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FABIOACERBI?

Byzantine Easter Computi .
An Overview with an Edition of Anonymus 892

ABSTRACT: The Easter Computus in Par. suppl. gr. 920, dated to year 892, is the earliest known Byzantine Easter Computus
that is not embedded in a discursive framework but is a collection of bare procedures and examples. After an outline of the
tradition of Easter Computi, I present four approaches to this Computus: an edition of the Greek text that preserves all linguis-
tic features of the original; a faithful translation; a transcription of the involved algorithm in a mildly symbolic formalism; and
a discursive elucidation of the same algorithm. The symbolic transcriptions will prove more useful in comparing the proce-
dures set forth in different Computi than the algebraic formulas usually used to formalize them.

KEYWORDS: Algorithm, Byzantine Mathematics, Easter Computus, Southern Italy

INTRODUCTION

Easter Computi are a body of chronological writings whose subject-matter is the determination of
the date of Easter. Most modern accounts of Easter Computi are focused on their history in Wes-
tern Europe, where they were a major component of the mathematical lore available in the Early
Middle Ages, and whose literature-theoretical categorization underwent an evolution that eventual-
ly made them general scientific encyclopedias'. After an initial period that Western and Easter
Computi share (say ca. AD 150 to ca. AD 550) and that—with its controversies on the Paschal
terms and its competing Easter cycles—has been thoroughly studied”, a branching occurs in the

* Fabio Acerbi: CNRS, UMRS167 Orient et Méditerranée, équipe “Monde Byzantin”, 52 rue du Cardinal Lemoine, F-75231
Paris cedex 05; fabacerbi@gmail.com

" The present edition is an extract from a complete record of the sources (about 300 Greek manuscripts contain computistical
material) and from an exhaustive discussion of them. I have collated Par. suppl. gr. 920 at the Bibliothéque nationale de
France on November 28, 2019 (the manuscript is also available online: search in the website https://pinakes.irht.cnrs.fr/ by
using the Diktyon number); I warmly thank Christian Forstel for his logistic support. I am extremely grateful to Immo
Warntjes for a series of enlightening discussions, to Leofranc Holford-Strevens for a critical reading, and to the referees for
the suggestions. The pieces of mathematical notation I use will be explained in a footnote on their first occurrence. With
the crucial exception of the “modulo reduction”, all these pieces of notation are nothing more than convenient shorthands.

! Byzantine Computi took a more mathematically-oriented turn, as we shall see.

2 The reader will profit from the following studies: F. RUHL, Chronologie des Mittelalters und der Neuzeit. Berlin 1897, 63—
208; B. MAC CARTHY, Annals of Ulster, 1155-1541. IV. Introduction. Dublin 1901, Xiv—cLxxv1l; E. SCHWARTZ, Christ-
liche und jiidische Ostertafeln (Abhandlungen der kéniglichen Gesellschaft der Wissenschaften zu Géttingen, Philologisch-
historische Klasse, n.f., VIIL.6). Berlin 1905; CH. W. JONES, Bedae Opera de Temporibus. Cambridge (MA) 1943, 6-77;
V. GRUMEL, La Chronologie (Traité d’Etudes Byzantines 1). Paris 1958, 1-128, which contains a wealth of material;
A. STROBEL, Ursprung und Geschichte des frithchristlichen Osterkalenders (Texte und Untersuchungen zur Geschichte der
altchristlichen Literatur 121). Berlin 1977; G. DECLERCQ, Anno Domini. The Origins of the Christian Era. Turnhout 2000,
and G. DECLERCQ, Dionysius Exiguus and the Introduction of the Christian Era. Sacris Erudiri 41 (2002) 165-246, to be
checked against L. HOLFORD-STREVENS, review of DECLERCQ, Anno Domini. Peritia (2001) 401-410; C. LEONHARD, The
Jewish Pesach and the Origins of the Christian Easter (Studia Judaica 35). Berlin — New York 2006; L. HOLFORD-
STREVENS, Paschal Lunar Calendars up to Bede. Peritia 20 (2008) 165-208; A. A. MOSSHAMMER, The Easter Computus
and the Origins of the Christian Era. Oxford 2008, filled with detail and reconstructions that dilute the main line of the ar-
gument, but extremely useful for this very reason (for instance, the analytic refutations of other scholars’ hypotheses con-
stitute useful summaries of them); C. PH. E. NOTHAFT, Dating the Passion. The Life of Jesus and the Emergence of Scienti-
fic Chronology (200-1660) (Time, Astronomy, and Calendars 1). Leiden — Boston 2012, and C. PH. E. NOTHAFT, Scanda-
lous Error. Calendar Reform and Calendrical Astronomy in Medieval Europe. Oxford 2018, which cover the period 200—
1600 and which I have found informative and particularly clear; S. STERN, Calendars in Antiquity. Oxford 2012, 380-424,
in a strictly socio-political perspective; I. WARNTIES, The Mechanics of Lunar Calendars and the Modes of Calculating
Easter, AD 400-1100: Contexts and Perspectives, in: La conoscenza scientifica nell’ Alto Medioevo (Settimane di Studio
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sources and in scholarship: on the one side, a proliferation of Latin sources and a continuous flow
of studies of them®, enriched by remarkable findings; on the other, a desert punctuated with scat-
tered Greek-speaking oases: the Chronicon Paschale, the computists of the middle-7™ century, the
need for a reform voiced in fourteenth-century Constantinople®. As for Byzantium, the recent con-
tributions from the Louvain philological school were preceded by wide-ranging excavations in
manuscripts coordinated by a nearly-forgotten yet fascinating figure of scholar, Otmar Schissel,
whose work was interrupted by an untimely, Walserian death during a walk on December 28, 1943.

Apart from the different abundance of sources, the reason for such a polarization is evident at
once: the intellectual freedom Western Medieval computists manifested in critically appropriating
the received lore is outlandish by Byzantine standards’. On the other hand, it can be argued—but I
shall not do that here—that the set of algorithms used by Western computists was less mathemati-
cally connotated®, and poorer from the stylistic point of view, than the set of algorithms we may
gather from Byzantine sources. Of course, these two facts are interrelated.

The main goal of the present article is to provide an edition, a translation, and a commented par-
aphrase of the Easter Computus I shall call Anonymus 892, from the year in which it was com-
posed. I selected this Computus for the following reason: according to my survey, it is the earliest
specimen of a complete Byzantine Computus (1) which is not embedded in any discursive or
doctrinal frame, (2) which is shaped as a collection of bare prescriptions formulated in algorithmic
style and (3) whose data are not set out in tables. The provenance of the manuscript that carries
Anonymus 892 (Southern Italy), its material features (small size and bad parchment), the fact that
the text is anonymous and exhibits an obvious vernacular tinge, show that this Computus was writ-
ten for personal use. With Anonymus 892, and as far as our documentary record goes, Computi

della Fondazione Centro Italiano di Studi sull’Alto Medioevo 67). Spoleto 2020, 273-310. A complete and technically in-
formed account of Alexandrian Computi, a key character in the history of Computus, has been reached only thanks to the
masterly studies of Ethiopic sources carried out in O. NEUGEBAUER, Ethiopic Easter Computus. OC 63 (1979) 87-102,
0. NEUGEBAUER, Ethiopic Astronomy and Computus (Sitzungsberichte der Osterreichischen Akademie der Wissenschafien
347). Wien 1979, and O. NEUGEBAUER, Abu Shaker’s Chronography (Sitzungsberichte der Osterreichischen Akademie der
Wissenschaften 498). Wien 1988. An interest in technical features comparable to Neugebauer’s can more recently be found
in the writings of Leofranc Holford-Strevens: see B. BLACKBURN — L. HOLFORD-STREVENS, The Oxford Companion to the
Year. Oxford 1999, 661-692, 708-711, 762-832, 858-875; HOLFORD-STREVENS, Paschal Lunar Calendars; the book re-
views in Peritia 15 (2001) 401-410, 19 (2005) 359-371, and 22-23 (2011) 356-368.

A state of research is found in I. WARNTIES, Introduction: State of Research on Late Antique and Early Medieval Compu-
tus, in: Late Antique Calendrical Thought and Its Reception in the Early Middle Ages, ed. I. Warntjes — D. O Créinin (Stu-
dia Traditionis Theologiae 26). Turnhout 2017, 1-41, which also see for references to editions of some Latin texts more
recent than B. KRUSCH, Studien zur christlich-mittelalterlichen Chronologie. Der 84jahrige Ostercyclus und seine Quellen.
Leipzig 1880, and B. KRUSCH, Studien zur christlich-mittelalterlichen Chronologie. Die Entstehung unserer heutigen Zeit-
rechnung. 1. Victorius. Ersatz der fehlerhaften Ausgabe Mommsens in den M.G. II. Dionysius Exiguus, der Begriinder der
christlichen Ara (4bhandlungen der Preufischen Akademie der Wissenschaften. Jahrgang 1937. Phil.-hist. Klasse 8). Ber-
lin 1938. To give an idea of the figures involved, Bede’s De Temporum Ratione is witnessed by some 245 manuscripts, a
number which far exceeds the number of Greek manuscripts that contain fully-fledged Byzantine Computi.

For the Chronicon Paschale, see GRUMEL, La Chronologie 73—84; J. BEAUCAMP — R.-CL. BONDOUX — J. LEFORT — M.-F.
ROUAN — I. SORLIN, Temps et Histoire I: Le prologue de la Chronique pascale. 7M 7 (1979) 223-301; MOSSHAMMER, The
Easter Computus 286-311; and CH. GASTGEBER, The So Called Chronicon Paschale, the Vatican Chronological Compila-
tion with Computus, in: A Companion to Byzantine Chronicles, ed. R. Tocci. Leiden — Boston 2021, XXX-XXX. For the
computists of the of the middle-7" century, see A. TIHON, Le calcul de la date de Paques de Stéphanos-Héraclius, in:
Philomathestatos. Studies in Greek and Byzantine Texts Presented to Jacques Noret for his Sixty-Fifth Birthday, ed.
B. Janssens — B. Roosen — P. Van Deun (Orientalia Lovaniensia Analecta 137). Leuven 2004, 625-646; and J. LEMPIRE,
Le calcul de la date de Paques dans les traités de S. Maxime le Confesseur et de Georges, moine et prétre. Byz 77 (2007)
267-304. For the reforms, see A. TIHON, Barlaam de Seminara. Traité Sur la date de Paques. Byz 81 (2011) 362-411. The-
se references also provide earlier bibliography.

See the in-depth survey in NOTHAFT, Scandalous Error.

Conversely, the tool-box of Western Computists abounded with reckoning shortcuts: concurrentes, several types of regu-
lares, litterae punctatae, numeri aurei, claves terminorum, tables and calendars of all kinds.

o v
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entered Byzantine low-brow intellectual production. Thus, there are several motives of interest in
publishing this Computus.

However, a bare Computus, even translated, is as next to a totally opaque piece of writing as
possible. To complete my edition with adequate context, I shall outline the evolution and the main
actors in the tradition of Byzantine Easter Computi; I shall also explain the structure of the tradition
and the stylistic codes adopted in Computi. A computistical glossary and a thematic word index
prelude to four approaches to Anonymus 892: these are an edition of the Greek text that preserves
all linguistic features of the original; an English translation; a discursive elucidation of the algo-
rithms employed in the text; and, embedded in the latter, a transcription of these algorithms in a
mildly symbolic formalism. I am convinced that the symbolic transcriptions are the real highlight
of my approach: they are more faithful to the syntactical structure and to the “mathematical con-
tent” of the original procedures than algebraic formulas can be summarizing entire procedures in
one single equality, thereby erasing their operational structure. Algorithms will certainly prove
more accurate than the “static” algebraic formulas, if our goal is to compare the procedures set
forth in different Computi.

THE TRADITION OF EASTER COMPUTI: EVOLUTION AND MAIN ACTORS

The early history and evolution of Easter Computi can be summarized as follows. The date of Eas-
ter, the most important Christian festival, depends, in a way that underwent early variations, on the
date of the Jewish festival Passover, for the Gospels relate that Jesus had his Last Supper in the
evening of that day (then a Thursday)’, died on Friday, and resurrected on Sunday. Passover corre-
sponds to the 14™ day of a schematic lunar month and must occur on or straight after the Spring
equinox, whose date was fixed, as far as computistical matters are concerned, to March 21. Easter
is the first Sunday after Passover; if Passover falls on Sunday, Easter is celebrated on the Sunday
next thereafter. Since Passover occurs on a fixed day of a specific lunar month, its date and the date
of Easter vary from year to year. The dates of all other festivals in the annual Christian calendar
that depend on Easter must vary with it, which explains the reason why the Easter date must be
calculated in advance. In order to determine this date, it is necessary to know—for the given year
and possibly for a string of years—the date of the beginning of each lunar month, which the Jews
set at first crescent visibility. This can be ascertained by observation (and thus with no advance), by
means of geometric models of the motions of the Sun and of the Moon that may even be very re-
fined but difficult to use, or by means of reasonably accurate approximations of these motions. In
the latter two cases, what is computed is the instant, or the date, of the new Moon. The only viable
solution for such a widespread community as Christendom was the third. The relevant approxima-
tions of the motions of the Sun and of the Moon are called “cycles”: in the case of the Moon, a
cycle is a time interval after which the sequence of new Moons repeats itself on the same dates.
Some of these cycles were well-known in Babylonian and in Hellenistic astronomy®. In Computi,
and throughout the present paper as well, “Passover” is therefore the 14™ day of a schematic lunar
month in a lunar cycle’.

The first cycle that was devised for the purpose of computing the date of Easter comprises 8
calendar years, and was employed by some Hippolytus and by someone called “Computist of 243”.
Our sources for it are a stone chair of “Hippolytus” (it was carved in the 2™ century, engraved in

7 The Last Supper took place the day before, according to John.

¥ Cycles are of crucial importance for their Christological import: as all Christian eras were devised in strict correlation with
Easter cycles, different cycles entailed different dates for Christ’s birth and for the Passion. Further constraints came from
the Genesis account that the Moon came to existence as a full Moon on the fourth day of Creation, and from the numerolo-
gical requirement that the Incarnation had to occur 5500 years after Creation.

? Since the lunar phases depend on the position of the Sun, a lunar cycle should more properly be called a “lunisolar cycle”,
but I shall use the shorter denomination.
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AD 233-235, excavated in 1551), carrying engraved the Passover and Easter dates for an iteration
of the 8-year cycle to a period of 112 years that begins in AD 222, and the text of an anonymous
computist of 243—in fact the earliest computistical work—respectively'’.

This cycle soon proved to be inadequate. It was replaced in Rome by a cycle of 84 years. There
are two versions of the 84-year cycle, denoted 84(12) and 84(14) according to the position of the
saltus lunae (see below). The former is a table whose beginning is set at AD 298 and is called
Supputatio Romana, the latter is the table called /atercus, which was conceived by Sulpicius Seve-
rus and started in AD 354 but was used much later in the Irish and British Churches''.

Alexandrian scholars were in a better position to exploit the resources of (Babylonian-)Hel-
lenistic astronomy. They adapted the well-known lunar cycle of 19 years to computistical purposes,
and this adaptation was sanctioned by the Alexandrian Church. Before reaching its definitive form,
the 19-year cycle had to undergo some adjustments, needed to give a stable seat to specific, and
controversial, Passover and Easter dates. However, major points of detail that could not be settled
by simply adopting a lunar cycle had to be fixed: whether Passover was allowed to fall before the
Spring equinox or not (eventually it was not: the heretics are the Protopaschites) and what date had
to be retained for the equinox (eventually the date was March 21)'?; if Passover fell on a Sunday,
whether Easter was allowed to coincide with Passover or not (eventually it was not: some of the
heretics were the Quartodecimans, whose Easter squarely coincided with Passover); whether Easter

1 Sources for Hippolytus, who also composed a chronography now lost, are Eusebius, HE V1.22, and the Chronography of
Elias of Nisibis (dated 1019), in E. W. BROOKS, Eliae Metropolitac Nisibeni Opus Chronologicum (CSCO 63). Lipsiae
1910, 120-121; the engraved tables are transcribed in PG X 875-884, and in M. GUARDUCCI, La statua di «Sant’Ippolito»
in Vaticano. RPAA 47 (1974-1975) 163-190, and M. GuarDUCClI, Epigrafia Greca. I-IV. Roma 1967-1978 IV 535-545.
Guarducci showed that the statue, heavily restored as a male character in 1564-5, originally represented a female character
and did not bear any inscription (see E. CASTELLI, La cattedra della Chiesa e il trono del vescovo tra II e III secolo a Roma:
ricerche sul contesto storico della “statua d’Ippolito”. ASE 27 [2010], 35-50, for un updated bibliography). The Computist
of 243 is edited as Pseudo-Cyprian, De Pascha computus, in PL IV 939-972 (this work is mainly a chronography). On the
8-year cycle see SCHWARTZ, Christliche und jiidische Ostertafeln 29—40; F. K. GINZEL, Handbuch der Mathematischen und
Technischen Chronologie. I-1II. Leipzig 19061914 II 236-238; M. RICHARD, Comput et chronographie chez saint Hippo-
lyte. MSR 7 (1950) 237-268; M. RICHARD, Notes sur le cycle de cent douze ans. REB 24 (1966) 257-277; M. RICHARD, Le
comput pascal par octaétéris. Muséon 87 (1974) 307-333; HOLFORD-STREVENS, Paschal Lunar Calendars 167-172; MOss-
HAMMER, The Easter Computus 109-129; NOTHAFT, Dating the Passion 38-56; A. A. MOSSHAMMER, Towards a new editi-
on of the Computus of AD 243, in: Late Antique Calendrical Thought and Its Reception in the Early Middle Ages, ed.
L. Warntjes — D. O Créinin (Studia Traditionis Theologiae 26). Turnhout 2017, 43-70. A further source on the 8-year cycle
is Quintus Julius Hilarianus (ca. 397), Expositum de die Paschae et mensis X111, in PL XIII 1105-1114, 1113, whose short
computation is also found, applied to the ogdoas constitutive of a 19-year cycle, in the letter of Dionysius Exiguus to Boni-
face and Bonus, in KRUSCH, Studien (1938) 84.20-24. The 8-year cycle was described, and shown to be inadequate, al-
ready in Geminos, Isagoge VII1.27-49. See also O. SCHISSEL, Neue Zeugnisse fiir die OKTAETHPIZ. Hermes 72 (1937)
317-333, for possible Byzantine traces of the 8-year cycle.

On the 84-year cycles see KRUSCH, Studien (1880), who edits the then known sources; SCHWARTZ, Christliche und
jidische Ostertafeln 40—104; HOLFORD-STREVENS, Paschal Lunar Calendars 173—187; MOSSHAMMER, The Easter Compu-
tus 204-239; 1. WARNTIES, The Munich Computus and the 84 (14)-year Easter reckoning. Proceedings of the Royal Irish
Academy 107C (2007) 31-85, I. WARNTJES, The Munich Computus: Text and Translation (Sudhoffs Archiv 59). Stuttgart
2010, and WARNTJES, The Mechanics. The latercus was recovered in a Padua manuscript: D. MC CARTHY — D. O CROININ,
The ‘Lost’ Irish 84-year Easter Table Rediscovered. Peritia 6—7 (1987-1988) 227-242 (discovery), D. Mc CARTHY, Easter
Principles and a Fifth-Century Lunar Cycle Used in the British Isles. JHA 24 (1993) 204-224 (reconstruction of the prin-
ciples underlying the table), BLACKBURN —HOLFORD-STREVENS, The Oxford Companion to the Year 870-875 (overview),
HOLFORD-STREVENS, Paschal Lunar Calendars 178—187 (lunar calendar). Reformed avatars of the 84(12) cycle are the /a-
terculus of Augustalis (for which see A. A. MOSSHAMMER, The Computus of 455 and the Laterculus of Augustalis, with an
Appendix on the Fractional Method of Agriustia, in: The Easter Controversy of Late Antiquity and the Early Middle Ages,
ed. I. Warntjes — D. O Croinin [Studia Traditionis Theologiae 10]. Turnhout 2011, 21-47) and the Zeitz table (AD 447),
for which see TH. MOMMSEN, Chronicorum Minorum saec. [V. V. VL. VIL. I-1ll (Monumenta Germaniae Historica, Aucto-
rum Antiquissimorum Tomus 1X). Berlin 1892-1998 I 501-510; B. KrRUSCH, Neue Bruchstiicke der Zeitzer Ostertafel vom
Jahre 447. Sitzungsberichte der PreufSischen Akademie der Wissenschaften. Jahrgang 1933. Philos.-hist. KI. Berlin 1933,
981-997; E. OVERGAAUW — F.-J. STEVING, Die Zeitzer Ostertafel aus dem Jahre 447. Petersberg 2005.

12 See NOTHAFT, Scandalous Error 26-34 on competing conventions in Latin West.
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was allowed to fall on the day immediately after Passover or not (eventually it was: in the middle
of the 5™ century, this point sparked a controversy between Alexandria and Rome, which champio-
ned the losing view)"’.

Names of major characters in the early evolution of the 19-year cycle are as follows. Anatolius,
bishop of Laodicea until AD 283, first devised this cycle and clearly stated the “rule of the
equinox”. Theophilos, patriarch of Alexandria until AD 412, constructed a 100-year table for AD
380-479. His nephew and successor patriarch of Alexandria until AD 444, Cyril, set out a recalcu-
lated 95-year table for AD 437-531 adapted to the Roman calendar'®. Annianus (ca. AD 400), in
the framework of a general chronography, created the Alexandrian world era by synchronizing a
proleptic era Diocletian with the 19-year cycle and devised a 11x532-year table accompanied by
now-lost operational rules'’. Victorius of Aquitaine, in an attempt to solve the above-mentioned
controversy, proposed in AD 457 a table of 532 years that unsuccessfully tried to reach a compro-
mise between Roman and Alexandrian conventions'®. Dionysius Exiguus continued in AD 525
Cyril’s tables for the ensuing 95 years AD 532—-626, crucially introduced the Incarnation era that
grounds the anno domini era still in use, was decisive in establishing the view that the rules for
computing Easter were fixed during the Council of Nicaea'’, and, translating Greek sources, com-
posed an extant—and extremely successful as to diffusion—set of algorithms for computing the
quantities required to construct a 19-year cycle'®. These algorithms are called argumenta, which

13 In the terminology I shall explain in the glossary, the Alexandrian Easter limits ranged from luna XV to luna XXI, the limits
endorsed by the Roman Church from luna XVI to luna XXII. In addition, the Roman Church deemed them unacceptable
Easter dates after April 21, the day celebrating the foundation of the town. In the 5™ century, the Roman Church still used
the 84(12)-year cycle. The 84(14) cycle in the latercus was supplemented with limits from /una XIV to luna XX and the
equinoctial term was March 25, the traditional date in Rome.

The prologues to the two tables, edited already in KRUSCH, Studien (1880) 220-226 and 337-349, have been recently re-
edited in A. A. MOSSHAMMER, The Prologues on Easter of Theophilus of Alexandria and [Cyril]. Oxford 2017. A version
of Theophilos’ prologue has been very recently recovered in the partial Alexandrian Computus I shall call Anonymus 487
(its structure is characteristically much looser than the structure of any Byzantine Computus; it only contains algorithms
for computing the epacts and the age of the Moon) dated Diocletian 203 [= AD 486/7] and witnessed in the manuscript Mi-
lano, Biblioteca Ambrosiana, A 45 sup. (gr. 1; 12" century, Southern Italy; Diktyon 42172) ff. 1r-8v: see CH. GASTGEBER,
Neue texte zum Computus byzantinischer Zeit im Codex Ambrosianus A 45 sup. JOB 71 (2021) XXX-XXX: XXX-XXX
and XXX-XXX; this manuscript also contains an adaptation of Cyril’s table for the years Diocletian 191-229 [= AD 475—
513] (XXX-XXX) and a Byzantine Computus (XXX-XXX) I shall call Anonymus 830. The significance of the 95-year
time interval is explained in NEUGEBAUER, Abu Shaker’s 96-97 (and see also NEUGEBAUER, Ethiopic Astronomy, s.v.);
MOSSHAMMER, The Easter Computus 55. The 100 years of Theophilos’ table are a rounding of 95.

'3 As 11x532 = 5852 and Annianus set the beginning of his era in BC 5492 March 25, the end of the eleventh cycle falls in
AD 360/1. The epoch of the Alexandrian era was eventually reset to BC 5493 August 29 (the first day of the Alexandrian
calendar year). This shifts back the end of the eleventh cycle to AD 359/60.

Victorius is also known for his arithmetical tables: see A. M. PEDEN, Abbo of Fleury and Ramsey: Commentary on the
Calculus of Victorius of Aquitaine. Oxford 2003. Despite the mathematical abilities testified to by these tables, in his Eas-
ter table Victorious got involved in a series of mistakes: see JONES, Bedae Opera 63, and MOSSHAMMER, The Easter Com-
putus 239-244.

This belief was finally reduced to its historical measure in L. DUCHESNE, La question de la Paque au Concile de Nicée.
Revue des Questions Historiques 28 (1880) 5—42, and again in F. DAUNOY, La question pascale au concile de Nicée. Echos
d’Orient 24 (1925) 424-444, but see already A. DE MORGAN, On the Ecclesiastical Calendar. Companion to the Almanac
(1845) 1-36: 6-8.

Sources for the authors mentioned in this list are edited in MOMMSEN, Chronicorum Minorum I 667-756, and KRUSCH,
Studien (1938). A recent overview, with discussion of previous scholarship, is found in MOSSHAMMER, The Easter Compu-
tus 130-203, 239-277, and 339-356 (on the era of Dionysius). The dates preceding Dionysius and that I have given in the
era AD should more accurately be given in the era Diocletian. What KRUSCH, Studien (1938) 75-81 edits as Dionysius’
argumenta is a reworking to be dated to AD 675: I. WARNTIES, The Argumenta of Dionysius Exiguus and Their Early Re-
censions, in: Computus and Its Cultural Context in the Latin West, AD 300-1200, ed. I. Warntjes — D. O Cro6inin (Studia
Traditionis Theologiae 5). Turnhout 2010, 40—111. The earliest reworking, dated AD 562, is edited in P. LEHMANN, Cas-
siodorstudien. Philologus 71 (1912) 278-299. Studies of the argumenta that derive from Dionysius Exiguus’ rules are also
found in O. NEUGEBAUER, On the Computus Paschalis of “Cassiodorus”. Centaurus 25 (1982) 292-302, and in MOsS-
HAMMER, The Easter Computus 97-106.
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Dionysius further qualifies as Aegyptiorum. Owing to the principle of marginal areas, a major wit-
ness to the early Alexandrian 19-year cycle are the Computi in Ethiopic sources; the same cycle, in
Dionysius’ version, was also sanctioned in Bede’s De Temporum Ratione.

At the end of the whole process a definitive list of Passover and Easter dates'® and a stable set of
rules was arrived at, and the tradition of Eastern Computi branched off from the mainstream of
Latin Computi, which culminated in Bede’s masterpiece (AD 725) before entering a period of criti-
cal re-evaluation of the whole method. Accordingly, our story reaches a branching point, and takes
the nearly deserted route to Byzantium. One might ask how the story should not also end, if it is
true that a definitive list of Passover and Easter dates was established. Well, part of the answer will
be given in the following Section. The remaining part of the answer is that first, the Byzantines
adopted a world era different from the Alexandrian world era, a fact that entailed a reorganization
of the lunar cycle®’; second, computistical techniques were an integral part of scientific and notarial
lore and were therefore transmitted as such?'; and third, the mathematical notions and the algo-
rithms for computing the quantities required to construct a 19-year cycle underwent an evolution.
This evolution is the history of Byzantine Easter Computi, which ended with the clear perception
that a reform of the cycles was necessary.

Among the earliest Greek sources of interest to our purposes figure the wheel (= table of cir-
cular format) IV in the Chronicon Paschale, which records the dates of Passover from AD 344 to
362%%; an algorithm for computing the weekday of an assigned date in Paul of Alexandria, Apote-
lesmatica 19-20 (AD 378)*; Anonymus 487 mentioned above and an algorithm for computing the
epacts of the Moon, dated Diocletian 239 [= AD 522/3]**; two almost identical algorithms for fin-
ding the age of the Moon of a given date, found in Theon of Alexandria, “little commentary” on
Ptolemy’s Handy Tables 20 (AD 364)*, and in Stephanus of Alexandria, in Ptolemaei Tabulas
Manuales 12 (AD 617)°. In the latter treatise, sects. 28—30 (AD 623) were almost certainly autho-
red by the emperor Heraclius, and contain a concise Easter Computus that will prove important in
our perspective’’. To the same period belong three fully-fledged treatises. The Chronicon Paschale

Maximus, Enarratio 1.15, in PG XIX 1232, explicitly makes this point.

On the transition from the Alexandrian era to the Byzantine era, see most recently MOSSHAMMER, The Easter Computus
278-316, with discussion of previous scholarship. See also the commentary on sect. 12 of Anonymus 892.

However, no documents prove that this specific lore was taught in Byzantine schools or higher institutions; see also point
B of the next Section. On scientific teaching in Byzantium, see most recently D. MANOLOVA — I. PEREZ MARTIN, Science
Teaching and Learning Methods in Byzantium, in: A Companion to Byzantine Science, ed. S. Lazaris. Leiden — Boston
2020, 53—104. In Latin West, computistical techniques were an integral part of monastic education; see I. WARNTIJES, Se-
venth-century Ireland: the Cradle of Medieval Science? in: Music and the Stars: Mathematics in Medieval Ireland, ed.
M. Kelly — C. Doherty. Dublin 2013, 44-72.

See the edition in L. DINDORF, Chronicon Paschale. I-II. Bonnae 1832 I 534. A reconstruction is put forward in GRUMEL,
La Chronologie 232, and see also discussion at 77—84 (the wheel is reproduced on page 78). A different reconstruction is
found in MOSSHAMMER, The Easter Computus 293-296.

