
HAL Id: hal-03596462
https://hal.science/hal-03596462v1

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An efficient population-based multi-objective task
scheduling approach in fog computing systems
Zahra Movahedi, Bruno Defude, Amir Mohammad Hosseininia

To cite this version:
Zahra Movahedi, Bruno Defude, Amir Mohammad Hosseininia. An efficient population-based multi-
objective task scheduling approach in fog computing systems. Journal of Cloud Computing: Advances,
Systems and Applications, 2021, 10, pp.53:1-53:31. �10.1186/s13677-021-00264-4�. �hal-03596462�

https://hal.science/hal-03596462v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Cloud Computing:
Advances, Systems and Applications

Movahedi et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:53
https://doi.org/10.1186/s13677-021-00264-4

RESEARCH Open Access

An efficient population-based
multi-objective task scheduling approach in
fog computing systems
Zahra Movahedi1* , Bruno Defude2 and Amir mohammad Hosseininia1

Abstract

With the rapid development of Internet of Things (IoT) technologies, fog computing has emerged as an extension to
the cloud computing that relies on fog nodes with distributed resources at the edge of network. Fog nodes offer
computing and storage resources opportunities to resource-less IoT devices which are not capable to support IoT
applications with computation-intensive requirements. Furthermore, the closeness of fog nodes to IoT devices
satisfies the low-latency requirements of IoT applications. However, due to the high IoT task offloading requests and
fog resource limitations, providing an optimal task scheduling solution that considers a number of quality metrics is
essential. In this paper, we address the task scheduling problem with the aim of optimizing the time and energy
consumption as two QoS parameters in the fog context. First, we present a fog-based architecture for handling the
task scheduling requests to provide the optimal solutions. Second, we formulate the task scheduling problem as an
Integer Linear Programming (ILP) optimization model considering both time and fog energy consumption. Finally, we
propose an advanced approach called Opposition-based Chaotic Whale Optimization Algorithm (OppoCWOA) to
enhance the performance of the original WOA for solving the modelled task scheduling problem in a timely manner.
The efficiency of the proposed OppoCWOA is shown by providing extensive simulations and comparisons with the
original WOA and some existing meta-heuristic algorithms such as Artificial Bee Colony (ABC), Particle Swarm
Optimization (PSO), and Genetic Algorithm (GA).

Keywords: Fog computing, Task scheduling, Internet of things, Meta-heuristic, Whale optimization algorithm,
Opposition-based learning, Chaos theory

Introduction
Over recent years, the Internet of Things (IoT) has been
integrated in our daily lives, which make the use of
IoT applications (access control or face recognition for
instance) in the context of smart city [1, 2], smart health-
care [3], smart home [4], etc., more and more popular. Fog
computing paradigm, as an extension to cloud computing,
plays a crucial role in executing the IoT applications. in
this hierarchical model, the system designer envisages the
deployment of fog nodes with a certain computational and

*Correspondence: zmovahedi@ut.ac.ir
1Department of Engineering, College of Farabi, University of Tehran, Tehran,
Iran
Full list of author information is available at the end of the article

storage resources at the edge of network, between the IoT
and cloud layer (see Fig. 1).
The fog layer decreases the delay related to transmis-

sion of IoT devices’ data to/from the cloud layer and thus
enabling IoT applications to benefit from the proxim-
ity of fog resources as infrastructure for offloading and
executing their IoT tasks in real-time.
Besides, IoT tasks possess different computational and

storage constraints (e.g., the required cpu, memory, and
deadline) for being completed. Moreover, there are dif-
ferent QoS parameters (e.g., delay, energy) that should be
taken into account when offloading the IoT tasks to the fog
or cloud resources. These parameters are important not
only from the end-users IoT applications’ point of view,

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00264-4&domain=pdf
http://orcid.org/0000-0002-9177-5949
mailto: zmovahedi@ut.ac.ir
http://creativecommons.org/licenses/by/4.0/

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 2 of 31

Fig. 1 Hierarchical fog-based architecture model

but also from the view of system designer. For instance,
the real-time property is critical as a QoS parameter that
concerns the end-users of IoT applications; or, energy con-
sumption of fog nodes is a QoS parameters that matters
the system designer.
The process of selecting appropriate fog or cloud

resources for allocating IoT tasks under certain con-
straints corresponds to the optimization problem of task
scheduling. The aim is to design a scheduler for the
dynamic incoming IoT tasks taking into account multi-
ple objectives for the optimization of QoS parameters for
both end-user and system designer. In such context, the
task scheduling optimization problem can be formulated
as an Integer Linear Programming (ILP) [5] which belongs
to the complexity class of NP-hard [6]. It should be noted
that in such problems, finding an optimal solution within
a polynomial computational time is not possible with
conventional mathematical methods.
In order to tackle the task scheduling problem in

a timely manner, population-based meta-heuristic algo-
rithms have been demonstrated as effective optimization

techniques, especially when facing to NP-hard problems.
In these algorithms, an initial population is randomly gen-
erated using a uniform distribution which is hopefully
converged to the (near) optimal solution in further gener-
ations using some defined operators. Exploration (global
search) and exploitation (local search) of the search space
are the two main phases that should maintain balanced
to find the optimal solution. At the beginning, we should
consider a diverse population in order to explore all
the directions in the search space for determining the
promising regions. Next, we should be able to exploit
the promising regions in order to find the global optimal
solution. However, the transition between exploration and
exploitation is not always easy, especially when the popu-
lation stuck into the local optima at some stage and thus
premature convergence may occur.
The task scheduling problem has already been discussed

by many researchers in different heterogeneous comput-
ing systems [7–11]. However, the literature lacks adequate
specialized solutions addressing the task scheduling prob-
lem in the context of fog computing when exponential

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 3 of 31

IoT tasks are generated dynamically. Actually, the search
space of IoT and fog environment is more complex than
other computing systems due to the different constraints
of IoT tasks and fog resources. Although the complexity of
task scheduling is significant, the IoT tasks are not always
delay-tolerant. Consequently, the task scheduling archi-
tecture should enable IoT applications to be handled in
short-delay while bypassing the complexity.
In this paper, we tackle the task scheduling problem in

fog environment focusing on Whale Optimization Algo-
rithm (WOA) [12], a recently developed population-based
meta-heuristic approach that is characterized by its sim-
plicity and well convergence rate. However, randomness
aspect in the initial population and within the design
parameters affects the effectiveness of this algorithm. In
order to cope with this issue and according to the “No
free lunch theorem [13]”, we enhance the original WOA
by hybridizing with opposition-based learning [14, 15]
and chaos theory [16]. The former approach maintains
the population diversity when exploring the search space
by expanding the search in both directions (random and
its opposite direction), and the latter approach preserves
a proper transition between exploration and exploitation
of search space. In principle, the chaos theory is consid-
ered in non-linear deterministic systems where pseudo-
random behaviour is generated. The basic characteristics
of chaos is dynamicity (sensitive dependence on initial
conditions), pseudo-randomicity, and ergodicity. Dynam-
icity results in providing diverse outputs with small dif-
ferences in the initial values, and ergodicity enhances the
speed of convergence. The chaotic behaviour is modelled
as a sequence of pseudo-random periodic values given
from discrete-time function (so called chaoticmap). In the
domain of optimization algorithms, the chaotic sequence
from chaotic map is used to replace the random sequence
from the uniform distribution. In the consequence, the
diversity of population is ensured and the stagnation in
local optima and premature convergence can be avoided.
The contributions of this paper are summarized below:

1 We investigate a hierarchical cloud and fog-based
architecture, which is capable to schedule both
real time and computational-intensive IoT tasks.
Real-time tasks are processed in the fog layer in
order to minimize the data transmission time while
computational-intensive tasks are processed in the
cloud layer. The task scheduling process is performed
in the fog layer closed to the end-user.

2 We use a classical formulation of task scheduling as
an Integer Linear Programming (ILP) multi-objective
optimization problem considering the selection of
appropriate fog nodes under certain constraints with
the aim of minimizing both task completion time and
energy consumption as two QoS parameters in a fog

computing system. To solve this optimization prob-
lem, we design a new approach called OppoCWOA,
which is a combination of WOA, Opposition-based
learning, and Chaos theory. The opposition-based
learning is used to inject the diversity into the initial-
ization phase of WOA. In this paper, we introduce
four types of opposition-based learning named total,
partial, quasi and super opposition-based learning.
We employ also the jumping rate to decide the proba-
bility of Opposition-based approach occurrence over
time that guarantee balance between convergence
speed and success rate of opposition-based approach.
The chaos theory is integrated to WOA to avoid
the impact of randomness in movement towards the
optimal solution. This results in improving the con-
vergence speed.

3 We demonstrate the effectiveness of OppoCWOA
for our task scheduling problem by providing exten-
sive experiments and comparisons with the origi-
nal WOA and some other existing population-based
meta-heuristic approaches such as Genetic Algo-
rithms, and Artificial bee Colony algorithm (ABC),
and Particle Swarm Optimization (PSO).

The reminder of this paper is structured as follows. In
“Related work” section, we present some existing works
in the context of task scheduling in cloud and fog com-
puting. The system model and the problem formulation
is described in “Proposed system model and formulation
for the task scheduling problem” section. We illustrate the
proposed OppoCWOA approach to solve the formulated
problem in “Proposed approach” section. Experimenta-
tion and comparison results are provided in “Experiment
results” section. Finally, the conclusion and the future
works are presented in “Conclusion and future works”
section.

Related work
Since the development of cloud/fog model in IoT envi-
ronment, many efforts have been performed in order to
optimally assign the IoT tasks to the fog/cloud resources
with minimal computational time complexity. In this con-
text, a number of works surveyed the scheduling and
offloading techniques in IoT/fog systems from the per-
spective of system model architecture and optimal/near
optimal solutions for the task scheduling problem [7–9,
17, 18].
Wang et al. [19] proposed an optimal scheduling algo-

rithm for minimizing job completion time (makespan)
and load variance of cloud nodes. Their approach is based
on GA that applies a greedy initialization and uses a
double-fitness adaptive mechanism to update the popula-
tion in each iteration. Authors in [20] modelled the task
scheduling problem considering makespan minimization.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 4 of 31

They applied and compared GA, PSO and amodified PSO
to solve the modelled problem. The proposed modified
PSO (MPSO) enhances the convergence of the original
PSO by using the Smallest Job to the Fastest Processor
(SJFP) approach to initialize the population. Zaki Hasan
et al. [21] described a robust Canonical PSO (CPSO) and
fully-informed particle swarm (FIPS) algorithms for task
scheduling problem in both heterogeneous and homo-
geneous cloud environment to optimize throughput and
delay. The author compared their proposed CPSO with
traditional adaptive GA. Kimpan et al. [22] considered
the task scheduling and load balancing among virtual
machines in dynamic cloud environments with the aim
of task makespan minimizing and load balancing of vir-
tual machines. They improved the ABC algorithm with
three basic scheduling algorithms that are Shortest Job
First (SJF), First Come First Serve (FCFS), and Longest
Job First (LJF) to solve the problem. Chen et al. [23] pro-
posed to model the task scheduling in cloud computing as
a multi-objective optimization problem for time cost, load
cost, and price resource cost. They enhanced the accuracy
and convergence speed of original WOA by describing a
self-adaptive mechanism for handling the population size
based on the logistic model and a non-linear function for
better convergence. Workflow scheduling in cloud envi-
ronments is studied by Thennarasu et al. [24]. The authors
proposed a new framework based on WOA to optimize
makespan, deadline and resource utilization.
Recently, with the emergence of fog computing, many

studies have been done on the task scheduling problem
to adapt cloud based scheduling algorithms to this new
paradigm.
Ghobaei-Arani et al. [25] described the task schedul-

ing problem for cyber-physical system (CPS) in the con-
text of fog environment. They considered minimizing the
task execution time, transfer time and makespan as QoS
metrics and proposed an approach based on the moth-
flame optimization algorithm. Their approach eliminated
the irrelevant solutions in the early steps of the algo-
rithm, which leads to faster convergence. The scheduling
algorithm proposed by Rahbari et al. [26] described a
knapsack algorithm optimized by symbiotic organisms
search (SOS) in the fog context to optimize execution
cost, energy consumption, and network usage. Their pro-
posed algorithm is compared to FCFS and the original
knapsack considering two case studies for intelligentmon-
itoring in smart environment and smart home. Wang
et al. [27] proposed a task scheduling strategy in the
fog environment for a smart production line scenario.
A hybrid heuristic (HH) algorithm, which is a combina-
tion of Improved PSO (IPSO) and Improved Ant COlony
(IACO) is proposed. Simulation is carried out by MAT-
LAB and experimented for various tasks from 50 to 300
on ten fog nodes and proved the proposed HH algorithm

