sort exists.

Proof. Immediate from Lemma 6.7, using the formula 2χn,k/δ. �

7. FURTHER PROPERTIES OF THE UNIVERSAL STAR SORT

In Section 5 we showed that the universal star sort, if it exists, is unique up to a homogeneous definable
bijection, and in Section 6 we showed that one exists as D∗Φ for any rich sequence Φ. Let us prove a few
additional properties of this special sort.
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Convention 7.1. From now on, D∗ denotes any universal star sort. Since it is unique up to a homogeneous
definable bijection, multiplication by α ∈ [0, 1] is well defined regardless of the construction we choose for D∗.
In particular, its root is well defined.

Notice that we can construct it as D∗Φ in a manner that only depends on the language (and not on T): we
obtain a universal star sort for T simply by restricting our consideration of this sort to models of T.

The uniqueness of D∗ means that we may choose it to be D∗Φ for any rich Φ, and in particular, that we are
allowed some leverage in choosing a convenient sequence Φ, as in the proof of the following result.

Theorem 7.2. The universal star sort D∗ is a coding sort for T (see Definition 2.4), with the exceptional set being the
root D0 = {0}.

Proof. We may assume that D∗T = D∗Φ for some rich sequence Φ on a sort D, as per Definition 6.3. Let M � T
and αa ∈ D∗Φ(M)r {0}, and let N = dcl(αa) ⊆ M, necessarily a closed set (if M is multi-sorted, closed in
each sort separately). Then α 6= 0, and N = dcl(a). In order to show that N � M, it will suffice to show that
it satisfies the Tarski-Vaught criterion: for every formula ϕ(x, y), where x is in the sort DN and y in one of the
basic sorts,

inf
y

ϕ(a, y) = inf
b∈N

ϕ(a, b),

where the truth values are calculated in M. Since D projects, by hypothesis, onto any basic sort, we replace ϕ

with its pull-back and assume that it is a formula on DN × D. Replacing ϕ with ϕ(x, y)− infz ϕ(x, z), we may
assume that ϕ is witness-normalised and the left hand side vanishes. Then it is enough to show that for every
ε > 0 there exists b ∈ N such that ϕ(a, b) < ε, and replacing ϕ with an appropriate multiple, it is enough to
require ϕ(a, b) ≤ 1 + 1/α. Choosing n such that ϕn is a good-enough approximation of ϕ, it is enough to find
b ∈ D(N) such that ϕn(a<n, b) ≤ 1/α. For this, b = an will do. This proves the coding models property of
Definition 2.4.

For the density property, assume that M is separable, and let αa ∈ D(M). Assume first that α > 0. We may
freely assume that ϕk = 0 infinitely often. Let us fix n0, and define a sequence b ∈ DN as follows.

• We start with b<n0 = a<n0 .
• Having chosen b<k (for k ≥ n0) such that αb<k ∈ D∗k , we can always choose bk ∈ D(M) so αb≤k ∈

D∗k+1.
• If ϕk = 0, then we may choose any bk ∈ D(M) that we desire. Since this happens infinitely often, we

may ensure that dcl(b) = M.
In the end, αb ∈ D∗Φ and dcl(αb) = dcl(b) = M, so αb codes M. Taking n0 large enough, αb is as close as
desired to αa.

This argument shows, in particular, that there exists αa ∈ D(M) that codes M. Let αn = α/2n. Then
αna ∈ D(M) codes M for each n, and αna → 0, so the root can also be approximated by codes for M. �

Definition 7.3. Let T be any theory in a countable language, and D∗ its universal star sort. View it as a
coding sort, as per Theorem 7.2, with exceptional set D0 = {0}, and define the corresponding groupoid, as per
Definition 3.1:

G∗(T) = GD∗(T).

We already know that this is an open Polish topological groupoid, with basis B∗(T) ≃ SD∗(T).

Theorem 7.4. The groupoid G∗(T) is a complete bi-interpretation invariant for the class of theories in countable lan-
guages.