See the edition in E. BOER, Pauli Alexandrini elementa apotelesmatica. Lipsiae 1958, 39.17-41.16.

Anonymus 523 is found in the manuscript Citta del Vaticano, Biblioteca Apostolica Vaticana, Vat. gr. 1291 (shortly after
811; Diktyon 67922) f. 47r, and in the apographs of Vat. gr. 1594 (late 9™ century; Diktyon 68225) (most recent edition in
F. ACerBI, Topographie du Vat. gr. 1594, in: La «collection philosophique» face a I’histoire. Péripéties et tradition, ed. D.
Bianconi — F. Ronconi. Spoleto 2020, 239-321: 285 and n. 19). It accompanies a wheel of epacts of the Moon for the years
Diocletian 30-257 [= AD 314-541]. The wheel (for the years Diocletian 30-238 [= AD 314-522]), but not the algorithm,
is also found in the manuscript Leiden, Universiteitsbibliotheek, B.P.G. 78 (813-20; Diktyon 37735) f. 2r. This is Table C4
in the typology of A. TIHON, ITtolepaiov IIpoyepot Kavoveg, Les Tables Faciles de Ptolémée, volume 1a, Tables A1-A2
(Publications de I’Institut Orientaliste de Louvain 59a). Louvain-La-Neuve 2011, 61-66.

See the edition in A. TIHON, Le “Petit Commentaire” de Théon d’Alexandrie aux Tables Faciles de Ptolémée (StT 282).
Citta del Vaticano 1978, 256.8-258.10 and 267.6-268.6.

See the edition in J. LEMPIRE, Le commentaire astronomique aux Tables Faciles de Ptolémée attribué a Stéphanos
d’Alexandrie. Tome I (Corpus des Astronomes Byzantins 11). Louvain-La-Neuve 2016, 154.2-158.19 and 176.1-15.

See the edition in DINDORF, Chronicon Paschale 11 210-219; H. USENER, De Stephano Alexandrino, in: H. USENER, Kleine
Schriften III. Leipzig — Berlin 1914, 311-317. See also GRUMEL, La Chronologie 101; TIHON, Le calcul.
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Byzantine Easter Computi: An Overview 7

(AD 629/30) features a Syntagma de Pascha that provides sparse technical material, whereas the
main body of the Chronicon includes a dozen of computistical calculations difficult to harmonize
with each other®®. In general, the Chronicon is a source of primary importance, but in our perspec-
tive it contributes little. Of the utmost importance are two complete Computi—contemporary with
each other and possibly in explicit competition—that are embedded in a discursive framework and
were quite obviously intended as reference works: first, the Brevis Enarratio Christiani Paschatis
of Maximus the Confessor (AD 640/1)*, for some time Heraclius’ secretary, the champion of the
Alexandrian era and our sole early source for the approach to Computus that goes under the name
of mevramhodvieg kai Eamhodvtec’; second, the computistical portion of the treatise on heresies
by George Presbyter (AD 638/9), the champion of the Byzantine era’'.

After the proto-Byzantine period and a couple of centuries marked by partial, isolated and still
unpublished contributions, the Eastern Greek tradition surfaces in three different stylistic formats:
tables, paschalia, and Computi proper, namely, a collection of rules for calculating the quantities
involved in a 19-year cycle. The earliest Byzantine Easter Computus that is not embedded in a dis-
cursive and doctrinal frame?, whose data are not set out in tables, and that is shaped as a collection
of bare prescriptions formulated in algorithmic style was written at the end of the 9™ century. It is
dated to 892 and it is contained in the tenth-century manuscript fragment Paris, Bibliothéque natio-
nale de France, suppl. gr. 920 (southern Italy, Diktyon 53604) ff. 2r—16r. I shall call it Anonymus
892%. This is the Computus which I shall edit in the present paper.

Nearly the same computistical material as we read in Anonymus 892 can be found, with the ad-
dition of two wheels and of their explanation, in Anonymus 830. This Computus is contained in
folios 36r—43v of Ambr. A 45 sup., a twelfth-century collection of non-literary texts assembled in a
middle-brow notebook that preserves excellent computistical material. The manuscript witnesses of
both Anonymus 830 and Anonymus 892 come from Southern Italy—a further application of the
principle of marginal areas—and show that a stable body of very early computistical lore was kept
alive for centuries in a peripheral region of the Byzantine empire. Anonymus 830, however, exhi-
bits a marked character of compilation: several algorithms are repeated in different sections of this

% See the edition in DINDORF, Chronicon Paschale 1 3-31 (Syntagma de Pascha) 368-415 (this page-range includes the
computations). See also G. MERCATI, A Study of the Paschal Chronicle. JThS 7 (1906) 397—412; D. SERRUYS, De quelques
¢res usitées chez les chroniqueurs byzantins. RPh 31 (1907) 151-189: 158—172 O. SCHISSEL, Note sur un Catalogus Codi-
cum Chronologorum Graecorum. Byz 9 (1934) 269-295: 278-285; GRUMEL, La Chronologie 73—84; BEAUCAMP ET AL.,
Temps et Histoire; MOSSHAMMER, The Easter Computus 286—311; GASTGEBER, The So Called Chronicon Paschale.

¥ See the edition in D. PETAU, Uranologion. Lutetiae Parisiorum 1630, 313-355 = PG XIX 1217-1279. See also the discus-

sion in LEMPIRE, Le calcul.

For this approach, see also the commentary on sect. 8 of Anonyms 892.

See the edition in F. DIEKAMP, Der M6nch und Presbyter Georgios, ein unbekannter Schriftsteller des 7. Jahrhunderts. BZ 9
(1900) 14-51. Two of the three wheels that are missing in Diekamp’s reference manuscript—namely, Vat. gr. 2210 (10™
century; Diktyon 68841), which contains an explanation of these wheels—have been recently recovered: GASTGEBER, Neue
texte XXX-XXX; however, and contrary to Diekamp’s assessment (50-51), I doubt that the explanation of the wheels was
an integral part of George’s treatise. On George’s treatise, see also SCHISSEL, Neue Zeugnisse 322-323; M. RICHARD, Le
traité sur les hérésies de Georges hiéromoine. REB 28 (1970) 239-269; LEMPIRE, Le calcul.

This framework usually comprises a discussion of theological issues and of competing approaches to the determination of
Easter. This is the structure of the treatises of George Presbyter and of Maximus the Confessor, of the Syntagma de Pascha
preceding the Chronicon Paschale, and of the 8-book treatise—whose loss is much to be regretted—described in Photius,
Bibliotheca, codex 116. Photius’ description shows that this Computus included both a doctrinal exposition and computati-
onal procedures. See also Bibliotheca, codex 115. A comparison between codex 116 and Psellos’ two-book treatise is car-
ried out in G. REDL, Untersuchungen zur technischen Chronologie des Michael Psellos. BZ 29 (1930) 168-187: 172—176.
The principle I have followed in assigning the denominations is to make the name of the author or the word Anonymus
followed by the assumed current year. Between the two AD years corresponding to a given year in the Byzantine world e-
ra, the current year in a Computus is conventionally set to the year that includes the date of Easter; thus, the conversion
shift is always 5508. As for Anonymus 892, the current year in sect. 7 of the treatise is AM 6396 [= AD 887/8], but I shall
keep the year assumed in the rest of the Computus as its eponymous date. Of course, these different dates just show that
Anonymus 892 is a compilation.
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8 Fabio Acerbi

Computus (see the Appendix); the presence of the two wheels and of their explanation disrupts the
stylistic continuity of the text. As only a handful of the sections of Anonymus 830 work out dated
examples, it is clear that the (much later) copyist of Ambr. A 45 sup. ultimately depends on more
disparate sources than the copyist of Par. suppl. gr. 920.

Two centuries later, two Computi (Anonymus 1079 and Anonymus 1092A—C)** drew on the sa-
me tradition as Anonymus 830 and Anonymus 892. To the same period belongs Michael Psellos’
chronological primer (dated AD 1092)*: this is a well-conceived, well-argumented, and modera-
tely verbose literary product organized in two books and in sections itemized as quaestiones; the
algorithms and the long lists Psellos provides are embedded in a discursive frame. One century
later, Anonymus 1183 was written to be included in Par. gr. 1670 (Diktyon 51293), a manuscript
that is a computational primer resulting from a conscious selection of texts, entrusted to an
excellent copyist, and intended for conservation purposes®®. The manuscript was designed to carry
a complete technical record, both as regards the proposed material and on account of the possibility
of a double level of use. Linguistic excellence, an inflexible formulaic rigidity, and the solutions of
layout adopted in Par. gr. 1670 marked a turning point in the development of high-brow technical
literature in Byzantium.

After Anonymus 1183, Easter Computi abound in our manuscript sources’’. Dozens of anony-
mous Computi and chronological primers*®, sometimes no more than few lines long and added in

¥ Anonymus 1079 is witnessed in Par. gr. 854 (second half of 13™ century; Diktyon 50441; on this manuscript, see Catalogus
Codicum Astrologorum Graecorum. [-XII. Bruxelles 1898-1953 VIII.4 3-5; G. DE GREGORIO, Teodoro Prodromo ¢ la
spada di Alessio Contostefano (Carm. Hist. LIl Horandner). Néa Poun 7 [2010] 191-295: 194-205; A.-L. CAUDANO,
Cosmologies et cosmographies variées dans les manuscrits byzantins tardifs. Byz 85 [2015] 1-25: 10-12) ff. 168r—171r;
for the edition, see A. MENTZ, Beitrdge zur Osterfestberechnung bei den Byzantinern. Dissertation Konigsberg 1906, 76—
100. Anonymus 1092A—C is witnessed in the manuscript Firenze, Biblioteca Medicea Laurenziana, Plut. 57.42 (12" centu-
ry, southern Italy; Diktyon 16411) ff. 154ra—156rb, 156rb—161va, 161va—162vb; see the edition in F. P. KARNTHALER, Die
chronologischen Abhandlungen des Laurent. Gr. Plut. 57, Cod. 42. 154-162". BNJ 10 (1933) 1-64.
Michael Psellos, IToinpo mepi tiig kKivijoemg tod xpodvov, dated 1091/2. The tradition originates in Laur. Plut. 87.16 (end of
13™ century; Diktyon 16833) ff. 324v—346v. The edition is G. REDL, La chronologie appliquée de Michel Psellos. Byz 4
(1927-1928) 197-236; 5 (1929-1930) 229-286. See also G. REDL, Studien zur technischen Chronologie des Michael Psel-
los. BNJ 7 (1930) 305-351; REDL, Untersuchungen; F. ZIMMERMANN, review of Redl’s works in Philologische Wochen-
schrift 51 (1931) 865-872. For the Florence manuscript see P. MORAUX — D. HARLFINGER — D. REINSCH — J. WIESNER, Aris-
toteles Graecus. Die griechischen Manuskripte des Aristoteles. Erster Band, Alexandrien—London. Berlin — New York
1976, 311-315.
The manuscript is the only independent witness of the two Logarikai, the important treatises of fiscal accounting composed
shortly after the death of Alexios I Komnenos in 1118; see C. E. Z. von LINGENTHAL, Jus Graeco-Romanum, Pars III, No-
vellae constitutiones. Lipsiae 1857, 385-400 (who resorts to a tabular set-up that destroys the original layout), M. F. HEN-
DY, Coinage and Money in the Byzantine Empire 1091-1261 (DOS 12). Washington (DC) 1969, 50-64, and C. MORRIS-
SON, La logariké: Réforme monétaire et réforme fiscale sous Alexis I Comnéne. TM 7 (1979) 419-464, with a French
translation. On this manuscript, see F. ACERBI, Struttura e concezione del vademecum computazionale Par. gr. 1670. S&T
19 (2021) XXX-XXX; the edition of Anonymus 1183 is in Appendix 5 of this study.
See also O. SCHISSEL — M. ELLEND, Berechnung des Sonnen, Mond und Schaltjahrszirkels in der griechisch-christlichen
Chronologie. BZ 42 (1942) 150-157.
Published Computi of this kind include the following. Anonymus 1247, witnessed in Laur. Plut. 87.16, ff. 18r—20r and 21v,
edited in O. SCHISSEL, Chronologischer Traktat des XII. Jahrhunderts, in: Eig pviunv Xn. Adumpov. Abijvon 1935, 105—
110. Anonymus 1273, on the basis of the manuscript Wien, Osterreichischen Nationalbibliothek, phil. gr. 222 (second half
of 14" century; Diktyon 71336; this is a copy of Laur. Plut. 87.16, ff. 324v—325v) ff. 3r—5r, edited in F. BUCHEGGER, Wie-
ner griechische Chronologie von 1273. BNJ 11 (1934-35) 25-54. Anonymus 1350, witnessed in Vindob. med. gr. 29 (ca.
1400; Diktyon 71054) ff. 124r-125r, edited in O. SCHLACHTER, Wiener griechische Chronologie von 1350. Dissertation
Graz 1934. Anonymus 1377, witnessed in Par. gr. 2509 (15™ century; Diktyon 52141) ff. 152r-156v, edited in PETAU, Ura-
nologion 384-392 = PG XIX 1316-1329; see also O. SCHISSEL, Die Osterrechnung des Nikolaos Artabasdos Rhabdas.
BNJ 14 (1938) 43—59: 46-50. Anonymus 1379 or Pseudo-Andreas, 14™ century, witnessed in Vat. gr. 578 (end of 14™ cen-
tury; Diktyon 67209) ff. 177r-187v, edited in PETAU, Uranologion 393-395 = PG XIX 1329-1334. Mé0Bodog daxpipeotdm,
14™ century, witnessed in Vat. Urb. gr. 80 (end of 14™ beginning 15™ century; Diktyon 66547) ff. 33r-35v, edited in P.
COLLET, Deux textes relatifs a la féte de Paques. Mémoire de Licence, Université Catholique de Louvain. Louvain 1969
(non vidi); studied and partly edited in SCHISSEL, Neue Zeugnisse 323-333; see also O. SCHISSEL, Niketas Seidos. Eine
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Byzantine Easter Computi: An Overview 9

blank spaces within manuscripts, prelude the authorial achievements of the 14™ century: these are
the Computi by Nicholas Rhabdas and Matthew Blastares®”, the latter embedded in a larger work;
Nikephoros Gregoras’ scattered expositions (ca. 1324) as well as his (self-)celebrated performance
before the Emperor*’; the monographs by Barlaam of Seminara and Isaak Argyros*'; the computis-
tical sections included in more comprehensive astronomical primers, such as Theodoros Melitenio-
tes’ Three Books on Astronomy**. Gregoras and Barlaam, and Blastares drawing from the latter,
discussed a possible reform; Gregoras even ventured to construct a revised Damascene-style table.
They wisely concluded that, after all, they would not bother seriously to engage in such a reform:
exeunt Byzantine critical computists®.

39

40

4

42

43

Handschriftenstudie. Divus Thomas 15 (1937) 78-90: 89-90 (this includes a description of the chronological fragments in
Ab7va, EOvikiy Bipriodiin te EALGSoc, 483; 16™ century; Diktyon 2779); SCHISSEL — ELLEND, Berechnung 152 n. 3. On
Vat. Urb. gr. 80, see P. CANART — G. PRATO, Les recueils organisés par Jean Chortasménos et le probléme de ses auto-
graphes, in: Studien zum Patriarchatsregister von Konstantinopel I, ed. H. Hunger. Wien 1981, 115-178: 132146, repr. in
P. CANART, Etudes de paléographie et de codicologie. I-II (St 450-451). Citta del Vaticano 2008, 577—-675: 594—608.
Nicholas Rhabdas wrote a fully-fledged Computus (dated 1342), autograph in the manuscript Leeds University Library,
Brotherton Coll. MS 31/3 (Diktyon 3761) ff. 64r—69r; it is edited in F. ACERBI, The “Third Letter” of Nicholas Rhabdas: an
Autograph Easter Computus. Estudios Bizantinos 9 (2021); see also I. XKOYPA, Mio avékdotn emiotodn Tov NikoAdov
Pafdd yia tovg exkAnctaotikodg Aoyapiopove. Nevoig 27-28 (2019-20) 353-399. One year earlier, a part of this Compu-
tus was included by Rhabdas in the so-called Letter to Tzavoukhes, dated 1341. The tradition of the Letter to Tzavoukhes
originates in Vat. gr. 1411 (end of 14™ beginning of 15" century; Diktyon 68042) ff. 23r-25v (incomplete, des. 132.31
éotwv 0 ke Tannery); the edition is P. TANNERY, Notice sur les deux lettres arithmétiques de Nicolas Rhabdas. Notices et
extraits des manuscrits de la Bibliotheque Nationale 32 (1886) 121-252, repr. ID., Mémoires scientifiques IV. Toulouse —
Paris 1920, 61-198: 134.23-138.28. See also O. SCHISSEL, Die Osterrechnung. Matthew Blastares included a computistical
section in his Zovtaypa, dated 1335. The earliest known witness of this treatise is the manuscript Moskva, Gosudarstven-
nyj Istoriceskij Muzej, Synod. gr. 149 (Vlad. 327), dated year 1342 (non vidi; Diktyon 43774); 1 have checked the manu-
script Modena, Biblioteca Estense Universitaria, o.V.8.14 (Puntoni 190; Diktyon 43522) ff. 308v—316v, written before
1344; the edition is G. RHALLES — M. POTLES, ZOvtaypo tdv Osiov kol igpdv kavovev kata ototyeiov. VI. Abfjvar 1859,
404-425 = PG CXLV 65-104; see also MENTZ, Beitrage zur Osterfestberechnung 108—132.

Epist. XX is edited in S. BEZDEKI, Nicephori Gregorae epistulae XC. Ephemeris Dacoromana 2 (1924) 239-377: 330-336;
for Historia Byzantina VIII.13 see L. SCHOPEN, Nicephori Gregorae Byzantina Historia. I-II. Bonnae 1829-1830 I 364—
373 = PG CXLVIII 548-558. Gregoras’ Easter table is in PG XIX 1313-1316; as for manuscript evidence, this table can
be found for instance in Vat. gr. 792 (ca. 1352; Diktyon 67423) f. 2r (but here beginning of the 15" century), Venezia, Bib-
lioteca Nazionale Marciana, gr. Z. 328 (early 15" century; Diktyon 69799) f. 19r. The best discussion of Gregoras® contri-
bution is TIHON, Barlaam 393—407; see also P. KuzENkoOv, Correction of the Easter Computus: Heresy or Necessity? Four-
teenth Century Byzantine Forerunners of the Gregorian Reform, in: Orthodoxy and Heresy in Byzantium, ed. A. Rigo —
P. Ermilov. Roma 2010, 147-158.

Barlaam of Seminara’ short treatise is dated 1333. It is witnessed, with autorial corrections, in Marc. gr. Z. 332 (first half
of 14" century; Diktyon 69803) ff. 67r—71v; the edition and a discussion are found in TIHON, Barlaam 362—-393 and 402—
411. On Marc. gr. Z. 332, see A. GIOFFREDA, Su scrittura, libri e collaboratori di Barlaam calabro. S&T 14 (2016) 361—
378. Isaak Argyros’ Computus is De cyclis Solis et Lunae ad Andronicum, dated 1372. This treatise is autograph in Laur.
Plut. 28.13 (Diktyon 16194), ff. 91r-97v; see the editions in PETAU, Uranologion 359-383 = PG XIX 1279-1316;
H. BAUFAYS, Isaac Argyre, Cycles solaire et lunaire. Comput pascal. Mémoire de licence, Université Catholique de Lou-
vain. Louvain-La-Neuve 1981 (the editor used Marc. gr. Z. 328, ff. 1r—18v, which is in fact a recension). See also G. MER-
CATI, Notizie di Procoro e Demetrio Cidone, Manuele Caleca e Teodoro Meliteniota ed altri appunti per la storia della teo-
logia e della letteratura bizantina del secolo XIV (St7T" 56). Citta del Vaticano 1931, 229-236.

See the edition in R. LEURQUIN, Théodore Méliténiote, Tribiblos Astronomique. Livre I; Livre II (Corpus des Astronomes
Byzantins 4-6). Amsterdam 1990-1993 (Book III, which contains the computistical material dated 1352, is still unpublis-
hed; I have checked Meliteniotes’ autograph Vat. gr. 792); see also the studies in R. LEURQUIN, La Tribiblos astronomique
de Théodore Méliténiote (Vat.gr. 792). Janus 72 (1985) 257-282, and R. LEURQUIN, Un manuscrit autographe de la Tribi-
blos astronomique de Théodore M¢éliténiote: le Vaticanus graecus 792. Scriptorium 45 (1991) 145-162. There exists an
anonymous version of Meliteniotes’ Book III, traditionally called Paradosis in Tabulas Persicas; an edition is found in
A. BARDI, Persische Astronomie in Byzanz. Ein Beitrag zur Byzantinistik und zur Wissenchaftsgeschichte. PhD thesis,
Ludwig-Maximilians-Universitdt. Miinchen 2017.

One finds the same attitude in Bede, De Temporum Ratione XLiII. The denomination “critical computists” has become a
technical term to describe Western computists seeking a re-dating of the incarnation era since it was introduced in
J. WIESENBACH, Sigebert von Gembloux, Liber decennalis (Monumenta Germaniae Historica. Quellen zur Geistesge-
schichte des Mittelalters 12). Weimar 1986, 63—112.
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THE TRADITION OF EASTER COMPUTI: GENERAL STRUCTURE

Sixty years ago, Alfred Cordoliani published two masterly studies, in which he established a typo-
logy of Western computistical literature, enriched by long lists of occurrences in manuscripts**.
Cordoliani’s database was huge and still very partial: on the one hand, the Western computistical
tradition is incomparably richer than the parallel Byzantine tradition; on the other hand, he only
sifted some libraries. Cordoliani’s typology is threefold: mnemotechnic verse, tables, argumenta.
These categories reduce to two in the case of Byzantine computistical literature, for I know of only
one specimen of mnemotechnic verse: the short and incomplete 13" century text I call Anonymus
F, in political verse®.

As for tables, two subcategories can be identified: real tables and Paschal lists, called paschalia.
The former comprise day-finding tables, the Damascene Easter table and Gregoras’ Easter table,
but also new and full Moon tables, epacts and Passover tables, tables of the motion of the Moon,
Horopodia®, calendars, chronological tables of any kind, some of which are firmly witnessed in
the tradition of Ptolemy’s Handy Tables. The paschalia list key chronological data for a specific
string of years; such key data normally include the year in a suitable world era, the solar and lunar
cycle years, the indiction, the dates of Passover, Easter, and Meat-Fare Sunday, the duration of the
Apostles’ Fast'’. The paschalia may either take the form of mere lists or be organized as tables;
more often, the data associated with a specific year are singled out by suitable iconic elements,
usually circles. These paschalia may be richly illustrated; they present several motives of interest
from the iconographic point of view. The paschalia were studied by Ferdinand Piper*®.

Following a long-standing tradition, Cordoliani calls my “algorithms” argumenta; their collec-
tions I call (Byzantine) “Easter Computi”*’, whose principal features are as follows.

(A) Easter Computi constitute themselves as a tradition: authors feel free to write their own
compilation by drawing largely from previous compilations without bothering to mention them.
From the material point of view, Easter Computi make a huge corpus, comparable in many re-
spects to the geometric metrological corpus or to the corpus of Rechenbiicher™. This corpus main-
ly comprises short, anonymous texts used as fillers of blank pages in manuscripts. However, as we
have seen, almost all scientific personalities of the Palaiologan age—do not forget Michael Psellos
well before them—set out to write on computistical matters: Nikephoros Gregoras, Matthew
Blastares, Barlaam, George Chrysokokkes, Nicholas Rhabdas, Theodoros Meliteniotes, Isaak Ar-
gyros, all actively engaged in plagiarizing each other™'.

4 A. CORDOLIANI, Contribution 4 la littérature du comput ecclésiastique au moyen age. SM 1 (1960) 107-137, and SM 2
(1961) 169-208.

# See SCHISSEL, Note sur un Catalogus 290-291, where the beginning of Anonymus F is published. This Computus is wit-
nessed in Laur. Plut. 87.16, f. 17r—v.

4 On Horopodia or “shadow-tables”, see O. SCHISSEL, Antike Stundentafeln. Hermes 71 (1936) 104—117, and O. NEUGE-

BAUER, Uber griechische Wetterzeichen und Schattentafeln. Osterreichischen Akademie der Wissenschafien. Philos.-hist.

KI. Sitzungsberichte 240(2) (1962) 27-44; O. NEUGEBAUER, A History of Ancient Mathematical Astronomy (Studies in the

History of Mathematics and the Physical Sciences 1). I-111. Berlin — Heidelberg — New York 1975, 736-748, and NEU-

GEBAUER, Ethiopic Astronomy 209-215.

On the meaning of most of these items see the computistical glossary below.

8 F. PIPER, Karls des Grossen Kalendarium und Ostertafel. Berlin 1858, 124—162, with a database of 27 elements.

1 shall understand “Byzantine” henceforth. Suitable qualifiers will be added whenever I shall refer to other traditions.

%0 For the geometric metrological corpus, see volumes IV and V in J. L. HEIBERG — L. NIX — W. SCHMIDT — H. SCHONE, Hero-

nis Alexandrini opera quae supersunt omnia. [-V. Lipsiae 1899-1914; F. ACERBI — B. VITRAC, Héron d’Alexandrie, Metri-

ca (Mathematica Graeca Antiqua 4). Pisa — Roma 2014, 429-556; for Rechenbiicher, see just below and F. ACERBI, Byz-

antine Rechenbiicher: An Overview with an Edition of Anonymi L and J. JOB 69 (2019) 1-57. On the peculiar features of

Byzantine mathematics see now F. ACERBI, Arithmetic and Logistic, Geometry and Metrology, Harmonic Theory, Optics

and Mechanics, in: A Companion to Byzantine Science, ed. S. Lazaris. Leiden — Boston 2020, 105-159.

Most of these authors appropriated verbatim elaborations of their predecessors and claimed that these were original dis-

coveries of their own. This was a widespread practice in the Palaiologan period: F. ACERBI — D. MANOLOVA — 1. PEREZ

MARTIN, The Source of Nicholas Rhabdas’ Letter to Khatzykes: An Anonymous Arithmetical Treatise in Vat. Barb. gr. 4.
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Byzantine Easter Computi: An Overview 11

(B) As far as we know, Computi were not included in the curriculum taught in Byzantine
schools and higher institutions®*. Nor have Computi ever featured in the scientific encyclopedias
called Quadrivia or in manuscript-based wide-ranging collections of primary sources as the one
assembled in years 1360—70 by Malachias in the two-volume set Par. gr. 2342 (Diktyon 51974) and
Vat. gr. 198 (Diktyon 66829)°*. The point is that “logistic”, the discipline encompassing all compu-
tational sciences, was not part of the Greek heritage, with the sole, and marginal, exception of the
anonymous Prolegomena to the Almagest, a Late Antiquity primer on the elementary arithmetical
operations in the sexagesimal system, intended to assist the student of the A/magest and thereby
transmitted, in its earliest manuscript witnesses, as a preface to it>*. Accordingly, only the kinds of
techniques expounded in the Prolegomena might find a place in Quadrivia, as a minor subsection
of the discipline headed “astronomy”””. Consequently, our knowledge of Byzantine logistic—the
highlight of Byzantine science’®—rests on scattered specimens, on anonymous or authorial treati-
ses such as those I have just mentioned or shall mention below or such as Planudes’ Great Calcula-
tion According to the Indians, and, most importantly, on dedicated “counting books” assembled for
conservation or for personal purposes. An example of the former category of counting books is the
above-mentioned Par. gr. 1670, an example of the latter is the early fourteenth-century manuscript
Par. suppl. gr. 387 (Diktyon 53135)°". Computi were often included in these counting books, along
with computational primers on the decimal system, usually featuring Indo-Arabic numerals, geo-
metric metrological collections, and Rechenbiicher. A miniature specimen of such a counting book
is Nicholas Rhabdas’ Letter to Tzavoukhes.

(C) Easter Computi have “patrimonial” purposes: they often compile different (and sometimes
contradictory: check Anonymus 892, sects. 1417 and 2 vs. 20) algorithms for computing one and
the same chronological item. No Computus known to me outlines even a sketch of a proof that the
algorithms presented as alternatives are equivalent. 4/most no Computus known to me outlines
even a sketch of a justification of the algorithms presented and of the parameters they contain™,
Any decently complete Computus counter-checks the algorithms by performing instance computa-
tions for a specific year; this is usually asserted to be the current year. Of course, such computa-

JOB 68 (2018) 1-37: 35-37, and ACERBI, Arithmetic and Logistic 107-108. The relevant part of George Chrysokokkes’
Syntaxis Persica is edited in USENER, Ad historiam astronomiae symbola, in: H. USENER, Kleine Schriften III. Leipzig —
Berlin 1914, 323-371: 369-370.

It is possible that counting and the elementary operations were taught in schools or in dedicated apprenticeship curricula,
and we do have faint traces of this: see A. TIHON, Enseignement scientifique a Byzance. Organon 24 (1988) 89-108, ACE-
RBI, Arithmetic and Logistic 109, and MANOLOVA — PEREZ MARTIN, Science Teaching. There is a widespread yet unjustifi-
ed tendency in scholarship to regard an educational context as the prime mover for technical writings of Byzantine scholars
(contra, see F. ACERBI — A. GIOFFREDA, Un Aristotele di Massimo Planude. REB 77 [2019] 203-223). I contend that the
educational perspective is unsuitable for a correct assessment of the ancient Greek and Byzantine scientific output: this
comprises first and foremost literary products, and it must be evaluated in this perspective. Computi are no exception.