outperforms IPSO, IACO, and round-robin (RR) in terms
of completion time, energy consumption, and reliabil-
ity. A cluster-based fog system model is proposed by
Sun et al. [28] considering the task scheduling in two-
level that is among different fog clusters and among fog
nodes within the same fog cluster. They modified the
improved NSGA-II by establishing a new crowding dis-
tance formula to resolve the task scheduling problem.
Service latency and stability are two objectives in this
work that are normalized by employing the Simple Addi-
tive Weighting technique. Yang et al. [29] formulated the
collaborative task scheduling problem to study the bal-
ance between energy consumption and service delay in
homogeneous fog networks. In accordance with their for-
mulation, they proposed a new algorithm by applying
Lyapunov optimization techniques in dynamic fog net-
works. Random scheduling and Least Busy Scheduling are
used as comparison algorithms. Wang et al. [30] proposed
an efficient cooperating multi-tasks scheduling algorithm
focused on ACO approach in fog environments. The pro-
posed algorithm experimented for various tasks from 40
to 100 on 20 fog nodes. It proved to outperform min-
min, improved max-min, and FCFS algorithm in terms of
energy consumption, total completion task, and resource
consumption. Task scheduling problem in cloud-fog con-
text is described by Nguyen et al. [31] with two objectives:
execution time and operating costs. Their proposed algo-
rithm named TCaS is based on GA and is evaluated on
11 datasets of different sizes. Comparison is accomplished
with BLA and Modified PSO (MPSO) using iFogSim sim-
ulator. Bitam et al. [32] addressed the task scheduling in
the context of fog environment considering CPU execu-
tion time and allocated memory. The authors proposed
a meta-heuristic algorithm called Bees Life Algorithm
(BLA) that mimics marriage and food foraging behaviour
of bees to resolve the scheduling problem. Simulation
are performed by the BLA framework in C++ with 25
tasks on 20 fog nodes and compared with GA and PSO
algorithms.
The authors in [33] addressed the task scheduling prob-

lem with the objective of minimizing the temperature of
CloudData Centers (CDC). The authors defined a thermal
profile based on different tasks and Cloud host parameters
such as cpu, memory, storage, and bandwidth. The opti-
mal value of these parameters is calculated using genetic-
based Expectation maximization method of Gaussian
Mixture Model (GMM). They considered an IoT-based
Smart Home Application called ROUTER in the envi-
ronment of iFogSim and ThermoSim and evaluated their
approach for the temperature reduction of CDC and other
QoS parameters such as latency, energy, and bandwidth.
However, the details of their model formulation are not
presented in this paper. In [34], the authors considered
the IoT task scheduling problem in stochastic Edge-Cloud

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 5 of 31

Computing Environments with dynamic workloads. In
each scheduling interval, new arrival tasks and remaining
active tasks from the previous interval should be designed
by the scheduler to be allocated or migrated to a prior-
ity list of hosts based on the state of the system. Their
objective is to model a task scheduler that is optimal in
terms of loss metric which is a convex combination of
average energy consumption, average response time, aver-
age migration time, average SLA violations, and cost. The
scheduler is based on asynchronous advantage actor critic
and residual recurrent neural network for updating model
parameters in each interval to quickly adapt to dynamic
scenarios. Computation offloading problem is addressed
in [35]. The authors formulated the problem as a partially
observable Markov decision process considering imper-
fect knowledge on the dynamicity of channel state and
task queue state for offloading decision in each time slot.
Their objective is to minimize the average energy con-
sumption of IoT devices along with minimizing the aver-
age response delay. They solved the formulated problem
using a deep Reinforcement Learning approach (deep Q-
learning with a recurrent convolutional neural network)
for learning the optimal decision action based on the pre-
vious observation-actions. The authors in [36] considered
joint Computation Offloading and Scheduling Optimiza-
tion problem in fog environment. A gateway is considered
between the hierarchical IoT layer and the fog/cloud layer
that is responsible for the scheduling strategy and offload-
ing decision. Their objective is to minimize the expected
time-energy consumption for executing priority-based
tasks. To solve the designed problem, they first assigned a
priority to the arrival tasks in each time slot. Authors then
used the Lyapunov drift-plus-penalty optimization tech-
nique which determine queue state and stability for an
optimal scheduling policy and task offloading decision.
Mobility is also an important factor of IoT environments

and several works recently addressed task-scheduling with
mobile IoT devices [37–39]. In fact, IoT devices are fre-
quently mobile (e.g smartphones, embedded IoT devices
on vehicles, ...) and it introduces new problems such
as disconnections, changes on gateways, task migration.
Mobi-IoST (Mobility-aware Internet of Spatial Things)
[39] considers time-critical applications such as health
care applications. In such applications, disconnections
may increase delay in processing and delivering informa-
tion. Mobi-IoST proposes a Cloud-Fog-Edge based col-
laborative framework for the processing of IoT data and
delivering the result based on user mobility prediction to
reduce the delay and the power consumption of the IoT
device. Spatio-temporal trajectories of end-users (GPS
traces) are stored at the cloud level. These trajectories are
semantically enriched using external information such as
points of interest, road network. These enriched traces
are analyzed using a hidden-markov model to compute

real-time predictions of end-user location sequences.
Nevertheless, Mobi-IoST does not consider task schedul-
ing but focus on selecting the best communication path
between processing nodes and the IoT device. MAGA
[37], a mobility-aware offloading decision strategy for dis-
tributed cloud computing, uses a mobile access prediction
method to estimate cloudlet reliability. The mobile access
prediction method is based on the regularity of human
mobility. They use a tail matching sub-sequence algorithm
to predict the next access point based on the history of
mobility. Offloading decision is computed by an integer
encoding-based adaptive genetic algorithm (GA) which
find the optimal solution taking cloudlet reliability, com-
putation requirements, and mobile device energy con-
sumption into consideration. Experiment results showed
that MAGA could improve offloading success rate and
decrease energy consumption at mobile devices. In [38],
movement of IoT devices is also predicted in order
to dynamically change associated IoT base station but
also task placement. For that, they propose a novel
dynamic mobility-aware partial offloading (DMPO) deci-
sion scheme, optimizing both the offloading proportion
and the communication path of offloading during IoT
device’s movement. Simulations show that the algorithm
decreases energy consumption while satisfying delay
constraint.
Our paper focuses on task scheduling problem and

mobility is not our concern at this step. Nevertheless, our
optimization method may be used in conjunction with
some prediction method to address mobility issues.
Table 1 compares the different works in terms of opti-

mization method and optimization criteria, of architec-
ture (cloud based or cloud and fog based) and mobil-
ity. Most of the works address the problem of task
scheduling in cloud-fog architectures using different meta
heuristics methods and optimizing different objectives
(makespan, delay and energy consumption are generally
considered). All these works show that task scheduling
is a very complex problem that is addressed using many
different optimization methods. Recent works addresses
the problem of mobility and its impact on energy con-
sumption and delay. They focus on the definition of
accurate prediction model but not specifically on task
scheduling. In our work, we want to address the prob-
lem of task scheduling of IoT tasks in a fog and cloud
hierarchical architecture. We focus on the exchange of
data between the different layers of the architecture
and the computing resources. Due to the space com-
plexity of IoT tasks, the optimization algorithms should
control the exploration and exploitation steps to guar-
antee good efficiency in terms of premature conver-
gence and population diversity. For that, we propose
some improvements to the WOA optimization algorithm
which has recently caught many attention in the context

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 6 of 31

Table 1 Task scheduling in fog and cloud computing

Ref. Cloud/ Fog Optimization method Optimization criteria Mobility

[19] Cloud GA Makespan and load balancing No

[20] Cloud GA and PSO + (SJFP) Makespan No

[21] Cloud Canonical PSO and fully-informed PSO Throughput and delay No

[22] Cloud ABC + (FCFS, SJF, LJF) Makespan and load balancing No

[23] Cloud IWC (Improved WOA) Execution time, system load, and price cost No

[24] Cloud WOA Makespan, deadline, and resource utilization No

[25] Fog Moth-flame Execution time, transfer time, and makespan No

[26] Fog Knapsack + symbiotic organisms search Energy consumption, execution cost, total network usage,
and sensor lifetime

No

[27] Fog Hybrid heuristic (IACO + IPSO) Completion time, energy consumption, and reliability No

[28] Fog NSGA-II Service latency and stability No

[29] Fog Lyapunov optimization Service delay and energy consumption No

[30] Fog Ant Colony Energy consumption, resource consumption, and total
completion task

No

[31] Fog GA Execution time and operating cost No

[32] Fog Bees Life Execution time and allocated memory No

[33] Fog GA + Gaussian Mixture Model Temperature of CDC, latency, energy, and bandwidth No

[34] Fog Deep Reinforcement learning Energy consumption, response time, migration time, SLA
violations and cost

No

[35] Fog Deep Reinforcement learning Average energy consumption of IoT device and response
delay

No

[36] Fog Lyapunov optimization + drift-plus-penalty Time-average and energy consumption No

[37] Fog Adaptive GA Offloading success rate and energy consumption Yes

[38] Fog - Energy consumption Yes

[39] Fog - Delay and power consumption Yes

Our work Fog WOA+OB learning + chaos Response delay and energy consumption No

of optimization problem [40, 41] due to its simplicity
of use.

Proposed systemmodel and formulation for the
task scheduling problem
In this section, we first provide a use case in the domain of
smart city. We then specify the hierarchical architecture
model for IoT task scheduling problem. The architecture
is composed of three layers, namely IoT, fog and cloud
layer, as illustrated in Fig. 1. Based on this architecture,
we describe the process of handling IoT tasks’ requests
for scheduling purpose. Next, we describe the modelling
of time and energy consumption as QoS parameters to be
optimized in our system. Finally, we formulate the task
scheduling problem using ILP model considering a set of
constraints to minimize the time and energy consumption
for task scheduling problem.

Use-case scenario
As a potential use case, one can consider a variety of sce-
narios in a smart city. For efficiency and network cove-
rage issues, a city is usually divided into different regions

(clusters). A great number of IoT devices such as RFID
devices, motion detection devices, temperature devices,
video surveillance, etc. are deployed in these regions.
Based on these IoT devices, a smart city provides a set
of smart services as web or mobile applications for citi-
zen (e.g., Smart parking, smart video surveillance, etc.).
These services are deployed on servers (fog nodes) that
are distributed in the city. The servers that are located in a
region are under the control of a specific node (called clus-
ter manager). A citizen is connected to the nearest cluster
manager via WLAN. Cluster managers are responsible to
handle the citizens’ requests under their coverage.
A first type of smart service is smart parking, allowing

car drivers to get newly available parking slots in a specific
area.
For that, different types of sensors and actuators such as

RFID and motion detection devices are distributed within
the parking lots to discover the information on the num-
ber and location of available places. These information
are sent periodically to a server node for being stored. A
smartphone application enables the citizens to discover
the available parking places around their current location.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 7 of 31

This IoT application is obviously sensitive in delay (the
available parking places should be detected immediately
after the departure of vehicles), but not in computation
requirements (the task requires only simple instructions
for detecting the occupied/available places via RFID read-
ers). In this case, the fog cluster manager should assign
the smart parking task to a fog node that is located in the
vicinity of the citizen and is closed to the needed data.
Another type of smart service is a video surveillance sys-

tem. Based on a specific demand (including location and
time criteria), this system analyses videos acquired from
several video cameras deployed within different parking
slots in the region. The application requires an object
recognition task which is very intensive in computation
requirements, but is not sensitive in delay. In this case,
the fog cluster manager should allocate the resources of a
cloud node for executing the object recognition task. This
implies the transfer of video data from video devices or fog
nodes to the cloud.

Fog-based architecture for task scheduling problem
Figure 1 illustrates our proposed hierarchical fog-based
architecture for the problem of task scheduling.
The IoT layer is composed of a massive number of

IoT devices that are widely distributed within areas such
as cities, factories, hospitals, homes, libraries, museums,
etc... IoT devices comprise sensors and actuators (e.g.,
environmental sensors, switching actuators) that gener-
ate continuous raw data. This latter are either indepen-
dent devices without computing or storage resources that
only sense/act the surrounding environment or embedded
into the mobile or fixed end devices with limited com-
puting and storage resources (e.g., smartphones, smart
cameras). In the first case, the data are forwarded to
the fixed sink nodes (e.g., micro-controllers) through
wired/wireless protocols (e.g., zigbee, bluetooth, wifi) in
LAN network for data storing and further analysis. In the
second case, end devices play the role of both IoT devices
and sink nodes. Sink nodes are connected to the upper
layer (fog or cloud layer) through wired/wireless channel
(e.g., wifi) for sending the IoT device data related to the
execution of IoT applications.
The fog layer is composed of fog nodes that are dis-

tributed in different areas close to the IoT devices and
possess certain computing and storage resources as well
as a task queue. Fog nodes that are located within an
area are grouped and construct a cluster. Each clus-
ter disposes a fog cluster manager that is aware of
fog nodes within the cluster (fog clusters) and the IoT
devices/sink nodes that are in proximity of the clus-
ter. Moreover, the fog cluster managers know each oth-
ers and can communicate together via wireless MAN
network (e.g., wifi). The fog cluster manager is respon-
sible for handling the optimal scheduling of IoT tasks.