Proof. On the one hand, we have seen that D∗, and therefore G∗(T), only depends on the bi-interpretation
class of T. Conversely, by Theorem 3.9, a theory bi-interpretable with T (namely, the theory T2D∗ , up to some
arbitrary choices of definable distance and symbols for the language) can be recovered from G∗(T). �

Our last task is to calculate the basis SD∗(T) explicitly, and show how Theorem 7.4 extends previous results,
in a style similar to that of Remark 3.13.

Let us fix a rich sequence Φ on a sort D, so we may take D∗ = D∗Φ. We also fix a formula χ(y) on D that is
onto [0, 1]. Finally, we may assume that ϕn(x<n, y) = nχ(y) for infinitely many n.

Let X = SDN(T) and Y = SD∗
Φ
(T). We may identify S∗DN(T) with ∗X, identifying tp(αx) with α tp(x) (here

we need to assume that T is complete, so there exists a unique possible complete type for 0 ∈ D∗Φ). This
identifies Y with a subset of ∗X, namely that of all αp where p(x) implies that αx ∈ D∗Φ, or equivalently, such
that αϕn(p) ≤ 1 for all n.
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For α ∈ [0, 1], let

Xα = {p ∈ X : αp ∈ Y}.

In particular, X0 = X. Define ρ : X → [0, 1] by

ρ(p) = sup {α : αp ∈ Y} = sup {α : p ∈ Xα}.

Lemma 7.5. Let α > 0. Then for every p ∈ X we have α ≤ ρ(p) if and only if p ∈ Xα, and Xα is compact, totally
disconnected. In particular, ρ : X → [0, 1] is upper semi-continuous.

Proof. For the first assertion, it is enough to notice that by compactness, the supremum is attained, namely,
p ∈ Xρ(p). It follows that the condition ρ(p) ≥ α is equivalent to p ∈ Xα, so it is closed, and ρ is upper
semi-continuous.

Assume that αqi ∈ Y and q0 6= q1. Then for some finite n, there exists a formula ψ(x<n) that separates q0
from q1, say ψ(qi) = i. We may also find a [0, 1]-valued formula χ(y) on D that attains (at least) the values 0
and 1.

By Urysohn’s Lemma, there exists a formula ϕ(x<n, y) ≥ 0 such that

|ψ(x<n) + χ(y)− 1| ≥ 1/3 =⇒ ψ(x<n, y) = 0,

|ψ(x<n) + χ(y)− 1| ≤ 1/6 =⇒ ψ(x<n, y) = 17/α + 42.

Since the formula χ attains both 0 and 1, the formula ϕ(x<n, y) is witness-normalised, so there exists k ≥ n
with |ϕ− ϕk| ≤ 1.

Assume now that αp ∈ Y. Then ϕk(x<k, xk)
p ≤ 1/α, so ϕ(x<n, xk)

p ≤ 1/α + 1 < 17/α + 42 and |ψ(x<n) +
χ(xk)− 1| > 1/6. This splits the set Xα in two (cl)open sets, defined by ψ(x<n) + χ(xk) > 7/6 and ψ(x<n) +
χ(xk) < 5/6, respectively. Since χ is [0, 1]-valued, q0 must belong to the latter and q1 to the former, so they can
be separated in Xα by clopen sets, completing the proof. �

Lemma 7.6. The set X>0 =
{

p ∈ X : ρ(p) > 0
}
=

⋃
α>0 Xα is totally disconnected, admitting a countable family of

clopen sets (Un : n ∈ N) that separates points.

Proof. We may write X>0 as
⋃

k X2−k . Each X2−k is compact, totally disconnected, and it is metrisable by count-
ability of the language. Therefore, it admits a basis of clopen sets.

The inclusion X2−k ⊆ X2−k−1 is a topological embedding of compact totally disconnected spaces. Therefore,
if U ⊆ X2−k is clopen, then we may find a clopen U′ ⊆ X2−k−1 such that U′ ∩ X2−k = U. Proceeding in this
fashion, we may find a clopen U ⊆ X>0 such that U ∩ X2−k = U.