On these manuscripts see F. ACERBI, Byzantine Recensions of Greek Mathematical and Astronomical Texts: A Survey.
Estudios bizantinos 4 (2016) 133-213: 154-160, with bibliography. On Malachias, olim “anonymus aristotelicus”, see
B. MONDRAIN, La constitution de corpus d’Aristote et de ses commentateurs aux XIII® et XIV® siécles. CodMan 29 (2000)
11-33: 19-24; B. MONDRAIN, L’ancien empereur Jean VI Cantacuzéne et ses copistes, in: Gregorio Palamas e oltre. Studi
e documenti sulle controversie teologiche del XIV secolo bizantino, ed. A. Rigo (Orientalia Venetiana 16). Firenze 2004,
249-296: 278-290 and 292; and most recently T. MARTINEZ MANZANO, Malaquias monaco, alias anonymus aristotelicus:
filosofia, ciencias y exégesis biblica en la Constantinopla de la controversia palamita. Aevum 93 (2019) 495-558.

See F. ACERBI — N. VINEL — B. VITRAC, Les Prolégomeénes a I’Almageste. Une édition a partir des manuscrits les plus
anciens : Introduction générale — Parties I-11I. SCIAMVS 11 (2010) 53-210, and the forthcoming edition F. ACERBI, Les
Prolégomenes a I’ Almageste (Mathematica Graeca Antiqua 5). Pisa — Roma 2022.

For instance, a short computational primer is found in sects. 1-6 and 26 of the astronomical “way” of Pachymeres’
Quadrivium, edited in P. TANNERY, Quadrivium de Georges Pachymére (St7 94). Citta del Vaticano 1940.

See again ACERBI, Arithmetic and Logistic 116—128. I would now include Computi in my survey.

A detailed analysis of both manuscripts is carried out in ACERBI, Struttura e concezione.

Exceptions are for instance Maximus the Confessor, Psellos, Matthew Blastares, and Isaak Argyros (who lifts much of his
material from Blastares).
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12 Fabio Acerbi

tions just confirm well-known and traditionally well-established dates. In a sense, if'its goal is cal-
culating the date of Easter in a given year, a Computus is a useless piece of scientific lore, and even
more so because any Computus can be replaced by such a widespread tool as a Damascene Easter
table and by the simple rules for converting years of the current era to lunar and solar cycle years,
and for using the table™. On the other hand, this fact shows that Computi were conceived of as
general chronological primers®, confirms the formidable inertia of any scientific sub-genre consti-
tuting itself as a tradition, and in the long run had at least the merit of making discrepancies be-
tween schematic and actual lunar phases patent.

(D) Byzantine mathematics is “sectional” in its essence’': it mainly comprises works that do not
display a tight deductive structure; consequently, these works can easily be—or actually are—
subdivided into independent sections, or can easily be assembled to generate sectional texts: of this
kind are logistic and geometric metrological writings, primers of any kind (including the primers
on special astronomical “texts” like the Handy Tables and the Persian Tables)®, scholia, isagogic
compilations, compendia like the Quadrivia. Even such complex architectures as Metochites’
Abridged Astronomical Elements and Meliteniotes’ Three Books on Astronomy are sectional writ-
ings; a notable exception is Barlaam’s Logistic®. An extreme example of sectional mathematics are
the above-mentioned Rechenbiicher: these are collections of computational techniques and of
arithmetical or geometric metrological problems unrelated to each other, sometimes in (fictitious)
daily-life guise, sometimes organized in sequences of almost identical items, and often formulated
in a debased algorithmic code. Mid-way between the extreme of the Rechenbiicher and more struc-
tured sectional texts lie Easter Computi: a fully-fledged Computus is made of a sequence of self-
contained sections, each of which presents one or, less frequently, more algorithms for computing a
specific chronological item. These items include: length and subdivisions of the solar year; reduc-
tion of years in a given era to indiction, lunar, and solar cycle years; epacts of the Moon and of the
Sun; weekday of an assigned date; date and weekday of Passover, date of Easter; date of Meat-Fare
Sunday; duration of the Apostles’ Fast; age of the Moon at an assigned date in the year; embolis-
mic months and years. Further chronological items can be computed. The sections of most Compu-
ti are usually very short, and contain only the algorithm and the examples.

(E) Easter Computi can be an integral part of several textual constellations. A Computus can be:
A treatise embedded in a discursive and doctrinal frame, as Maximus’ Enarratio and George Pres-

byter’s Computus.

%9 See, for instance, the instructions written by John Pediasimos on f. 319r of Vat. gr. 191 (second half of 13™ century; Dikzy-

on 66822: see F. ACERBI — A. GIOFFREDA, Manoscritti scientifici della prima eta paleologa in scrittura arcaizzante. Scripta
12 [2019] 9-52: 30-34 and 41-44)—or in GRUMEL, La Chronologie 311. On tables as a tool for someone calculandi minus
idoneus, see Bede, De Temporum Ratione XIX.

This characteristic is much more accentuated in Western Computi than in Easter Computi: just check the table of contents
in Bede’s De Temporum Ratione, in JONES, Bedae Opera 177—-178, and see the comparative analysis of De Temporum Ra-
tione and of early Irish Computi (Computus Einsidlensis, De ratione conputandi [edited in M. WALSH — D. O CROININ,
Cummian’s Letter De controversia paschali and the De ratione conputandi (Studies and Texts 86). Toronto 1988], Munich
Computus), with a detailed description of the structure of the latter, in WARNTIES, The Munich Computus CVII-CXXII. Rea-
ding the twenty Computi magisterially edited in A. BORST, Schriften zur Komputistik im Frankenreich von 721 bis 818. I—
Il (Monumenta Germaniae Historica. Quellen zur Geistesgeschichte des Mittelalters 21). Hannover 2006, confirms this
fact.

I have introduced this notion in ACERBI, Arithmetic and Logistic 155.

In the case of primers on tables, as for instance on Ptolemy’s Handy Tables or on the Persian Tables, their sectional nature
is obviously motivated by the nature of the reference text.

A study, a (partial) edition, and a discussion of the manuscript tradition of the mentioned treatises is found in B. BYDEN,
Theodore Metochites’ Stoicheiosis Astronomike and the Study of Natural Philosophy and Mathematics in Early Palaiolo-
gan Byzantium (Studia Graeca et Latina Gothoburgensia 66). Géteborg 2003; LEURQUIN, Théodore Méliténiote; P. CARE-
LOS, Bopraap tod Kokappod, Aoyiotikny. Barlaam von Seminara, Logistiké (Corpus philosophorum Medii 4vi. Philoso-
phi byzantini 8). Athens — Paris — Bruxelles 1996, respectively.
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Byzantine Easter Computi: An Overview 13

An adjunct to a more comprehensive treatise, as Anonymus 686, which complements Maximus’
Enarratio in, among others, the manuscript Leiden, Universiteitsbibliotheek, Scal. 33 (1 1t
century; Diktyon 37986) ff. 17r—26v.

An adjunct to (and a primer on) Paschal tables, as Nicholas 916, witnessed in the manuscripts
Hamburg, Staats- und Universitétsbibliothek, in scrin. 50a, f. 1r—v, and London, British Library,
Add. 18231, ff. 4v—5r, and Theophylaktos 956, again in Hamb., SUB, in scrin. 50a, f. 11v**.
Nicholas 916 is written in the form of a letter.

A part of a florilegium, as the computistical sections of the Florilegium Coislinianum, for which I
have checked the manuscripts Ambr. Q 74 sup. (gr. 681; end of 10™ century; Diktyon 43158) f.
98r (an abridged version), and Par. gr. 924 (10™ century; Diktyon 50513) ff. 286v—293v. An al-
gorithm in the computistical part of the Florilegium is dated AD 716.

A section of a textbook of canonical law, as in Matthew Blastares’ Syntagma. The contents of this
treatise are organized alphabetically, as in the Florilegium Coislinianum.

A part of the material accompanying a psalter, as Anonymus 951, witnessed in the manuscript
Oxford, Bodleian Library, Auct. D.4.1 (Misc. 5; Diktyon 46972) ff. 29v—34v, which ends with a
mutilated paschalion dated AM 6459-6464 [= AD 951-956] (4 folios have been excised)®.
Other early psalters that contain Computi include Anonymus 1021, witnessed in Vat. gr. 341
(Diktyon 66972) ff. 8r—13r, Anonymus 1095, in Vat. gr. 342 (Diktyon 66973) ff. 17r—23v (which
includes a paschalion dated AM 6596-6667 [= AD 1088—1159] and features a passing reference
to an 84-year cycle), and Anonymus 1105, in the manuscript Harvard University, Houghton
Library, gr. 3 (Diktyon 12290) ff. 282r—288v, which includes a paschalion dated AM 6613—
6632 [= AD 1105-1124].

A part of an instruction manual to a collection of astronomical tables, as the algorithms contained
in Stephanus-Heraclius’ in Ptolemaei Tabulas Manuales (sects. 12 and 28-30, respectively), in
George Chrysokokkes’ Syntaxis Persica (sects. 9—10), in Meliteniotes’ Three Books on Astro-
nomy (sects. 11.19-20 and II1.17, 23-24), and in the anonymous Paradosis in Tabulas Persicas
(sect. 13), the latter three explaining how to use the “persian tables”.

A part of an anthology; this can be a low-brow notebook intended for personal use, as the one con-
taining Anonymus 892; a middle-brow notebook, as Ambr. A 45 sup., which features an Alex-
andrian Computus and Anonymus 830, and Par. gr. 854, where we find Anonymus 1079; or a
high-brow anthology, as Par. suppl. gr. 690 (1075-85; Diktyon 53425), whose ff. 249r—v present
computistical material®®.

A part of a philosophical encyclopedia, with special emphasis on logic and natural philosophy, as
in Laur. Plut. 87.16. This manuscript, one of the most important witnesses of Nikephoros
Blemmydes’ Epitome Isagogica, contains four Computi, namely, Anonymus ¥, Anonymus 1247,
Anonymus 1273, and Psellos’ treatise.

A part of a Rechenbuch, as Anonymus 1183, Anonymus 1256, the isolated procedure in Par. suppl.
gr. 387, and the computistical section in Rhabdas’ Letter to Tzavoukhes.

An independent treatise dealing exclusively with technical issues, as the Computi composed by
Psellos, Argyros, and Rhabdas, and many other anonymous works.

 Theophylaktos also copied the Hamburg manuscript. See footnote 101 below for details.

% This is the earliest psalter with a Computus; see M. WALLRAFF, The Canon Tables of the Psalms: An Unknown Work of
Eusebius of Caesarea. DOP 67 [2013] 1-14; G. R. PARPULOV, Towards a History of Byzantine Psalters ca. 850—-1350 AD.
Plovdiv 2014 passim.

5 A detailed analysis of this manuscript can be found in G. ROCHEFORT, Une anthologie grecque du XI° siécle : le Parisinus
suppl. gr. 690. Scriptorium 4 (1950) 3—17; see also 1. PEREZ MARTIN, Les Kephalaia de Chariton des Hodeges (Paris,
BNF, gr. 1630), in: Encyclopedic Trends in Byzantium? Proceedings of the International Conference held in Leuven, 6-8
May 2009, ed. P. van Deun — C. Macé (Orientalia Lovaniensia Analecta 212). Leuven — Paris — Dudley (MA) 2011, 361—
386 (Par. suppl. gr. 690 was one of the sources of Chariton’s notebook), and M. D. LAUXTERMANN, Byzantine Poetry from
Pisides to Geometers. Texts and Contexts. Wien 2003 passim et in particular 329-333.
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(F) Computi elude standard philological methods for establishing filiations among manuscript
witnesses: as any highly sectional text, such collections can be assembled and disassembled very
easily; moreover, any computistical algorithm or worked-out example can undergo (major) modifi-
cations in the process of transmission. Accordingly, hypotheses of filiation between versions of
specific algorithms in different manuscripts can seldom be corroborated by uncontroversial textual
evidence®’. The only sensible attitude is to edit every Computus separately, even when there are—
as there frequently are—overlaps with other Computi. This remark, and the sectional nature of
Computi highlighted in the previous point, explain my choice of presenting Anonymus 892 as a
sequence of disconnected chapters, each of which is followed by the translation and a commentary.

(G) Computi make exclusive use of the “procedural” and “algorithmic” stylistic codes, as we
shall see in the next Section.

(H) Computi are firmly anchored to current linguistic practice; they frequently exhibit the ver-
nacular and an “aberrant” morphosyntax. Special attention to these linguistic features was paid in
the editions procured by the school of Otmar Schissel®®.

THE TRADITION OF EASTER COMPUTI: STYLISTIC FEATURES

The style adopted in Easter Computi requires an explanation. Greek and Byzantine mathematics
adopted three stylistic codes: these are the demonstrative, procedural, and algorithmic codes®. The
demonstrative code is the one in which ancient Greek geometry and number theory—in a word:
Euclid’s Elements—are written; it does not concern us here. In logistic treatises, the solution of a
numerical problem, usually provided without any supporting “proof” in the strict sense, was en-
coded in two peculiar expository formats, which I have called the “procedural” and the “algorith-
mic” codes. These are two stylistic resources that formulate chains of operations on numerical enti-
ties, and such that the output of an operation is taken as the input of the operation next in order:
they are the ancient counterpart of our computer programmes. In particular, the procedural code
was aptly used to express in words operational sequences that we would summarize in an algebraic
“formula”. A description of these two codes runs as follows.

The procedural code formulates its prescriptions as a sequence of coordinated principal clauses
with the verb in the imperative or in the first person plural, present or future; to each principal clau-
se are subordinated one or more participial clauses coordinated with each other; the participle is a
satellite and performs the function of modifier of the operating subject. There are, moreover, an
initializing clause, which inserts the initial input into the procedure, and an end clause, which iden-
tifies the result of the chain of operations as the quantity to be calculated. This quantity is usually

%7 These observations apply to most sectional writings, such as geometric metrological collections, Rechenbiicher, and
grammatical compendia; see, in this order, ACERBI — VITRAC, Héron d’Alexandrie sect. III; ACERBI, Byzantine Re-
chenbiicher; the categorization and the examples in G. UCCIARDELLO, ‘Atticismo’, excerpta lessicografici e prassi didatti-
che in eta paleologa. AION 41 (2019) 208-234. My approach to editing Computi collides with Borst’s, best exemplified in
BORST, Schriften: through his editorial approach, he suggests that there have been master texts, from which fragments and
extracts were then distributed widely. For a criticism of Borst’s approach, see I. WARNTIES, The Computus Cottonianus of
AD 689: A Computistical Formulary Written for Willibrord’s Frisian Mission, in: The Easter Controversy of Late Antiqui-
ty and the Early Middle Ages, ed. I. Warntjes — D. O Croinin (Studia Traditionis Theologiae 10). Turnhout 2011, 173-212:
199 n. 82. I am grateful to Immo Warntjes for a discussion on this point; in collaboration with J. ter Horst and Th. Snijders,
Warntjes is currently preparing a database centred on “computistical objects”.

See REDL, La chronologie appliquée, for Psellos; KARNTHALER, Die chronologischen Abhandlungen, for Anonymi 1092A—
C; BUCHEGGER, Wiener griechische Chronologie, for Anonymus 1273; SCHLACHTER, Wiener griechische, for Anonymus
1350.

These notions were first introduced in F. ACERBL I codici stilistici della matematica greca: dimostrazioni, procedure, algo-
ritmi. QUCC 101 (2012) 167-214. See also ACERBI — VITRAC, Héron d’Alexandrie sect. I1.2, for the algorithmic code in
Hero’s Metrica, and my comprehensive discussion in F. ACERBI, The Logical Syntax of Greek Mathematics (Sources and
Studies in the History of Mathematics and the Physical Sciences). Heidelberg — New York 2021, sects. 1.1-3.
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Byzantine Easter Computi: An Overview 15

declared in a clause that precedes the entire procedure. This code is used to formulate operatory
prescriptions in the most general way; the verb forms—either finite or participial forms—represent
the operations, and each verb form corresponds to exactly one operation; the involved mathemati-
cal objects, the “operands”, are the complements of the verb forms and are designated by (some-
times extremely long) definite descriptions. The operations may be unary or binary.

Procedures prominently figure in the astronomical corpus; they expound how to use numerical
tables for computing relevant astronomical quantities. Thus, we find procedures in Ptolemy’s Al-
magest’® and in his own instruction manual to the Handy Tables, in Pappus’ and Theon’s commen-
taries thereon, in Stephanus’ commentary on the Handy Tables, and in all similar Byzantine pri-
mers like the eleventh-century manual best witnessed in Par. gr. 2425 (Diktyon 52057)", Metochi-
tes’ Abridged Astronomical Elements (ca. 1316), George Chrysokokkes’ Syntaxis Persica (1346),
Meliteniotes’ Three Books on Astronomy (1352), the anonymous Paradosis in Tabulas Persicas
(1352). We also find procedures in the above-mentioned Prolegomena to the Almagest.

To become acquainted with this stylistic resource, let us read some examples in Byzantine wri-
tings. First, here is part of sect. 59 of the manual in Par. gr. 2425, which explains “how to find the
true degree of the sought for syzygy”’*:

{Mrel TpdToV TOG PO THG {nrovuévng ovluyiog peonuPpvag €moxag t@V 000 POCTNPOV, Kol

amoypaye idig kdotny. elta Aafov Ty dVrepoynv Tod HAiov TPdg TV ceAqvV Tibel &v duoi TomolC,

Kol mevramhaciooag Tov Eva To yivopeva Aentd mpootifel T@ £Tép@, Kol T0 UV €K ToD mevTamia-

oloopod Aemtd Tpdcheg i émoydl Tod NAiov, T 8& Tod £Tépov TOMOL — @ TPOcETEON T Kk TOD MEV-

TOTAACIOGoHOD AETTA — TPOGOES TH] Moy TG GEAMNVNG. Kol 0V ALEOTEPOV TOV QOCTNP®V Ol £Toyol

icol yévovral, Eyneicag axpipac.

First seek for noon positions of the two luminaries before the sought for syzygy, and record each by
itself. Then, taking the excess of the Sun over the Moon, put it in two places, and quintupling one
add the resulting minutes to the other, and add the minutes from the quintuplation to the Sun’s posi-
tion, and add the figure of the other place—to which the minutes from the quintuplation were ad-
ded—to the Moon’s position. And if the positions of both luminaries turn out to be equal, you have
computed correctly.

Second, let us read an extract from a geometric metrological compendium that contains only
procedures; one is required to find the height of a pyramid”:

TUPAISOC TV T€ KAOETOV KOl TO GTEPEOV ELPETV. Tolel OVT®G. Kol TNV HeEV KAOETOV gVpElv. ToAha-
mlaciacov piav Tdv TAevpdv £’ £0TAY, Kol TOV yevopevoy dimhwoov- gita 10D yevopévov AdPe 1o

8%, xai av0ig apiduncov &v TV KMudTmv €9’ £00Td, Kai £k Tod Yevouévov o pnoiv 8% dpehav Tod
Aouod AGPe mhevpav TETPOY®VIKNY, Kol EEEIC TNV KABETOV.

Find both the height and the volume of a pyramid. Do as follows. And find the height. Multiply one
of the sides by itself, and double the result; then take a 4™ of the result, and reckon again one of the
edges by itself, and removing the said 4™ from the result take the square root of the remainder, and
you will have the height.

Finally, here is a Passover algorithm that will deserve a fuller discussion below; we read the
formulation found in Meliteniotes’ Three Books on Astronomy 111.24*:

™ See Almagest 11.9, 111.8, 111.9, V.9, V.19, VL.9-10, XI.12, XIIL6.

' See the edition in A. JONES, An Eleventh-Century Manual Of Arabo-Byzantine Astronomy (Corpus des Astronomes By-
zantins 3). Amsterdam 1987. A preliminary study is in O. NEUGEBAUER, Commentary on the Astronomical Treatise Par.
gr. 2425 (Académie royale de Belgique. Classe des Lettres et des Sciences morales et politiques. Mémoires 59.4). Bruxel-
les 1969.

JONES, An Eleventh-Century 84 (text) and 85 (translation, slightly modified).

The ancestor of the entire tradition is Vat. gr. 1411, ff. 17v—23r; our text is from f. 23r. A synopsis of the compendium is
found in HEIBERG — NIX — SCHMIDT — SCHONE, Heronis Alexandrini V 1C—CILI.

Vat. gr. 792, f. 350r. I retain the original accents for the enclitics.
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16 Fabio Acerbi

€0t 8¢ Kal devTEPOg TpoOToc Thig Tod [ldoya KataAnyewmc To0100Tog. TOV Yap THS oeANvNG KOKAOV
EVOEKAKIC TOMOAVTEG KOl TOIG YEVOUEVOLG TTPOGOEVTES €l pev TV GAL®V KOKA®V avTi|g ¢ €7l 08 ToD
1" kol tod m”” kol tod 10” mpochivieg { kai amd 10D oltm cuvaydiviog kPoidvieg Tag Eunec-
ovoag &l TOYOL TPLAKOVTASHG, E1Ta T® Aowd apOud TOV Asimovo eic TOV v AaPovTeg, el uév éotiv Ao
i EMdTTOV TOV A, droypayoueba Nuépag tod Maptiov, i 8¢ €oti mheiwv, TOV PETO AQaipesY TOV

o

Ao dmoypoyopuedo uépag tod Anpiadiov, kad’ ¢ t0 vopkov Extehectnoetal dacka.

There is also a second way of taking Easter, namely, the following one. For doing eleven times the
cycle of the Moon and adding 6 to the result for the other cycles of it, and adding 7 for <cycles> 17,
18, and 19, and taking away the intervening thirties, if any, from the <number> gathered in this way,
then taking what remains to 50 for the remaining number, if it is 31 or less than 31, we shall write it
down as days of March; if it is more, we shall write down the <number> after removal of 31 as days
of April, on which Passover will be accomplished.

In all commentaries or computational primers mentioned above, procedures precede paradigma-
tic examples presented in algorithmic form and are intended to validate them.

The algorithmic code features paradigmatic examples featuring specific numerical values. After
the initializing clause, the algorithms are expressed as a sequence of principal clauses coordinated
by asyndeton; each clause formulates exactly one step of the algorithm and comprises a verb form
in the imperative (this is the operation) and a system of one or two objects”’—a direct and an indi-
rect object—in the form of demonstrative or (cor)relative pronouns or of numerals (these are the
operands). The operation is often expressed by means of the preposition that introduces the indirect
object, without any verb form: “these by 3” instead of “multiply these by 3”. The result of each
operation is identified as such in a dedicated clause, with the verb in the present indicative (forms
of yivopot “to yield”, “to result”)’®, sometimes replaced by an adjective in predicative position
(mainly Aowmdg “as a remainder” after a subtraction); both syntactic structures are equivalent to our
equality sign’’. An end clause identifies the result of the chain of operations as the quantity to be
calculated. This quantity was usually declared in a clause that precedes the entire algorithm. The
main feature of an algorithm is the systematic use of parataxis by asyndeton: no coordinants, (al-
most) no connectors, no subordination. The algorithmic flow is usually one-step: any step (1) ac-
cepts a number that is the output of the immediately preceding step as input and (2) inserts new
data by means of the second operand. Operations in which neither operand is the output of the im-
mediately preceding step are less frequent. Such operations induce a hiatus in the algorithmic flow;
the hiatus is often syntactically marked by the presence of particles or of specific verb forms.

Let us read a part of Hero, Metrica 1.8, as an example of an algorithm’®:

olov &oTOGaV ai Tod TPLYGVOL TAEVpOL Lovadmv {1 6. For instance, let the sides of the triangle be of 7, 8, 9 units.
ovvleg Ta { Kol T 1 Kol T0 0 yiyveTon KO- Compose the 7 and the 8 and the 9: it yields 24;
To0TOV AafE TO v yiyvetan 1B take half of these: it yields 12;

Goele tag £ povadag: Aoural €. remove the 7 units: 5 as a remainder.

oA Gpele Ao TOV 1 TaC N° Aowmal . Again, remove the 8 from the 12: 4 as a remainder.
Kol €11 T0g 0 Aowmad . And further the 9: 3 as a remainder.

moinoov ta 1f €mi Ta € ylyvovto & Make the 12 by the 5: they yield 60;

TadTo €M1 T 8 yiyvovTal ol these by the 4: they yield 240;

TaOTO €L TA Y* YIYVETOL LK these by the 3: it yields 720;

T00TOV AQPE TAELPAY, take a side of these,

Kol £€oTot T0 EUPadOV TOD TPLydVOUL. and it will be the area of the triangle.
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Accordingly, the operation is unary or binary, respectively.

The former must be used to translate finite verb forms, the latter for participial forms.

In mathematical papyri, yivetou can be replaced by a vertical stroke: see, for instance, PMich. I11.145, in J. G. WINTER,
Papyri in the University of Michigan Collection. Miscellaneous Papyri (Michigan Papyri 3). Ann Arbor 1936, 34-52. This
shows that the verb form is equivalent to our equality sign in a strong sense.

ACERBI — VITRAC, Héron d’Alexandrie 174.3—7. This is “Hero’s formula” for finding the area of a triangle once its sides
are numerically given.
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In ancient Greek sources, this code characterizes Hero’s Metrica, and it is used exclusively in
the geometric metrological corpus. In the Metrica, proofs using the “language of the givens” pre-
cede paradigmatic examples of computations in algorithmic form, and are intended to validate
them. In all astronomical primers mentioned above, and more generally in all Byzantine texts of
this kind, paradigmatic examples presented in algorithmic form are very frequent; they are syste-
matically preceded by procedures; the latter are intended to validate the former. In these texts, algo-
rithms are frequently replaced—or accompanied—by tabular arrangements of the performed opera-
tions; the tabular arrangements are nothing but an evolution of the algorithms in a more perspi-
cuous format.

In Meliteniotes’ Three Books on Astronomy, for example, each operation is frequently carried
out three times: by means of a general procedure (called pébodoc), by means of a procedure featu-
ring actual numerical values (Omddetypa “example”), and finally by means of an algorithm in the
sense just explained, often organized as a tabular set-up (§kfeoig TV apOudV “setting-out of the
numbggs”). Let us read the second and third avatar of the procedure in Book II1.24, read just
above'”:

TAAWY Kot TV £TEpavV EQOSOV TOV Tiig oeAVNG KOKAOV (fiyouy 1OV B) EVOEKAKIC TOGOVTES KOl TG
yeyovoTt apiud xf mpochévieg ¢ kol t@ cvvaybévtt kn Tov Agimovta gig Tov v AaPdvteg, &g 0Tl O
kB, Tobtov dneypoyduedo nuépag tod Maptiov, kab’ dg tO vopukov yevioetor @dcka.

GEANVNG KOKAOG de0TEPOC TODTOV EVvOeKAKIC: YiveTal KB+ Tpocheg ¢ yivetal kn: 0 Aginwv €ig TOV V-
yivetor k. xai giow uépat T0d Maptiov, ke’ dg t0 voukov Eotan Pdoxa.

Again, according to the second procedure, making eleven times the cycle of the Moon (namely, 2)
and adding 6 to the number that has turned out to result and taking what remains to 50 for the ga-
thered <number> 28, which is 22, we have written this down as days of March on which Passover
will occur.

[...]

Second cycle of the Moon; this eleven times: it yields 22; add 6: it yields 28; what remains to 50: it
yields 22. And they are the days of March on which there will be Passover.

Both the procedural and the algorithmic code are adopted in Easter Computi, as some examples
will show. I use an algorithm in Anonymus 1183 as my paradigmatic example. I have selected this
Computus because, as said, it is contained in a manuscript redacted for conservation purposes as
part of a multi-purpose notarial vade mecum; we may expect a highly regularized style from it. Let
us read sect. 9, which presents the algorithms for the epacts and the base™ of the Moon®'.

el 0éherg evpelv oD évictapévov &rovg tnv moocdtnTa ToD Oepeliov ThHg GEAVNG Kol TOG EMAKTAG
avTig, KPATNOoOV T AnO KTice®S KOGHOL £ £m¢ TOD €veSTATOG, Kol TOALVTAAGINGOV adTd EVOE-
ka1, TovtéoTy evdekanlaciacov adtd: €10’ obtwg npodcheg Kol Tolg Amod ToD EVOEKUTAACIOGHOD
avapipacOeiol kol 10 évveakaldékatov PEPOG TV GO KTIGEWS KOGHOL ETdV, Kol EvAoag TodTa
Opod Veellov Eml TAV A, Kol Td KaToAEIPOEVTO KATOEY TMV A gioiv al maxtal Tfig GEA VNG TOVTOLG
npoctifel del TV mTpdTV Tob Tavvovapiov punvog, kol eDPNGELG TV TocoTNTO TOD Bgpeiiov Tig
ceMVNC.
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Vat. gr. 792, f. 352r and 353r, respectively.

The “base” of the Moon is not used in Anonymus 892. For the “base” of the Moon, see footnote 95 below.

The verb forms in the aorist tense must be translated with a present, unless they occur in first or second person verb forms
or whenever a second-person subject is expressed. For in algorithms no temporal connotation can be present; the aorist ten-
se there adopted simply intimates absence of temporal or aspectual connotations (the “pure action” expressed by the verb):
this is possible only in the aorist, which is the less connotated pole of the aspectual opposition (see J. HUMBERT, Syntaxe
grecque. Paris 1960, 133-181 passim, and again my discussion in ACERBI, The Logical Syntax, sects. 1.1-3). The reader
will also note that there is an adverbial kal in excess in a clause (maybe both adverbial kai are in excess there); this feature
is common in Computi; it is in fact a general trait of Greek mathematical style: ACERBI, The Logical Syntax, sect. 5.3.5.
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If you want to find the quantity of the base of the Moon and its epacts for the present year, keep the
years from the foundation of the world up to the present one, and multiply them eleven times, that is,
undecuple them; then again also add the nineteenth part of the years from the foundation of the
world to the <numbers> brought up from the undecuplation, too, and uniting them together remove
by 30, and that which remains down from 30 are the epacts of the Moon; always add the first <day>
of the month of January to these, and you will find the quantity of the base of the Moon.