The process should ensure the optimal use of system
resources in terms of time and energy consumption using
the proposed optimization algorithm. We suppose that
the grouping of fog nodes into clusters, the selection of
one fog node as fog cluster managers, and the main-
tain of the related information about the clusters (such
as the IP address of the different fog managers) are sup-
ported by appropriate distributed protocols. Furthermore,
the fog cluster manager is assumed to dispose enough
computational resources for executing the process of task
scheduling.
The advantage of this layer is the deployment of fog

resources in the vicinity of IoT devices that allows sim-
ple, low-latency and real-time responses regarding the
delay-sensitive IoT applications.
The cloud layer encompasses high-performance com-

puting and storage equipment (known as cloud nodes)
such as cloud servers. The communication between this
layer and the lower layers is controlled by a cloud man-
ager. Cloud manager gathers all information on IoT and
fog layer and handles occasionally the IoT tasks execu-
tion when the fog layer is not able to do so (because
of large-scale or complex processing requirements, for
instance). This layer cannot provide delay-sensitive ser-
vices as fog layer due to its remote deployment from the
IoT devices. However, it can provide high-quality services
for IoT applications such as storage and analysing massive
data for computing.
IoT applications are installed on the end-users devices

and generate a set of independent IoT tasks, each one
with specific computing and storage requirements. We
consider two types of IoT task: 1) IoT tasks that are delay-
sensitive and should be processed in real-time and, 2)
IoT tasks that require intensive resource and should be
processed by resource-rich devices.
Figure 2 describes the IoT tasks scheduling process. The

end-users send their requests for executing the IoT appli-
cations to the nearest fog cluster manager (called initial
fog cluster manager). Each request contains input (data
size, data source type, location), output (result type), type
(delay-sensitive with deadline or computation-intensive),
the desired requirements (e.g., RAM: 1 MB, CPU: 100
MIPS, storage: 1 MB, bandwidth: 1 Mbps). It is worth
mentioning that the requests are heterogeneous in terms
of inputs, outputs, and requirements. If the data source
for executing the IoT task is under the control of another
fog cluster manager, the initial fog cluster manager will
forward the end-user’ requests to that one (called sched-
uler fog cluster manager). The received IoT tasks are then
enqueued into the task queue of fog cluster manager for
being scheduled then after.
The task scheduling process is based on a time division

into equal time slots represented as S = {s1, s2, ..., sq}. The
time interval between two consecutive time slots is δs.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 8 of 31

Fig. 2 The process of handling the IoT task requests for task scheduling

IoT tasks are arriving into the queue of fog nodes with an
arrival rate λ that follows the Poisson distribution process
[35]. The accumulated arriving tasks during δs are taken
into account using a priority queue, i.e., the delay-sensitive
tasks are set at the front of the queue.
At each time slot, the fog cluster manager is updated

on the status of the present IoT devices and sink nodes as
well as the fog clusters (i.e., remaining computation and
storage capacity, remaining energy). Once the update is
complete, the task scheduling algorithm starts over the
existing IoT tasks in the fog cluster manager’ queue to
compute the optimal scheduling.
Actually, the decision for selecting and allocating appro-

priate fog or cloud resources is based on the type of
each IoT task requirements (delay-sensitive or resource-
intensive) and available resources on fog or cloud nodes
and should optimize the time and energy consumption.
According to the result of scheduling, the IoT tasks are

offloaded on the task queue of fog/cloud nodes for being
executed. Sink nodes are also communicated to forward
the necessary data to the fog/cloud nodes. If there are no
available fog resources to execute the delay-sensitive tasks
within the given deadline, the IoT tasks will be dropped.
As soon as the execution of IoT tasks is completed, the
output is sent to the initial fog cluster manager for being
forward to the end-user. If a computation-intensive task
can not be handle at the fog layer, it is forwarded to the
cloud manager.
The steps for executing one IoT task, after the com-

pletion of task scheduling by the fog cluster manager, are
outlined as below (see Fig. 3):

Step 1 The scheduler fog cluster manager offloads the
IoT task to the selected fog/cloud node.

Step 2 The scheduler fog cluster manager requests from
corresponding IoT devices to send the data to the
selected fog/cloud node.

Step 3 IoT devices send the data to the selected
fog/cloud node.

Step 4 The selected fog/cloud node executes the task.
Step 5 The results will send back to the fog cluster man-

ager to be forwarded to the initial fog manager and to
the end-user.

For simplicity’s sake, the following assumption is con-
sidered within each time interval:

• The clusters are created automatically and remain
unchangeable.

• The state of network is static.
• The programming codes for the execution of IoT

tasks are deployed in all fog and cloud nodes.
• The data required for the execution of an IoT task are

associated to a single fog cluster manager

Furthermore, the end-user may be mobile and her/his
location may change during the time, moving to the cov-
erage area of another fog cluster manager. This latter
means that the initial fog cluster manager may not be
the one that returns the output result to the end-user.
In such a situation, based on the data locations of end-
user and his/her moving pattern, we can predict her/his
location at the next time slots by a predictor module and
if needed, the results will be sent to the predicted fog

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 9 of 31

Fig. 3 The process of task execution

cluster manager that is in vicinity of the mobile end-user.
It should be noted that the mobility of end-user is not
considered in the rest of the paper.

Proposed qoS parameters modelling for task scheduling
problem
The problem of task scheduling in the context of fog com-
puting consists in assigning IoT tasks to appropriate fog
nodes among a set of candidate fog nodes aiming at opti-
mizing the overall QoS.We consider in this paper the time
and energy consumption as QoS parameters.
IoT tasks are represented as a set T = {t1, t2, ..., ti, ..., tn}

in which each element ti is described using a set of
attributes ti = {

Di, Ii, type,DEi
}
, where Di, Ii, type, and

DEi stand for input data size (in bits) to be transmitted
toward the fog node, required computing density (in CPU
cycles/bit) to execute the task, the type of the IoT task
that is either delay-sensitive, or computation-intensive,
and deadline (in second) of the IoT task to be respected
for completing the task, respectively.
Fog nodes are shown as a set F = {

f1, f2, ..., fj, ..., fm
}

in which each element fj is characterized using a set of
attributes as fj =

{
Smax
j ,Cmax

j ,Emax
j

}
, where Smax

j , Cmax
j ,

and Emax
j refer to storage capacity (in bits), computing

capacity (in CPU cycles/bit), and the total battery capacity
of the fog fj (in watt), respectively.
With the above notations, the problem of task schedul-

ing is to assign n IoT tasks to m fog nodes in such a
way that the QoS parameters are optimized. We denote
the assignment of an IoT task ti to a fog node fj as aij.
In the following, we formulate the total time and energy
consumption as two QoS parameters to be optimized.
The total time consumption for assigning IoT task ti to

fog node fj is mathematically described as follows:

Ttotal(aij) = Tup(aij) + Texecute(aij) + Tdown(aij) (1)

Where, Tup denotes the time that is taken to transmit and
offload task ti to fog node fj. Texecute refers to the time that
is related to the execution of task ti running on fog node
fj. Tdown indicates the time required for transmitting the
result of the task execution from fog node fj to the end-
user. It is worth mentioning that Tdown has minor effect
on total time consummation Ttotal because of the small
size of the output data comparing to the input data size.
For that reason, Tdown can be ignored and the total time is
thus simplified as follows:

Ttotal(aij) = Tup(aij) + Texecute(aij) (2)

In principle, the majority of Tup is usually related to the
amount of data that should be sent from the IoT device
to the selected fog/cloud node. In the above equation, Tup
is defined as the ratio of task data size (Di) to the trans-
mission capacity of the channel (Rij) between IoT device ti
and fog node fj and is expressed as below:

Tup(aij) = Di
Rij

(3)

where,

Rij = B × log2(1 + Pi × hij
N0 × B

) (4)

Rij is calculated based on the Shannon’s capacity formula
[42], where Pi denotes the transmission power of IoT
device ti, hij refers to the channel gain between IoT device
ti and fog node fj, and N0 denotes gauss noise power of
the channel. The execution time Texecute of task ti on fog
node fj is defined as the required amount of computation
for IoT task ti divided by the computing capability of fog
node fj, as below:

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 10 of 31

Texecute(aij) = Di × Ii
Cmax
j

(5)

Similar to the time modelling, the total energy consump-
tion for execution a task ti that is scheduled to be assigned
to fog node fj is denoted as the energy consumption for
the transmission of task ti to fog fj (Eup) and the energy
consumption for the execution of task ti on fog fj (Eexecute).
We mathematically formulated the total energy as below:

Etotal(aij) = Eup(aij) + Eexecute(aij) (6)
where,
Eup(aij) = Tup(aij) × Pi (7)
Eexecute(aij) = Texecute(aij) × Pj (8)

Where, Pj is the power consumption (in watt) of fog when
executing task ti.

Proposed formulation for task scheduling problem
The purpose of scheduling is to optimally assign IoT tasks
to the resources of fog nodes for minimizing the time and
energy consumption. The fog cluster manager may find a
solution, denoted as a boolean matrix Aassign =[aij]n∗m in
which an element aij is 1 if the jth fog is selected as fog fj
for executing task ti and 0, otherwise.
The problem of assigning the IoT tasks to appropriate

fog nodes can be modelled using ILP [5], as follows:

argmin
Aassign

U(Aassign) (9)

where

U(Aassign) =
n∑

i=1

m∑

j=1
aij × Q(i, j) (10)

subject to
m∑

j=1
aij = 1 ∀i ∈ {1, · · · , n}, (11)

n∑

i=1
aij × Ii ≤ Cmax

j ∀j ∈ {1, · · · ,m}, (12)

n∑

i=1
aij × Di ≤ Smax

j ∀j ∈ {1, · · · ,m}, (13)

n∑

i=1
aij × Eexecute(aij) ≤ Emax

j ∀j ∈ {1, · · · ,m},
(14)

Ttotal(aij) ≤ DEi ∀i ∈ {1, · · · , n},∀j ∈ {1, · · · ,m},
(15)

aij ∈ {0, 1} ∀i ∈ {1, · · · , n},∀j ∈ {1, · · · ,m} (16)

where U(Aassign) denotes the overall utility of a given task
scheduling solution determined by Aassign matrix and cal-
culated using Eq. 10. In this measure, Q(i, j) indicates the

QoS score of aij. The constraint 11 ensures not assigning
a task to more than one fog node. Constraint 12 indicates
that the required computing intensity of a set of IoT tasks
that are assigned to fog node fj could not be exceeded the
computing capacity of the fog node. Constraint 13 speci-
fies that the data size required for executing a set of IoT
task given to fog node fj could not be over the storage
capacity of the fog node. Constraint 14 ensures that the
required energy consumption of fog node fj for executing
a set of IoT tasks is less than the reminder battery capac-
ity of the fog node. Constraint 15 ensures that the total
time required for executing IoT task ti by fog node fj is not
being exceeded the deadline of the IoT task. Constraint 16
defines our binary decision variables.
The QoS score given to aij is calculated as the weighted

sum of time and energy QoS parameters which is formu-
lated as follows:

Q(i, j) = wt ∗ Ttotal(aij) + we ∗ Etotal(aij) (17)

where, wt ,we ∈[0, 1] denote the weight factors related to
the importance impact of time and energy QoS parame-
ters in a selected solution, respectively.
All the notations used are listed in Table 2.

Proposed approach
In this section, we review the concepts ofWOA algorithm,
Opposition-based learning, jumping rate, and Chaos the-
ory. We then describe the new Opposition-based chaotic
whale optimization algorithm named OppoCWOA for
the problem of task scheduling in the context of fog
computing environments.

Whale optimization algorithm (WOA)
In 2016, Mirjalili et al. [12] introduced a new nature-
based meta-heuristic algorithm which is motivated by the
particular hunting method of humpback whales. The pro-
cedure to find the (sub)optimal solution is similar to the
other meta-heuristic algorithms: First, a population is ini-
tialized randomly that is the position of Whales in WOA.
Second, the population seeks to be updated based on the
best found solution so far using specific operators that
is the hunting behaviours of humpback whales: looking
for prey, encircling prey, and the spiral bubble-net feed-
ing. The mathematically formulation of these behaviours
is given below.

Encircling prey
The humpback whales move towards the preys and encir-
cle them for feeding purpose. In WOA, the prey is con-
sidered to be the current best solution that represents
the target towards which the other whales (search agents)
move. The model for position updating is formulated as
follows:

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 11 of 31

Table 2 Description of used notations

Symbol Description

T Set of IoT tasks in the task scheduling requests

n Number of tasks in the task scheduling requests

ti The ith task in the task scheduling request

F Set of fog nodes in the system

m Number of fog nodes in the system

fj The jth fog node in the system

Di Input data size of task ti

Ii Required computing density of task ti

DEi Deadline of task ti

Cmax
j Computing capacity of fog node fj

Smax
j Storage capacity of fog node fj

Emax
j Battery capacity of fog node fj

aij A binary variable determining whether ti is assigned
to fj

Aassign assign matrix of size n ∗ m

U(Aassign) Overall utility of a task scheduling solution

Q(i, j) QoS score related to ti that is assigned to fog node fj

wt Weight for time QoS parameter

we Weight for energy QoS parameter

Ttotal(aij) Total time consumption for assigning IoT task ti to fog
node fj

Tup(aij) Time consumption for transmitting IoT data for exe-
cuting the task ti on fog node fj

Texecute(aij) Time consumption for executing IoT task ti in fog
node fj

Etotal(aij) Total energy consumption for assigning IoT task ti to
fog node fj

Eup(aij) Energy consumption for transmitting IoT data for exe-
cuting the task ti on fog node fj

Eexecute(aij) Energy consumption for executing IoT task ti in fog
node fj

Rij Transmission capacity of the channel between IoT
device and fog node fj

�D = |�C −−→Xbest(i) − −→X (i)| (18)
�X(i + 1) = −−→Xbest(i) − �A · �D (19)

Where, i specifies the current iteration, �X(i) denotes posi-
tion vector, −−→Xbest(i) denotes position vector of the current
best solution. �A, and �C are coefficient vectors defined as
follows, respectively:

�A = 2�a · �r − �a (20)
�C = 2 · �r (21)

Where, �a is linearly decreased from 2 to 0 over the course
of iterations and �r is a random vector within interval [0, 1].