We can therefore produce a countable family of clopen sets (Un : n ∈ N) in X>0 such that for each k,(
Un ∩ X2−k : n ∈ N

)
is a basis of clopen sets for X2−k , and in particular separates points. It follows that (Un)

separates points in X>0. �

Given this family (Un), we may define a map θ0 : X>0 → 2N, where θ0(p)n = 0 if p ∈ Un and θ0(p)n = 1
otherwise. It is continuous by definition, and injective since the sequence (Un) separates points. If αp ∈ Y,
then either α = 0 or p ∈ X>0 (or possibly both), and we may define

θ(αp) = αθ0(p) ∈ ∗2N,

where θ(0) = θ(0 · p) = 0 regardless of p. It is clearly continuous at 0, and at every point of Y (since θ0 is
continuous). It is also injective on Y. Since Y is compact, θ : Y → ∗2N is a topological embedding.

Lemma 7.7. The set of ρ(p)p for p ∈ X>0 is dense in Y.

Proof. We already know that ρ(p)p ∈ Y. Assume now that U ⊆ Y is open and non-empty, so it must contain
some point αp with α > 0.

We may assume that

U =
{

βq ∈ Y : |β− α| < ε, q ∈ V
}

,

where V is an open neighbourhood of p in X. The set V may be taken to be defined by a condition ψ > 0, where
ψ(x<n) only involves finitely many variables. By hypothesis on Φ, possibly increasing n, we may assume that
ϕn(x<n, y) = nχ(y), and we may further assume that α > 1/n.

Choose a realisation a of p. Let b<n = b<n and choose bn so χ(bn) = 1/nα. Then ϕn(b<n, bn) = 1/α, so
ρn+1(b≤n) = α, and we may extend b≤n to a sequence b such that ρ(x′) = α. In particular, q = tp(b) ∈ V ∩X>0
and αq = ρ(q)q ∈ U. �
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Let us recall from Charatonik [Cha89] a few definitions and facts regarding fans. The Cantor fan is the space
∗2N. It is a connected compact metrisable topological space. More generally, a fan F is a connected compact
space that embeds in the Cantor fan. An endpoint of F is a point x ∈ F such that Fr {x} is connected (or empty,
in the extremely degenerate case where F is reduced to a single point). If the set of endpoints is dense in F, then
F is a Lelek fan. By the main theorem of Charatonik [Cha89], the Lelek fan is unique up to homeomorphism.

Proposition 7.8. Let T be a complete theory. Then SD∗(T), the type-space of the universal star sort D∗ in T, si
homeomorphic to the Lelek fan.

Proof. By Lemma 7.5 to Lemma 7.7, the space SD∗(T) is a Lelek fan. �

This gives us a hint as to how to relate the universal star sort with previously known coding sorts referred
to in the examples of Section 3.

Theorem 7.9. Assume T admits a universal Skolem sort D in the sense of [Ben], and let L denote the Lelek fan. Then
L ∗ D is a universal star sort.

Proof. We may assume that L ⊆ ∗2N, and moreover, that for every non-empty open subset U ⊆ 2N there exists
α > 0 and t ∈ U such that αt ∈ L (otherwise, we may replace 2N with the intersection of all clopen subsets for
which this is true).

For each n ∈ N there is a natural initial projection 2N → 2n. This induces in turn a projection ∗2N → ∗2n.
Let Ln ⊆ ∗2n be the image of L under this projection, so L = lim

←−
Ln. Consequently, L ∗ D = lim

←−
(Ln ∗ D).

Our previous hypothesis regarding L implies that the enpoints of Ln can be enumerated as {αtt : t ∈ 2n}. If
m ≥ n, then we have a natural projection Lm → Ln. If t ∈ 2n, s ∈ 2m−n, and ts ∈ 2m is the concatenation, then
αtsts gets sent to αtst ∈ Ln, so αts ≤ αt, and αts = αt for at least one s. For any δ > 0, we may always choose m
large enough such that for every t ∈ 2n, the set {αts : s ∈ 2m−n} is δ-dense in the interval [0, αt].