Let us dissect this neatly formulated algorithm:

conn.  gener. operation operands phase
% * the years from the foundation of the world up L
keep initialization
to the present one
1 *
1 and rpultlply eleven them *
times
* (i) the nineteenth part of the years from the
then SN s foundation of the world .
2 again add *(i) *(i) (ii) to the <numbers> brought up from the unde- algorithm
cuplation
111 * * *
3 and uniting * together them
remove by 30
and * are * that which remains down from 30 * identification
the epacts of the Moon of the result
o s * (i) the first <day> of the month of January .
* *
1 always add *(i) *(ii) (ii) to these algorithm
and you will find * * the quantity of the base of the Moon identification

of the result

The first column numbers the truly operative steps of the algorithm. The second column sets out
the “connector”, which links two algorithmic steps; one of these steps can be the “initialization”
clause or the “identification of the result”. In the column “generality” one finds the linguistic units
(usually adverbs) that mark operations or operands that are structural parameters of the algorithm.
The “operation” column contains the verb forms that express the operations. Note step 3, where
two operations are nested as a principal clause + participial satellite. The next-to-last column sets
out the “operands”, which are always designated by standard definite descriptions; I have conven-
tionally included in this column the subject of the clause that identifies the result. The asterisks
mark the position of the operands/operation omitted in the operation/operands column. Steps (1)
and (3) of the first algorithm comprise unary operations, steps (2) of the first and (1) of the second
algorithm are binary operations, to which two operands are accordingly associated. The last column
identifies the “phase” of the entire algorithm. It is clear that two sequentially linked algorithms are
at work here. If set against my categorization above, the text we have read is clearly a “procedure”,
even if I shall consistently use the denomination “algorithm”. The procedural character is confir-
med by the massive presence of definite descriptions, like “the nineteenth part of the years from the
foundation of the world” above, not accompanied by any numerical exemplification.

According to the previous discussion, my symbolic transcription is as follows®*:

)] 2 3) (M
) > 11y > 11y +y/19 —» (11y + y/19) mod 30 = e,, — e, + 1,= b,

where y is the year in the Byzantine world era, e, and b,, denote the epacts and the base of the

Moon at lunar cycle m, respectively, and 1, is January 1. The modulo reduction computes the
remainder of the division by 30 of what precedes the “mod” sign®.

%2 For clarity’s sake, I have superimposed the numbers of the steps on the arrows. I shall never do this again.
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As in the above example, the symbolic transcriptions I shall use throughout this article are in-
tended faithfully to represent the computational flow. The initial input is the assumed quantity; it is
enclosed in parentheses, thus: (v). A self-contained step of the transcription formalizes a complete
“participial clauses + principal clause” sentence of the algorithm (thus, several operations may fea-
ture in it). Steps in which the output-input chain is not interrupted are linked by an arrow —. The
operands in a given step are usually written in the same order as that in which they are introduced
in the text. The sign | separates independent steps that follow one and the same step (that is, a bran-
ching has occurred). A full stop indicates an algorithmic hiatus or the end of an algorithmic branch.
Levels of brackets go iteratively from parentheses to braces. The final output is preceded by the
sign =.

A calculation that is standard in Computi finds the remainder of a reduction by repeatedly re-
moving multiples of the modulus, as in Anonymus 892, sect. 10, where it is shown that 16 = 6400
(mod 28); this is an “algorithm” according to my categorization above:

Doegke T0 avTa £TN €1l TOV KN, KOl E0PNGELG TOV KOKAOV TOD AoV €lK0GAKIG S10KAOG10L, & OKTA-
KIG 0, o Aowmov &vépevay - Deelhe kol Tadte oUTMG. EIKOCAKIC K, V* OKTAKIG K, p&: kal Euevay
Ol OKTAKIC K, P OKTAKIG OKT®, ES- Kai Aowdv Epsvay 1. kai yvapile € kai dékatov kdrdov elvat
70D NAiov.

Remove the same <6400> years by 28, and you will find the cycle of the Sun; twenty times two
hundred, 4000; eight times 200, 1600: there remain 800 as a remainder; remove also these as
follows. Twenty times 20, 400; eight times 20, 160: and there remain 240; eight times 20, 160; eight
times eight, 64: and there remain 16 as a remainder. And recognize that it is the sixteenth cycle of
the Sun.

A COMPUTISTICAL GLOSSARY

The computistical terms are in boldface when they are defined; they are in italics when they are
mentioned. All the terms here defined are discussed in the commentary on the relevant section(s) of
Anonymus 892.

The indiction (ivdiktoc, ivdikTidv, Eémvéunoig) is a 15-year cycle introduced in the late Roman
empire for taxation purposes. There are several regional variants of the indiction cycle, and its ini-
tial history is complex;** AD 312/3 is year 1 of the most current indiction cycle. The Byzantine
civil year and the indiction year begin on September 1.

An era is a non-cyclic count of calendar years starting from a year 1, called epoch. The epoch
of the Byzantine world era (td and kticewg kocuov & “the years from the foundation of the
world”; henceforth denoted AM) is BC 5509 September 1*°, a Saturday; years are Julian years*®.
The epoch of the Alexandrian world era is BC 5493 August 29 (BC 5492 March 25 according to
Annianus), a Tuesday; years are Julian years. The Byzantine era is the Alexandrian era shifted 16

8 The crucial operation in a Computus is finding the remainder of the division of a number x by a number ». In modern

terms, this is the “modulo” reduction, whose sign is “x mod n”. We also write “x =y (mod n)” (read “x is congruent to y
modulo #”) to signify that numbers x and y, once divided by n, yield the same remainder. As we shall see in Anonymus 892
(see the commentary on Sect. 3), the division is carried out by removing suitable multiples of the divisor n. Again, in mod-
ulo » reductions in our text, if the dividend is a multiple of the divisor, the remainder is frequently taken to be #, and not 0
(or, to be accurate, “nothing”).

A detailed study is in S. BAGNALL — K. A. WORP, Chronological Systems of Byzantine Egypt. 2nd ed. Leiden — Boston
2004. GRUMEL, La Chronologie 192-206 provides a brief account and explains the regional variants. See also the account
in MOSSHAMMER, The Easter Computus 20-24.

To denote dates, I adopt the astronomical convention era — year — month — day.

On eras, see the synopsis in GRUMEL, La Chronologie 207-226 and 279-296. See also NEUGEBAUER, HAMA 1143 s.v.,
and especially 1064-1067 and 1074-1076 (with bibliography), and the dedicated sections in NEUGEBAUER, Ethiopic
Astronomy, and NEUGEBAUER, Abu Shaker’s.
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years backwards. The shift was probably motivated by the requirement of synchronizing lunar,
solar, and indiction cycles with each other and with the era: year 1 of the Byzantine world era is
also year 1 of the lunar, solar, and indiction cycles®’. This can be done because the beginning of
the solar and lunar cycles is conventional®®, whereas the indiction is rigidly attached to the era of
Diocletian—of which the Alexandrian world era is an avatar shifted 5776 years (= 304 lunar cycles
of 19 years) back®’.

The tropical year is the time interval between two successive passages of the Sun through the
same point of its own yearly circuit. A tropical year comprises 365 days and a fraction of a day
that is very nearly approximated by Y, that is, 6 hours. Julian-style calendar years take into ac-
count the fractional nature of the tropical year by introducing an intercalary day every fourth year
and in a fixed place in the year; this year is called leap year (Biocttov, diceEtov, Pioektov)’™. In
this way, the tropical year is transformed into a calendrical entity, the Julian year, which compris-
es a number of days that is either 365 or 366. The Byzantine calendar years are Julian-style years;
they employ Roman months endowed with a forward day-count from the first day of the month as
the sole monthly epoch; the year begins on September 1; the additional day of a leap year is inter-
calated every fourth year as February 29°".

Solar cycles of equal length exhibit the same sequence of pairings between dates and weekdays.
As in Julian years an intercalary day is added every fourth year, the number of weekdays, 7, and 4
are prime to each other, and neither 365 nor 366 are multiples of 7, the shortest solar cycle consists
of 7x4 =28 Julian years. Byzantine solar cycle years begin on October 1.

The natural time interval associated with the motions of the Moon and of the Sun as seen from
the Earth is the synodic month, which corresponds to the return of the Moon to the same position
with respect to the Sun. The new Moon is traditionally taken as the boundary between two consec-
utive lunar months. A synodic month comprises 29 days and a fraction of a day that is very close to
'%%%. Hence, a synodic month of about 29 " days covers an interval of 30 days. The age of the
Moon is the number of days elapsed since the immediately preceding new Moon; these days are
traditionally denoted by the word luna followed by an ordinal number: the 14™ day of a lunar

87 George, sect. 1.1, in DIEKAMP, Der Monch 24.20-31, claims that the synchronization of all cycles is the main virtue of the
Byzantine era. As the years of the three cycles begin on different dates, synchronization is not exact: time intervals con-
tained in two consecutive solar or lunar cycle years may belong to one and the same calendar year. However, Passover,
Easter, and most movable feasts of the Christian calendar fall in the “safe” time segment bounded by January 1 and August
31.

It is enough to call cycle year X of the old cycle “cycle year 1” of the new cycle and to rearrange the epacts in such a way
that the Passover dates remain the same.

% The rule is as follows: i = 1 for Diocletian 14 = Alexandrian AM 5790 = Byzantine AM 5806 [= AD 297/8]. Since
5790 = 0 (mod 15), there is a crucial discrepancy of 1 unit between indiction cycle and Alexandrian era. On the other hand,
5806 =1 (mod 15). To enforce synchronization while preserving the position of leap years, one must introduce a shift of
15k + 1 = 4p years, for some integers k and p. The smallest solution is (k,p) = (1,4), and the shift is of 16 years.

See STERN, Calendars in Antiquity 204-227, especially for a discussion of the problems with intercalation that affected the
first decades of application.

Unless otherwise stated, this is what I call the “Julian calendar”. In counting the days in a year, the Romans used a back-
ward day-count keyed to three monthly epoch: the calends (1* day of a month), the nones, and the ides (both variably lo-
cated: 7™ day in March, May, July, and October, 5™ day in the other months; 15™ day in the same four months, 13" day in
the others, respectively); as a consequence, only the days counted from the nones and the ides carried the name of the
month in which they were included. The intercalary day of leap years was located as a second February 24 = VI Kal. Mar.
(counted backwards, that is, before our February 24), whence the denomination bis-sextus “twice-sixth”. This system is
tabulated in GRUMEL, La Chronologie 298-299, and in E. J. BICKERMAN, Chronology of the Ancient World. Ithaca (NY)
1980, 125. See also A. E. SAMUEL, Greek and Roman Chronology. Calendars and Years in Classical Antiquity (Handbuch
der Altertumswissenschaft 1.7). Miinchen 1972, 152—170. The structure of the Roman calendar is explained in the Compu-
tus contained in Par. suppl. gr. 690, sect. 6 (= TIHON, Le “Petit Commentaire” 364, text n° 55).

The duration of the lunar month is in fact highly variable: there is a difference of more than 13 hours between the longest
and the shortest lunations in the time span 1760-2200; see J. MEEUS, More Mathematical Astronomy Morsels. Richmond
(VD) 2002, 19-31.
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month is luna XIV. A schematic lunar month is the approximation of the synodic month to 29 "
days, counted from one new Moon to the next and embedded in a calendar year. Such an embed-
ding is usually put into effect by alternating lunar months of 30 or 29 days’. A lunar cycle is any
period after which the sequence of pairings between calendar dates and ages of the Moon repeats
itself. The 19-year lunar cycle comprises 19 calendar years of 365 days, which equal 6935 days;
these are organized as a sequence of 228 alternating lunar months of 30 and 29 days (= 6726 days)
plus 7 embolismic (£ppoiipor) months of 30 days each (= 210 days) occurring in specific years’
and resulting from the fact that 12 lunar months of 29 % days (a lunar year) correspond to only
354 days. The 11 days needed to complete a calendar year of 365 days accumulate (the quantity
accumulated at each lunar cycle year is called epacts [¢noxtai] of the Moon)’ until they exceed 30
days; when this happens, an embolismic lunar month of 30 days is formed, and these days are sub-
tracted from the cumulating epacts. In this case, a calendar year comprises 13 lunations, and the
lunar year has 13 months. A /9-year lunar cycle therefore comprises 228 + 7 = 235 lunar months
of 30 or 29 days’®. These 235 lunar months equal 6936 days: the discrepancy of 1 day between the
6935 days counted by 365-day calendar years and the 6936 days counted by lunar months is elim-
inated by increasing the age of the Moon by one day at some point of its cycle, an operation that is
equivalent to deleting one lunar day: this is the saltus lunae, the “leap of the Moon”. Accordingly,
the lunar cycle year that follows the year in which the saltus lunae is inserted carries 12 epacts and
not 11”7, In Byzantine Computi, the saltus lunae is normally inserted towards the end of the 16™
lunar cycle year.”™

% The pattern of embedding is a lunar calendar, see HOLFORD-STREVENS, Paschal Lunar Calendars, and footnote 163 be-
low. The new Moons that set the boundaries of these lunar months are fixed once and for all; accordingly, their sequence is
also schematic.

% The periodic sequence in which the embolismic years are arranged in the 19-year cycle is CCECCECECCECCECCECE,
where the sign “C” stands for a “common” year, “E” for an “embolismic” year, that is, a year that contains an embolismic
month. The qualifier “periodic” in the previous sentence means that the first year of the cycle can be located anywhere in
the sequence, according to the epacts assigned to this year. The sequence as given above can naturally be split in two sub-
sequences: the first of them comprises 8 years; the second, 11 years; these were called ogdoas and hendecas in Western
Computi (the ogdoas and the hendecas are also marked in the Greek 532-year tables mentioned in footnote 101 below; the-
se tables are witnessed in manuscripts copied in Southern Italy; these manuscripts also contain the Computi Nicholas 916
and Theophylaktos 956, which expound Western computistical procedures): see, for instance, the letter of Dionysius Ex-
iguus to Boniface, in KRUSCH, Studien (1938) 82-86, or Bede, De Temporum Ratione XLVI; more information on these
designations in JONES, Bedae Opera 380-381. If our sources usually indicate the position of the embolismic years, it is less
obvious to reconstruct where the embolismic month was exactly located, and according to what principles (see the main
footnote to sect. 19 below).

Since all numerical sequences related to cycles are periodic, a starting point must be selected for the epacts: see the discus-
sion in the commentaries on sects. 12 and 14. In a lunar cycle that is synchronized with January 1, the epacts coincide with
the age of the Moon on December 31. As lunar days are counted from January 1, a base (Ospéhog, Ogpéhiov) of the Moon
b,, was introduced such that b,, = epacts + 1, which is the age of the Moon on January 1; the “base” replaced the epacts in
specific algorithms. A “base” adapted to the features of other algorithms and defined by b,, = epacts + 3, was also intro-
duced. For this “base”, see, for instance, Anonymus 1247, sect. 20, in SCHISSEL, Chronologischer 105-110; Anonymus
1256, sect. 18, in Vat. Pal. gr. 367 (ca. 1317-20; Diktyon 66099, this important manuscript is the paradigmatic example of
the script type called “chypriote bouclée”, see P. CANART, Un style d’écriture livresque dans les manuscrits chypriotes du
XIV© siécle: la chypriote “bouclée”, in: La paléographie grecque et byzantine. Actes du Colloque Paris, 21-25 octobre
1974, ed. J. Glénisson — J. Bompaire — J. Irigoin [Colloques internationaux du C.N.R.S. 559]. Paris 1977, 303-321, repr. in
CANART, Etudes 341-359; an analysis of the manuscript, inclusive of the several datings occurring in it and of a rich bibli-
ography, can be found in A. TURYN, Codices graeci Vaticani saeculis XIII et XIV scripti annorumque notis instructi. In
Civitate Vaticana 1964, 117-124 and pl. 96) ff. 85r—88r; Blastares 1335, in RHALLES — POTLES, Zvvtaypa VI 414-415 and
416-417; Argyros 1372, sect. 7, in PG XIX 1293 (but he calls the bases “epacts”); Anonymus 1377, sect. 5, in PG XIX
1321; Anonymus 1379, in PG XIX 1334. See also the list of epacts and bases in GRUMEL, La Chronologie 54-55.

There are 114 lunar months of 29 days and 114 + 7 = 121 lunar months of 30 days.

The epacts of the Moon are a good example of an “incipient” quantity, namely, one that is attached to the beginning of a
time interval and not to its end: the epacts attached to a given lunar cycle year record the advance accumulated at the end
of the previous lunar cycle year. Incipient quantities have the advantage that they can be read off directly in tables: the age
of the Moon of today, AD 2021 August 10, must be calculated by using the lunar advance from epoch accumulated up to
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Leap years make no difference to the lunar cycle, whose sequence of months is supposed to fit
to a leap year exactly as it fits to a non-leap year: this means that the date of the beginning of each
lunar month is the same in leap years and in non-leap years’. The lunar months in which the inter-
calary day falls do have an additional day, but sometimes this is assigned an age of the Moon,
sometimes it is not, sometimes it is assigned the same age as the previous day'®. In Byzantine
Computi, disregarding leap years amounts to assuming that February has always 28 days in lunar
cycle computations. The adaptation of the /9-year cycle to Julian years of 365 or 366 days is pos-
sible thanks to the fact that the duration of a synodic month is greater than 29 ' days by a quantity
that almost exactly offsets, after 19 years, the 19%x('4) = 4 %, mean additional days coming from the
leap years. Accordingly, the sequence of lunar months is, by stipulation, extended to Julian years
by assuming that it goes unchanged in leap years: and such an extension works remarkably well.

A lunar cycle year is a calendar year whose beginning can be shifted with respect to the begin-
ning of the civil (calendar) year. A 19-year lunar cycle consists thus of 19 calendar years, 19 lunar
cycle years, and 19 lunar years (the latter of variable length, since they can be either 12-/unar-
month or 13-lunar-month sequences); these three 19-“year” periods overlap, but they differ from
one another because different meanings of “year” are involved. Byzantine /unar cycle years begin
on January 1.

Passover (10 vopukdv ®doka / ITaoyo) is defined as the 14™ day of a schematic lunar month
and must occur on or straight after the Spring equinox, whose date was fixed to March 21 (this is
the rule of the equinox).

Combining the lunar and the solar cycles, we obtain a Period (nepiodog or péyag kboxrog) of
532 (= 19%28) years, at the end of which the same sequence of Easter dates recurs'".

end AD 2020 (which, qua incipient quantity, would be tabulated in front of AD 2021), and then counting the days con-
tained in the months as far as July, and then counting 10 days. For this reason Ptolemy tabulated incipient quantities of
their time-arguments in the Handy Tables, whereas the opposite is the case, with the notable exception of the mean syzy-
gies, for the tables of the A/magest. Roughly speaking, using incipient quantities subsumes the epoch values in the tabulat-
ed values.

See again the list in GRUMEL, La Chronologie 54-55, and my discussion in the commentaries on sects. 12 and 14.

In the 19-year lunar cycle, no assigned lunar cycle year is a leap year or a non-leap year per se: leap years may occur in
any year of a 19-year lunar cycle. The reason is simply that 19 is not a multiple of 4.

See HOLFORD-STREVENS, Paschal Lunar Calendars passim. The “sometimes” also depends on the lunar cycle adopted.
There are at least two Greek manuscripts that set out an entire Period in tabular format. They are Hamburg, SUB, in scrin.
50a (end of 10™ century; Southern Italy; a part of Laur. Conv. Soppr. 177 [Diktyon 15877]; Diktyon 32373; see M. MOLIN
PRADEL, Katalog der griechischen Handschriften der Staats- und Universitétsbibliothek Hamburg [Serta Graeca 14].
Wiesbaden 2002, 32-37) ff. 2r-11r, and London, BL, Add. 18231 (971/2; Diktyon 38944; Southern Italy; see A. CATALDI
PALAU, Manoscritti greci originari dell’Italia meridionale nel fondo ‘Additional’ della ‘British Library’ a Londra, in:
A. CATALDI PALAU, Studies in Greek Manuscripts [Testi, Studi, Strumenti 24]. Spoleto 2008, 345—410: 386-390) ff. 5r—
11v (these are Codex A and Codex C of Gregory of Nazianzus, respectively). In both of them, the period is AM 6385—
6916 [= AD 877—-1408]. The table is conceived like the one in GRUMEL, La Chronologie 266—277: the 532 Cycle years are
listed sequentially; the lunar and solar cycle counts run independently on separate columns. A lengthy explanation of the
properties of the 532-year cycle is found in the computistical section of the Florilegium Coislinianum, letter I1, n° 164; a
more concise exposition is found in Nicholas 916, sect. 1, and in Anonymus 1172, sect. 1, a Computus first witnessed in
Vat. gr. 432 (14™ century; Diktyon 67063) ff. 139v—146r, a copy of which is Vat. gr. 509 (14™ century; Diktyon 67140) ff.
312v-316v. See also the lists of 532-year cycles in GRUMEL, La Chronologie 137-139. BORST, Schriften 11061108
provides a list of 33 manuscripts containing 532-year Dionysiac Easter tables. The Damascene Easter table, which reduc-
es the 532-year table to a manageable size without loss of information, is based on the observation that there are seven par-
tially cyclical structures within a solar cycle of 28 years. In the Damascene table, the 28 solar cycle years in a cycle are
subdivided into 7 groups of 4; to each group there corresponds a single Easter date for each lunar cycle year (the elements
of each group are the “Evangelists” of the Ethiopic Computus: NEUGEBAUER, Ethiopic Astronomy 127-128). A mathemat-
ical analysis I shall present elsewhere shows that this structure formalizes the well-known 95-year imperfect subcycle of
the 532-year table. Since the Passover dates are in any case the same after 95 years (for 95 = 19x5), the same Easter dates
recur at the end of a 95-year period if and only if the intervening intercalary days are 24 and not 23, for 95 +24=119=0
(mod 7). In the Julian calendar, the unfavourable case occurs if and only if the first year of the 95-year period is a leap

98
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Easter (10 Xpotiavdyv ITdoya) is the first Sunday after Passover. If Passover falls on Sunday,
Easter is celebrated on the Sunday next thereafter.

Meat-Fare (Andxpewc) is the third Sunday of preparation to Lent in the Byzantine liturgical
calendar; it falls 8 weeks = 56 days before Easter.

The terms of a festival are the extremes of the interval in which it may occur. The terms for
Easter are 22),<r <25,. The terms for Passover are 21,,< p < 18,. The former ferms are an im-
mediate consequence of the latter: Easter cannot coincide with Passover, whence the lower bound
March 22; Easter is the first Sunday after Passover, whence the upper bound April 25. The Passo-
ver terms result from the facts that the lower bound is the Spring equinox (March 21) and that
Passover is allowed to fall within 1 lunar month from that date.

THE COMPUTUS IN PAR. SUPPL. GR. 920: ANONYMUS 892

The tenth-century parchment manuscript Paris, Bibliothéque nationale de France, suppl. gr. 920 is
made of 22 folios, written on 19 lines each; its dimensions are mm 150x110, its quire structure is
1', 2% 1°7'. As for its contents'%% f. 1r is opened by a very short sequence from Herodianus’ Ilepi
koboAtkiic mpoowdiog'™. This is followed, on f. lr—v, by a subscription tékog odv Oed ToD
KeWWEVOL eutuyia yp®, and by two lists of the alphabet letters accompanied by numbers. The lists
carry the titles “How must one divide the 24 letters in three isopsephic parts?” and “How must one
correctly pronounce the 24 letters for <completing> the number of a myriad?”'**. The Computus I
call Anonymus 892 is contained in ff. 1r—16r; the final segment of the manuscript, ff. 16r—22v, con-
tains pieces of astronomical, geographical, and magical lore'®. No graphic break demarcates these
texts from the Computus. A Sicilian chronicle is copied in the margins of ff. 1v—3r, the period
ranges from 827 to 982'%,

The final part of the manuscript is severely damaged and incomplete: a folio has been cut off af-
ter f. 20 (some letters can still be read in the stub); the last folio has a big hole in the middle; the
last text is truncated in the middle of a sentence. If something is obviously missing at the end, it is
not said, despite the presence of the subscription after the extract from Herodianus, that something
is missing at the beginning. The first folio looks in fact like a guard-leaf for the three quires that
follow; their early codicological continuity is warranted by the presence of the Sicilian chronicle. It
is possible that our manuscript has never been a codex; it may well be a part of a multi-quire scrap-
book of some moderately literate monk in Southern Italy'®”. The contents of the surviving three
quires, which gradually shift from computistical themes to magic (but see sect. 23 of Anonymus
892) passing through basic astronomy, meteorology, and astrology, corroborate this hypothesis.

The copyist of Par. suppl. gr. 920 must have been moderately literate because misspellings are
ubiquitous in Anonymus 892. Some examples are: avoapaivig for avaPaivng (8), dpynuviav and
apynunviav for apywunviav (24), éxn for éxel (12), Evectotocg for Eveotdtoc (4), &1 for £ (16), 1)

year, for the intercalary day precedes Easter, so that the first intervening intercalary day occurs in cycle year 5, and the last
and 23" intercalary day in cycle year 93.

192 Descriptions of the manuscript are found in Catalogus Codicum Astrologorum Graecorum VIIL4 89-92, and CH. ASTRUC
— M-L. CONCASTY, Bibliothéque Nationale. Catalogue des manuscrits grecs. Troisieme Partie. Le Supplément Grec III.
Paris 1960, 18-19.

19 Grammatici Graeci. 1-1V. Lipsiae 1867-1910 IIL.1 521.11 &yovroc—13.

1% The material contained in f. Ir—v is studied in F. ACERBI, How to Spell the Greek Alphabet Letters. Estudios bizantinos 7
(2019) 119-130; I have recently found two more witnesses of these gematric computations: Leiden, Universiteitsbiblio-
theek, Voss. gr. Q° 20 (13™ century; Diktyon 38127) f. 5r, and Bologna, Biblioteca Universitaria, 3632 (middle of 15™ cen-
tury; Diktyon 9761) f. 284r.

105 They can partly be found also in Anonymus 1092B, sects. 11-15.

1 See the edition in P. SCHREINER, Die byzantinischen Kleinchroniken. I-III (Corpus Fontium Historiae Byzantinae 12).
Wien 1975-1979 1 326-340 (nr. 45).

17 gnonymus 892 does not exhibit any explicit connection with Latin Computi.
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for £l (12-13, 17-18), fjtt and i8¢ for &i T and &i 8¢'® (4-6, 8), xabétog for kat’ &rog (19), kpdrn
for xpdrel (8, 12, 14, 17-18), ktoewnc for kticeng (9), dvimg for dvroc (12), odtog for odtog (22),
napeldotov for mapeldovimv (12), tinpdoeic for minpmoceig (12), yienoov for yheicov (124), dv
for odv (23).

Morphological peculiarities include Voeikng, Voehe / Hpethov, Deeihon and similar forms of
non-indicative moods of the aorist tense in which the augment is retained (passim); évepeivactv, an
aorist with primary ending (sect. 14); pévoov for pévovow (3); future dvoieton (20); imperatives
dpyov (12) and ap&e (12). Temporal determinations are formulated in the genitive or with
€ig + accusative. Note also the construction, widespread in all Computi I know of, dn6 + accusative
(17, 26).

The copying mistakes and the misspelling in Anonymus 892 show that the scribe of Par. suppl.
gr. 920 has slavishly copied a source. The material and methodological mistakes and the inconsist-
encies in Anonymus 892 show that this source was a compilation; it is less likely that the compila-
tion originates with Par. suppl. gr. 920. One of the inconsistencies in Anonymus 892 is that AM
6396 is assumed as the current year in sect. 7, whereas all other sections carry out the computations
for AM 6400. On account of the presence of the gematric computations on f. 1r—v, it is possible
that the choice of an end-of-century year as the current year was dictated by arithmological consid-
erations.

A THEMATIC WORD INDEX TO ANONYMUS 892

The first and the last two sections of this index are organized discursively: the English terms are
between quotation marks; they are followed by the Greek term they translate; each Greek term is
followed by the numbers of the sections of Anonymus 892 in which it occurs. The other sections of
this index are a list of words; each Greek word is followed by its translation and by the numbers of
the sections of Anonymus 892 in which it occurs.