Bubble-net feeding (exploitation)
The movement of humpback whales around the prey is

simultaneously in a circular or spiral-shaped direction.
This cooperating feeding behaviour is known as Bubble-
net feeding. To model that, an equal probability (0.5) is
assumed for selecting each of these two movements dur-
ing the position update. The formulation is given below:

�D′ = |−−→Xbest(i) − �X(i)| (22)

�X(i + 1) =
{ −−→Xbest − �A · �D if p < 0.5−→
D′ · ebl · cos(2�l) + −−→Xbest(i) otherwise.

(23)

Where,
−→
D′ = |−−→Xbest(i) − −→X (i)| is the distance between

the ith whale and the prey, b is the constant for defining
the logarithmic spiral shape, and l is the random number
within [−1, 1].

Search for prey (exploration)
The search for prey of humpback whales is performed ran-
domly according to the position of each other. To force a
search agent (whale) to move in the other directions than
a reference whale, a random whale is selected from the
population and the position of the other ones is updated
towards it. This behaviour gives occasion to obtain a
global search. This model is as follows:

�D = |�C −−−→Xrand − �X| (24)
�X(i + 1) = −−−→Xrand − �A · �D (25)

Where, −−−→Xrand denotes a random whale chosen from the
current population. Equation 25 is executed in case | �A| >

1.

Limitations ofWOA
Meta-heuristic algorithms such as WOA, often converge
prematurely to the point that is not globally optimal.
Generally, premature convergence takes place due to (1)

The population has converged towards the local optimum.
(2) The diversity is excluded from the population. (3) The
search algorithm is progressing slowly or not at all. In the
case of the WOA, the random vector A (Eq. 20) controls
exploration and exploitation; in cases with |A| ≥ 1 and
p < 0.5, iteration is applied to exploration; otherwise,
iterations are devoted to exploitation.
However, sometimes search agents become inactive in

local optimum after some exploitative movements. In
addition, agents update their positions toward the elite
vector of the population in half of the iteration. Therefore,
the population diversity decreases rapidly (no completely
new solutions will be created any more) which conse-
quently increase the local optimum possibility. To prevent
this, we should find a trade-off between global explo-
ration and local exploitation, which is difficult, since these
two phases behave contradictory; i.e. a better exploration

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 12 of 31

results in a worse exploitation and vice-versa. In WOA,
the exploitation-exploration trade-off is set in favour of
local exploitation, whichmay cause the premature conver-
gence [43]. Given these limitations, we propose OppoC-
WOA in order to enhance the performance of WOA.

Opposition-based learning
Opposition-based Learning (OBL) is proposed by
Tizhoosh [14] to improve solutions by taking into account
the current population and its opposite simultaneously.
According to probability theory, there is a 50% chance
that an opposite guess is closer to the solution than the
guess itself. Furthermore, without prior knowledge, it
is difficult to make the best initial guess that is close
to a possible solution, so in order to find it, we should
search in all directions at the same time or in a more
concrete term in the opposite direction. The process
can be improved with a better (i.e., fitter) initial guess.
In the worst-case scenario, our random guess is in the
neighbourhood of opposite location of the possible solu-
tion, which by utilizing the opposition-based approach
we will start with a better initial guess. This approach
can be applied to the current and initial population.
Every estimate solution X(i) within the interval [U + L]
has an opposite solution X̂(i) which is calculated as
follows:

X̂(i) = U + L − X(i) (26)

Figure 4 illustrates the opposite solution, where n tasks
are assigned to 5 fog nodes.

Quasi and super opposition-based learning
According to different definitions and theorems, it can
be seen that the center point is critical. Rahnamayan
and Wang [44] have indicated that the possibility of
the proximity of the center point to an unknown opti-
mal solution is higher than other points. Because of the
importance of center point, many opposition-based tech-
niques employed center point as a reference. Tizhoosh
[15] proposed Quasi and Super opposition-based learning
by employing center point as a reference to improve opti-
mization problems. Every estimate solution X(i) within
the interval [U + L] has Super-opposite points and
Quasi-opposite points ̂X(i)s , ̂X(i)q which are defined as
follows:

Fig. 4 Opposite-solution generation

̂X(i)s =
⎧
⎨

⎩

rand [L,U + L − X(i)) if X(i) > (U+L)/2
[L,U]-{X(i)} if X(i) = (U+L)/2
rand (U + L − X(i),U) if X(i) < (U+L)/2

(27)

̂X(i)q =

⎧
⎪⎨

⎪⎩

rand
[
U + L − X(i), (U+L)

2

)
if X(i) > (U+L)/2

∅ if X(i) = (U+L)/2
rand

(U+L
2 ,U + L − X(i),U

)
if X(i) < (U+L)/2

(28)

Figure 5 shows the relationship between these
opposition-based techniques.

Partial-opposition-based learning
By producing opposite solutions, we assume that all
dimensions should change to their opposites; this strategy
seems to be persuasive in the algorithm’s initial iterations
to find a better initial guess. Nevertheless, in later itera-
tions, only a few dimensions need to be changed into their
opposite to approach an optimal solution.
Owing to this rationale explanation, several differ-

ent partial-opposition-based learning schemes have been
designed in the literature. For example, Hu et. al [45], pro-
posed a partial-opposition-based scheme to optimize the
differential evaluation algorithm (DE) in which a set of
candidate partial-opposition solutions is created for each
candidate solution.
In the candidate partial-opposite solutions, only one

dimension maintains its original value while others
change to their opposites. some of these partial-opposite
solutions are then selected randomly to compete for the
original candidate solution substitution.
The proposed partial-opposition-based learning
To maintain population diversity and convergence speed,
we propose a partial-opposition-based learning scheme
by combining the 2 point crossover operation in Genetic
Algorithm with OBL techniques reported in “Opposi-
tion-Based learning” section as follows: 1) The candi-
date solution (whale position) and its opposite solution
will be chosen as parents, 2) two crossover points will be
selected at random, 3) The candidate solution exchanges
the middle segment with the opposite solution, 4) and the
remaining segments will remain unchanged, producing
new offsprings (partial solution candidates). These off-
spring are chosen to compete for the substitution of the
original candidate solution. This method will enhance the
exploration ability of the algorithm due to the crossover

Fig. 5 The relationship between opposition-based, super opposition
and quasi opposition techniques

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 13 of 31

operation and OBL characteristics. Figure 6 illustrates
the proposed partial-opposite solution, where n tasks are
assigned to 5 fog nodes.
Jumping rate
The convergence speed can be increased by OBL tech-
niques; i.e. more area is probably visited in search space.
This may prevent the convergence toward an optimum
solution. In addition, excessive use of this technique could
lead the population to stick in local optimum instead of
converging toward the global optimum. To prevent this
problem, we employed the jumping Rate factor, which
decides the probability of Opposition-based technique
occurrence over time. The higher jumping rate results
in faster convergence to the global optimum at a lower
success rate and vise versa. In other words, a higher jump-
ing rate reduces the exploitation ability of the algorithm,
which results in a success rate decrease, while a lower
jumping rate often fails to a local optimum. In this work,
we need to find a suitable jumping rate to balance between
convergence speed and success rate.

Chaos theory
Chaos theory is one of the most appropriate approaches
to deal with the premature convergence problem due to
its properties of non-repetition, ergodicity, and dynamic-
ity [46]. Chaos is a stochastic process in the non-linear
deterministic system, which ultimately makes the numer-
ical sequences of two closed initial values irrelevant after
a certain number of iterative operation performed by the
same chaotic function.
The operation of WOA is simple and easy to achieve

optimal solution; however, the search process only relies
on the randomness of parameters: the vector �r and the
probability p. �r (Eqs. 20 and 21) has random value between
[0, 1] which is designed for moving towards any position
close to the current best solution and the probability p
(Eq. 23) within the interval [0, 1] is defined for chang-
ing between the circular or spiral-shaped position update
toward the current best solution. We employ a chaotic
map to define �r and p in every iteration. Since the value
of the other parameters depends directly on the value of �r
and p, we can increase simultaneously algorithm conver-
gence speed and prevent premature convergence by using
chaotic sequence.
In this paper, eleven types of chaotic maps are used

that is shown in Table 6 (see Appendix). These maps have

Fig. 6 Partial-Opposite solution generation

different behaviours with the initial point 0.7. It is also
possible to select any number as the initial point between
[0, 1] or [−1, 1] based on the range of the chaotic map.
However, the fluctuation pattern in some of these maps
depend significantly on the initial value.

Non-linear functions
As mentioned in “Limitations of WOA” subsection, the
random vector �A controls the exploration and exploitation
phase of WOA. In accordance to Eq. 20, the value of |A|
directly depends on the value of �r, and �a, where �a linearly
decreased from 2 to 0. In this case, a large �a will encour-
age a global search in the early iterations, because with a
larger �a, the chances of |A| ≥ 1 will be higher, which leads
WOA to reach the global exploration phase according to
Eq. 25 and accelerate the convergence speed. while a small
�a in the late iterations leads WOA to reach the exploita-
tion phase to find local optimum. This linear decrease,
though, may have two potential problems: (1) a premature
convergence could occur due to low exploration capabil-
ity, and (2) convergence speed at local exploitation could
be slow because of small step size. In order to change the
global exploration and the local exploitation behaviours of
WOA, we propose to apply four non-linear functions to
replace the linear function �a. These functions and their
possible effects on search capabilities are presented in
Table 5 (see Appendix) where t denotes current iteration,
and tmax denotes number of iterations.

Fog task scheduling using oppoCWOA
In this part, we transform the task scheduling problem
formulated in “Proposed formulation for task scheduling
problem” section in the form of whale foraging design
considering the proposed approaches (opposition-based
learning, Chaos theory, non-linear functions) combined
with WOA to enhance the performance of our task
scheduling algorithm in terms of convergence speed and
accuracy.

Solution encoding
A task scheduling solution in our design refers to an indi-
vidual that is the position of whales in WOA. Whale
positions are represented as anm-dimensional array. Each
index of the array represent a whale and the value of that
index is the whale position. In our design, each index
denotes the IoT tasks and the value of that index is the fog
node j (within the interval [1, n]) that would be mapped
to the corresponding task. For instance W = {1, 3, 3, 1, 2}
means tasks 1 and 4 are assigned to fog node 1, tasks 2 and
3 are assigned to fog node 3, and task 5 is assigned to fog
node 2.

Population initialization
The initial population (denoted as NP: Number of Popu-
lation) is the set of NP whales that will be participate in

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 14 of 31

WOA to reach the optimal solution. In our design, this
is the different possible task scheduling solutions (differ-
ent possible mapping between IoT tasks and fog nodes).
NP whale positions will be initialized randomly to ensure
population diversity. Then, the opposite whale positions
will be initialized and added to the population according
to “Opposition-based learning” section.

Fitness evaluation
The fitness function is the metric that determines the
quality of whale positions within the population. In our
design, that is the quality of the mapping between IoT
tasks and fog nodes. solutions with low fitness value repre-
sent high-quality mapping, thus considered effective. The
fitness value of each solution (whale positions) is eval-
uated by our formulated objective function using Eq. 9,
which depends on time completion of tasks and energy
consumption of fog nodes. Based on the fitness value, the
solutions can be updated.

Whale position updating
After the calculation of fitness value for all whale positions
(i.e. task scheduling solutions), the best whale position will
be chosen to be used by other whales to update their posi-
tions. Whale positions updating depends on two essential
factors | �A|, and probability p. | �A| value is determined by
the value of �r and �a (Eq. 20). We use chaotic sequence
to initial the value of �r as mentioned in “Chaos theory”
section and the value of �a is determined by one of the non-
linear functions defined in “Non-linear functions” section.
p is initialized by chaotic sequence as discussed in “Chaos
theory” section. Based on these calculations, the whale
positions will be updated as follows: WOA will fall into
the exploitation phase if | �A| < 1 and depending on
the value of p, the positions will be updated. If p <

0.5, we have the Eq. 19 and if p > 0.5, the positions
are updated using the Eq. 23. In the case of | �A| ≥ 1,
WOA will fall into the exploration phase and the posi-
tions are updated according to the Eq. 25 after the position
updating of all whales, this new population will replace
the old one.