Let ϕ(u, v) be a star correspondence between Ln ∗D and some other star sort E∗, and let ε > 0. Choose δ > 0
appropriately, and a corresponding m as in the previous paragraph. Define a formula on 2n × 2m−n × D× E∗

by

ϕ′(ts, x, v) = ϕ(αtst ∗ x, v).

On the one hand, since ϕ is witness-normalised in the first argument, ϕ′ is witness-normalised in (ts, x). On
the other hand, if v ∈ E∗, then there exist αt ∈ Ln (so α ≤ αt) and x ∈ D such that ϕ(αt ∗ x, v) = 0. Having
chosen δ small enough to begin with, and m large enough accordingly, we may now find s ∈ 2m−n such that
αts is close to α, sufficiently so that ϕ′(ts, x, v) = ϕ(αtst ∗ x, v) < ε. It follows that ϕ′ −. ε is witness-normalised
in either (ts, x) or v.

Let us now evoke a few black boxes from [Ben]. First, 2m×D is again a universal Skolem sort (and therefore
stands in definable bijection with D). Second, since ϕ′ −. ε is witness-normalised in either group of arguments,
there exists a surjective definable function σ : 2m × D → E∗ that satisfies (ϕ′ −. ε)

(
ts, x, σ(ts, x)

)
≤ ε, i.e.,

ϕ′
(
ts, x, σ(ts, x)

)
≤ 2ε. Define on Lm ∗ D× E∗ (keeping in mind that if αts ∈ Lm, then α ≤ αts):

ψ(αts ∗ x, v) = d
(
v, αα−1

ts σ(ts, x)
)
.

This formula is jointly sub-homogeneous (since d is, on E∗). It is also witness-normalised in αts ∗ x (just choose
v = αα−1

ts σ(ts, x)), and in v (since σ is surjective, and we may always choose α = αts). By construction,
ϕ
(
αtst ∗ x, σ(ts, x)

)
≤ 2ε, so multiplying all arguments by ααts:

ϕ
(
αt ∗ x, αα−1

ts σ(ts, x)
)
≤ 2ε.

Therefore, if ψ(αts ∗ x, v) is small enough, ϕ
(
αt ∗ x, v

)
≤ 3ε, and by definition, if ψ(αts ∗ x, vi) is small for

i = 0, 1, then d(v0, v1) is small. Replacing ψ with a multiple, we may replace “small enough” with “smaller
than one”, and now, by Lemma 5.11, L ∗ D is a universal star sort. �

Corollary 7.10. Assume that T is ℵ0-categorical. Fix a countable dense sequence a in a model, and let D0 be the set of
all sequences of the same type. Then D0 is a definable set of sequences, i.e., a sort, and L ∗ D0 is a universal star sort.

Proof. In an ℵ0-categorical theory, every type-definable set is definable. By [Ben, Proposition 4.17], 2N × D0
is a universal star sort. Now, L ∗ 2N ⊆ (∗2N) ∗ 2N = ∗(2N × 2N) is easily checked to be a fan, whose set of
endpoints is dense, so it is homeomorphic to L. Therefore

L ∗ (2N × D0) = (L ∗ 2N) ∗ D0 ≃ L ∗ D0.

By Theorem 7.9, this is a universal star sort. �
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Define L(2) ⊆ L2 as the set of pairs (x, y) such that either both x = y = 0, or both are non-zero. This is
a Polish, albeit non-compact, star space, with root (0, 0). When G is a topological groupoid, we may equip
L(2) ∗G with a groupoid composition law

[x, y, g] · [y, z, h] = [x, z, gh].

If B is the basis of G, then L ∗ B is the basis of L(2) ∗G.

Corollary 7.11. Let T be a continuous theory admitting a universal Skolem sort D, and let G(T) = GD(T), as in

Example 3.12. Then G∗(T) ≃ L(2) ∗G(T). If T is ℵ0-categorical, and G(T) is the automorphism group of its unique

separable model, then G∗(T) ≃ L(2) ∗ G(T).

Proof. Just put the identities D∗ = L ∗ D and D∗ = L ∗ D0 through the groupoid construction. �
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