Chronological lexicon
A “cycle” (kbxhog: 1-2, 4-5, 7-8, 10-12, 14-15, 18-20, 22, 26-27) “begins” (&pyerar: 1), “reach-
es” (avépyetar: 1, 11, 25 avbic note dvépyetar “when it reaches anew”) “to” (wc: 1) its last year,
and “reverts back again” (médAwv vmootpépel: 1, 11). Temporal segments and computations go
“from” (amd, for instance the “years from the foundation of the world” [dno xticewc kdspov Etn]:
1,4-7,9, 11, 27) the first item in a sequence “up to” (wg: 2, 8-9, 11-12, 14-19, 22, 25-26; péypu:
4) the last item'®. A numerical interval is identified by “within” (8cwbev: 12), its complement by
“outside” (¢wBev: 22), its extremes by “beginning” (dpyn, lying “above” [dvm(Oev)]: 12, 22, 26)
and “end” (téhog, lying “below” [kdtwbev]: 22). Past time segments are “past” (mopatpéyova: 7)
or “bygone” (maperBovrta: 12); the current month is “ongoing” (katéywv: 12); the current “year”
(8tog: 4, 16, 24, 27), “period” (nepiodog: 7; it “comprises” [cuvictartal d1d] 532 years), “indiction”
(ivdwktoc: 9; elsewhere 1, 67, 27), or cycle (11) is “present” (évestdC); a year next in a sequence
is “next” (uéAlwv: 24). The first “day” (Muépa: 1, 3, 8, 12-20, 23-24) of a “month” (unv: 1, 8, 12—
13, 17-20, 22, 24, 26) is its “starting-day” (épywnvio: 24), that is, where a month “begins”
(dpyeton: 24); a month ends with its “last” (tehevtaia: 13) day. The “year” is €toc (47, 9-11, 14—
16, 19-21, 24, 26-27), ypévoc (1, 19-20, 24, 27), or éviavtog (3); the “week™ is EBdopag (1, 12-13,
17-20, 23-24; “holy” [peydin]: 12); a day is made of “hours” (®par: 1, 3, 8, 25), which are made
of “minutes” (Aemtd: 1, 8). The determination of the date of a festival is stressed by “there” (€xel:
12, 15-18); a date “occurred” (xoatrvince: 18) or “falls” (éoti: 12, 24) on a “weekday” (Muépa tiic
éBdopadoc: 12-13, 17-18, 20, 24). The age of the “Moon” (cekrivn 1, 5, 7-8, 11-12, 14-15, 17—

198 T keep faithful to the text in making 8¢ enclitic and in attaching or not attaching enclitics to the previous word.
199 In most Computi, but not in Anonymus 892, a kai “also” is added if the last item is included.
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20, 22-23, 25-27) is also its “daily quantity” (kabnuepvi mtocotnc: 8); the age in days is expressed
by means of ordinals but also by means of —taioc adjectives (25); the “lunar month” is also called
@&yyog (8, 23). The Moon “shines” (Adumet: 25) so many hours in a night. The Moon “is in ad-
vance with respect to” (mpoiappdaver: 19) the solar year; this advance is accumulated in the
“epacts” (émaxtai: 14-15, 19) of the Moon, which periodically consolidate an “embolismic”
(upoioc: 19) year or month. The “Sun” (fhoc: 1-2, 4, 7, 10, 12, 18-20, 27) completes a year in
365 or 366 days; the latter occurs in a “leap-year” (Bicextov: 3, 12, 17, 21, 24; this year includes a
“bissextile <day>" [Bicektov]: 3, 24; such a day may “be impeding” [émipépewv]: 24); at each solar
cycle year, the excess in days over a whole number of weeks is accumulated in the “epacts” of the
Sun (émoktai: 2, 20). A general meaning of émoktoi as anything “brought in” is also adopted (8,
12).

Specific mathematical lexicon""
Investigation. ywooko: to know (1, 2, 8, 12, 20, 22, 24-27); evpiokw: to find (2, 4-14, 17-18, 20,
22,24,26-27) and ebpeoig: finding (12); {ntéw: to seek for (14, 18).

Initializing an algorithm. PAéne: look at (8); yivooke / yv®d01: know (4, 8, 15, 17 dxp1fdg: exact-
ly, 18-19, 22, 24 / 12, 16); {tnoov: seek for (18); &ye katavodv: keep in mind (13); kdteye: hold
(7, 18 £mi daxtvA®V cov: in your fingers); kpatet: keep (2, 8, 12, 14, 17, 18, 20); kpdrtel €ig T0G
Yeipag 6o / émt yelpdv / daxtoiov cov: keep in your hands / in your fingers (8, 14, 18)''".

Counting and reckoning. avépyopat: to reach (12, 17, 18); dnoptilw: to complete (14, 21) and
amapticpdg: completion (19); apOuéwm: to count (15) and dp1Ouog: number (4, 7, 14-15, 20, 25—
26); dapyopar: to begin (12—13, 15, 22); xatavtdo: to arrive at (15, 24); yetpém: to determine (8);
mheovalm: to exceed (20); TAnpow: to fill (12); eOdavem: to attain (12); yneilm: to calculate (12, 17,
26) and yipog / yneopopia: calculation (46, 8-17, 20, 24-26 / 18). The result of any operation
can be indicated by noiéwm: to make (15-17).

Identification of the result of an operation as a chronological item. ywdokw: to know (12, 14,
17-18, 24, 26); yvopilo: to recognize (10); onrow: to show (7, 13); evpickw: to find (8-10); voiw:
to consider (24-25); onuaivo: to signify (25).

Unknown quantities. dnov: wherever (24); 6coc: what (8, 12-13, 25); donep: that which (25);
noiog: what, which (8, 12, 17-18, 24); nwécog: how much (2, 4, 16-17, 25); tocodtoc: such, so
much (2, 4, 8, 12).

Numerical sets. £Boopdg: week (that is, heptad) (1, 12-13, 17-20, 23-24); évdexag: hendecad
(19); popiég: myriad (1); tetpdg: tetrad (2); tpraxovtag: thirty (12); yihdg: thousand (7, 27).

Operations

Addition. dvopaive: to mount (2, 8, 17); BdALw: to put (8, 12-13); évow dAovg: to unite all of them
(8, 12); mpooTtiOnu &v / €ic: to add in / to (7-8, 12, 14-15, 26); cvvinte: to conjoin (15, 16). The
result is indicated by yivopat: to yield (1, 3, 12, 26); ocvva&ic: gathering (19). The operation is
called mpooOnkn: addition (19-20, 24, 26 where “remarkable cycles” [ceonueidpevol k0KA0l] may
not “admit of it” [tpocdéyechar]).

Subtraction. apinut: to discharge (7); vpopém: to remove (8, 12, 14, 16, 20, 26-27). The “re-
mainder” (Aowrdg 16; “remaining” 26-27) is mainly indicated by predicative Aowdv: as a remainder
(9-11, 27), but also by verbs péve: to remain (3-12, 14, 16, 20, 26-27; éni daxtdrov cov 14) and

!9 The technical lexicon of Computi overlaps with the technical lexicon of Rechenbiicher. For the latter, see K. VOGEL, Ein
byzantinisches Rechenbuch des frithen 14. Jahrhunderts (Wiener Byzantinische Studien 6). Wien 1968, 141-143, and the
“thematic word index” in ACERBI, Byzantine Rechenbiicher, whose translations I adopt.

"1 In Jogistic and astronomical texts, Rechenbiicher, and Easter Computi, the verb kpatéo for “keeping” a number in order to
use it in an operation is frequently found. However, this does not imply anything as to a possible application of a finger-
notation, even if the verb is qualified by an expression like “in your hands”.
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neplocevm: to remain over (19-20, 25), and the related noun nepiooeio: remainder (19). The opera-
tion is called DeelApOG: removal (26-27).

Multiplication. 1t is formulated by means of an —axig adverb (3, 8-12, 14, 20-21, 25); this is
systematically written, for instance, éntt or £ntém or €ntdel for Emntaxig “seven times”, a spelling
common to many Computi and that I have normalized.

Taking multiples. Imperatives dimlwcov: double (1, 3); évdexamhaociale (14) and
évdexkamhaoiacov (12, 20): undecuple; édnlmoov: sextuple (8); mevtamiov: quintuple (25). Sub-
junctives €&omlovvne: sextuple (8); mevtamAdvvng: quintuple (8). Participles évdekamhiacidcag:
undecupling (12) and é€anidpevov: sextupled (8).

Division. dvaAdo €ig: to resolve out into (21, 25).

Modulo reduction. dYoopéw €ni / 51d4: to remove by (414, 16, 20). The remainder is often indi-
cated by (Léve) kdTmBev: to remain down from (4-8, 12-14, 16), but the adverb may be absent.

Connectors and particles

Explanations of specific steps are introduced by “for” (yap: 14, 19-20, 23), in some cases they are
introduced by “since ... really” (énedn: 14, 20) or “since” (énei: 14). Synonyms are introduced by
“namely” (fjyouv: 7, 19-20) or “viz.” (fjtot: 20). A refreshed algorithm is introduced by “again”
(maAwv: 8, 11-12, 18, 20, 26), a branching by “with the <following> exceptions” (zAfjv: 14). Opera-
tions that necessarily precede other steps may be introduced by “as soon as” (énév: 12, 17). There
is just one occurrence of “then” (o0v: 23); the only occurrence of ye (12) is rendered by italicizing
the lexical item the particle has scope over. Negation can be in the form ovyi (26).

Metadiscourse

Universality of numerical parameters is conveyed by the adverb “always” (mdvtote: 12-15, 18,
26), genericity by the determiner “whatever” (oioconmotodv / olocdnmote: 12, 14, 24). Iteration is
formulated by “continuously” or “so on” (xafe&iig: 14, 20, 24-25 or 12, 14, 18). A shortened algo-
rithm is marked by “easily” (edxO6Awg: 26) or referred to as “concise” (cOvtopoc: 17, 26). Quantita-
tive correlation is formulated by “how many ... so many” ([n]6cog ... Tocobtog: 2, 8). Examples
are introduced by “for instance” (oiov: 19, 20, 26). Metamathematical markers include the modal
operators “one must” (6¢i: 1, 2, 27) and “one has to” (ypn: 27), the volition verbs “to want” (0é\m:
7-9, 1213, 20, 24, 26) and “to hesitate” (dkvéw: 7), the modal verb “can” (dvvapat: 12). The verb
form “there it is” (idov: 19, 26-27) introduces a result. The verb forms “say” (Aéye: 21-22; giné: 8,
12) and “do” (moieu: 24 / moincov: 18) initialize a computation. The adverb “as follows” / “in this
way” (obtoc: 2, 9-11, 14, 18, 24 / 3, 12, 19-20, 24-25) introduces an algorithm or refers to an
algorithm just carried out. The adverb “how” (ndg: 2-3, 21, 27) presents an algorithm; the adverb
“otherwise” (8AAwg: 7) presents an alternative algorithm; the adjective “further” (€tepoc: 5-6, 10—
13, 15-17, 20, 25) introduces a new section. The adverbs “similarly” (opoiwg: 8, 12, 14, 18, 24)
and “likewise” (noavtwg: 18), and the syntagm “in the same way” (t@® a0T® Tpdém®: 26) replace an
algorithm that is identical to an algorithm previously carried out. The expressions “exactly as we
said / taught above” ([ka0]ac mpocimapey / mpoedida&apev: 8, 12) refer to algorithms previously
carried out. A hiatus of an algorithm is indicated by “that’s fine” (0 xoi kaAdg: 12); a restated rule
is introduced by “the other way around” (&dvamaAiv: 12). Note the two occurrences of the bewilder-
ing clause “for you do not find what is secure” (énel o0k gvpickelc 10 doporéc: 12, 14), stressing
an unexpected branching in an algorithm.

PRELIMINARIES TO THE EDITION

The text of Anonymus 892 is divided into sections according to the titles in the manuscript. The
subject-matters of the sections are as follows. Section 1: subdivision of the year; 2: epacts of the
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Sun; 3: leap years; 4-7 and 9-11, 27 (examples): conversion from a world era year to a year within
an assigned cycle; 8: age of the Moon; 12: date and weekday of Passover, dates of Easter and of
Meat-Fare Sunday; 13: weekday of an assigned date; 14—17: alternative algorithms for the date of
Passover; 18: list of Passover dates in a lunar cycle; 19: embolismic years; 20: epacts of the Sun,
names of the weekdays, and periods of the seven planets; 21: leap years; 22: terms for Passover;
23: lucubrations about the phases of the Moon; 24: weekday of the first day of any month; 25: il-
lumination of the waxing and waning Moon; 26: how to compute the Passover dates in sequence.
Each section presents the Greek text, its translation, and a commented paraphrase that is printed in
reduced font size and is preceded by a title summarizing the contents of the section.

Edition. 1 have retained the original accents of proclitics and enclitics; otherwise, the accents are
normalized to the conventions presently in use. After much hesitation, I have decided not to keep
the original punctuation, for the following reasons. Most of the time, Anonymus 892 exhibits a
beautiful “algorithmic” punctuation, made of comma and of a point located in a position that, how-
ever, covers the entire range between upper and lower. Because of this ambiguity, because the
punctuation is not applied consistently in Anonymus 892—which almost uniquely comprises algo-
rithmic texts—and because uniformity of punctuation is required if our aim is to study Computi as
a corpus, I have punctuated the text anew, following the “algorithmic” rules I use in editing Greek
and Byzantine mathematical texts''%. In particular, such rules prescribe that consecutive steps of an
algorithm are separated by an upper point; that an algorithmic hiatus is marked by a full stop; that
commas separate the principal clauses of a procedure and the result of a multiplication from the
two factors.

Lexical and morphological peculiarities of Anonymus 892 are kept unchanged: this Computus
attests for a use of vernacular Greek that should not be erased. I have corrected the misspellings,
but they are all recorded in the critical apparatus. Numeral letters standing for integers are not
marked by an apex; ordinals that in the text are given as numeral letters are written with a raised
ending; dates are always treated as counting numbers; I have normalized mixed numerals such as
EVVAKOUTOV = EVVEOKAIOEKATOV OT TEVTIKOVTAO = mevinkovtatésoapes. | have maintained adverbi-
al expressions written in one single word as they appear, like katétog = kot’ £10¢ Or KATAVODV =
KOTO VOOV.

Translation. Different Greek terms are normally translated with different English terms; the
translations adopted for the main terms are listed in the thematic word index given in the previous
section. As a rule, I do not translate d¢; otherwise, it is rendered by “and”; all other lexical items
are translated. Within algorithms, aorist indicative is translated as a present. Words supplied in
translation are put within angular brackets <...>; the reference of some pronouns is made explicit
between square brackets [...]. The translation of the algorithms is punctuated as follows: a colon
precedes the statement of a result; a semicolon separates steps in which the output-input chain is
not interrupted; a full stop indicates an algorithmic hiatus and precedes the final winding-up, where
the outcome of the algorithm is identified as a specific chronological item.

Commented paraphrase. In my commented paraphrase, I provide a symbolic transcription of the
algorithms set out in the text'". This kind of transcription is more faithful both to the syntactical

!2 These rules are not rooted in the punctuation practice of any specific language; they are expounded in ACERBI, The Logical
Syntax, sect. 1.4.

3 The notation used in the commentary is as follows: 1, 15, 1, 14, 30s, etc. = January 1, February 1, March 1, April 1,
September 30, etc.; a,,(x) = age of the Moon on day x in the calendar year at lunar cycle year m; a,(xx) = age of the Moon
on day x of month X at lunar cycle year m; b,, = base of the Moon at lunar cycle year m; e, = epacts of the Moon at lunar
cycle year m; e; = epacts of the Sun at solar cycle year s; f'= Meat-Fare Sunday; g = Period year; i = indiction cycle year; J,
F, M, A, Ma, Jn, JI, Au, S, O, N, D = January, February, March, April, May, etc. or counting number of their position in
this sequence (the context always decides); / = leap year cycle year; m = lunar cycle year; p,, = date of Passover at lunar
cycle year m; r,, = date of Easter at lunar cycle year m; s = solar cycle year; y = year in the Byzantine world era; wy(xy) =
weekday of day x of month X at solar cycle year s.
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structure and to the “mathematical content” of the original algorithm than an algebraic formula
summarizing the entire algorithm in one single equality can be. Nevertheless, such a formula can
be found at the end of the algorithm (read the algorithm from right to left). Any symbolic transcrip-
tion occupies no more than a handful of lines; it is followed by a commented paraphrase that com-
bines rephrased sentences of Anonymus 892 and explanations of mine. The latter are sometimes
intended to clarify the stepwise progression of the algorithm. These two components are easily
disentangled with the help of the translation. In principle, the commented paraphrase is self-

contained; readers who dislike the symbolic transcriptions may simply skip them''*.

EDITION AND TRANSLATION OF ANONYMUS 892, WITH A COMMENTARY

1
a o

Ol ywwomokew” 6t dpyetal 6 KOKA0G Tod AoV dmo g o Tod ‘OktoPpiov, kol dvépyetal Eog Kk,
Kal TAAY €ig TPMOTOV DTOGTPEPEL.

‘0 6¢ ti|g oeMvng KOK oG Apyetor amod thg o Tod Tavvovapiov, kol dvépyetor Emg TdV 19, Kal
TaAw €ic o VTOCGTPEPEL.

‘H 8¢ ivdiktog ano tig o tod Zentepppiov unvog apyetat, Kol dvépyetal Emg TV 1€, Kol Tl
€ig o bmooTpéPel.

‘0 ypovoc &xel ERdonddac vB, Nuépag tée 8%, dpog St — todtag Simhmsoov, kol yivovion dpat
My — Aemta B poplddog o).

* yvdoknv

One must know that the cycle of the Sun begins on October 1, and reaches to <cycle> 28, and
reverts back again to the first <cycle>

The cycle of the Moon begins on January 1, and reaches to 19, and reverts back again to 1.

The indiction begins on the 1% of the month of September, and reaches to 15, and reverts back
again to 1.

The year has 52 weeks, 365 Y4 days, 4380 hours — double these, and they yield 8760 hours — 2
myriads and 1900 minutes.

Features of the solar, lunar, and indiction cycles; subdivision of the year. The solar cycle begins on October 1
and lasts 28 years. The lunar cycle begins on January 1 and lasts 19 years. The indiction cycle begins on Septem-
ber 1 and lasts 15 years. The subdivision of the year is: 1 year (ypdvoc) = 52 weeks = 365 Y4 days = 4380 [double-
Thours = 8760 hours = 21900 minutes. The third equality stated in the text is valid only for a year of 365 days;
otherwise, one gets 365 "4 days = 4383 [double-Thours = 8766 hours = 21915 minutes (see sect. 3). I have intro-
duced the qualifier “double” to distinguish between the two “hours” mentioned in the text; in principle, there is no
connection with the “double hours” of the astronomical tradition''”, nor is there any connection with the algo-
rithms that give the additional day of a leap year 12 hours (see sect. 3). The above subdivision can be summarized

as follows''®:

14 1 shall insert in footnotes references to analogous procedures or to similar sets of data found in early, unpublished, sources
or in later Computi, as Psellos’ or Anonymus 1092A—C; in the case of the latter, the relation with Anonymus 892 is obvi-
ous. The Appendix contains a concordance with Anonymus 830.

15 For double-hours, see F. BOLL, Sphaera. Neue griechische texte und Untersuchungen zur Geschichte der Sternbilder.
Leipzig 1903, 311-319. For the subdivisions of an hour, see P. TANNERY, Sur les subdivisions des heures dans 1’antiquité.
RA, 3° série, 26 (1895) 359364, repr. ID., Mémoires scientifiques II. Toulouse — Paris 1912, 517-526.

1 The subdivision in Anonymus 1092A, sect. 1, in Laur. Plut. 57.42, f. 154v, reads: 1 year = 52 weeks = 365 Vi days = 4380
[double-]hours = 8760 hours = 43830 points = 21915 minutes. On account of sect. 2 of Anonymus 1092A, the text should
be corrected as in KARNTHALER, Die chronologischen Abhandlungen 5.16-18: 1 year = 52 weeks = 365 % days = 4383
[double-]hours = 8766 hours = 21915 points = 43830 minutes. Sect. 1 of Anonymus 892 should be corrected in the same
way. Note the subdivision in Anonymus 1172, sect. 12: 1 year = 12 months = 52 weeks plus 1 day = 365 days = 4380
[double-]hours = 11900 [lege 21900] points.
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year day [double-Thour hour minute
1 365 4380 8760 21900

1 12 24 60

1 2 5

1 2%

Other subdivisions of the year are adopted in Byzanine Computi. A standard subdivision is as follows''”:

year day hour minute point momentum
1 365 8766 43830 175320 2103840
1 24 120 480 5760

1 5 20 240

1 4 48

1 12

whereas Anonymus 1256, sect. 16, sets out the following subdivision:

year day hour point momentum

1 365 8760 26280 105120
1 24 72 288

1 3 12

1 4

The subdivision of the hour adopted by Anonymus 1092A, sect. 2, in KARNTHALER, Die chronologischen Ab-
handlungen 5.20-26, is as follows:

[double-Thour point minute degree momentum indication atom
1 5 10 150 1200 14400 864000

1 2 30 240 2880 172800

1 15 120 1440 86400

1 8 96 5760

1 12 720

1 60

The “minutes” of Anonymus 892, and, more generally, of the Computistical tradition, do not coincide with our
Yso-hour minutes. Two conventions were used, neatly differentiated by the context. The equivalence 1 hour = 5
minutes — 12 hours = 60 minutes, is usually found in the algorithms that compute the duration of visibility of the
waxing and waning Moon (see sect. 25)''"®. The equivalence 2 hours = 5 minutes — 1 day = 60 minutes, was used

in other contexts, which in general are related to the age of the Moon'"’.

"7 See Anonymus 1041, sect. 1 (only the subdivisions of an hour), a Computus witnessed in the manuscript Napoli, Biblioteca
Nazionale Vittorio Emanuele III, I1.C.34 (beginning of 16™ century; Diktyon 46080) ff. 100r—106v; Psellos 1092, sect.
I1.22, in REDL, La chronologie appliquée Il 257.12-22; Anonymus 1183, sect. 1; Anonymus 1247, sect. 22, in SCHISSEL,
Chronologischer 110.

8 See Anonymus 830, sects. 24 and 33 (the fractions of an hour are called “points” [otiypai]), in GASTGEBER, Neue texte
XXX and XXX; Theophylaktos 956 sect. 56 (revtomiodvteg kai EEamAodvteg and waxing and waning Moon, respective-
ly); Anonymus 982, sect. 23; Anonymus 1041, sects. 1 and 19 (the latter waxing and waning Moon); Anonymus 1092B,
sect. 5, in KARNTHALER, Die chronologischen Abhandlungen 9.159-170; Anonymus 1172, sect. 21; Rhabdas 1342, sect. 9;
Anonymus 1377, sect. 7, in PG XIX 1324-1328. Anonymus 892, sect. 25, does not mention minutes. In Anonymus 951,
sect. 13 (an independent section) these fractions of an hour are called “points”.

9 See Anonymus 892, sect. 8 (age of the Moon computed according to the mevtamhobvie koi sEamhodvteg); Anonymus 1079,
sect. 5, in MENTZ, Beitridge zur Osterfestberechnung 82, and the Computus contained in Par. suppl. gr. 690, sect. 1
(mevranhodvreg kol EEanhodvtec); Anonymus 1092B, sect. 7, in KARNTHALER, Die chronologischen Abhandlungen 11.234
(saltus lunae distributed among the lunar cycle years); Rhabdas 1342, sect. 8 (epacts of the Moon). In Anonymus 951, sect.
1 (Horopodion) these fractions of an hour are called “momenta” (pomati).
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TO TG O€T EVPICKEV TAG EMAKTAC TOD A0V

Al érnaxtol Tod NAiov edpickovTal oVT®MG. KPATEL TOV KOKAOV TOD NAlov, Kol yvdOL mOcag TeTpd-
dag &yeic, Tocadtan énafyktal giotv Tod HAlov®. ai énaktoi Em¢ T@V éntd dvapaivovoty, Kol Ay
€1G TOV 0 AvacTPEPOLOTY.

* yv@01 — MAiov corruptum cf. versionem et comm.

How one must find the epacts of the Sun

The epacts of the Sun can be found as follows. Keep the cycle of the Sun, and know how many
tetrads you have, <and mount them, and remove by 7, and how many remain down from 7,> so
many epacts of the Sun there are. The epacts mount up to seven, and revert back again to 1.

A computation for finding the epacts of the Sun'*". The reconstructed algorithm is'*";
() = s+ [s/4] — (s + [s/4]) mod 7 = e,.

See also sects. 12 and 20. This algorithm computes the cumulative excess of the days, counted from the begin-
ning of a solar cycle, of an assigned solar cycle year over a whole number of weeks. To explain the above algo-
rithm, it should be kept in mind that a year of 365 days exceeds a whole number of weeks by 1 day (summand s in
the algorithm; it also includes 365 of the 366 days of a leap year), a leap year exceeds it by 2 (further summand
[s/4]; these are the “tetrads”, that is, the number of leap years since the beginning of the cycle)'*. Reducing the
sum modulo 7 eliminates whole weeks. For example, one computes that s = 1 — ¢, = 1. As expressly stated in the
text, the convention is that 7 mod 7 = 7. The transmitted algorithm is corrupt, since the solar cycle year and the
tetrads must be added in order to find the epacts of the Sun.

3

T0 TAG yiveran PicekTov

‘0 éviantog Exet Muépag tée 8% Tavtog dimlmoov: kai yivovtar dpar < >yE Entakig Stakd-
o<101>, | 0v* PEVOLV TPIOKOGI & EMTAKIC v, TV: pévouy 1+ Emtdxig piav, (- kai pévoovy y dpat Kot
EVIaVTOV, Kai €ic ToVC Tecohpec” EviavTodg yivovror dpot dddeka, kol obtme yiveton 1o Picektov.

4 . b 7
* corruptum cf. versionem et comm. ~ 1€664pelg

How a bissextile <day> comes to be

The year has 365 % days, <4380 hours;> double these: and they yield <8>760 hours'®’; <re-
move these by 7; seven times 1000, 7000: there remain 1760;> seven times two hundred, 1400:
there remain three hundred 60; seven times 50, 350: there remain 10; seven times one, 7: and there

120 Other occurrences of this algorithm can be found in George, sect. 1.3, in DIEKAMP, Der Ménch 26.3—14 (the epacts of the
Sun are called érnaxtai tdv Bdopddwv “epacts of the weeks”); Maximus, Enarratio 1.29, in PG XIX 1248; Anonymus 830,
sects. 6 (identical wording) and 14, in GASTGEBER, Neue texte XXX and XXX; Anonymus 951, sect. 4; Anonymus 1092B,
sect. 10 (identical wording), in KARNTHALER, Die chronologischen Abhandlungen 12.281-285; Anonymus 1172, sect. 19.
The sign [x] denotes the floor (or integral part) of number x, namely, the nearest integer (0 included) less than or equal to
x. The floor function is particularly effective in formalizing leap year computations: if y is a year in the Byzantine world
era or in the era AD, [(y mod 4)/4] singles out leap years—which in both eras are such that y = 4k for some integer k—
because y=1, 2, 3 or 4 (mod 4), and |[1/4]] = |[2/4]] = |[3/4]] =0, [1] = 1. As taking the floor of a division amounts to taking its
quotient by disregarding the remainder, [[)/4] is the number of leap years since epoch. For any two integers m and n, by
definition and with a slight abuse of notation, "/, = ["/,] + (m mod n)/n, for the first addendum is the quotient of the divi-
sion of m by n, and m mod n is the remainder of the same quotient. Alternatively, we may write m = n["/,] + m mod n.

A solar cycle of 28 years contains by definition 7 leap years, whose 1-day-each overall contribution of 7 days is deleted, at
the end of the cycle, by the modulo 7 reduction. Thus, the contribution of leap years to the epacts of the Sun can be res-
tricted to the leap years occurring within a single solar cycle.

The ensuing calculation makes it necessary to integrate the number 8 before 760, but the text also presents two lacunae; I
fill them in my translation according to Anonymus 1092B, sect. 8, in KARNTHALER, Die chronologischen Abhandlungen

11.250-258. See also the commentary.
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remain 3 hours per year, and they yield twelve hours in four years, and in this way the bissextile
<day> comes to be.

The origin of leap years. The text is incomplete and the calculation mistaken, as it reads as follows: 365
days = 8760 hours; 8760 mod 7 = 3 hours; in 4 years, these 3 hours add up to 12 hours, namely, to 1 day. The text
can be completed readily'**, but the (correct) modulo 7 calculation is a wrong attempt at coping with the mistake
of setting 365 /4 days = 8760 hours (see sect. 1): the result 8760 mod 7 = 3 fits the number of exceeding double-
hours per year only numerically and by coincidence'””. To explain the presence of 366-day years, it suffices to
remark that an excess of '/, a day per year becomes an excess of one full day after 4 years.

The modulo reduction is equivalent to computing the remainder of a division between integers. Here, as else-
where in Anonymus 892 and, more generally, in Byzantine Computi, the calculation is carried out by successively
removing multiples of the divisor. This procedure is attested as early as Paul of Alexandria, Apotel. 19-20'*°. As
only a few moduli are used in computistical reductions (namely, 7, 15, 19, 28, and 30), it is not necessary to sup-
pose that multiplication tables were used to ease such calculations. Tables of this kind are never included in By-
zantine Computi.

4

Zov 0e® yijgog 8’ ob evpicketar 6 kdKhog Tod friov

Tivooke moca &N glotv 4rd KTioewc KOGHOL pégpt TOD EvestdTOC” £TOVG, Kol Heehe” adTd did
@V KN, kol &l 11° pévovov! kGtmBev TdV KN, oty O KOKAOC ToD NAiov- €l 8¢° Hpethov TocoDTOV
ap1OUOV TGV ETOV TAVTOV Koi UE|3,VOVGTY K1), EIK0<G>TOG §Y800¢ KUKAOG £GTiV TOD 1ATOV.

a I3 b e o d . o
* gveototog ” Benhe ¢ fitt ¢ exp. pével © 1{de

God willing, calculation by means of which the cycle of the Sun can be found

Know how many years there are from the foundation of the world up to the present year, and
remove them by 28, and if anything remains down from 28, this is the cycle of the Sun; but if
<you> removed such a number of all the years and there remain 28, this is the twenty-eighth cycle
of the Sun.

A prescription for finding the year of the solar cycle corresponding to a Byzantine world era year. The algo-
rithm is (y) — y mod 28 = .

As expressly stated in the text, the convention is that 28 mod 28 = 28. The text writes “cycle of the Sun” and
“twenty-eighth cycle”, using k0xAog to name both the 28-year solar “cycle” and a solar “cycle year” within a solar
cycle. Sections 4—6 allow converting a year in the Byzantine world era to a year within an assigned cycle. The
indiction cycle is of no use in computing the date of Easter; its presence shows that an “Easter Computus” was
conceived as a general chronological primer. As seen, in Byzantine Computi the solar cycle, the lunar cycle and
the reference era are synchronized. For this reason, the reduction rules from world era years to solar and lunar
cycle years are straightforward.