Opposite-population
After whales have updated their positions, population
diversity will drop rapidly, and we therefore need to
inject diversity into the population. To this end, oppo-
site whale positions will be initialized and added to the
population according to “The proposed partial-opposi-
tion-based learning” section. Then, to control popula-
tion size, the fittest NP whale positions will survive to
create a new population while others will perish. As we
explained in “Jumping rate” section, to prevent premature
convergence, we have used a jumping rate, which decides
the probability of opposition-based technique occurrence

Algorithm 1 Pseudocode for OppoCWOA
Input vector of n tasks, vector ofm fog nodes,
NP: number of population, t: number of iteration
Output �Xgbest : vector of optimal task-fog mapping solution

1: function TASK SCHEDULING
2: Initialize randomly the whales population (i =

1, 2, 3, ...,NP)
3: Initialize parameters (p and r) initializing the

sequences of the chaotic maps in “Chaos theory” section
4: Initialize parameter (a) using non-linear functions in

“Non-linear functions” section
5: Initialize other WOA parameters (l,A,, C, and

jumpring rate (jr))
6: Calculate partial-opposite whales for the population

and add it to the population
7: Calculate fitness value of each search agent using Eq. 9
8: Select NP fittest agents as the population
9: Determine �Xgbest as the current best agent

10: while (t < number of iterations) do
11: for each search agent do
12: if (p < 0.5) then
13: if (|A| < 1) then
14: Update the position of the current

search agent by the Eq.19
15: else if (|A| ≥ 1) then
16: Select a random search agent
17: Update the position of the current

search agent by the Eq.25
18: end if
19: else {p ≥0.5}
20: Update the position of the current search

agent by the Eq.23
21: end if
22: Check if any search agent goes beyond the

search space and amend it
23: if (jr < 0.5) then
24: Create partial-opposite-solution and add

them to the population
25: end if
26: Calculate fitness value of each search agent

using Eq. 9
27: Select NP fittest agents as the current popula-

tion
28: Update �Xgbest if there is a better search agent
29: Update the chaotic numbers using chaotic map

equations in Table 6 for parameters (p and r)
30: Update parameter (a) using non-linear func-

tions in “Non-linear functions” section
31: Update parameters (l, A, C, and jr)
32: end for
33: t = t + 1
34: end while
35: Return �Xgbest
36: end function

over time. This means each candidate solution (whale
position) has a chance to bring its partial-opposites to
the new population. To find the optimal jumping rate, we
have conducted several experiments that is reported in
“Experiment results” section.

OppoCWOA algorithm
Based on the aforementioned principles, the main steps of
our OppoCWOA approach for task scheduling problem
in the context of fog computing is given as below:

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 15 of 31

Step 1 [lines 2 to 9] This step comprises the solu-
tion encoding (“Solution encoding” section), popula-
tion generating based on the NP fittest agents from
the combination of random population and opposite-
population and determining the current best agent
based on the fitness value, initialization of chaotic
sequence in chaotic map for the parameters p and r, ini-
tialization of parameter a using non-linear functions,
initialization of other WOA parameters (l, A, C, and
jumping rate (jr)) and some other initial parameters
such as the number of iterations, and population size
NP.

Step 2 [lines 10 to 21] In this step, the WOA-based
searching process to find optimal solution begins. The
exploration and exploitation behaviours of whales is
based on the value of the current A (Eq. 20) and p. In
the case of p < 0.5 and |A| ≥ 1, the exploration phase
is executed using Eq. 25. For p < 0.5 and |A| < 1, posi-
tions are updated using the Eq. 23 and if p > 05, we
update the positions by the Eq. 19.

Step 3 [lines 22 to 32] after all whales (or agents)
updated their positions, partial-opposition whales will
be initialized according to “Opposite-population” sub-
section depending on the random value of jumping
rate. Then the fittest partial-opposite whales will be
added to the population to create a new population.
Then half of this new population with fittest values
will be selected as the population to prevent popula-
tion size growth. One iteration will end by updating the
parameters (p, r, a, l,A,C, and jr).

Step 4 [line 33 to 35] By reaching the maximum num-
ber of iterations, the process will end; otherwise, a new
search will be performed by returning to step 2. The
algorithm return the best search agent as output.

The pseudocode of OppoCWOA algorithm is provided
in Algorithm 1.

Computational complexity
The computational complexity is a key element to present
the scalability analysis of an algorithm. According to the
instruction steps and the structure of WOA, we can cal-
culate the complexity ofWOA asO(t(D∗NP)+Obj∗NP),
where NP is the total number of whales, t is the number
of iteration, D is the dimension of the problem, and Obj is
the cost of calculating the objective function.
In our OppoCWOA algorithm, we consider the

opposition-based calculation for generating initial pop-
ulation initialization. In addition, we use chaos theory
during the iteration process for updating the population.
Each of these two methods add obviously an overhead
to the original WOA. For the opposition-based calcu-
lation, the time complexity is O(D ∗ NP + Obj ∗ NP)

and for the chaos calculation for all iteration, we have

O(t(D(NP + Ch)) + Obj ∗ NP), where Ch indicates the
iteration number of Chaos calculation. The overall com-
putational complexity is therefore calculated as below:

O(t (D (NP+Ch))+Obj*NP) (29)
It can be seen that the overhead added by the opposition-
based and Chaos theory is negligible considering the
efficiency of the proposed OppoCWOA.

Experiment results
To validate the efficiency of the proposed OppoCWOA
from different perspectives, extensive experimentation
studies are conducted considering the evaluation met-
rics (Time, energy and time-energy balance) presented
in “Proposed system model and formulation for the task
scheduling problem” section. The fog environment is
composed of twenty fog nodes with different characteris-
tics such as computing capacity, bandwidth, distance from
the manager within the cluster, computing energy. Fur-
thermore, six datasets of different number of tasks (from
50 to 300) are created to participate in the experimen-
tations. Table 3 shows the parameter values considered
in our settings. In order to provide different scenarios,
many types of tasks are created with various amounts
of processing power, bandwidth, and data usage. Since
our proposed algorithm is based on the WOA, we have
compared our method with the original WOA, and other
popular meta-heuristic optimization algorithms such as
PSO, ABC, and GA.
All algorithms used in the paper have population size of

50 (bees, particles, and whales) and the maximum num-
ber of iterations is 200. The results are averaged over 25
independent runs. As presented in “Proposed approach”
section, the opposition-based learning and Chaos theory
enhance the search ability and accelerate the convergence

Table 3 Parameter values of the simulation

Parameter Value Description

n 50 − 300 Number of tasks

m 20 Number of fog nodes

Di 10 − 50 Mb The data size of task ti

Ii 300 − 500 Cycles/bit Computing density of task ti

Cmax
j 1 − 2 Giga cycles/bit The computing capacity of fog

node fj

Smax
j 500 − 2000 Mb Storage capacity of fog node fj

B 100 − 200 MHz Bandwidth between IoT device and
fog node

Lj 1.5 − 2 Km Distance of fog node fj from the fog
node manager

pj 1 − 5 W Power consumption of fog node fj

pi 0.1 W Transmission power of IoT task
device ti

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 16 of 31

of WOA algorithm. To characterize the specific effect of
each component (opposition-based learning and Chaos
theory) on WOA, we report the archived fitness values
for each applied components separately. The weight factor
values for time and energy consumption (w1 and w2) in
objective function being set up to 0.5, which means hav-
ing equal priority in optimization process. The settings of
the experimental environment are Intel(R) Core (TM) i7-
8550U CPU @ 1.80 GHz, 16GB Memory on Windows 10
professional OS, the simulation was developed in Python
with PyCharm editor. It is worth mentioning that our sim-
ulation testbed is at the early stage and not completely
pre-validated. It is designed and implemented according
to our systemmodel described in “Proposed systemmodel
and formulation for the task scheduling problem” section.
The evaluation metrics include time, energy, and time-
energy balance. In the following subsections, we have
reported both mean (or average) and median of exper-
iment results. We have used the mean in our diagrams
to study the convergence speed of different algorithms
as a typical case. However, the mean is particularly sus-
ceptible to the influence of outliers, while the median is
less affected by outliers and skewed data. Therefore, we
have used the median to compare the performance of the
algorithms, which is more suitable than the mean.

Chaotic maps effect
In this part, we analyse the effect of chaotic maps (Table 6)
to initialize �r , and p values inWOA (CWOA). The results
are compared to the original WOA (NoChaos).

Chaosmaps for �r
In Fig. 7(a) it can be observed that in term of energy cost
optimization, all the chaotic maps except Circle map show
worse results as compared to WOA algorithm. In other
words, Chebyshev, Iterative, Logistic, Cubic, Sine, Sinu-
soidal, Singer, Tent, Piecewise, and Gauss/Mouse chaotic
maps can not enhance the efficiency and convergence
speed of WOA algorithm. For the time cost objective,
the Circle and Singer chaotic maps can enhance the per-
formance and convergence speed of the WOA as shown
in Fig. 7(b). Regarding the Time-energy balance objec-
tive, it can be seen that Logistic, Sine, Gauss, Piece-
wise, iterative, Circle, and Chebyshev chaotic maps can
slightly enhance the performance of the WOA as pre-
sented in Fig. 7(c). On the contrary, other chaotic maps
results are worse than WOA while achieving a time-
energy balance. It can be considered that Circle maps have
faster convergence in comparison to others for all three
metrics.
Table 7 (see Appendix) shows the results of 11 chaotic

maps on all evaluation metrics in CWOA for �r value.
As depicted, in terms of achieving energy costs and time
cost, random choice of r in [0, 1] outperforms all chaotic
maps. While in terms of pursuing a balance between time

and energy costs, Circle map can slightly enhance the
performance of WOA.

Chaosmaps for p
Figure 8 represents the results of applying the 11 chaotic
maps for the p value. In regard to the energy cost
(Fig. 8(a)), all chaotic algorithms except Gauss and Iter-
ative show better results as compared to WOA algo-
rithm. Otherwise speaking, Chebyshev, Circle, Logis-
tic, Cubic, Sine, Sinusoidal, Singer, Tent, and Piecewise
chaotic maps can enhance the performance and conver-
gence speed of the WOA algorithm. In regard to the
time cost (Fig. 8(b)), Chebyshev, Logistic, Cubic, Sine,
Sinusoidal, Singer, Tent, and Piecewise chaotic maps can
enhance the performance and convergence speed of the
WOA algorithm. Also, Gauss and Iterative chaotic maps
show worse results than the WOA algorithm. In regards
to the time-energy balance performance (Fig. 8(c)), all
chaotic maps except Gauss and Iterative can enhance the
performance of the WOA algorithm while achieving a
time-energy balance. Also, it can be seen that the Sinu-
soidal map yields the best result in pursuing a time-energy
balance.
Table 8 (see Appendix) shows the results of 11 chaotic

maps on all evaluation metrics on CWOA for p value. It
can be seen that in terms of archiving lower energy costs,
the Sinusoidal map outperforms others. Also, Piecewise,
Iterative, Gauss, and Cubic yields worse results in com-
parison to random choice. In terms of achieving lower
time cost, Sinusoidal map yields the best result in compar-
ison to others. While Piecewise, Gauss, Iterative, Circle,
and Chebyshev show worse results than random choice.
In terms of pursuing a balance between time and energy
costs, Sinusoidal shows better results than others. While
Tent, Sine, Iterative, and Gauss yields worse results than
random choice.

Opposition-based techniques effect
We employed four different opposition-based tech-
niques named Opposition (O), Partial-Opposition (PO),
Quasi-Opposition (QO), and Super-Opposition (SO), as
explained in “Proposed approach” section to improve the
performance of WOA. Therefore we proposed OWOA,
POWOA, QOWOA, and SOWOA to compare their per-
formance with the original WOA to find out which tech-
nique is more suitable for our scheduling problem. Also,
we set up the jumping Rate to 0.5. As seen in Fig. 9(a),
comparing to the originalWOA, with increasing the num-
ber of iterations, the fitness value of the opposition-based
algorithms to achieve less energy consumption decreases,
showing the efficiency and effectiveness of opposition-
based algorithms on task scheduling in fog computing.
The energy cost of the proposed POWOA is smaller
than other opposition-based algorithms. This means that

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 17 of 31

Fig. 7 Performance comparison of 11 chaotic maps for �r

POWOA has greater search capabilities than others. In
addition, with an increase in the number of iterations,
POWOA can get its optimal solution faster than WOA,
which means that our proposed optimization techniques
will greatly boost the WOA algorithm’s convergence
speed. The results of the fitness values of the time and
time-energy balance are depicted in Figs. 9(b) and 9(c),
respectively. Same as the energy cost metric, POWOA
outperforms the other algorithms in terms of convergence
speed and accuracy in achieving a time-energy balance. In
particular, in comparison with WOA, OWOA, QOWOA,
and SOWOA, the cost of time-energy balance is reduced
significantly. However, It cannot produce much better
results in time costs.
Table 9 (see Appendix) shows the results of the 4

opposition-based techniques applied to WOA for energy,

cost, and energy-cost balance metrics. It can be seen
that in terms of achieving lower Energy cost, POWOA
outperforms other algorithms. In other words, Partial-
opposition-based technique can significantly enhance the
performance of WOA. Moreover, SOWOA algorithm
shows slightly better results, while OWOA and QOWOA
present worse results than WOA. In terms of achiev-
ing lower Time costs, POWOA and SOWOA yield bet-
ter results than the WOA algorithm. In other words,
the Partial and Super opposition-based technique can
enhance results of WOA, while Opposition and Quasi
opposition-based technique can not enhance the perfor-
mance of the WOA algorithm. As shown in the table,
to achieve a balance between time and energy costs, the
partial-opposition technique can significantly enhance the
performance of WOA. Opposition and Super opposition

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 18 of 31

Fig. 8 Performance comparison of 11 chaotic maps for p value

can slightly enhance WOA performance. Table 9 shows
that partial-opposition-based technique can enhance the
performance of WOA over our evaluation metrics.