124 Other early occurrences of this algorithm can be found in the computistical section of the Florilegium Coislinianum, letter
I1, n° 169; Anonymus 830, sect. 31, in GASTGEBER, Neue texte XXX; Anonymus 951, sect. 12; Anonymus 1041, sect. 14;
Anonymus 1090, sect. 4, contained in the manuscript Berlin, Staatsbibliothek (PreuBischer Kulturbesitz), Ham. 625 (Dik-
tyon 9305) ff. 327r-329v; Anonymus 1172, sect. 22. An in-depth discussion of this algorithm (which is Dionysius’ argu-
mentum XVI: KRUSCH, Studien [1938] 80.17-81.6; see also K. SPRINGSFELD, Alkuins Einfluf auf die Komputistik zur Zeit
Karls des GroBen [Sudhoffs Archiv 48]. Stuttgart 2003, 203-214) in Western Computi is found in a study in preparation by
T. Loevenich and I. Warntjes. On the tradition that the annual contribution to a leap-year was 3 hours (it is refuted by
Bede, De Temporum Ratione XXXIX), see also JONES, Bedae Opera 372-374, and M. SMYTH, Once in Four: The Leap Year
in Early Medieval Thought, in: Late Antique Calendrical Thought and Its Reception in the Early Middle Ages, ed.
L. Warntjes — D. O Croinin (Studia Traditionis Theologiae 26). Turnhout 2017, 229-264: 236-247.

125 1f hours are employed, 8760 should read 8766, and a modulo 24 reduction must be performed; if “[double-]hours” are
employed, 4383 [double-]hours and a modulo 12 reduction are required, respectively.

126 Alexandrian and Byzantine Early Computi may formulate the modulo reduction as a division: see for instance the Compu-
tus in Ambr. A 45 sup., ff. 7r—8r, in GASTGEBER, Neue texte XXX-XXX; George passim.
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5
&tepog Yijpoc, S1 ov gvpicketot O KOKAOC THG GEAVIC
“Ypetke tadto ta £ Amd Kticewc KOoHov S TdV 10, Kai &1 T* pével kdtwbev TV 10, EoTv 6
KOKAOG THC GEAMVNIG.

a

At

A further calculation, by means of which the cycle of the Moon can be found
Remove these years from the foundation of the world by 19, and if anything remains down from
19, this is the cycle of the Moon.

A prescription for finding the year of the lunar cycle corresponding to a Byzantine world era year. The algo-
rithm is (y) — y mod 19 = m.

&tepog yijpoc, St o gvpicketat TvdikTog

“Yoeke todta t0 &N AnO KTice® KOGUOL did TAV 1€, Kai €1 1" pével katmbev TV 1€, EoTv
ivokrog.
i

A further calculation, by means of which the indiction can be found
Remove these years from the foundation of the world by 15, and if anything remains down from
15, this is the indiction.

A prescription for finding the year of the indiction cycle corresponding to a Byzantine world era year. The al-
gorithm is (y) — y mod 15 =i.

Kol dAN®C
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And otherwise

If you hesitate to remove from the foundation of the world, discharge six thousand and 300
years from the years, and hold the ninety-six presently past, and for the Sun remove them by 28,
and that which remains down from 28 shows the cycle of the Sun. For the indiction, remove <by>
fifteen, and that which <remains> down from 15 shows it [scil. the indiction]. For the Moon, add
30 years to those past, and remove by 19, and that which remains down from 19 shows the cycle of
the Moon. The Period comprises five-hundred-thirty-two years, namely, the number of alpha. And
if you want to find the present Period, remove the years of the world by five hundred 32, and that
which remains down from 532 shows it [scil. the Period].
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Alternative algorithms, supposedly simpler, for finding the year of the solar, lunar, and indiction cycles, and of
the Period. The algorithm for the solar cycle is:
(y) = y—6300 — (y — 6300) mod 28 = m.

A computation of y — 6300 is carried out for current year AM 6396 [= AD 887/8]; the lunar cycle is not com-
puted. This current year is different from the one assumed in the rest of Anonymus 892.

The algorithm for the indiction cycle is:

(y) > y—6300 — (y — 6300) mod 15 =i.
The algorithm for the lunar cycle is:
(y) = y—6300 — (y — 6300) + 30 — [(y — 6300) + 30] mod 19 = m.

The algorithm for the Period (nepiodoc) of 532 years, the number of éApa'?’, is:
(y) » ymod 532 =g.

In these algorithms, the nearest end-of-century year is removed from the assigned world era year before the
modulo reduction is carried out. Since 6300 = 0 (mod 28) and 6300 = 0 (mod 15), the algorithms for the solar and
indiction cycles are modified by introducing only the shift y — y —6300. The addition of 30 in the computation of
the lunar cycle results from the fact that 6300 = 30 (mod 19)"**.

The three parameters 30 = 11 (mod 19), 0, and 0 are the values of m, s, and i for year 6300, respectively. Be-
low is a table of the values of m, s, and i for the end-of-century years that are relevant to Byzantine Computi; these

values are sometimes called the “bases” (epéhia) of the relevant cycles (see sect. 27)'%.

6200 6300 6400 6500 6600 6700 6800 6900

m 6 11 16 2 7 12 17 3

s 12 0 16 4 20 8 24 12

i 5 0 10 5 0 10 5 0

Since 100 is a multiple of 4 and of 5, the end-of-century year values of s and i have a period of 7 and 3 centu-
ries, respectively. Such values of s and i can only be of the form s = 4k, with k=0, 1, ..., 6, and i = 5k, with k=0,
1, 2. Since 100 and 19 are mutually prime, no such periodicity exists for the lunar cycle.
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yiipog 81’ o gvpicketal 1) KaONUePv T0GOTNG TG GEARVIG

INivooke molog kOKAOG £oTiv Thg oeAqVIG, Kal &l uév €otiv a’, einé- mevtaxig piav, € kai dvapa
TOG NUEPOC |4 TOV UMVDV 67O t0D Tavvovapiov Emg oD unvog od” 0EANG eVpeiv THV TocdTNTA, Koi
Bare 6oag Exet, Kal Deethe S TOV &, kol T KATwOev TV & giol Ta Aemtd ToD QEyyov, Kol PAéne
6ca & Veetheg, Kol TpOGheC €ig TO AENMTO TOCAVTAG EMAKTAC. YIVOOKE 0& OTL YWOPIG TOV EMUKTDV

127 The “number” of a string of alphabet letters is the sum of their values as digits. Thus, the “number” of &g is
1(a) + 30(X) + 500(p) + 1(a) = 532: see ACERBI, How to Spell. The mention in Anonymus 892 is among the earliest occur-
rences of the mnemonic device relating the standard Period of 532 years to the “number” of letter GApa. A similar state-
ment is found in Anonymus 830, sect. 16 (see also sect. 7)—in GASTGEBER, Neue texte XXX (and XXX)—which claims
that this computation was established by Hero and Athanasius (see GASTGEBER, Neue texte XXX-XXX for the edition and
a discussion); Anonymus 1092A, sect. 1, in KARNTHALER, Die chronologischen Abhandlungen 4.2-3; Anonymus 1172,
sect. 1, which mentions the view that, because of this relation, “the completion of the Period will also bring about the per-
fection of the world” (gig 10 mApopa T1ig TEPLOS0VL TOTE KOl 1] GLVTEAELD TOD KOGHOV YEVIGETAL).

Of course, the most economical summand is 11.

Other Computi in which end-of-century years are subtracted are Anonymus 830, sect. 22, in GASTGEBER, Neue texte XXX;
Anonymus 982, sect. 4, contained in the manuscript Ambr. B 113 sup. (gr. 134; Diktyon 42357) f. 210r—215r (this Compu-
tus is obviously related to Anonymus 892). Anonymus 1092A, sect. 1, and 1092B, sect. 1 (both in computing indiction), in
KARNTHALER, Die chronologischen Abhandlungen 5.1-3 and 8.136-138, respectively; Anonymus 1172, sects. 2—4; Anon-
ymus 1204, contained in the manuscript Marc. gr. Z. 528 (coll. 777; middle of 14™ century; Diktyon 69999) ff. 5r—6v;
Anonymus 1247, sects. 2, 6, 8, in SCHISSEL, Chronologischer 106—107; Anonymus 1256, sects. 5-7; Anonymus 1273, sect.
3, in BUCHEGGER, Wiener griechische Chronologie 29.19-27; Blastares 1335, in RHALLES — POTLES, Zuvtaypa VI 414—
416; Rhabdas 1342, sects. 2, 4-5, and 12; Anonymus 1350, sects. 1-3, in SCHLACHTER, Wiener griechische 5.3—6.14; Argy-
ros 1372, sects. 3 and 6, in PG XIX 1284-1285 and 1292; Anonymus 1377, sects. 1-2, 4, in PG XIX 1317 and 1321;
Anonymus 1379, in PG XIX 1329.
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pe[[poc]ltpodvtar T Aemtd, koi kpdtel’ eic TS yeipoc cov TG Te AemTd Kai TG SMOKTAC, Koi
EEATADGOV TAAY TOV KOKAOV TG GEAVNG, TOLTESTIY £E0KIG piav, E& kal Evaoog dhag Opod TAg T€
EMOKTOG Kal TG T€ AEMTA Kol TOV KOKAOV THG [[..]] oeAqvng Tov E€amhmpevov Deeide d1d TV A, kol
10 KATmOeV TV A £0TiV 1) TOGOTNG ThG oeAVNG. Opoimg kai gi¢ Tov B kOKhov, mevtakig 0o, 1, Kol
avopaivne” Tovg piivag d¢ TPoeitapey, |4 Kol Tahy EEamAdvvng TOv koklov. opoing kai eig tov ¥
KOKAOV £0¢ ToD dvveakodekdton! kbkAov, TpdTOV mEVTOmAOVVIC, Kol DEeinc S tdv &, Kol
g0piokelc To Aemtd kol ToG EToKTaC, Koi oAy SEamhdvvng, Kol Veeidng S tdv A, kai & T’ pévet
KaTOev TV A, E6TIV 1] TOCOTNG THG GEANVNG. Yivwoke & Kol ToUTo, OTL TEVTE AETTd Bpol Hia, Kol
EENKOVTO AETTAO UEPQ LA,

3 ~Db ’ 3 ’ d > LA f e
* 10D 7 kpan ¢ dvaPaivic ¢ Evvakautov © VEAAYG | fTt

Calculation by means of which the daily quantity of the Moon can be found

Know to what the cycle of the Moon amounts, and if it is the 1%, say: five times one, 5; and
mount the days of the months from January up to the month where you want to find the quantity
<of the Moon>, and put how many <days> it has, and remove by 60, and that which <remains>
down from 60 are the minutes of the lunar month, and look at how many 60s you removed, and add
so many epacts"’ to the<se> minutes. Know that, beyond the epacts, the minutes are determined,
and keep both the minutes and the epacts in your hands, and again sextuple the cycle of the Moon,
that is, six times one, six; and uniting all of them together, both the epacts and the minutes and the
cycle of the Moon, remove what has been sextupled by 30, and that which <remains> down from
30 is the quantity of the Moon. Similarly also in the 2™ cycle, five times two, 10, and mount the
months as we said above, and again sextuple the cycle. Similarly also for the 3™ cycle up to the
nineteenth cycle, quintuple first, and remove by 60, and you find the minutes and the epacts, and
again sextuple, and remove by 30, and if anything <remains> down from 30, this is the quantity of
the Moon. Know also this, that five minutes are one hour, and sixty minutes one day.

A computation of the age of the Moon (called nocétyc “quantity”) on day x counted from January 1. The
algorithm is:

(mx) — Sm — Sm+x — Sm+x+ (Sm +x) mod 60 — Sm + x + [(5m + x) mod 60]/60 + [(5m + x)/60] —
— {Sm +x + [(5m + x) mod 60]/60 + [(5Sm + x)/60]} + 6m —
— ({5m + x + [(5m + x) mod 60]/60 + [(5m + x)/60]} + 6m) mod 30 = a,,(x).

The age of the Moon on day x in the year is calculated in several steps: (1) add to day x counted from January
1 a number obtained from writing the epacts of the Moon at lunar cycle m—namely, 11m (defined in sect. 14, and
see also the commentary on sect. 12—as 5m + 6m; (2a) first, operate only on summand Sm + x, with a correction
(see just below); (2b) subtract pairs of lunar months by reducing modulo 60 rather than modulo 59 (= two lunar
months of 29 ' days each); (2¢) add 1 day for every removed set of 60 units (this is summand [(5m + x)/60]) in
order for the modulo 60 reduction to be equivalent to subtracting pairs of lunar months; (3) second, add 6m to
complete the epacts of the Moon; (4) reduce modulo 30, which is required since 6m has been added. The final
reduction modulo 30 is the standard way of eliminating whole lunar months, see sect. 12 below.

To understand what are the “corrections” I have alluded to, let us rewrite the last line of the algorithm as fol-
lows (for simplicity’s sake, the modulo 30 reduction is disregarded):

an(x) = (11m + x) mod 30 + [(5m + x)/60] + [(5m + x) mod 60]/60.

The first addendum is the canonical contribution “epacts [= the age of the Moon on December 31] + number
of days counted from January 1” to the age of the Moon. The other two addenda (the “correction’) are the value of
Sm + x written not in units but in sixtieths (that is, in minutes): divide Sm + x units by 60 and you get by defini-
tion'** a quotient made of the floor [(5m + x)/60] and of the fractional part [(5m + x) mod 60]/60. This correction

139 Note, here and in sect. 12, the term émoxrai in its general meaning of something “brought in”.

13! The procedure is tersely phrased; its first formulation suggests replacing my x counted from 1, with Zﬁ;ﬁ ny + x, where ny
is the length of month £ in days and x is the assigned day in month X. I have adopted a simpler notation.

132 See footnote 121 above, and sects. 12 and 17.
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is equivalent to adding 7 = /i, a day for every lunar cycle year + Y a day for every day in the lunar cycle year.
The “1/(,0 a day” addendum contributes 1 day every 2 months and therefore offsets, as explained above, the differ-
ence between the reduction modulo 60 performed in the algorithm and the required reduction modulo 59. The “%,
a day” addendum not only triggers a saltus lunae in cycle year 12, but also makes the Moon generally older than
the Alexandrian Computus does, and this occurs in particular for the Passover luna XIV'**. In particular, there are
cases in which, what the Alexandrian Computus sets as /una XIV and the supporters of this algorithm set as luna
XV or XVI, falls on a Sunday. In such cases, either the supporters of this algorithm set Easter to coincide with
(Alexandrian) Passover—which is forbidden—or they set it on (their) luna XXII or XXIII, which falls outside the
Alexandrian Easter limits. In either case, the supporters qualify themselves as computistically heterodox.

This is the algorithm adopted by the so-called mevramhodvreg kai sEamhodvteg'®, and it dates back to early
stages of the Alexandrian Computus. As is clear, it is not an algorithm for computing Passover, but an algorithm
for checking whether a traditional date of Passover falls on /una XIV or not, on the supposition that January 1 of
the year that precedes solar cycle year 1 is /una I. Nevertheless, considering that a Moon age algorithm is in a
sense the inverse of a Passover algorithm, this algorithm is incompatible with the Passover algorithms Anonymus
892 sets forth in sects. 12, 14, and 15: this fact shows that Anonymus 892 is a compilation.

Additional information on time-subdivisions, required in the present context, is finally provided in the text: 1
double-hour = 5 minutes; 1 day = 60 minutes (see also sect. 1).
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God willing, calculation for finding the indiction

The years from the foundation of the world up to the present 10" indiction are 6400 years. If
you want to find the indiction, remove them as follows. Ten times four hundred, 4000; five times
four hundred, 2000: there remain 400 as a remainder; remove also these as follows. Ten times 20,
200; five times 20, 100: there remain 100 as a remainder; remove also them by 15; six times 15,
90: and there remain 10. And you find that the indiction is the tenth.

A computation of the current indiction cycle year. A computation of the indiction cycle year is carried out for
current year AM 6400 [= AD 891/2]; it yields i = 10. In sections 9-11, the general algorithms of sections 4-6 are
applied, but in a different order.
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133 A complete list, keyed to lunar cycle years, of ages of the Moon according to this algorithm when the Alexandrian Compu-
tus sets them as Passover luna X1V is in Maximus, Enarratio 11.1, in PG XIX 1255-1256.

134 See also Maximus, Enarratio 1.11-12, 16, in PG XIX 1228-1229, 1233, and the entire chapter 11, in PG XIX 1252-1264;
Anonymus 830, sect. 19, in GASTGEBER, Neue texte XXX; Theophylaktos 956, sect. 5 (the algorithm is incomplete); Anon-
ymus 1041, sect. 2; Anonymus 1079, sect. 5, in MENTZ, Beitrage zur Osterfestberechnung 80-84, and also Mentz’s discus-
sion at 51-66; the Computus contained in Par. suppl. gr. 690, sects. 1-2; Anonymus 1090, sect. 3; Anonymus 1092A,
sect. 3, and 1092B, sect. 2, in KARNTHALER, Die chronologischen Abhandlungen 5.29-38 and 8.142-150, respectively.
Anonymus 1092A calls the algorithm yaptoviapucdg “archive-keeper-style”: KARNTHALER, Die chronologischen Abhand-
lungen 5.28; Anonymus 1172, sect. 13. None of these sources sets out a clear-cut algorithm. Assessing the aims of the
neviomAodvieg Kol e€amhodvteg is not simple: see SCHWARTZ, Christliche und jiidische Ostertafeln 81-88; GRUMEL, La
Chronologie 54 and 117-124. Modulo 60 algorithms for computing the age of the Moon can also be found in Anonymus
1183, sect. 9; Anonymus 1204; Rhabdas 1342, sect. 7.
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To OVTOC. €IKOGAKIS K, L OKTAKIG K, p&* Kal EUevay op: OKTAKIS K, p& OKTAKIG OKTM, £O° Kol Aot-
ov Euewvay 1G. kol yvopile £€ kol dékatov KOKAoV gival Tod NAiov.

®© A further calculation, for finding the cycle of the Sun

The cycle of the Sun can be found as follows. Remove the same years by 28, and you will find
the cycle of the Sun; twenty times two hundred, 4000; eight times 200, 1600: there remain 800 as a
remainder; remove also these as follows. Twenty times 20, 400; eight times 20, 160: and there re-
main 240; eight times 20, 160; eight times eight, 64: and there remain 16 as a remainder. And rec-
ognize that it is the sixteenth cycle of the Sun.

A computation of the current solar cycle year. A computation of the solar cycle year is carried out for current
year AM 6400; it yields s = 16.
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C A further calculation, for finding the cycle of the Moon

The cycle of the Moon reaches up to 19, and reverts back again to 1. <From> the six-thousand-
four-hundredth year from the foundation of the world up to the present sixteenth cycle of the
Moon; remove also these years as follows. Ten times 300, 3000; nine times 300, two thousand 700:
there remain 700 years as a remainder; remove also these as follows. Ten times 30, 300; nine times
30, 270: there remain 130 years as a remainder; remove also these as follows. Ten times 6, 60; nine
times 6, fifty-four: there remain 16 as a remainder, which is the sixteenth cycle of the Moon.

A computation of the current lunar cycle year. The lunar cycle lasts 19 years. A computation of the lunar cycle
year is carried out for current year AM 6400; it yields m = 16.
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A further calculation of Passover, by means of which it can be found in each year

Know to what the cycle of the Moon amounts, and undecuple it, and if it is the 1, say: eleven
times one, eleven; and put the 6 epacts of the bygone eras: and they yield 17 days; and begin from
March 1 until you will fill 50 days, and Passover is there; and if you will fill the 50 <days> within
March, that’s fine; but if you do not, put also <days> from April in order for 50 to be filled. Know
that Passover can be found on whichever day of the Holy Week. And as soon as you have found
Passover, calculate on what weekday it falls, and reaching up to Sunday you will find our Easter.
As soon as you have found our Easter and you want to find Meat-Fare Sunday, add three days in
it—if it is a leap year, <add> 4—and you find <that> Meat-Fare Sunday <falls> on such-and-such
days. <If Easter falls> from March 28 towards above (I mean by “above” the beginning of the
month) you find Meat-Fare Sunday in January; if it is a leap year, from <March> 27 <towards
above>.

And the other way around

If it was a leap year, from March 28 <on> Meat-Fare Sunday was found on the first of February,
whereas continuously from March 29 <on> Meat-Fare Sunday is always found in February.

The calculation of whatever finding of the week is this. Know to what the cycle of the Sun
amounts, and put both the cycle of the Sun and its quarters, and beginning from the month of Octo-
ber take three days of the month that has 31, 2 days from the one that has 30, and reach up to the
ongoing month, and put how many <days> it has, and uniting all of them together remove by sev-
en, and if one day remain, know that <the intended day> is a Sunday, and if two, it is a Monday, if
three, a Tuesday, if four, a Wednesday, and continuously up to Saturday. If you do not have <any-
thing> down from seven, know that it is a Saturday. Similarly also in the second cycle of the
Moon, say: eleven times two, 22; and put the 6 epacts of the eras: they yield 28; and again begin
calculating on March 1 exactly as we said above. As soon as you have attained the third cycle of
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the Moon, say: eleven times 3, thirty-three; and remove the thirtieths'*>: and there remain three;

and add the epacts of the eras to them: and they yield nine; and again begin calculating from the
month of March exactly as we taught above. Similarly also in the 4™ and in the 5" <cycle> and up
to the 19" cycle, undecupling remove how many thirties you have, and keep the days that remain
down from the thirties, and add the epacts of the eras to them, and in this way always begin from

March 1, exactly as we said above. Know also this, that from the first cycle up to the sixteenth add

six epacts, from the seventeenth up to the 19", seven, for you do not find what is secure'*°.

A complete set of algorithms for computing Passover, Easter, and Meat-Fare Sunday. This is the core section
of Anonymus 892. The algorithm for Passover is"*’:

(m)— 11lm —
|m<17,11m+ 6 — (11m + 6) mod 30 — 50 — [(11m + 6) mod 30] —: 1,/ = p.
[17<m<19,11lm+7 — (11m + 7) mod 30 — 50 — [(11m + 7) mod 30] —: 1/ = pp.

The first branch of the algorithm can be described as follows: multiply the lunar cycle year m by 11, add 6
units, reduce modulo 30, subtract the result from 50 (a parameter which I shall call norm) and count, from March
1, as many days as the remainder: the resulting day is the date of Passover. This day falls in April if the remainder
is greater than 31.

This remarkable algorithm has two main features. First, the addendum 11m fits the definition of the epacts of
the Moon given in sects. 14 and 19, but the text—while using the general meaning of énaktai (see sect. 8) in the
expression “epacts of the eras”—does not refer to the epacts of the Moon because the branching condition is for-
mulated in terms of the lunar cycle years: therefore, the position of the saltus lunae is a feature of the algorithm,
not of the epact sequence (see below and sect. 14 for a discussion). Second, this algorithm simplifies the funda-
mental algorithm expounded in early sources such as Heraclius and George Presbyter (see sect. 14)"**, and which
is a straightforward adaptation to the Byzantine era of the algorithm adopted in the early Alexandrian Church.

The adaptation of the Passover algorithm from the Alexandrian era to the Byzantine era can be explained as
follows. Let us first consider the short Computus added by Heraclius as sect. 30 in Stephanus of Alexandria’s in
Ptolemaei Tabulas Manuales. Heraclius uses the era Maurice (here denoted y,,)'*’, and gives the following algo-
rithm for the epacts: (var) — 11yy — 11y, mod 30 = ¢,. He then carries out a computation for April indiction 11
[= AD 623 April]; this yields e,, = 15 (no correlation is established by Heraclius between lunar cycle years and
epacts, but I shall keep the subscript m). Heraclius’ Passover algorithm computes the quantity “norm minus shift-
ed epacts” 44 — (e,, + 8), and then counts as many days from 1,, or from 1, as the value thus obtained; the resul-
ting day is the date of Passover:

(em) > en+8—44— (e, +8) —
[20<44 — (e, +8)<31,44— (e, + 8) — lyy=pn € M.
|44 — (e, + 8)<20,44— (e, +8)—1=[44— (e, + &) —1]— 14,=p, € A.
|44 — (e, + 8)>31,[44 — (e, + 8)] mod 31 —: 1, =p,, € 4.

As 44 — 8 = 36 and no modulo reduction overlaps with this subtraction, this is a norm 36 algorithm in disguise;
as shown by O. Neugebauer, this norm characterizes the Alexandrian Computus'*’. As regards the three branches
of the algorithm, they result from the fact that the relation p,, + e, = 36 (mod 30) typical of the Alexandrian Com-
putus can be solved for p,, (as in the first branch of the algorithm), days being counted from 1,,, but one must not
forget that (a) a modulo reduction is involved (consequently, one cannot simply write p,, = 36 — e,,), and (b) large
epacts entail numerically small Passover dates, but these dates may be forbidden by the rule of the equinox if they
fall in March. Therefore, for large epacts one must count from 1, and not from 1,,. This requirement collides with
the modulo 30 reduction constitutive of the Passover—epacts relation unless 1 unit is subtracted (second branch of

135 Here and in sect. 14, note the ordinal ai tprokootai “the thirtieths”, where “thirty” would normally be used.

13 The same clause occurs in sect. 14, and in Anonymus 830, sect. 25, in GASTGEBER, Neue texte XXX; Anonymus 1092A,
sect. 4, in KARNTHALER, Die chronologischen Abhandlungen 6.68. See also Anonymus 982, sects. 9 and 15.

137 The act of counting is denoted by the sign “—:”. Thus, 50 —: 1,, are 50 days counted from March 1.

138 See USENER, De Stephano Alexandrino 314-317; DIEKAMP, Der Ménch 30-31, respectively.

139 The epoch of the era Maurice is AD 589 August 29, a Monday; this the 8" year of his reign, AD 582 August 14 — 602
November 23; years are Julian years. As 588 + 5493 — 1 = 6080 = 0 (mod 19), the Maurice era is an avatar of the Alexan-
drian era.

" NEUGEBAUER, Abu Shaker’s 41-44 and 48-58.
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the algorithm) or, what amounts to the same, a modulo 31 reduction is performed (third branch). Finally, there is
no trace of saltus lunae in the algorithm. A feature of this algorithm, which is also found in other Computi, is that
the branching conditions are given as inequalities involving the “norm minus shifted epacts” quantity (which in
princfilﬁle does not straightforwardly coincide with p,,, as just seen), and not simply the epacts or the lunar cycle
year .

Why does Heraclius use norm 36 but computes with norm 44 and adds 8 to the epacts'**? Why use a norm dif-
ferent from 36? A reason can be that 44 is the number of days nearest to 1 lunar month and one half (because
29 5+ 14 % Y, = 44 ), but George Presbyter will give us a complementary clue.

Before seeing this clue, recall that Heraclius computes the date of Passover for AD 623 (e, = 15) with the
above algorithm and finds p,, = 21,,. He also mentions the existence of a year without epacts and computes that in
this case (last branch of the algorithm) p,, = 54. Thus, Heraclius’ epact sequence coincides with the Alexandrian
sequence'*’; moreover, according to the algorithm just seen, the saltus lunae (marked by a double vertical bar in
the table below; Passover dates without a subscript fall in April) is located at the end of the cycle:

m | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e, |30 11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26 7 18

Pm | 5 25y 13 2 22, 10 30, 18 7 27y 15 4 24y, 12 1 21, 9 29y 17

Let us now turn to George Presbyter. He is the avowed champion of the Byzantine world era and epact se-
quence. His computations are set for current year Heraclius 29 = AM 6147 [= AD 638/9], i = 12.

George finds the lunar cycle as follows: (y) — y mod 19 = m, as in sect. 5 of Anonymus 892. The algorithm for
the epacts of the Moon is (m) — 11m — 11m mod 30 = e, (as in sect. 14 of Anonymus 892), but George offers an
argument to justify the presence of the saltus lunae after cycle 16'* and sets out all Passover days. The resulting
list of epacts and Passover dates is as follows (the position of the saltus lunae is again marked by a double vertical
bar):

m|1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16)17 18 19

e, |11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26| &8 19 30

Pm | 2 22y 10 30y, 18 7 27y 15 4 24y 12 1 21, 9 29y 17| 5 25, 13

George gives the following Passover algorithm, which is a slightly modified, 2-branch version of Heraclius’
algorithm:

(em) @43 —¢e, —
|43 —e, <20, (43 —e,) mod 30 —: 1,=p, € 4.
143 - €,220,43 —¢, + 1 > 43¢, + 1= 1y =p, e M.

This norm 43 algorithm (a norm that is also operative in the second branch of Heraclius’ algorithm) is straight-
forwardly equivalent to a norm 44 algorithm, for the reference epoch has to be 1), and the actual norm in the se-
cond branch of the algorithm is 43 + 1 = 44. As in the case of Heraclius, no trace of saltus lunae is found in the
algorithm; this confirms George’s argument about the saltus lunae being a feature of the epact sequence.

The change of era, and Heraclius’ epacts shift of 8 units, explain the transition from the Alexandrian era and
epact sequence to the Byzantine era and epact sequence. To see this, note that the epacts shift of 8 units transforms
Heraclius’ cycle into

m 2 3i4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19

1
e,t8 |8 19 30411 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26
Dm 5 25y 1312 22, 10 30, 18 7 27y 15 4 24, 12 1 21, 9 29y 17

! For instance, 44 — (e,, + 8) < 20 might simply be phrased 36 — e,, < 20, or even e,, > 16. But it is not.

42 of course, 44 — 8 = 36, but the crucial point, let me stress it again, is that no modulo reduction separates the minuend and
the subtrahend of this subtraction. This is not always the case, as the norm 50 algorithm shows. Thus, Heraclius applies in
fact a norm 36 algorithm.

'3 The Alexandrian epact sequence and Passover dates are listed in GRUMEL, La Chronologie 54, column I1.

" DIERAMP, Der Monch 27.27-28.5.
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Of course, the saltus lunae remains at the end of the cycle. The 16-year backwards shift from the Alexandrian
to the Byzantine world era makes the new cycle begin in (proleptic) Alexandrian m = 4. Therefore, since Heracli-
us’ and George’s Passover algorithms are equivalent, George’s cycle is as follows (the saltus lunae after cycle
year 16 characterizes the Byzantine epact sequence; the relocated cells are shaded gray):

m|1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16|17 18 19

e, |11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26| 8 19 30

Pm | 2 22y 10 30y 18 7 27y 15 4 24y 12 1 21, 9 29y 17| 5 25, 13

The argument just outlined explains the crucial transition from the Alexandrian era and epact sequence to the
Byzantine era and epact sequence. Conversely, it cannot be a coincidence that Heraclius’ additive shift of 8 units
gives an epact sequence such that e; = 11 after the change of era.

Let us return to the norm 50 algorithm of Anonymus 892. The simplification of Heraclius’ and George’s Pass-
over algorithms was carried out by writing 44 as the result of 50 — 6, with the norm 50 lying outside the modulo
30 reduction and the parameter 6 lying inside it: this rewriting allowed setting a branching condition much more
transparent than the one in Heraclius’ and George’s algorithm'*’; it also allowed simplifying both these algorithms
and the related, and unwieldy, algorithms we shall see in sects. 14 and 15. This simplification is a consequence of
the following fact: counting 50 days starting on March 1 one gets to April 19, which is the upper bound for Passo-
ver (see sect. 26), hence no counting from April 1 is required for large epacts, contrary to what one finds in
Heraclius’ and George’s algorithm.

The norm 50 algorithm of Anonymus 892 is attested in other sources; it is also called “notarial” (votapikn)'*.
The 6 units to be added to 11m are called “epacts of the bygone eras” ({moxtai TdV aibdvov Taperdoviov)'?,
which correspond to the 6 whole millennia elapsed since Creation: this is the basic mnemonic trick in the norm 50
computation of Passover'*®. In the second branch of the algorithm, the additional unit to be added to 11m in the
cycle years from 17 to 19 (that is, 7 units are added instead of 6) is the saltus lunae. As usual, whole lunar months
are removed by reducing modulo 30'%.

In this section of Anonymus 892, a complete set of prescriptions (Passover, Easter, Meat-Fare Sunday, week-
day of an assigned date) is provided for the first year of the lunar cycle'’. At the end of the section, however, the
Passover algorithm is summarily retrieved for a representative sample of all lunar cycle years.

5 Just one branching remains in the norm 50 algorithm, and it occurs at a most natural place: the position of the salfus lunae.
Moreover, the branching condition is formulated in terms of the lunar cycle, not in terms of the “norm minus shifted
epacts” as Heraclius and George do.

The denomination is used in Anonymus 1079, sect. 5, in MENTZ, Beitrdge zur Osterfestberechnung 98. Other occurrences
of this algorithm can be found in Anonymus 830, sects. 18, 25 (same wording as Anonymus 892), and 28, in GASTGEBER,
Neue texte XXX, XXX and XXX; Anonymus 951, sect. 15; Anonymus 982, sect. 9; Anonymus 1041, sect. 8; Anonymus

1079, sect. 5, in MENTZ, Beitrdge zur Osterfestberechnung 100; the Computus contained in Par. suppl. gr. 690, sect. 3;
Anonymus 1090, sects. 1 and 5; Anonymus 1092A, sect. 4, and 1092B, sect. 6, in KARNTHALER, Die chronologischen Ab-
handlungen 5.40-6.47 and 9.191-10.198, respectively; Anonymus 1172, sect. 5; Anonymus 1183, sect. 6; Anonymus 1204;
Anonymus 1247, sect. 3, in SCHISSEL, Chronologischer 106; Anonymus 1256, sect. 9; Blastares 1335, in RHALLES — POT-
LES, Zovtaypo VI 416; Rhabdas 1342, sect. 10; Meliteniotes 1352, sect. 111.24; Anonymus 1377, sect. 8, in PG XIX 1328;
Anonymus 1379, in PG XIX 1329.

This expression is also found in Anonymus 1092A, sect. 4, in KARNTHALER, Die chronologischen Abhandlungen 5.42, and

in Rhabdas 1342, sect. 10.

Matthew Blastares (in RHALLES — POTLES, Zovtayua VI 416) adduces another explanation of the parameter 6: because of

the excess of 0;1,50 day of a true lunar month over 29 A days, which yields about 6 days in 1 year (immo 6;53 days).

Thus, the convention assumes that lunar months are 30-day months. Unnecessary complications would arise from reducing

modulo 29 %; moreover, one would not let Easter coincide with Passover, and reducing modulo 30 rather than modulo

29 ' shifts forward, and most conveniently, the schematic date of the computed Passover. There exist, however, algo-

rithms that compute the age of the Moon (but not the date of Passover) by reducing modulo 29 %: see, for instance, Maxi-

mus, Enarratio 1.28 and the eighth algorithm compiled in II1.8, in PG XIX 1245 and 1269; Psellos 1092, sect. 1.15, in

REDL, La chronologie appliquée II 237.1-11; Anonymus 1183, sects. 9 and 10; Rhabdas 1342, sect. 7; Anonymus 1377,

sect. 6, in PG XIX 1323.

19 In its first occurrence, the Passover algorithm is harmlessly incomplete: since 11m + 6 < 30 for m = 1, the modulo 30 re-
duction is not operative and hence it is not mentioned.
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A computation of Meat-Fare Sunday. A computation of the date of Meat-Fare Sunday (Anokpéwoig) follows;
it includes a clarification on the use of the adverb dvem “above” as a way to specify the time arrow (see sects. 22
and 26). The algorithm is'*":

(ry) > r+3+[(v mod 4)/4] — (r + 3 + [(v» mod 4)/4]) mod 31 =+.
If r>29,, then ¢ € F; if r <28,,— [(v mod 4)/4], then t € J.

In the Byzantine liturgical calendar, Meat-Fare is the third Sunday of the pre-Lenten period of preparation and
repentance; it falls 8 weeks = 56 days before Easter. Since in non-leap years February plus March last 59 days,
Meat-Fare Sunday falls numerically 3 days after Easter (summand » + 3) but 2 months before the month in which
Easter falls. There is, however, a due adjustment in leap years (summand [(y mod 4)/4])"*?, and one must keep in
mind that if the date of Easter falls on a day after March 29 (28 in leap years), then Meat-Fare Sunday falls in
February rather than in January. The modulo 31 reduction is not indicated in the algorithm of our text, but it must
be introduced in order to take into account Easter dates in March shifting to April because of the addition of
3 + [(» mod 4)/4].

A computation of the weekday of Passover, if this falls in month X. The algorithm is as follows, where n; =

length of month k in days'>*:

(500,X) — 5 + [/4] — s + [s/4] + T _g (= 28) — s + [s/4] + T _p (= 28) +x —
— [s+ [s/A] + D _p (= 28) + x] mod 7 = wy(xy).

This algorithm computes the weekday of any date x in month X. To this end, it suffices to count the days
elapsed from a date falling on a known weekday and remove whole weeks. It should be kept in mind that a year of
365 days exceeds a whole number of weeks by 1 day (summand s in the above algorithm: recall that the Byzantine
world era and the solar cycle are synchronized; this summand also includes 365 of the 366 days of a leap year); a
leap year exceeds it by 2 days (further summand [s/4]; the first two summands, after reduction modulo 7, are the
epacts of the Sun, as seen in sect. 2)'>*; a month exceeds it by its own length in days minus 28 days (= 4 weeks),
namely, n; — 28 in our notation. The sum Z:;z (ny-28) is the excess over 28 days of the months from O(ctober)
to the one preceding the given month X, denoted by X — 1 (the sum gives null values when the assigned month is
October). The date x must then be added. Reducing the sum modulo 7 involves eliminating whole weeks. Since
only months of 31 and 30 days are mentioned and because of the leap year contribution included in the term [s/4],
February must be set to 28 days; given the fact that this summand is operative throughout the year, the month X
must be a month coming after February. This restriction, however, is of no consequence as far as Passover or
Easter computations are concerned. To check the consistency of the algorithm, recall that the weekday of the
epoch date of the Byzantine world era is a Saturday = 7, so that w(1p) = 2 for the first day of the solar cycle,
which is the output fors =1, x = 1.

131 Other occurrences of this algorithm can be found in Anonymus 951, sect. 17; Anonymus 982, sect. 9; Anonymus 1079, sect.
2, in MENTZ, Beitrdge zur Osterfestberechnung 78; the Computus contained in Par. suppl. gr. 690, sect. 5; Anonymus 1041,
sect. 8; Anonymus 1090, sects. 1 and 5; Anonymus 1172, sect. 10; Anonymus 1183, sect. 8; Anonymus 1256, sect. 12;
Blastares 1335, in RHALLES — POTLES, Zovtaypo VI 418; Rhabdas 1342, sect. 13; Meliteniotes 1352, sect. 111.24; Argyros
1372, sect. 12, in PG XIX 1301-1304.

For the meaning of this formula, see footnote 121 above.

This algorithm is ubiquitous in Computi. See, for instance, Maximus, Enarratio 1.24, in PG XIX 1244 (second algorithm);
the computistical section of the Florilegium Coislinianum, letter I1, n® 168; Anonymus 830, sects. 15 and 28, in
GASTGEBER, Neue texte XXX and XXX; Anonymus 951, sect. 14; Anonymus 982, sect. 9; Anonymus 1041, sect. 8; Anony-
mus 1079, sects. 1 and 7, in MENTZ, Beitrage zur Osterfestberechnung 76 and 90-92, respectively; Anonymus 1090, sect. 2;
Psellos 1092, sect. 1.13, in REDL, La chronologie appliquée 11 229-232; Anonymus 1092A, sect. 5, in KARNTHALER, Die
chronologischen Abhandlungen 6.69—77; Anonymus 1172, sect. 9; Anonymus 1183, sect. 7; Anonymus 1256, sect. 11 (one
of the algorithms uses the “epacts of the months” [see just below], also computed in sects. 11-12); Blastares 1335, in
RHALLES — POTLES, X0vtaypo VI 418; Rhabdas 1342, sect. 11; Meliteniotes 1352, sect. 111.23; Anonymus 1377, sect. 3, in
PG XIX 1317-1320; Anonymus 1379, in PG XIX 1332. As for the “epacts of the months”, they correspond to Western
regulares: the epact of a given month is the weekday of the last day of the previous month (a further example of an “incip-
ient” quantity), gauged to w(1lp) = 2: thus ep = 1; see Maximus, Enarratio 1.26, in PG XIX 1244-1245; Anonymus 830,
sect. 1, in GASTGEBER, Neue texte XXX; Anonymus 1092B, sect. 11, in KARNTHALER, Die chronologischen Abhandlungen
12.286—-13.1; Anonymus 1172, sect. 20; Anonymus 1204; Anonymus 1247, sect. 16, in SCHISSEL, Chronologischer 109;
Anonymus 1256, sect. 11 and 14; Anonymus 1350 sect. 6, in SCHLACHTER, Wiener griechische 7; Argyros 1372, sect. 5, in
PG XIX 1285-1288; Anonymus 1377, sect. 3, in PG XIX 1320 (but only the excess of each month over 4 weeks is tabulat-
ed); Anonymus 1379, in PG XIX 1332-1333.

1% Solar cycle years are used only in computistical algorithms of this kind.
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A further calculation, by means of which each weekday can be found

Always keep in mind the last day of the month of September, and if it is a Sunday, hold one; if
it is a Monday, hold 2; if a Tuesday, three; if a Wednesday, 4; if a Thursday, 5; if a Friday, 6; if a
Saturday, 7; and from the month of October begin taking three days of the month that has 31, 2
days of the one that has 30, and, of the month in which you want to find the day, put how many
<days> it has, and remove by 7, and that which <remains> down from 7 shows <the weekday>. If
you do not have <anything> down from 7, it is Saturday.

A computation of the weekday of date x in month X. The algorithm is as follows, where n; = length of month &
in days':

(W[305].0.X) — w(305) + TyeZp (ye= 28) + x — [w(305) + Tje_p(nye— 28) +x] mod 7 = w(xy).

This algorithm for computing the weekday of date x in month X takes the weekday of September 30 (= the day
before the beginning of a solar cycle) and then computes as in the previous algorithm. The solar cycle year begins
on October 1; consequently, w(305) takes the role of the epacts of the Sun. As the algorithm mentions only months
of 31 and 30 days, and years are absent, we may suppose either that February has always 28 days, and the algo-
rithm is accordingly valid if month X is not later than February, or that the case of February having 29 days has
been omitted by negligence or mistake, and the algorithm is accordingly valid in general. All in all, the prescrip-
tions for finding the weekday of a given date are carelessly formulated in Anonymus 892.
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135 Other occurrences of this algorithm can be found in Anonymus 830, sect. 13, in GASTGEBER, Neue texte XXX; Anonymus
1256, sect. 15.
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Calculation <for> finding Passover

Always keep 43 in your hands, and remove the epacts of the Moon of each year from them, and
if, once you removed the epacts of the Moon, there remain more than 30 in your fingers, remove 30
and, if that which <remains> down from 30 is from one up to 19, know that Passover is in April. If
there remain 20 or 21 or 22 or 23 and so on, always add one day, and seek for Passover in March,
with the <following> exceptions: in the 18" cycle you will not add <anything>, in the seventeenth
cycle of the Moon, where 7 epacts remain for you, remove eight from forty-three. Similarly also in
the 19™ cycle, where 29 epacts remain, remove thirty from 43, for you do not find what is secure.
The epacts of the Moon can be found as follows. In the first cycle it has eleven epacts, and in the
second, 22, in the 3", three, since the thirtieth number really turns out to be completed: for eleven
times three, thirty-three; and once you removed 30, there remain 3. These are the epacts of the third
cycle. Similarly also, continuously up to the nineteenth cycle of the Moon, undecuple whatever
cycle of the Moon, and remove thirtieths, and that which remains down from thirty are the epacts
of the Moon.

A computation of Passover. The algorithm is as follows'*®:

(em) > 43 —e, —

|43 -¢,<19,43 — ¢, > (43 —¢,) mod 30 =p,, € 4.

|43 -e,>19,43 - ¢, > (43 —¢,) mod 30+ 1=p, € M.

| m = 18, (43 — em) mod 30 =PpP1s-.

|m=17,43 -8 — [43 —-8] mod 30 + 1 =py-.

|m=19,43 - 30 — [43 —30] mod 30 = pyo.

In the last three branches of the algorithm, the month in which Passover is located is tacitly determined by the
inequalities that single out the first two branches. The branching conditions involve both a “norm minus epacts”
quantity 43 — ¢,, (see the commentary on sect. 12) and the lunar cycle m; the latter is the case after the saltus luna-
e. The formulation of the last branch makes it certain that e;o = 29; consequently, the list of epacts has a disconti-
nuity at the end of cycle year 19, whereas the saltus lunae is shifted back by the algorithm to the end of cycle year
16. Thus, in this case the saltus lunae is a feature of the algorithm, not of the epact sequence.

To clarify this statement, recall that the epacts are the accumulated advance of 12 lunar months over a calendar
year of 365 days; this advance is of 11 days for each lunar cycle year. Whenever this sum exceeds 30 units, these
are subtracted to form an embolismic month. Since 11 and 30 are mutually prime, the sequence of epacts is cyclic
and runs through all numbers from 1 to 30 before returning to the initial value. The order in which the numbers
from 1 to 30 appear is as follows:

30 11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26 7 18 29
10 21 2 13 24 5 16 27 8 19 30

Choosing the initial point of the sequence amounts to fixing the age of the Moon on the first day of the first
cycle. Any initial point can be selected; the list is cyclic, as I have emphasized by repeating number 30. Two “nat-
ural” starting points are 30 = 0 (mod 30), so that the first day of the first cycle is /una I, and 11, the value of the
yearly lunar advance. These values also occupy consecutive places in the list; the former was adopted as a starting
point in the Alexandrian Computus, the latter in the Byzantine Computus (see sect. 12). If returning to the starting
point takes an entire cycle, a good approximation of an exact return is after 19 steps, where the difference is 1:
11x19 =209 = -1 = 29 (mod 30)"". The epact sequence singled out by this approximation is the sequence of the
19-year cycle, with a “saltus lunae”—namely, a “discontinuity” of the epact sequence—at the end: the epact value
that follows 29 in this 19-token sequence is again 11, which is obtained from 29 by adding 12, not 11, and then
reducing modulo 30. However, one must be careful in distinguishing between the saltus lunae and the “disconti-
nuity” of the epact sequence. The point is that any cyclic sequence of epacts that does not coincide with the whole

1% See George, sect. 11.4, in DIEKAMP, Der Monch 30.5-31.2, Anonymus 982, sect. 15, and the discussion in sect. 12 above.

157 A 30-year cycle might underlie the Paschal canon presented by the Eastern bishops at the Council of Serdica (ca. AD 343):
see SCHWARTZ, Christliche und jiidische Ostertafeln 121-125, GRUMEL, La Chronologie 41-43, and MOSSHAMMER, The
Easter Computus 184-186. This cycle began in AD 328.
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30-token sequence must have a “discontinuity” (that is, a disruption of the principle of constant difference 11)
somewhere: a saltus lunae at the point of discontinuity has exactly the function of making consecutive lunar cy-
cles fit to each other. However, the saltus lunae can be placed at any point of the cycle, but this does not entail a
displacement of the discontinuity of the epact sequence. For this reason, in Byzantine Computi, actually set out or
reconstructed lists of epacts can be found that differ as to the position of the discontinuity (not of the saltus lunae)
but that nevertheless give rise to the same list of Passover dates, which is impossible if equivalent Passover algo-
rithms are intended: very simply, there is a one-to-one correspondence between epact values and Passover dates
for any given algorithm. In the same way, a list of epacts is not significant unless the algorithm in which it is used
is also provided. To sum up, one must look at the Passover algorithm actually used in order to ascertain where the
saltus lunae is really located.

Since 50 — 6 = 44, and on account of the definition of the epacts of the Moon provided later in the text and of
the position of the modulo 30 reduction, the norm 43 algorithm for computing Passover expounded in this section
is equivalent both to the norm 50 algorithm of sect. 12 and to the norm 44 algorithm of sect. 15. The latter equiva-
lence is proved by observing that the number 44 (= 43 + 1) figures in the algorithm branch for 43 —e,, > 19
(namely, if Passover falls in March). If, conversely, 43 — ¢,, < 19, one unit is absorbed by the shifted origin of day-
counting from 1,, to 1, because of the discrepancy between modulo 30 reduction and March having 31 days.
Since most Easter dates fall in April, the norm is set to 43 rather than 44. For m = 18, the unit to be added to the
epacts because of the saltus lunae is offset by the unit to be added for 43 — e¢,,> 19. For m = 17, e;7 = 7, to which 1
must be added because of the saltus [unae, and the second branch of the algorithm applies. For m = 19, e;9 = 29, to
which 1 must be added because of the saltus lunae, and the first branch of the algorithm applies. The number of
branches makes this algorithm unwieldy.

The text continues by showing how to find the epacts of the Moon

er=11;e,=[e;+ 11(m—1)] mod 30 if m > 1.
This is a simple variant of the standard rule for finding the epacts. No mention is made of the saltus lunae;

therefore, the discontinuity is located at the end of the epact sequence. The resulting epacts are set out in the fol-
lowing table; again for the convenience of the reader, the table includes the Passover dates:

158 The rule is:

m | 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19

ey, | 11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26 7 18 29

Pm | 2 22y 10 30, 18 7 27y 15 4 24, 12 1 21, 9 29y 17 5 25, 13
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18 For the epacts of the Moon in Byzantine Computi, see the early and clear expositions by George, sect. I1.2, in DIEKAMP,
Der Monch 25.25-35, and by Maximus, Enarratio 1.7, in PG XIX 1223. Early Computi in which the epacts of the Moon
are calculated or tabulated include Stephanus-Heraclius’ in Ptolemaei Tabulas Manuales, sects. 12 (the era Philip and the
era Constantine are used) and 30 (the era Maurice is used), in LEMPIRE, Le commentaire 154.2—156.12, and USENER, De
Stephano Alexandrino 315-316, respectively; the table in the computistical section of the Florilegium Coislinianum, letter
I1, n° 166 (with fractional parts generated by accumulating twelfths); 4nonymus 830, sects. 7 and 34, in GASTGEBER, Neue
texte XXX and XXX; Theophylaktos 956, sect. 4 (the AD era is used); Anonymus 1183, sects. 9 and 12 (with fractional
parts generated by accumulating nineteenths: the saltus lunae is evenly distributed among the lunar cycles). Epacts with
fractional parts are also found in Anonymus 1092B, sect. 7, in KARNTHALER, Die chronologischen Abhandlungen 11.207-
248 (3 minutes are added for each cycle, plus 1 minute every time six cycles have been completed: the saltus lunae is une-
venly distributed among the lunar cycles).
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A further calculation of Passover

Know the epacts of each year of the Moon, and conjoin them from March until you will make
number 44: Passover is there. If you have lunar epacts 25 or 26 or 27 or 28 or 29, always add one
day in them, and count from April until you will arrive at number 44, and Passover is there. In the
17" and in the 18" cycle, add one epact to each one, and count from March up to 44. In the nine-
teenth cycle, just begin from March without conjoining any epact to it, until you will arrive at
number 44: Passover is there.

A computation of Passover. The (annotated) algorithm is as follows'*:
(em) =

|m=1-4,6-7,9-15,44 —e,, — 1py=pp.

|25<e,<29,e,+1 —>44—(e,,+ 1) 14=p,. {m=5,8,16,19}

[17<m<18,e,+1 — 44— (e, +1)—: 1y=p,. {saltus lunae}

|m=19,44—: lM:plg. {pl9:13A}

This norm 44 algorithm for computing Passover is straightforwardly equivalent, after deletion of the modulo
30 reductions, to the norm 43 algorithm of sect. 14. Adding 1 to large epacts (as in the second branch) derives
from counting from 1, and from March having 31 days. The additional unit in cycle years 17 and 18 (third
branch) is the saltus lunae. The no-epacts prescription for cycle year 19 (fourth branch) originates from ejg + 1 =
=29+ 1=30=0 (mod 30): the additional unit coming from the salfus lunae leads to an epactsless branch if days
are counted from 1,,. This shows that the value e, = 29 should be deleted from the second branch. The explicit
mention of the epact value e, = 29 shows that the discontinuity of the epact sequence is located after cycle year
19. However, the saltus lunae is placed after lunar cycle 16; therefore, it is a feature of the algorithm. As in sect.
14, the number of branches makes this algorithm unwieldy.
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A further calculation of Passover

Know how many years there are from Adam up to the present one, and remove 13 from them,
and the whole of the remainder remove by 19, and undecuple what remains down from 19, and
remove by 30, and conjoin what remains down from 30 from March 1 until you will make 50 days,
and Passover is there.

A computation of Passover. The algorithm is:

) —y-—13—> (y—-13)mod 19 — 11[(y — 13) mod 19] — {11[(y — 13) mod 19]} mod 30 —
— 50 — {11[(y — 13) mod 19]} mod 30 —: 1, = p,.

This algorithm is equivalent to the algorithm of sect. 12 because, by definition, y mod 19 = m and because 6
=-13 (mod 19); hence, 11(y — 13) = 11m + 66 (mod 19). Finally, 11m + 66 = 11m + 6 (mod 30). However, the

199 See Anonymus 982, sects. 10 and 14; Anonymus 1172, sect. 8 (an incomplete algorithm); Anonymus 1273, sect. 7, in BUCH-
EGGER, Wiener griechische Chronologie 31.58-75; Meliteniotes 1352, sect. 111.24. These two algorithms do not mention
the epacts, replacing them with their definition e,, = 11m mod 30. See also the discussion in sect. 12 above. An algorithm
that is straightforwardly equivalent to this norm 44 algorithm is a norm 45 algorithm in which the epacts are replaced by
the “pastoral base” b,, = e,, + 1: see Anonymus 1079, sects. 3—4, in MENTZ, Beitrdge zur Osterfestberechnung 78; Anony-
mus 1172, sect. 7 (an incomplete algorithm), and sect. 18 for the “base”; Anonymus 1273, sect. 6, in BUCHEGGER, Wiener
griechische Chronologie 30.43-31.57; Anonymus 1095. In all these algorithms, the saltus lunae is a feature of the sequence
of bases.
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compiler omitted to include the saltus lunae after cycle 16. This algorithm can also be found in Anonymus 830,
sect. 26; Anonymus 982, sect. 11.
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A further, concise, calculation of Passover

Know exactly how many days the Moon has on January 1, and keep them, and calculating from
January 1 mount the days of the months until you will make 105 days, and Passover is there. If it is
a leap year, <mount up to> <10>6. As soon as you have found Passover, calculate on what week-
day it is, and reaching up to Sunday you will find our Easter.

A computation of Passover. The algorithm is:
(»a[1,]) = 105 + [(y mod 4)/4] — a(1,) —: 1,=p,.

This norm 105 algorithm for computing Passover shifts the origin of day-counting from 1,,to 1, and thereby
introduces the age of the Moon on January 1 (in other Computi, this is the “base” b,,) as a reference. As seen in
sect. 12, the shift adds 59 days to the count; these become 60 days in leap years (summand [(y mod 4)/4])"®.
Since 105 — 59 = 46 and looking for instance at the norm 44 algorithm of sect. 15, one gets that, at lunar cycle m
and including the saltus lunae in the sequence of epacts, a,(1,) = b, = e, + 2, instead of ¢,, + 1 as one should
expect. If we accept that the latter is correct, the norm of the algorithm should be corrected to 104'%!. The text
adds that Easter is the first Sunday after Passover.
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160 As leap years must be disregarded in lunar computations, adding this summand constitutes a misunderstanding of the
procedure. The supplementary unit in leap years is not mentioned in Anonymus 1079, sect. 1, MENTZ, Beitrdge zur Oster-
festberechnung 76. The mention of leap years in our Computus might be a faulty annotation that was inserted in the text.

1! This is confirmed by Anonymus 1172, sect. 6, and by Anonymus 1273 (which do not add the unit of leap years, either).
Both computists calls the standard base b,, = ¢, + 1 “pastoral base” (mopevikog Oepéliog): see the text inserted in the
wheel in Vat. gr. 432, on f. 144v, and BUCHEGGER, Wiener griechische Chronologie 30-31, respectively; see also MENTZ,
Beitrdge zur Osterfestberechnung 46-47 n. 11. Unsurprisingly, Anonymus 830, sect. 35, in GASTGEBER, Neue texte XXX,
uses the incorrect norm 105. On “bases”, see footnote 95 above.
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2" calculation of Passover

Know that the Passover lists can be found in the 19 cycles of the Moon, that is, from the 1% up
to the nineteenth, all of them amounting to 19 Passover’s. These 19 are found in each month in
order as follows, that is, 1 Passover in March or in April. In the first <cycles> always keep two
days of April in your fingers, that is, the first and the second, and you will not do anything else
than seek for what the cycle of the Sun amounts to, and find from it on what weekday occurred the
second of April, and if it occurred on a Sunday, the Holy Easter is on the other Sunday; if it was
found a Tuesday or a Wednesday or a Thursday or a Friday, and continuously up to Saturday,
reach up to the <following> Sunday, and there you will find the most divine Easter. 2™ Passover.
Similarly again keep 22 days of March in your fingers, and do likewise, that is, find the day of
Passover. <3 Passover.> Keep the ten of April in your fingers. 4™ Passover 30 of March. 5™ Pass-
over 18 of April. 6™ Passover 7 of April. 7" Passover 23 of March. 8" Passover 15 of April. 9™
Passover 4 of April. 10™ Passover 24 of March. 11™ Passover 12 of April. 12™ Passover 1 of April.
13™ Passover 21 of March. 14™ Passover April 9. 15™ Passover March 29. 16™ Passover April 17.
17" Passover April 5. 18™ Passover March 25. 19™ Passover April 13.

The list of Passover dates. There are 19 different Passover dates, one for each year of the lunar cycle. Easter is
the first Sunday after Passover. A complete list of Passover dates is provided, as in the following table:

m|1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19

pm|2 22y 10 30, 18 7 27y 15 4 24, 12 1 21, 9 29y 17 5 25, 13
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On the embolismic year

Know that from the first year of the Moon (namely, cycle) up to the 19", the Moon has thirteen
months every three years because of the remainder of 11 days by which it was in advance with
respect to the year of the Sun; for the year of the Sun is of 365 days disregarding ", the <year> of
the Moon is of 354; for from 354 up to 365 there are 11 days; for there remain over 11 days of the
Moon per year, the so-called epacts. For instance, in the 1% <year> there remain over 11 days, and
in the second, 11; there it is, 22 because of the addition of 11; and in the 3", 11; there it is, three
eleven, 33, and that year of the Moon has 13 months because of the gathering of the hendecads; for
after the completion of the 12 months of the Moon there remains over one month, the one also
called embolismic; for in this way there remains over an embolismic month of the Moon every
three years.
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Embolismic years. There are 7 “embolismic lunar years” (they contain 13 lunations instead of 12; the addition-
al lunar month has 30 days)'®* because the solar year of 365 4 days exceeds 12 lunar months (= 354 days) by
11 %, days. If we neglect fractional parts, these 11 days—the so-called “epacts of the Moon” (tfic ceEAjvNg &mak-
tai)}—complete an “embolismic” lunar month of 30 days every two or three solar years; these days are subtracted
from the cumulating epacts. Accordingly, the cumulating epacts must be reduced modulo 30. The text computes
the epacts of the first three lunar cycles as an example; the implicit algorithm is e, = 11m mod 30. In a whole
cycle of 19 years, there are 209 (= 11x19) additional days, which complete 7 embolismic months of 30 days via
the trick of the saltus lunae (that is, the age of the Moon is increased by one day at some point of its cycle). Hol-
low years (xothoi) in the 19-year cycle are years 1, 2, 4, 6, 7, 9, 10, 12, 13, 15, 17, 18; embolismic years
(éuporytoy) are years 3, 5, 8, 11, 14, 16, 19'%,

Below is a table of the main numerical data related to the lunar cycle that are explicitly or implicitly assumed
in Anonymus 892, sects. 12, 14, 15, 17, 19: these data are the epacts (the saltus lunae is placed after cycle year 19)
the location of the embolismic year, and the date of Passover.

m 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19
e, |11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26 7 18 29
emb_ * * * * * * *
DPm 2 22y 10 304 18 7 27y 15 4 24y, 12 1 21, 9 29y 17 5 25, 13
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192 Other expositions of lunar embolism include George, sect. 11.4, in DIEKAMP, Der Monch 31.3—15; Maximus, Enarratio
1.7-10, and 12-13, in PG XIX 1224-1232; Anonymus 830, sect. 32, in GASTGEBER, Neue texte XXX; Anonymus 982,
sect. 12; Psellos 1092, sects. 11.24-25 and 27, in REDL, La chronologie appliquée II 261.14-264.9 and 270.21-271.7;
Anonymus 1172, sect. 14; Anonymus 1183, sect. 11.