Jumping rate effect
As we discussed in “Proposed approach” section, to
prevent the premature convergence of POWOA, we
employed the Jumping Rate (JR) factor. We increase JR
form 0.1 to 0.9 to study its effect on the behavior of
POWOA. In Fig. 10(a), it can be observed that JR over
0.6 can cause premature convergence, which prevents the
algorithm from yielding better results in terms of achiev-
ing energy cost. In Figs. 10(b) and 10(c), it can be seen
that JW over 0.8 and 0.7 can cause premature convergence
in terms of achieving time cost and time-energy bal-
ance, respectively. This study shows that any value within

the interval of [0.6, 0.8] is appropriate for JR to prevent
premature convergence of the POWOA algorithm.

Non-linear functions
As presented in “Proposed approach” section, to improve
the exploration phase of the WOA algorithm, we
employed four non-linear functions namely Beta1, Beta2,
Beta3, and Beta4 and replace them with the linear func-
tion that changes the vector �a (Eq. 20). As seen in
Fig. 11(a), Beta3 shows slightly better results while other
Beta functions provide worse results comparing to the lin-
ear function in terms of achieving lower energy cost. In
Fig. 11(b), it can be seen that regarding the time cost,
Beta2 and Beta3 yield slightly better results while Beta1
and Beta4 results are worse than the linear function. As
depicted in Fig. 11(c), all proposed Beta functions yield

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 19 of 31

Fig. 9 Performance comparison of 4 OBL techniques with three evaluation metrics

better results than the linear function; also, Beta2 shows
the best results out of other functions while achieving a
balance between time and energy costs.
Table 10 (see Appendix) presents the effects of 4 non-

linear functions onWOA for the three evaluationmetrics.
It can be observed that in terms of achieving lower energy
cost, linear function outperforms other non-linear func-
tions, and Beta3 yields better results than other non-linear
ones. Concerning the lower time cost, Beta3 has the best
performance among all non-linear functions and slightly
better than the linear function. Besides, regarding the bal-
ance between time and energy costs, Beta1, Beta2, and
Beta3 achieve better results than the linear function.

OppoCWOA evaluation
As presented in “Proposed approach” section, to enhance
the WOA algorithm, we employed many different tech-

niques that are partial-opposition learning, chaotic maps,
non-linear functions, and jumping rate. In this section,
we report the experiment results from the combination
of these techniques to illustrate the efficiency of our
approach. The parameter setting of these simulations is
depicted in Table 4. We record the achieved values for
time, energy, and time-energy balance with two separate
scenarios that are varying the number of iterations (sce-
nario 1) and the number of tasks (scenario 2) during each
experiment.
Scenario 1: In this scenario, the number of tasks is fixed

to 50, and the number of iterations is increased gradually
from 1 to 200. Figure 12 depicts the comparison analysis of
the five algorithms execution. As illustrated in Fig. 12(a),
the fitness value for energy cost keep decreasing gradually
by incrementing the number of iterations, that indicates
the effectiveness of all algorithms. The figure shows that

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 20 of 31

Fig. 10 Effect of jumping rate on the behavior of POWOA

the energy cost in OppoCWOA is significantly lower that
the others. Furthermore, it can been seen that the con-
vergence speed and solution precision of OppoCWOA is
higher that the other compared algorithms. The results
of the fitness values of the time and time-energy balance
is shown in Figs. 12(b) and 12(c), respectively. Similar to
the energy cost, the value of fitness decreases when incre-
menting the number of iterations. In terms of time cost,
GA outperforms OppoCWOA.The reason for this could
be that Beta2 decreases the global exploration capability of
our proposed algorithm that causes our algorithm stuck in
a local optimum. In terms of achieving a time-energy bal-
ance, it is noticeable that OppoCWOA outperforms other
algorithms, which means our algorithm acts more accu-
rately than other algorithms. Also, with the incrementing

of iterations, OppoCWOA can get its optimal solution
faster comparing to the other algorithms, which means
that our proposed algorithm convergence speed is faster
than other compared algorithms.
Table 11 (see Appendix) illustrates the results given

from the compared algorithms for the three formulated
evaluation metrics. It can be observed that regarding the
energy cost, OppoCWOA yields much better results than
other algorithms. In terms of time costs, OppoCWOA
outperforms WOA, PSO, ABC, but cannot outperform
GA. As shown in the table, for balanced time-energy costs,
OppoCWOA provides significantly better results and bet-
ter solution precision comparing to the other algorithms.
It can be seen that GA is ranked first for the time met-
ric and second for energy and time-energy cost metrics.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 21 of 31

Fig. 11 Performance comparison of 4 non-linear functions with three evaluation metrics

Also, the GA algorithm performance is better compared
to WOA, PSO, and ABC.
Scenario 2: In this scenario, the number of tasks are

gradually increased from 50 to 300. Figure 13 presents
the performance analysis of the five algorithms for this
scenario. In regards to the energy cost, OppoCWOA pro-
vides better results comparing to the other algorithms
(Fig. 13(a)). This implies that the proposed algorithm
keeps the energy consumption low under the high load
of tasks. Also, the ABC algorithm has a worse perfor-
mance among others in a high load of tasks while in
the contrary case, its performance is ranked second after
OppoCWOA. This means the ABC algorithm is not suit-
able for our fog environments where a high number of
tasks should be scheduled. On the other hand, GA per-
formance ranks on the second position for a high load

of tasks, indicating that GA is more suitable than ABC,
PSO, WOA for our fog environment. In Fig. 13(b), we
can see that OppoCWOA outperforms others in a high
load of tasks regarding the time cost. In accordance with
the results, GA acts well only for low number of tasks,
meaning that GA loses its advantage over OppoCOWA
when increasing the number of tasks. In view of time-
energy balance cost, Fig. 13(c) illustrates the superiority
of the proposed OppoCWOA comparing to the other
algorithms for task scheduling in the fog computing
environment.

Conclusion and future works
In this paper, we proposed a WOA-based task schedul-
ing algorithm for fog computing environments named
OppoCWOA by using opposition-based learning with

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 22 of 31

Table 4 OppoCOWA setting

Method Value

Chaotic map for �r Circle

Chaotic map for p-value Sinusoidal

Opposition-based learning type Partial

Non-linear function for �a Beta2

Jumping rate 0.7

jumping rate, and chaos theory to achieve time-energy
efficiency. In the proposed method, we used partial-
opposition instead of full-opposition that increases the
population diversity. This latter improves the perfor-
mance of task scheduling while achieving faster conver-
gence. We studied the effects of 11 different chaotic maps

on two different parameters (�r, and p) of WOA. We pre-
sented four different non-linear functions to replace the
linear function in WOA and compared their effects on
the algorithm. Also, to prevent premature convergence
that can be caused by utilizing opposition-based tech-
niques, we employed jumping rate and studied its effects
on the algorithm. We have reported the effects of dif-
ferent jumping rate values within the interval [0.1, 0.9]
and demonstrated that any jumping rate value within the
interval [0.6, 0.8] is suitable for our OppoCWOA. The
simulation results indicated that the proposed algorithm
considerably outperformed the original Whale Optimiza-
tion Algorithm (WOA), Artificial Bees Colony (ABC),
Particle Swarm Optimization (PSO), and Genetic Algo-
rithm (GA) in terms of achieving time-energy efficient
task scheduling.

Fig. 12 Performance comparison of five algorithms with 50 tasks

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 23 of 31

Fig. 13 Performance comparison of five algorithms from 50 to 300 tasks

This work opens the way to multiple extensions. Here
we cite some of the most promising. First, we plan to
overcome some limitations in the current version of the
simulator. For instance, we did not consider the situa-
tion in which executing a task is failed on a fog node
(due to the damage of the CPU, for instance). One solu-
tion to overcome this limitation is to allocate another
fog node at the next time slot. However, this solution
may exceed the deadline of the task. Another limitation
is that tasks are implemented as simple objects which
are independent to each other. We aim to consider com-
plex tasks that generally structured as a graph of sub-
tasks (or jobs) deployed and executed on different fog
nodes (either in the fog or the cloud layer, depending
on their type). This latter requires data synchronization
of complex tasks at some stage. Another limitation is

the static aspect of the network, i.e., IoT devices or/and
fog nodes may be mobile. This latter requires imple-
menting the task migration techniques between fog/cloud
nodes. Second, we desire to simulate the proposed system
model and OppoCWOA using open-source simulators
such as Cloudsim (or alike) to align with the existing
well-known and popular platforms. This latter is possible
using the container and scheduler interfaces in cloudsim
to provide the implementation of our model. Further-
more, we plan to investigate data privacy in the future
using the blockchain-based FogBus framework. Finally, to
cope with the stochastic feature of the fog environment,
we intend to apply AI-based approaches such as deep
reinforcement learning to quickly learn and update the
policy weights based on the fog nodes and task workload
behaviors.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 24 of 31

Appendix

Table 5 Linear and non-linear functions

Name Function Possible Effect Diagram

Linear y = 2 − 2x In the first half of the iterations, WOA is mostly
devoted to global exploration, while in the other half
iterations, it is mostly devoted to local exploitation.

Beta1 y = 2 − 2x3 In more than half of the iterations, WOA is devoted
to global exploration (about 4/5 of the iterations),
while in the other iterations, it is devoted to local
exploitation. Better global exploration capability.

Beta2 y = 2 − √
4 − 4(x − 1)2 In more than half of the iterations, WOA is devoted

to local exploitation(more than 4/5 of the iterations),
while in the other iterations, it is devoted to global
exploration. Better local exploitation capability.

Beta3 y =
⎧
⎨

⎩
Beta1 if x ≤ 0.5

Beta2 Otherwise
In the first half of the iterations, WOA is strictly
devoted to global exploration, while in the other
iterations, it is strictly devoted to local exploitation.

Beta4 y =
⎧
⎨

⎩
Beta2 if x ≤ 0.5

Beta1 Otherwise
In the first quarter of the iterations, WOA is devoted
to global exploration, in the second quarter of the
iterations, it is devoted to local exploitation. In the
third quarter of the iteration, it is devoted to global
exploration, while in the last quarter of iterations, it is
devoted to local exploitation.

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 25 of 31

Table 6 Chaotic maps

Number Name Chaotic Map Diagram

1 Chebyshev [47]
x(i+1) = cos(icos−1xi)

x0 = 0.7

2 Circle [48]
x(i+1) = (xi + b − (a

2π) sin(2πxi))mod(1)

a = 0.5, b = 0.2, x0 = 0.7

3 Cubic [49]
x(i+1) = 2.59xi(1 − x2i)

x0 = 0.7

4 Guass [50]
x(i+1) =

⎧
⎨

⎩
0 if xi = 0
1
xi
mod(1) if xi �= 0

x0 = 0.7

5 Iterative [51]
x(i+1) = sin(aπxi)

a = 0.7, x0 = 0.7

6 Logistic [51]
x(i+1) = axi(1 − xi)

a = 4, x0 = 0.7

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 26 of 31

Table 6 Chaotic maps (Continued)

Number Name Chaotic Map Diagram

7 Piecewise [52]
x(i+1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi/p if xi < p

xi−p/0.5−p if p ≤ xi ≤ 0.5

1−p−xi/0.5−p if 0.5 ≤ xi ≤ 1 − p

1−xi/p if 1 − p < xi

p = 0.4, x0 = 0.7

8 Sine [53]
x(i+1) = a

4 sin(πxi)