A prescription for locating all new Moons in a lunar cycle is a “lunar calendar”; such calendars were paid special attention
in Latin West; Dionysius Exiguus’ table did not include one. Most of the range of variability I shall mention just below is
mentioned at appropriate places in HOLFORD-STREVENS, Paschal Lunar Calendars. It must be stressed that some lunar cal-
endars we find in secondary literature are reconstructed, and that, frequently, lunar calendars are not uniquely determined
by the available data: additional constraints must be imposed, such as the base principle of alternation of full and hollow
months (a principle that is not followed in the latercus), or the requirement that full lunar months end in odd-place solar
months of the Julian calendar. Consequently, extant or reconstructed lunar calendars display some variability as to: (a) the
exact mechanism of embolism (this can be the standard insertion of 30-day months, or a clever disposition of lunar months
entirely included in a calendar month—the /unae abortivae—as in the De ratione conputandi); (b) the exact position of the
embolismic months; (c) the exact position of the saltus lunae, as in principle any full month in the year that carries the sal-
tus can be made hollow; (d) how the intercalary days of any Julian-style calendar are to be taken into account; (e) where
the lunar year begins (Bede canonically has the “lunar years” begin on the first new Moon of Spring; Psellos 1092, sect.
I1.25, in REDL, La chronologie appliquée II 263.1-267.2, has the “lunar years” begin on Passover [the same in Dionysius,
KRUSCH, Studien (1938) 85-86]; the first month of a lunar cycle year ends with the first new Moon of January). The matter
is complicated by the fact that a lunar cycle year does not coincide with a “lunar year”, and it is not obvious whether the
embolisms should be keyed to the former or to the latter. Bede’s lunar calendar coincides with the one printed in the excel-
lent edition of the Carolingian standard calendars A. BORST, Der karolingische Reichskalender und sein Uberlieferung bis
ins 12. Jahrhundert (Monumenta Germaniae Historica. Libri Memoriales 2). 1-111. Hannover 2001, 1647-1727; see also
GRUMEL, La Chronologie 303, who corrects a mistake in GINZEL, Handbuch III 136-137, from where he draws the table,
but introduces several more by his decision to mark full lunar months in italics; it is better to check HOLFORD-STREVENS,
Paschal Lunar Calendars 202, and passim for the other lunar calendars. Other schemes of embolismic years in a late West-
ern source are discussed in O. NEUGEBAUER, Astronomical and Calendrical Data in the Trés Riches Heures, in: M. MEISS,
French Painting in the Times of Jean de Berry: The Limbourgs and Their Contemporaries. Paris 1974, 421-432.
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A further calculation, for finding the epacts of the Sun

If you want to find the epacts of the Sun of each year, know that the year has 365 ' days, and
remove them by 7, and that which remains down from 7 are the epacts of each year of the Sun, viz.
cycle. For instance, the 1% cycle of the Sun (namely, year) has one epact and a quarter, since we
really removed 365 i by 7: that is, seven times 50, 350: and there remain 15 i days. Again, twice
seven, 14: and there remains 1 "4, which is called “solar epact”. And again, the second <cycle> has
two and a half epacts, since there really remains over 1 % per year. And the third has three and a
half and a quarter. The fourth has 5 epacts because of the addition of the quarters. The fifth has six
and a quarter epacts. The sixth has seven and a half; remove seven, and there remain a half of an
epact. <Do> also in this way continuously up to the 28" cycle of the Sun. Whenever a number ex-
ceeds 7, remove seven, and keep what <remains> down. Know that they are called “epacts” for
every cycle of the Sun, and “epacts of the Gods” by the Egyptians. For the Egyptians were used to
refer to the week by taking the 7 planets as model, which planets were also named “gods” by those
who think wrongly; those who do not think in this way called them “gods” not because of their
nature but because of the kind of their activity; for they called them “gods” because of their “go-
ing”, that is to say “running”, whereas <that which is> god because of its nature is called “god”
because of its “begolding” everything'®*. Know, as the ancient wise men say, that God made the
seven days of the week by taking the 7 heavenly bodies, also called “planets”, as model, and He
likens Sunday to the Sun, Monday to the Moon, Tuesday to Mars, Wednesday to Mercury, Thurs-
day to Jupiter, Friday to Venus, Saturday to Saturn.

h 1% Saturn is in the first zone of the heaven, and travels over the 12 signs in 30 years.

21 pm Jupiter is in the second one, and travels over the 12 signs in 12 years.

& 3" Mars is in the third one, and travels over the 12 signs in 15 years.

184 T have tried to keep the paraetymology by forging the misspelled verb “to begold” for “to behold”.
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® 4™ the Sun is in the fourth one, and travels over in 12 months.

@ 5™ Venus is in the fifth one, and travels over in 8 months.

g 6 Mercury is in the sixth one, and travels over in 3 months.

C 7™ the Moon is in the seventh one, and travels over in 30 days.

The Moon is the lowest <heavenly body>; for, as when you will make a pole inside another
pole, the inner pole will be found to be smaller, so the motion of the Moon, insofar as it is lower, is
also smaller and it will be carried up faster. They are called “planets” not because they deceive

people, but because they travel transversely across their course'®.

A computation for finding the epacts of the Sun. The algorithm is'®:
(s) — [(365 /4 mod 7)s] mod 7 = e.

This algorithm, which computes with the crudest fractional approximation of the tropical year, is equivalent to
adding 1 % = 365 Y, (mod 7) for every year of the solar cycle and to reducing the result modulo 7; see sect. 2. A

complete list of epacts of the Sun is provided in the text, as in the following table; in this section, 7 mod 7 = 0, and
fractional remainders are admitted (they “pass through” the modulo reduction).

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e | 1 2% 3% 5 6 Um0 3 a4l 5 e 1 2V 3

s 15 16 17 18 19 20 21 22 23 24 25 26 27 28

e | 4% 6 Yo 1h 2% 4 SYy 6 w2 3y Al Sh

The text states that these epacts are called “epacts of the gods” (Bedv émaxtai) by the Egyptians, for they
named the weekdays after the seven planets, which were also called “gods” because of the names of most of them;
a polemical remark on the real etymology of the epithet follows'®’. The text continues by mentioning a well-
known piece of astrological lore about the generation of the seven weekdays by imitation of the seven planets, in
the order Sun, Moon, Mars, Mercury, Jupiter, Venus, Saturn'®®, and by listing location and periods of the seven

planets, as follows'®”:

planet| Saturn  Jupiter Mars Sun Venus Mercury Moon

period | 30years 12y 15y 12months  8m 3m 30days

The section ends with a remark on the fact that the Moon is the innermost planet and on the etymology of the
word “planet”.

195 1 was unable to render the two Greek paraetymologies (rlavig vs. mAavaw and mAavitg vs. TAaying) in English. The
former paraetymology plays with the two meanings of TAavdwm: “to wander” but also “to deceive”.
1 Other occurrences of this algorithm can be found in the computistical section of the Florilegium Coislinianum, letter II, n®
165 (only a table); Anonymus 830, sects. 4 and 9, in GASTGEBER, Neue texte XXX and XXX; Anonymus 1092B, sect. 10,
in KARNTHALER, Die chronologischen Abhandlungen 11.268-12.279; Anonymus 1183, sects. 13—14. A wheel of fractional
epacts of the Sun is also found in Maximus, Enarratio 1.1, in PG XIX 1219-1220; the fractional parts are deleted in the PG
edition, but they are present in all manuscripts.
See Theophilus of Antioch, ad Aut. 1.4, PG VI 10294, and also Nicomachus, Ench. 3, 241.15—-18 Jan. The solar epacts are
called “days of the Gods” by Paul of Alexandria, Apotel. 19-20. For the occurrence of the expression in the Index of Atha-
nasius’ Festal Letters (Athanasius died in AD 378), see MOSSHAMMER, The Easter Computus 82—83 and 163-166 (an edi-
tion of the text, with a translation and a commentary, is found in A. MARTIN — M. ALBERT, Histoire « acéphale » et Index
syriaque des Lettres Festales d’Athanase d’Alexandrie [Sources Chrétiennes 317]. Paris 1985). For the transliterated oc-
currence in Ethiopic Computi, see O. NEUGEBAUER, Tentyon. Orientalia 44 (1975) 487-488. A list of the names of the
planets designated by 6edv uépat is found in a Pompei graffito: E. SCHURER, Die siebentigige Woche im Gebrauche der
christlichen Kirche der ersten Jahrhunderte. ZNW 6 (1905) 1-66, 27, relying on [A. MAU], Bullettino dell’Instituto di Cor-
rispondenza Archeologica (1881) 30; the list begins with Saturn.
'8 See Dio Cassius XXXVIL18.
19 The list is also found in Anonymus 1092B, sect. 11, in KARNTHALER, Die chronologischen Abhandlungen 13.322-328.
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Many ancient and Byzantine sources list the periods of the planets; the following table sets out those found in

Geminos, Isagoge 1.24-30, and in an end ninth-century scholium in Vat. gr. 1291'":
planet Saturn Jupiter Mars Sun Venus Mercury Moon
Geminos 30y 12y 2y6m  12m  12m 12m  27d '
Vat. gr. 1291 | 30y 12y lybm 12m 11méd &m 30d
21
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How a leap year comes to be
Resolve out the years of the world into four-times, and if it gets completed to a fourth <year>,
say that it is a leap year.

A criterion for identifying a leap year. If y =4 (mod 4), then y is a leap year.
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Know that the lunar cycle of the Moon in which Passover is also found begins from March 21
<and reaches> up to April 18. Know that outside this month there cannot be Passover, <viz.,> nei-
ther above nor below. Consider that the beginning is above and the end is below. This lunar month
is also called the “middle month of the Moon”.

Terms for Passover. The terms for Passover are: 21,,<p < 18, (see sect. 26). A clarification follows, on the
use of the adverbs dvmfev and kGt as ways to specify the time arrow (see sects. 12 and 26)'"". The Passover
interval is also called “middle month of the Moon” (nécog punyv tiic ceAvng).
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170 See J. MOGENET, Les scholies astronomiques du Vat. gr. 1291. BIBR 40 (1069) 69-91, Text 4. For other sources see
NEUGEBAUER, HAMA 604-607 (on the “great year”, on which Psellos wrote, see also P. TANNERY, Psellus sur la grande
année. REG 5 [1892] 206-211, repr. ID., Mémoires scientifiques IV. Toulouse — Paris 1920, 261-268) and 782-785. Gem-
inos’ value for the Moon is the length of the sidereal month.

7! The opposite convention can be found in George, sect. I1.3, in DIEKAMP, Der M6nch 29.29-30, and in Maximus, Enarratio
1.14, in PG XIX 1232.
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Question

Why does the lunar month keep 30 days and four weeks?

Answer

Then, the Moon also has four turning points: for <at the end of> the 1¥ week it becomes a 0, < at the
end of> the second, an ¢, <of> the 3“1, an o, and <of> the 4th, a ¢, and it writes 6eoc. Through Ursa Ma-
jor ¢, through the Pleiads o, through South v, and the lunar month 6eoc; and it writes 8eoc Cov [scil.
“Living God™].

Why does the lunar month (péyyog) have 30 days and 4 weeks? Because the Moon has 4 turning-points
(tpomai); they bound 4 periods within the lunar month at the end of which the phases of the Moon, if they are put
together one after the other, trace the word 6eoc. Moreover, through (?) Ursa Major {, through the Pleiads o,
through South v, yielding 6eoc {wv. I have been unable to understand the connection with Ursa Major, the Pleiads,
and South, nor have I found parallel texts.

24

oLV 0e® yigoc <eic> 10 [[e0]] edpiokew v apyunviav® €kGdotov PUNvoc év moig HUEPY THC
£Bdopadog éotiv

Tivaoke £9°° 0d 0&Aelg uvdg Tod EVESTMTOC YPOVOL THY apytnviav® &v moia fuépa tig EPdo-
1adog €otiv, kai i’ pév €otiv Kupraki 1 10 EveoTdTOg YPOVOL dpyunvias, Tod pEALOVTOS YPOVOL
&v devtépa evpioketat, Kol obtmg kodeERc katd TV TaEw Tiic £Bdopddoc yivmoke kat’ &toc &p-
xeoOat 1OV olovdnmotodve ufjva.

[Nvooke 6¢ kai t0dt0, 871 €0V £0TiV TOD £vEGTMTOG XPOVOL apyumvia® v olednmote punvi év
KUPLoKfi Kol Emipépeton Bioektov', Tpitny vonoov v apyumvioy tod péAAoviog xpoévov Siit Thv
TpocOiKNY Tiic fuépac. dpoimg kol kadeEfc |14y 6oL KaTavThoel Picektovk, obtmg TotEl: Tog 88
npd 10D ProéiTov kai petd o Picektov katd v TaEv Tfig £Bdondadog yivwoke givo.
 apymuvioy ® e © apymuwviay 4 ¢ apynuvio " ke’ Entog & oiovdmotody " apymunvia | émeéprran Proextov
J apymunviav * proextov

God willing, calculation for finding on which weekday the starting-day of each month falls

Know on what weekday the starting-day falls of the month you want of the present year, and if
the starting-day of the month of the present year is a Sunday, next year is found on Monday, and in
this way know that whatever month of every year coninuously begins according to the weekly or-
dering.

Know also this, that, if the starting-day of whatever month of the present year falls on a Sunday
and a bissextile <day> is impending, consider that the starting-day of next year will be a Tuesday
because of the addition of a day. Similarly also, whenever a leap year will be arrived at, continu-
ously do in this way; know that the <days> before a leap year and after a leap year fall according to
the weekly ordering.

A computation of the weekday of the first day of month X in year y + 1, if the weekday of the first day of month
X in year y is given. The implicit algorithm is (I have been charitable with our text, translating Bicextov both as
“bissextile <day>" and as “leap year”):
0, X) —

| Ly>28p, wy(1x) = wy(lx) + 1 + [[(y + 1) mod 4]/4] — [wy(1x) + 1 + [(v mod 4)/4]] mod 7 = wy..1(1x).

| 1y <28p, wy(lx) = wy(1x) + 1 + [(v mod 4)/4] — {w,(1x) + 1 + [(y mod 4)/4]} mod 7 = wy.1(1x).

Since 365 = 1 (mod 7), the weekdays of the same dates in consecutive years are consecutive, unless the inter-

val between the two dates includes February 29, in which case the difference is of two weekdays. I could not find
this algorithm in other Computi.
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A further calculation, for knowing how many hours the Moon shines and when it reaches anew

From the 1% to the 15™ <day> of the Moon, quadruple what you have, and resolve out into five-
times'’%, and that which remains over signifies how many hours it shines. From the 16" know <as
follows>; consider that in the sixteenth day the Moon shines as many hours as it shone in the
fourteenth day, and in the seventeenth <day> as many as it shone in the thirteenth, and continuou-
sly consider in this way up to the end of the number of the Moon.

Duration of visibility v, of the waxing and waning Moon. The implicit algorithm is as follows, where a = age
of the Moon:
(a) —

|1<a<15,4a — 4a/5=v,.

|16 <a, v, =v304.

The duration of visibility of the waxing (waning) Moon'” is supposed to increase (decrease) stepwise every
day of the lunar month. Since the full Moon is supposed to “shine” for the length of the interval between sunset
and moonset, the step is ¥ an hour, which is the scaling factor between 12 hours and 15 days. This, and compari-
son with other sources'™®, shows that the algorithm in our text must be corrected by inverting its implied scaling
factor 4. Seasonal hours are intended'”.

26

ooV 0e® yijpog chvTopog 1o voukod Idoyo

l1sr Tivooke 811 év 1@ o kOKA® Tiig oeAqvNg €ig T0¢ B tod Ampidiov edpiokeTol TAVTOTE TO
voukov ITaoya, kai éav BEAelg e0pelv edkOAmG T Aowd TTaoya and o’ khkiov Emg 10°°, Tpdebeg
K, koi Beethe 1B, kai ebpiokelc EkdoTov ETovg 10 vopkov Ildoy. olov Tpodcheg eic tac P tod Anpt-
Mov K- kai yivovtor kP. kai idov €ic tac kf Tod Maptiov éotiv 10 voukov ITdoya. kol TaA DEEL-
ov &k TV kB 100 Maptiov 1 Kol pévovaty t. 1oV &ig T0¢ 1 Tod Ampihiov €otiv TO vopukov Iacyo.
T@° 00Td TPOT® GO TPOTOL MG EVVENKUSEKATOVS KOKAOV YHPILE" TPOOTIOEVTOC GOV K Kol VOEL-
Aovtoc! 1B evprioelg EkGotov ETovg TO vopkdv TI4cy0, GECUEIOUEVOY ¥ KOKA®V HT| TPoode-
YOLEVOV TIV TPOSORKNY TOV K |15y GAAY DOEAOVE 10 Kai 0Vxid 1 (eioiv 88 odtot ¢ 0 1B), GAAY Kai O
1 U TPoodeYOUEVOS TV TPOSHNKNY TV K TPOcdEYETOL VPEANOVE 1 Kal oVl 1. Yivwoke 8¢ Kol
10070, OT1 6TOV £)xE1g TAETOV TV K NUEPDY APOUOY, &v T® Maptie éotiv 10 vopukov Ildoya: dmd
O 1 kol TV Gve (Gve 6 A&ym v apynv Tod unvog) (et avtag &v T@ ATPIAio.

F b 5 s d ) . o, f e ¢ \
*amarg. ° 10 ° dvvakoidekdtov < VENAOVTOG © VEIMUOV 01 & DEIAUOV

12 The text wrongly reads “quintuple” and “four-times”; see the commentary.

'3 This quantity coincides with the illuminated part of the lunar disk measured as a fraction of its diameter.

17 For this algorithm, see also Anonymus 830, sects. 24 and 33, in GASTGEBER, Neue texte XXX and XXX; Anonymus 982,
sects. 20, 23, and 27; Anonymus 1041, sect. 19; Anonymus 1092B, sect. 5, in KARNTHALER, Die chronologischen Abhand-
lungen 9.159-170; Anonymus 1172, sect. 21; Rhabdas 1342, sect. 9; Anonymus 1377, sect. 7, in PG XIX 1324-1328,
where the procedure is described in detail. Latin computistical treatises include Bede, De Temporum Ratione XXIV and the
Computus printed in PL CXXIX 1305. The connection with Western sources is also made explicit in Theophylaktos 956
(Labnpo Tod YNeov TO<V> Aative<v> &puvevbev [sic] mapd tod hayictov Ogopuiiktov), whose sect. 6 expounds the
same algorithm, and, in the same manuscript, in Nicholas 916, sects. 5-8 (which, however, does not present this algo-
rithm). See also NEUGEBAUER, HAMA 830, and NEUGEBAUER, Ethiopic Astronomy 164-165.

The conversion from seasonal hours to equinoctial hours is carried out in Rhabdas 1342, sect. 9, and in Anonymus 1377,
sect. 7, in PG XIX 1325-1328.

175
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God willing, a concise calculation of Passover

Know that, in the 1% cycle of the Moon, Passover is always found on April 2, and if you want to
easily find the remaining Passover’s from the 1*' cycle up to the 19", add 20, and remove 12, and
you find the Passover of each year. For instance, add 20 to April 2: and they yield 22. And there it
is, Passover is on March 22. And again remove 12 from March 22: and there remain 10. There it is,
Passover is on April 10. Calculate in the same way from the first up to the nineteenth cycle; adding
20 and removing 12 you will find the Passover of each year. There are 3 remarkable cycles that do
not admit of the addition of 20 but a removal of 11 and not of 12 (these are <cycles> 6, 9, 12), and
also <cycle> 17, while not admitting of the addition of 20, does admit of a removal of 12 and not of
11. Know also this, that whenever you have a number of days greater than 20, Passover is in
March; from <number> 18 and above (I mean by “above” the beginning of the month), seek for
them [scil. the days] in April.

A computation of Passover. To follow the prescription more easily, recall the sequence of Passover dates:

m|1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19

pm|2 22y 10 30, 18 7 27y 15 4 24y 12 1 21, 9 29y 17 5 254 13

The algorithm is'"®:

(Pm) —

| Pm € A, P < 11, ppy + 20 = 1= Pt

| pm €A, pm> 11, pp— 11 = 14=ppi1.

|pm EM,pm— 12 —: IA:pmH-

This algorithm formalizes the following data: since each year the epacts increase by 11 units, the date of Pass-
over shifts backwards by 11 days from an assigned year to the next (second branch of the algorithm). However,
Passover cannot fall earlier than March 21; therefore, such early dates are replaced by a day falling one lunar
month later (this lunar month lasts 30 days, as we shall see in a moment); to this day does not correspond the same
date in April, but the numerically precedent date because March has 31 days. Therefore, whenever the Passover
date falls outside the lower bound, March 21, of the Passover interval 21,,<p <18 A177, it enters again this interval
from its upper bound numerically lowered by 12 units instead of 11 (third branch of the algorithm). Finally (first
branch of the algorithm), adding 20 comes from 20 =— 11 (mod 31). Thus, the prescription is as follows: from the
date of Passover of cycle year 1 alternately add 20 and subtract 12, with the exceptions of cycles 6, 9, 12 (resp.
17), which are reached by subtracting 11 (resp. 12) from the previous cycle instead of adding 20. Of course, the
special case of cycle 17 corresponds to the saltus lunae. The text has a final remark (see sects. 12 and 22 for the
clarification about the adverb dvw): if p,, > 20, then p,, € M; if p,, < 18, then p,, € 4.

Both in primary sources and in secondary literature'’®, the Passover terms are the 29-day time interval
21, < p <184, but the principle of 11-day backward shift of lunar dates entails that the real terms are the bounda-
ries of the 30-day time interval 21,,< p < 19,: April 19 is discarded because this date coincides with a gap in the
Passover sequence and it is located at the end of the interval. This can be seen in the “wheel” (tpoydc) below,
which is the standard representation of many cyclic structures in early Computi. The days in the time interval
21 <p <194 (middle ring) are numbered in succession (outer ring, clockwise); the inner ring carries the se-

176 For this algorithm, see George, sect. I1.3, in DIEKAMP, Der Monch 29.7-30.2; Anonymus 686, sect. 3; Anonymus 830,
sect. 27; Anonymus 951, sect. 18; Psellos 1092, sect. 1.4, in REDL, La chronologie appliquée 1 213-215; an isolated proce-
dure in Par. suppl. gr. 387, f. 149v, in ACERBI, Struttura e concezione, Appendice A.6; Blastares 1335, in RHALLES — POT-
LES, X0vtaypa VI 417 n. 1; Rhabdas 1342, sect. 15.

17 For this interval, see also sect. 22 and the computistical glossary above.

178 Almost all Computi list the Passover and Paschal terms. Early explicit statements are in Stephanus-Heraclius’ in Prolemaei
Tabulas Manuales, sect. 30, in USENER, De Stephano Alexandrino 314; Maximus, Enarratio 1.14, in PG XIX 1232; Anon-
ymus 951, sect. 16; Anonymus 982, sects. 14 and 29; the Computus contained in Par. suppl. gr. 690, sect. 4; Anonymus
1090, sect. 1 (with an explanation); Psellos 1092, sect. 1.4, in REDL, La chronologie appliquée I 213.11-21, Anonymus
1183, sect. 8; Anonymus 1204.
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quence of Passover dates, identified by the associated lunar cycle year'”’. The direction of the 11-day cyclic

backward shift is exemplified inside the wheel, by means of dots (first three steps) and of two arrows. The shift is
cyclic in the sense that March 21 is adjacent to April 19 and the shift crosses this border. In this diagram, the sal-
tus lunae occurs after lunar cycle year 19: the Passover date of lunar cycle year 1 is found 12 cells (and not 11
cells) counterclockwise to the Passover date of lunar cycle year 19.
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One has to know how the years from the foundation of the world are removed for finding the in-
diction and the remaining cycles

15 <times> 400, 6000; 15 <times> 20, 300; 15 <times> 6, 90.

How one must find the cycle of the Sun. 20 <times> 200, 4000; 8 <times> 200, 1600; 20
<times> 20, 400; 8 <times> 20, 160. There it is, we removed 6 thousand and 160: and there remain
240 from <6>400; 20 <times> 5, 100; 8 <times> 5, 40: there remain 100 as a remainder; 20
<times> 3, 60; 8 <times> 3, 24: there remain 16 as a remainder from 100, which is the 16" cycle of
the Sun.

How the removal of the Moon can be found. 19 <times> 300, 5700; 19 <times> 30, 570. There it
is, we removed 6 thousand and 270 years: there remain 130 as a remainder; 19 <times> 6, 114:
there it is, there remain 16, which is the cycle of the Moon of the present year.

A computation of indiction, solar, and lunar cycle years. The computation is carried out, for current year AM
6400 [= AD 891/2], by subtracting suitable multiples of 15, 28, and 19, respectively. The results are i = 10, s = 16,
and m = 16 (see sect. 7).

' For instance, the cell in the middle ring carrying number 13 corresponds to the cell in the inner ring carrying number 3.
This means that, in lunar cycle year 3, Passover falls on April 13.
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APPENDIX. A CONCORDANCE OF ANONYMUS 830 AND ANONYMUS 892

Anonymus 830 is edited in GASTGEBER, Neue texte XXX—XXX; the division into sections is mine.

ls6: 1. An algorithm for computing the epacts of the months and the weekday of the beginning of a month {see footnote 153}

2. A compendium of computistical parameters: subdivisions of the year and length of the solar, lunar, and indiction cycles {~
Anon. 892, sect. 1}

3. A (meaningless) computation of solar cycle years

l36v 4. An algorithm for computing the epacts of the sun (with fractional parts), {= Anon. 892, sect. 20} and their use to find the
weekday of the beginning of a month

5. About the period of 532 years {~ Anon. 892, sect. 7}

6. An algorithm for computing the epacts of the sun {= Anon. 892, sect. 2}

7. An algorithm for computing the epacts of the Moon; features of the lunar cycle {= Anon. 892, sect. 14}

l37: 8. Lunar wheel, featuring lunar cycles — epacts of the Moon — Passover, Byzantine epact sequence

l37v 9. Solar wheel, featuring solar cycles — epacts of the Sun — leap years, with fractional epacts {= Anon. 892, sect. 20}

l38:—v 10—12. Interpretation (dujynoig) of the three wheels (md6dov); the wheel for indiction is missing {= George, sect. 111}

lsor 13. A computation of solar, lunar, indiction, and leap-year cycle years for AM 6321 [= AD 812/3] {= Anon. 892, sects. 3-7
and 9-11, 27, 21}

14. An algorithm for computing the epacts of the sun {= 4non. 892, sect. 2}

15. An algorithm for computing the weekday |30, of a given day {= Anon. 892, sect. 12}

16. About the Period of 532 years; the role of Hero and Athanasius; the number of &Aoo {= Anon. 892, sect. 7}

17. An algorithm for computing the weekday using September 30 as epacts {= Anon. 892, sect. 13}

18. The norm 50 algorithm for Passover; Easter is the Sunday next thereafter {see Anon. 892, sect. 12}

19. Age of the Moon computed for April 4, leap-year, m = 12, |4, using the algorithm of the nevramlodvieg kol &anhodvteg
{see Anon. 892, sect. 8}

20. A computation of the solar cycle year of indiction 8, AM 6338 [= AD 830]; features of the solar cycle {see Anon. 892,
sects. 4 and 10}

21. A computation of the lunar cycle year of indiction 8, AM 6338 [= AD 830]; features of the lunar cycle {see Anon. 892,
sects. 5 and 11}

lsov 22. An algorithm for computing the lunar cycle years by adding 11 [end-of-century 6300 is intended] and removing the
result by 19 {= Anon. 892, sect. 7}

23. An algorithm for computing the indiction; a computation of the indiction of indiction 8 (sic) AM 6338 [= AD 830]; fea-
tures of the indiction cycle {see Anon. 892, sects. 6 and 9}

24. An algorithm for computing the duration of visibility of the waxing and waning Moon {see Anon. 892, sect. 25}

25. The norm 50 algorithm for Passover; |4;, an algorithm for computing Meat-Fare Sunday {= Anon. 892, sect. 12}

26. A concise computation of Passover {= Anon. 892, sect. 16}

27. A concise |41, computation of Passover {= Anon. 892, sect. 26}

28. The norm 50 algorithm for Passover; |4, an algorithm for computing the weekday of an assigned day; an algorithm for
computing Meat-Fare Sunday {see Anon. 892, sect. 12}

29. An algorithm for computing the weekday of the beginning of a month by using the solar epacts {= Anon. 1092B, sect. 16}

30. Partition of the base epacts of the Moon as 11 =5 + 6 {= Anon. 1092B, sect. 2}

31. How the bissextile day comes to be {= Anon. 892, sect. 3}

32. About the embolismic years |43, and months {= Anon. 892, sect. 19}

33. An algorithm for computing the duration of visibility of the waxing and waning Moon {see Anon. 892, sect. 25}

34. An algorithm for computing the epacts of the Moon {see Maximus, Enarratio 111.10, in PG XIX 1272}

35. The norm 105 algorithm for |43, Passover {= Anon. 892, sect. 17}
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