a = 0.4, x0 = 0.7

9 Singer [54]
x(i+1) = μ(7.86xi − 23.31x2i + 28.75x3i − 13.302875x4i)

μ = 1.073, x0 = 0.7

10 Sinusoidal [55]
x(i+1) = axi2 sin(πxi)

a = 2.3, x0 = 0.7

11 Tent [56] x(i+1) =
⎧
⎨

⎩

xi/0.7 if xi < 0.7

10/3(1 − xi) otherwise

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 27 of 31

Ta
b
le

7
Re
su
lts

of
11

ch
ao
tic

m
ap

s
on

al
le
va
lu
at
io
n
m
et
ric
s
on

C
W
O
A
fo
r� r

va
lu
e

Ev
al
ua

ti
on

m
et
ri
c

St
at
is
ti
cs

C
h
eb

ys
h
ev

C
ir
cl
e

C
ub

ic
G
au

ss
It
er
at
iv
e

Lo
g
is
ti
c

Pi
ec
ew

is
e

Si
n
e

Si
n
g
er

Si
n
us
oi
d
al

Te
n
t

N
o
C
h
ao

s

En
er
gy

M
ax

51
0.
06

50
9.
23

51
1.
9

49
8.
18

51
4.
31

49
3.
91

50
2.
92

50
2.
42

49
2.
55

51
9.
93

51
1.
47

50
2.
14

M
in

38
6.
96

38
0.
17

39
2.
38

42
4.
6

40
7.
76

32
1.
38

39
6.
5

41
7.
73

41
1.
97

42
5.
55

39
8.
06

38
3.
84

M
ea
n

45
9.
65

44
8.
47

46
0.
6

46
0.
02

45
5.
45

45
9.
49

46
0.
52

45
8.
4

45
3.
51

46
4.
95

46
4.
71

45
3.
07

M
ed
ia
n

45
7.
38

45
3.
35

46
2.
38

46
3.
46

45
8.
07

46
0.
96

47
0.
33

45
8.
74

45
5.
46

46
3.
81

46
9.
1

44
9.
4

Ti
m
e

M
ax

85
.9

68
.7
2

86
.3
1

79
.2
4

84
.6

81
.0
1

79
.0
6

78
.5
9

74
.4

93
.3
8

75
.2
8

81
.2
9

M
in

48
.5
3

47
.6
1

54
.4
4

49
.7
6

51
.9
3

48
.2
7

50
.1
1

47
.6
3

42
.0
6

49
.6
1

50
.1
4

47
.0
2

M
ea
n

66
.7
9

62
.0
8

65
.9
7

64
.5
2

64
.5
4

64
.0
8

66
.3
4

66
.0
9

61
.0
9

67
.7
8

64
.6
6

62
.1

M
ed
ia
n

66
.3
5

64
.1
2

64
.5
1

62
.4

64
.1
3

66
.7
8

67
.9
1

68
.7
7

63
.1
5

66
.4
2

65
.8
9

61
.0
7

Ti
m
e
–
En
er
gy

M
ax

32
0.
87

31
9.
92

32
4.
16

32
2.
13

32
7.
1

31
7.
75

32
2.
5

31
8.
69

32
5.
55

32
1.
24

32
2.
17

32
8.
25

M
in

26
0.
07

25
5.
78

24
5.
8

25
8.
96

25
5.
31

24
0.
15

25
7.
41

25
5.
94

26
4.
26

26
5.
66

26
8.
85

25
0.
68

M
ea
n

29
1.
66

28
8.
13

29
3.
37

29
0.
49

29
1.
61

28
7.
43

29
2.
8

29
1.
62

30
0.
25

29
3.
47

29
6.
47

29
3.
23

M
ed
ia
n

29
2.
5

28
8.
05

29
1.
81

29
2.
97

29
3.
3

29
1.
67

29
7.
06

29
3.
12

30
1.
66

29
0.
02

29
6.
9

28
9.
83

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 28 of 31

Ta
b
le

8
Re
su
lts

of
11

ch
ao
tic

m
ap

s
on

al
le
va
lu
at
io
n
m
et
ric
s
on

C
W
O
A
fo
rp

va
lu
e

Ev
al
ua

ti
on

m
et
ri
c

St
at
is
ti
cs

C
h
eb

ys
h
ev

C
ir
cl
e

C
ub

ic
G
au

ss
It
er
at
iv
e

Lo
g
is
ti
c

Pi
ec
ew

is
e

Si
n
e

Si
n
g
er

Si
n
us
oi
d
al

Te
n
t

N
o
C
h
ao

s

En
er
gy

M
ax

48
2.
41

47
8.
04

48
6.
95

50
8.
69

50
5.
02

48
2.
45

49
5.
37

48
4.
4

48
1.
73

49
0.
62

48
4.
81

50
2.
14

M
in

40
6.
34

40
6.
41

40
3.
43

40
2.
02

39
3.
84

37
3.
87

40
2.
71

40
6.
95

30
1.
87

38
9.
03

39
0.
01

38
3.
84

M
ea
n

44
2.
69

44
9.
83

45
1.
01

46
2.
3

45
4.
78

44
2.
55

45
2.
13

44
0.
58

43
7.
02

44
0.
43

44
2.
63

45
3.
07

M
ed
ia
n

44
3.
7

44
8.
62

45
0.
81

45
7.
02

45
2.
55

44
7.
64

45
6.
14

43
8.
3

44
9.
24

43
7.
93

44
6.
14

44
9.
4

Ti
m
e

M
ax

70
.3
5

74
.0
5

72
.2
3

85
.2
8

84
.3
3

68
.0
8

70
.1
3

74
.3
5

68
.2
3

68
.7
9

69
.0
7

81
.2
9

M
in

49
.2

52
.8
7

49
.6
3

49
.0
7

44
.3
2

47
.6

46
.5
6

46
.3
3

39
.8
8

44
.1
9

49
.7
7

47
.0
2

M
ea
n

60
.3
9

63
.0
9

60
.3
5

66
.9
7

66
.2

59
.5
1

60
.9
8

61
.2
5

59
.0
6

57
.4
6

58
.7
6

62
.1

M
ed
ia
n

61
.2
4

61
.4
8

58
.9
3

64
.4
8

65
.6
5

60
.8
5

62
.5
3

60
.3
9

60
.2
9

58
.2

58
.5
1

61
.0
7

Ti
m
e
–
En
er
gy

M
ax

32
0.
7

33
1.
87

31
6.
66

31
7.
69

32
8.
24

31
4.
08

30
6.
96

32
0.
77

31
1.
32

31
1.
54

31
6.
26

32
8.
25

M
in

25
6.
13

23
8.
4

25
7.
08

26
6.
88

27
3.
77

23
1.
86

25
6.
23

24
4.
74

24
5.
91

24
2.
62

24
8.
11

25
0.
68

M
ea
n

28
3.
03

28
6.
28

28
2.
8

29
6.
14

29
5.
26

28
2.
1

28
4.
8

28
8.
49

28
2.
63

27
4.
38

28
6.
73

29
3.
23

M
ed
ia
n

28
3.
06

28
5.
69

27
8.
54

29
8.
03

29
3.
63

27
8.
79

28
4.
72

29
1.
91

28
8.
64

27
6.
44

29
2.
96

28
9.
83

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 29 of 31

Table 9 Results of 4 OBL techniques on all evaluation metrics on WOA

Evaluation metric Statistics WOA OWOA POWOA QOWOA SOWOA

Energy Max 502.15 491.83 480.75 502.31 501.41

Min 383.84 405.04 355.72 378.69 403.88

Mean 453.08 450.01 417.64 454.37 446.44

Median 449.4 450.98 412.11 468.51 446.3

Time Max 81.3 70.77 79.84 79.9 77.27

Min 47.02 54.31 56.93 50.39 43.26

Mean 62.1 63.47 62.67 64.23 59.68

Median 61.07 63.38 60.67 62.69 60.83

Time – Energy Max 328.26 319.08 310.84 340.33 313.31

Min 250.68 233.09 232.06 223.64 264.67

Mean 293.23 283.87 269.32 293.15 285.84

Median 289.83 281.56 267.41 297.39 285.54

Table 10 Results of 4 non-linear functions on all evaluation metrics

Evaluation metric Statistics Linear Beta1 Beta2 Beta3 Beta4

Energy Max 502.15 504.37 484.95 485.05 514.8

Min 383.84 413.63 407.31 412.51 421.54

Mean 453.08 457.48 458.31 452.52 466.08

Median 449.4 457.95 458.16 454.71 478.06

Time Max 81.3 80.07 75.23 74.73 74.72

Min 47.02 47.73 44.96 45.07 50.95

Mean 62.01 65.59 60.75 60.49 62.6

Median 61.07 66.34 62.28 60.71 63.43

Time – Energy Max 328.26 315.33 303.52 321.92 316.23

Min 250.68 252.55 265.21 258.88 241.04

Mean 293.23 286.33 282.26 289.41 291.28

Median 289.83 288.22 280.92 287.15 292.28

Table 11 Results of 5 task scheduling algorithms on all evaluation metrics

Evaluation metric Statistics WOA PSO ABC GA OppoCWOA

Max 502.15 467.75 444.95 447.1 441.12

Min 383.84 368.91 400.89 408.66 309.87

Energy Mean 453.08 438.39 422.34 429.58 384.48

Median 449.4 441.16 417.74 432.66 386.25

Max 81.3 87.09 81.97 62.2 72.94

Min 47.02 56.28 62.32 41.55 40.23

Time Mean 62.01 72.56 73.6 50.97 58.64

Median 61.07 72.2 74.11 51.22 59.54

Max 328.26 303.09 287.19 281.64 306.91

Min 250.68 255.13 244.42 249.17 214.58

Time – Energy Mean 293.23 282.45 270.2 265.25 254.7

Median 289.83 286.18 271.14 268.46 251.82

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 30 of 31

Acknowledgments
Not applicable.

Authors’ contributions
This research paper has been done through a concerted effort by three
authors. Hence, any author has participated in conducting every single part of
the paper. But each author’s basic role has been summarizing in the following:
Z.M. is the corresponding author, the coordinator of the group and the
designer of the proposed model and method. B.D. is the main reviewer of the
paper and assisted Z.M for the model design. A.M.H. is the responsible for
experimentation of the proposed method with support from Z.M and B.D. All
authors have read and agreed to the published version of the manuscript.

Authors’ information
Bruno Defude is a Professor in the Computer Science Department and
member of the ACMES group of SAMOVAR in Telecom SudParis, France. He is
also Deputy Dean of Research and Doctoral Studies of TELECOM SudParis,
school of institut Mines-Telecom and component of Institut Polytechnique de
Paris. His current research themes are semantic web (ontologies for
provenance management, personnalised access to documents), distribution
(P2P information retrieval systems, data management for VANET), data and
service management at large scale (cloud computing, NoSQL database, big
data). He is a member of the editorial board of two French journals, I3
(http://revue-i3.org) and RSTI/ISI (Ingéniérie des Systèmes d’Informations).
Zahra Movahedi received her M.S. and Ph.D. degrees in Artificial Intelligence
from University of Pierre and Marie Curie (UPMC-Sorbonne Universite) in 2011
and University of Paris Saclay in 2015, Paris, France, respectively. She worked as
a post-doc researcher at university of Marnle-la-Vallee in 2016. Since 2017, she
is a faculty member at University of Tehran, Tehran, Iran. She served as the
head or collaborator for a large number of international research and industrial
projects, including French Zodianet company representative for FP7 European
project of VITRO (Virtualized dIstributed plaTfoRms of smart Objects) and LIGM
(Laboratoire d’Informatique Gaspard-Monge University of Marne-la-vallee)
representative for ITEA3 European project of SITAC (Social Internet of things:
Apps by and for the Crowd). Her research interests include IoT, Fog and cloud
computing, Multi-agents system, business process and distributed algorithms.
Amir Mohammad Hosseininia is a M.Sc. student at the university of Tehran. He
received the B.Sc. degree from the College of Farabi, University of Tehran,
Tehran, Iran, in 2019. His current research interests are in the field of
evolutionary computation, particularly in the areas of multi-criterion and
real-parameter evolutionary algorithms, machine learning, neural networks,
cloud and fog computing.

Funding
Not applicable.

Availability of data andmaterials
Not applicable.

Declarations

Competing interests
Not applicable.

Author details
1Department of Engineering, College of Farabi, University of Tehran, Tehran,
Iran. 2SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau,
France.

Received: 12 January 2021 Accepted: 30 August 2021

References
1. Mehmood Y, Ahmad F, Yaqoob I, Adnane A, Imran M, Guizani S (2017)

Internet-of-things-based smart cities: Recent advances and challenges.
IEEE Commun Mag 55(9):16–24. https://doi.org/10.1109/MCOM.2017.
1600514

2. Hosseini Bidi A, Movahedi Z, Movahedi Z A fog-based fault-tolerant and
qoe-aware service composition in smart cities. Trans Emerg Telecommun
Technol. https://doi.org/10.1002/ett.4326.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4326

3. Islam S. M. R, Kwak D, Kabir MH, Hossain M, Kwak K (2015) The internet of
things for health care: A comprehensive survey. IEEE Access 3:678–708.
https://doi.org/10.1109/ACCESS.2015.2437951

4. Stojkoska BLR, Trivodaliev KV (2017) A review of internet of things for
smart home: Challenges and solutions. J Clean Prod 140:1454–1464.
https://doi.org/10.1016/j.jclepro.2016.10.006

5. Pochet Y, Wolsey LA Production Planning by Mixed Integer
Programming. Springer Series in Operations Research and Financial
Engineering. Springer, New York

6. Ullman JD (1975) Np-complete scheduling problems. J Comput Syst Sci
10(3):384–393. https://doi.org/10.1016/S0022-0000(75)80008-0

7. Hosseinioun P, Kheirabadi M, Kamel Tabbakh SR, Ghaemi R atask
scheduling approaches in fog computing: A survey. Trans Emerg
Telecommun Technol n/a(n/a):3792. https://doi.org/10.1002/ett.3792.
e3792 ETT-19-0285.R1.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3792

8. Hong C-H, Varghese B (2019) Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms.
ACM Comput Surv 52(5). https://doi.org/10.1145/3326066

9. Mach P, Becvar Z (2017) Mobile edge computing: A survey on
architecture and computation offloading. IEEE Commun Surv Tutor
19(3):1628–1656. https://doi.org/10.1109/COMST.2017.2682318

10. Kumar M, Sharma SC, Goel A, Singh SP (2019) A comprehensive survey for
scheduling techniques in cloud computing. J Netw Comput Appl
143:1–33. https://doi.org/10.1016/j.jnca.2019.06.006

11. Kalra M, Singh S (2015) A review of metaheuristic scheduling techniques
in cloud computing. Egypt Inform J 16(3):275–295. https://doi.org/10.
1016/j.eij.2015.07.001

12. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng
Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

13. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

14. Tizhoosh HR (2005) Opposition-based learning: A new scheme for
machine intelligence. In: International Conference on Computational
Intelligence for Modelling, Control and Automation and International
Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC’06), vol. 1. pp 695–701. https://doi.org/10.
1109/CIMCA.2005.1631345

15. Tizhoosh HR, Ventresca M, Rahnamayan S (2008). In: Tizhoosh HR,
Ventresca M (eds). Opposition-Based Computing. Springer, Berlin,
Heidelberg. pp 11–28. https://doi.org/10.1007/978-3-540-70829-2_2

16. Ikeguchi T, Hasegawa M, Kimura T, Matsuura T, Aihara K (2011). In: Nedjah
N., dos Santos Coelho L, Mariani VC, de Macedo Mourelle L (eds). Theory
and Applications of Chaotic Optimization Methods. Springer, Berlin,
Heidelberg. pp 131–161. https://doi.org/10.1007/978-3-642-20958-1_8

17. Barros C, Rocio V, Sousa A, Paredes H (2020) Survey on job scheduling in
cloud-fog architecture. In: 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI). pp 1–7. https://doi.org/10.23919/
CISTI49556.2020.9141156

18. Matrouk K, Alatoun K (2021) Scheduling algorithms in fog computing: A
survey. Int J Netw Distrib Comput 9:59–74. https://doi.org/10.2991/ijndc.
k.210111.001

19. Wang T, Liu Z, Chen Y, Xu Y, Dai X (2014) Load balancing task scheduling
based on genetic algorithm in cloud computing. In: 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure
Computing. pp 146–152. https://doi.org/10.1109/DASC.2014.35

20. Abdi S, Motamedi SA, Sharifian S, et al. (2014) Task scheduling using
modified PSO algorithm in cloud computing environment. In:
International conference on machine learning, electrical and mechanical
engineering, vol 4, issue 1. pp 8–12

21. Hasan MZ, Al-Rizzo H, Al-Turjman F, Rodriguez J, Radwan A (2018)
Internet of things task scheduling in cloud environment using particle
swarm optimization. In: 2018 IEEE Global Communications Conference
(GLOBECOM). pp 1–6. https://doi.org/10.1109/GLOCOM.2018.8647917

22. Kimpan W, Kruekaew B (2016) Heuristic task scheduling with artificial bee
colony algorithm for virtual machines. In: 2016 Joint 8th International
Conference on Soft Computing and Intelligent Systems (SCIS) and 17th
International Symposium on Advanced Intelligent Systems (ISIS).
pp 281–286. https://doi.org/10.1109/SCIS-ISIS.2016.0067

23. Chen X, Cheng L, Liu C, Liu Q, Liu J, Mao Y, Murphy J (2020) A woa-based
optimization approach for task scheduling in cloud computing systems.
IEEE Syst J:1–12. https://doi.org/10.1109/JSYST.2019.2960088

https://doi.org/10.1109/MCOM.2017.1600514
https://doi.org/10.1109/MCOM.2017.1600514
https://doi.org/10.1002/ett.4326
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4326
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1016/j.jclepro.2016.10.006
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1002/ett.3792
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3792
https://doi.org/10.1145/3326066
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.1016/j.eij.2015.07.001
https://doi.org/10.1016/j.eij.2015.07.001
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1007/978-3-540-70829-2_2
https://doi.org/10.1007/978-3-642-20958-1_8
https://doi.org/10.23919/CISTI49556.2020.9141156
https://doi.org/10.23919/CISTI49556.2020.9141156
https://doi.org/10.2991/ijndc.k.210111.001
https://doi.org/10.2991/ijndc.k.210111.001
https://doi.org/10.1109/DASC.2014.35
https://doi.org/10.1109/GLOCOM.2018.8647917
https://doi.org/10.1109/SCIS-ISIS.2016.0067
https://doi.org/10.1109/JSYST.2019.2960088

Movahedi et al. Journal of Cloud Computing (2021) 10:53 Page 31 of 31

24. Thennarasu SR, Selvam M, Srihari K (2020) A new whale optimizer for
workflow scheduling in cloud computing environment. J Ambient Intell
Humanized Comput. https://doi.org/10.1007/s12652-020-01678-9

25. Ghobaei-Arani M, Souri A, Safara F, Norouzi M (2020) An efficient task
scheduling approach using moth-flame optimization algorithm for
cyber-physical system applications in fog computing. Trans Emerg
Telecommun Technol 31(2):3770. https://doi.org/10.1002/ett.3770. e3770
ETT-18-0545.R2

26. Rahbari D, Nickray M (2017) Scheduling of fog networks with optimized
knapsack by symbiotic organisms search. In: 2017 21st Conference of
Open Innovations Association (FRUCT). pp 278–283. https://doi.org/10.
23919/FRUCT.2017.8250193

27. Wang J, Li D (2019) Task scheduling based on a hybrid heuristic algorithm
for smart production line with fog computing. Sensors 19(5). https://doi.
org/10.3390/s19051023

28. Sun Y, Lin F, Xu H (2018) Multi-objective optimization of resource
scheduling in fog computing using an improved nsga-ii. Wirel Pers
Commun 102(2):1369–1385. https://doi.org/10.1007/s11277-017-5200-5

29. Yang Y, Zhao S, Zhang W, Chen Y, Luo X, Wang J (2018) Debts: Delay
energy balanced task scheduling in homogeneous fog networks. IEEE
Internet Things J 5(3):2094–2106. https://doi.org/10.1109/JIOT.2018.
2823000

30. Wang T, Wei X, Tang C, Fan J (2018) Efficient multi-tasks scheduling
algorithm in mobile cloud computing with time constraints. Peer-to-Peer
Netw Appl 11:793–807

31. Nguyen BM, Thi Thanh Binh H, The Anh T, Bao Son D (2019) Evolutionary
algorithms to optimize task scheduling problem for the iot based
bag-of-tasks application in cloud–fog computing environment. Appl Sci
9(9). https://doi.org/10.3390/app9091730

32. Bitam S, Zeadally S, Mellouk A (2018) Fog computing job scheduling
optimization based on bees swarm. Enterp Inf Syst 12(4):373–397. https://
doi.org/10.1080/17517575.2017.1304579

33. Tuli S, Gill S, Casale G, Jennings N (2020) ithermofog: Iot-fog based
automatic thermal profile creation for cloud data centers using artificial
intelligence techniques. Internet Technol Lett. https://doi.org/10.1002/
itl2.198

34. Tuli S, Ilager S, Ramamohanarao K, Buyya R (2020) Dynamic scheduling for
stochastic edge-cloud computing environments using a3c learning and
residual recurrent neural networks. IEEE Trans Mob Comput:1–1. https://
doi.org/10.1109/tmc.2020.3017079

35. Xie R, Tang Q, Liang C, Yu FR, Huang T (2021) Dynamic computation
offloading in iot fog systems with imperfect channel-state information: A
pomdp approach. IEEE Internet Things J 8(1):345–356. https://doi.org/10.
1109/JIOT.2020.3004223

36. Hazra A, Adhikari M, Amgoth T, Srirama SN (2020) Joint computation
offloading and scheduling optimization of iot applications in fog
networks. IEEE Trans Netw Sci Eng 7(4):3266–3278. https://doi.org/10.
1109/TNSE.2020.3021792

37. Shi Y, Chen S, Xu X (2018) Maga: A mobility-aware computation
offloading decision for distributed mobile cloud computing. IEEE Internet
Things J 5(1):164–174. https://doi.org/10.1109/JIOT.2017.2776252

38. Yu F, Chen H, Xu J (2018) Dynamic mobility-aware partial offloading in
mobile edge computing. Futur Gener Comput Syst 89:722–735. https://
doi.org/10.1016/j.future.2018.07.032

39. Ghosh S, Mukherjee A, Ghosh SK, Buyya R (2020) Mobi-iost:
mobility-aware cloud-fog-edge-iot collaborative framework for
time-critical applications. IEEE Trans Netw Sci Eng 7(4):2271–2285

40. Pham Q, Mirjalili S, Kumar N, Alazab M, Hwang W (2020) Whale
optimization algorithm with applications to resource allocation in
wireless networks. IEEE Trans Veh Technol 69(4):4285–4297. https://doi.
org/10.1109/TVT.2020.2973294

41. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: Whale
Optimization Algorithm and its applications. Swarm Evol Comput
48:1–24. https://doi.org/10.1016/j.swevo.2019.03.004

42. Shannon CE (1948) A mathematical theory of communication. Bell Syst
Tech J 27(3):379–423

43. Strumberger I, Bacanin N, Tuba M, Tuba E (2019) Resource scheduling in
cloud computing based on a hybridized whale optimization algorithm.
Appl Sci 9(22). https://doi.org/10.3390/app9224893

44. Rahnamayan S, Wang GG (2009) Center-based sampling for
population-based algorithms. In: 2009 IEEE Congress on Evolutionary
Computation. pp 933–938. https://doi.org/10.1109/CEC.2009.4983045

45. Hu Z, Bao Y, Xiong T (2014) Partial opposition-based adaptive differential
evolution algorithms: Evaluation on the CEC 2014 benchmark set for
real-parameter optimization. In: 2014 IEEE Congress on Evolutionary
Computation (CEC). pp 2259–2265. https://doi.org/10.1109/CEC.2014.
6900489

46. Tang R, Fong S, Dey N (2018) Metaheuristics and Chaos Theory. https://
doi.org/10.5772/intechopen.72103

47. Wang N, Liu L, Liu L (2001) Genetic algorithm in chaos. OR Trans 5:1–10
48. Zheng W-M (1994) Kneading plane of the circle map. Chaos, Solitons

Fractals 4(7):1221–1233
49. Rogers TD, Whitley DC (1983) Chaos in the cubic mapping. Math Model

4(1):9–25
50. Jothiprakash V, Arunkumar R (2013) Optimization of hydropower reservoir

using evolutionary algorithms coupled with chaos. Water Resour Manag
27(7):1963–1979

51. He D, He C, Jiang L-G, Zhu H-w, Hu G-r (2001) Chaotic characteristics of a
one-dimensional iterative map with infinite collapses. IEEE Trans Circ Syst
I: Fundam Theory Appl 48(7):900–906

52. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization
algorithm. Procedia Technol 12(1):180–185

53. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd
algorithm. Inf Sci 274:17–34

54. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol
Comput 12(6):702–713

55. Barton R (1990) Chaos and fractals. Math Teach 83(7):524–529
56. Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution

with biogeography-based optimization for solution of economic load
dispatch. IEEE Trans Power Syst 25(4):1955–1964

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/s12652-020-01678-9
https://doi.org/10.1002/ett.3770
https://doi.org/10.23919/FRUCT.2017.8250193
https://doi.org/10.23919/FRUCT.2017.8250193
https://doi.org/10.3390/s19051023
https://doi.org/10.3390/s19051023
https://doi.org/10.1007/s11277-017-5200-5
https://doi.org/10.1109/JIOT.2018.2823000
https://doi.org/10.1109/JIOT.2018.2823000
https://doi.org/10.3390/app9091730
https://doi.org/10.1080/17517575.2017.1304579
https://doi.org/10.1080/17517575.2017.1304579
https://doi.org/10.1002/itl2.198
https://doi.org/10.1002/itl2.198
https://doi.org/10.1109/tmc.2020.3017079
https://doi.org/10.1109/tmc.2020.3017079
https://doi.org/10.1109/JIOT.2020.3004223
https://doi.org/10.1109/JIOT.2020.3004223
https://doi.org/10.1109/TNSE.2020.3021792
https://doi.org/10.1109/TNSE.2020.3021792
https://doi.org/10.1109/JIOT.2017.2776252
https://doi.org/10.1016/j.future.2018.07.032
https://doi.org/10.1016/j.future.2018.07.032
https://doi.org/10.1109/TVT.2020.2973294
https://doi.org/10.1109/TVT.2020.2973294
https://doi.org/10.1016/j.swevo.2019.03.004
https://doi.org/10.3390/app9224893
https://doi.org/10.1109/CEC.2009.4983045
https://doi.org/10.1109/CEC.2014.6900489
https://doi.org/10.1109/CEC.2014.6900489
https://doi.org/10.5772/intechopen.72103
https://doi.org/10.5772/intechopen.72103

	Abstract
	Keywords

	Introduction
	Related work
	Proposed system model and formulation for the task scheduling problem
	Use-case scenario
	Fog-based architecture for task scheduling problem
	Proposed qoS parameters modelling for task scheduling problem
	Proposed formulation for task scheduling problem

	Proposed approach
	Whale optimization algorithm (WOA)
	Encircling prey
	Bubble-net feeding (exploitation)
	Search for prey (exploration)
	Limitations of WOA

	Opposition-based learning
	Quasi and super opposition-based learning
	Partial-opposition-based learning
	The proposed partial-opposition-based learning
	Jumping rate

	Chaos theory
	Non-linear functions
	Fog task scheduling using oppoCWOA
	Solution encoding
	Population initialization
	Fitness evaluation
	Whale position updating
	Opposite-population
	OppoCWOA algorithm
	Computational complexity

	Experiment results
	Chaotic maps effect
	Chaos maps for Lg
	Chaos maps for p
	Opposition-based techniques effect
	Jumping rate effect
	Non-linear functions
	OppoCWOA evaluation

	Conclusion and future works
	Appendix
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

