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The Easter Computus in Par. suppl. gr. 920, dated to year 892, is the earliest known Byzantine Easter Computus that is not embedded in a discursive framework but is a collection of bare procedures and examples. After an outline of the tradition of Easter Computi, I present four approaches to this Computus: an edition of the Greek text that preserves all linguistic features of the original; a faithful translation; a transcription of the involved algorithm in a mildly symbolic formalism; and a discursive elucidation of the same algorithm. The symbolic transcriptions will prove more useful in comparing the procedures set forth in different Computi than the algebraic formulas usually used to formalize them.

INTRODUCTION

Easter Computi are a body of chronological writings whose subject-matter is the determination of the date of Easter. Most modern accounts of Easter Computi are focused on their history in Western Europe, where they were a major component of the mathematical lore available in the Early Middle Ages, and whose literature-theoretical categorization underwent an evolution that eventually made them general scientific encyclopedias 1 . After an initial period that Western and Easter Computi share (say ca. AD 150 to ca. AD 550) and that-with its controversies on the Paschal terms and its competing Easter cycles-has been thoroughly studied [START_REF]A compendium of computistical parameters: subdivisions of the year and length of the solar, lunar, and indiction cycles {≈ Anon[END_REF] , a branching occurs in the -----entered Byzantine low-brow intellectual production. Thus, there are several motives of interest in publishing this Computus.

However, a bare Computus, even translated, is as next to a totally opaque piece of writing as possible. To complete my edition with adequate context, I shall outline the evolution and the main actors in the tradition of Byzantine Easter Computi; I shall also explain the structure of the tradition and the stylistic codes adopted in Computi. A computistical glossary and a thematic word index prelude to four approaches to Anonymus 892: these are an edition of the Greek text that preserves all linguistic features of the original; an English translation; a discursive elucidation of the algorithms employed in the text; and, embedded in the latter, a transcription of these algorithms in a mildly symbolic formalism. I am convinced that the symbolic transcriptions are the real highlight of my approach: they are more faithful to the syntactical structure and to the "mathematical content" of the original procedures than algebraic formulas can be summarizing entire procedures in one single equality, thereby erasing their operational structure. Algorithms will certainly prove more accurate than the "static" algebraic formulas, if our goal is to compare the procedures set forth in different Computi.

THE TRADITION OF EASTER COMPUTI: EVOLUTION AND MAIN ACTORS

The early history and evolution of Easter Computi can be summarized as follows. The date of Easter, the most important Christian festival, depends, in a way that underwent early variations, on the date of the Jewish festival Passover, for the Gospels relate that Jesus had his Last Supper in the evening of that day (then a Thursday) [START_REF]An algorithm for computing the epacts of the Moon; features of the lunar cycle {= Anon. 892[END_REF] , died on Friday, and resurrected on Sunday. Passover corresponds to the 14 th day of a schematic lunar month and must occur on or straight after the Spring equinox, whose date was fixed, as far as computistical matters are concerned, to March 21. Easter is the first Sunday after Passover; if Passover falls on Sunday, Easter is celebrated on the Sunday next thereafter. Since Passover occurs on a fixed day of a specific lunar month, its date and the date of Easter vary from year to year. The dates of all other festivals in the annual Christian calendar that depend on Easter must vary with it, which explains the reason why the Easter date must be calculated in advance. In order to determine this date, it is necessary to know-for the given year and possibly for a string of years-the date of the beginning of each lunar month, which the Jews set at first crescent visibility. This can be ascertained by observation (and thus with no advance), by means of geometric models of the motions of the Sun and of the Moon that may even be very refined but difficult to use, or by means of reasonably accurate approximations of these motions. In the latter two cases, what is computed is the instant, or the date, of the new Moon. The only viable solution for such a widespread community as Christendom was the third. The relevant approximations of the motions of the Sun and of the Moon are called "cycles": in the case of the Moon, a cycle is a time interval after which the sequence of new Moons repeats itself on the same dates. Some of these cycles were well-known in Babylonian and in Hellenistic astronomy 8 . In Computi, and throughout the present paper as well, "Passover" is therefore the 14 th day of a schematic lunar month in a lunar cycle 9 .

The first cycle that was devised for the purpose of computing the date of Easter comprises 8 calendar years, and was employed by some Hippolytus and by someone called "Computist of 243". Our sources for it are a stone chair of "Hippolytus" (it was carved in the 2 th century, engraved in -----was allowed to fall on the day immediately after Passover or not (eventually it was: in the middle of the 5 th century, this point sparked a controversy between Alexandria and Rome, which championed the losing view) [START_REF]A computation of solar, lunar[END_REF] .

Names of major characters in the early evolution of the 19-year cycle are as follows. Anatolius, bishop of Laodicea until AD 283, first devised this cycle and clearly stated the "rule of the equinox". Theophilos, patriarch of Alexandria until AD 412, constructed a 100-year table for AD 380-479. His nephew and successor patriarch of Alexandria until AD 444, Cyril, set out a recalculated 95-year table for AD 437-531 adapted to the Roman calendar [START_REF]An algorithm for computing the epacts of the sun {= Anon[END_REF] . Annianus (ca. AD 400), in the framework of a general chronography, created the Alexandrian world era by synchronizing a proleptic era Diocletian with the 19-year cycle and devised a 11×532-year table accompanied by now-lost operational rules [START_REF]An algorithm for computing the weekday | 39v of[END_REF] . Victorius of Aquitaine, in an attempt to solve the above-mentioned controversy, proposed in AD 457 a table of 532 years that unsuccessfully tried to reach a compromise between Roman and Alexandrian conventions [START_REF]About the Period of 532 years; the role of Hero and Athanasius; the number of ἄλφα {≈[END_REF] . Dionysius Exiguus continued in AD 525 Cyril's tables for the ensuing 95 years AD 532-626, crucially introduced the Incarnation era that grounds the anno domini era still in use, was decisive in establishing the view that the rules for computing Easter were fixed during the Council of Nicaea [START_REF]An algorithm for computing the weekday[END_REF] , and, translating Greek sources, composed an extant-and extremely successful as to diffusion-set of algorithms for computing the quantities required to construct a 19-year cycle [START_REF]The norm 50 algorithm for Passover; Easter is the Sunday next thereafter {see Anon[END_REF] . These algorithms are called argumenta, which ----- [START_REF]A computation of solar, lunar[END_REF] In the terminology I shall explain in the glossary, the Alexandrian Easter limits ranged from luna XV to luna XXI, the limits endorsed by the Roman Church from luna XVI to luna XXII. In addition, the Roman Church deemed them unacceptable Easter dates after April 21, the day celebrating the foundation of the town. In the 5 th century, the Roman Church still used the 84( 12)-year cycle. The 84 (14) cycle in the latercus was supplemented with limits from luna XIV to luna XX and the equinoctial term was March 25, the traditional date in Rome. [START_REF]An algorithm for computing the epacts of the sun {= Anon[END_REF] The prologues to the two tables, edited already in KRUSCH, Studien (1880) 220-226 and 337-349, have [START_REF]An algorithm for computing the weekday | 39v of[END_REF] As 11×532 = 5852 and Annianus set the beginning of his era in BC 5492 March 25, the end of the eleventh cycle falls in AD 360/1. The epoch of the Alexandrian era was eventually reset to BC 5493 August 29 (the first day of the Alexandrian calendar year). This shifts back the end of the eleventh cycle to AD 359/60. [START_REF]About the Period of 532 years; the role of Hero and Athanasius; the number of ἄλφα {≈[END_REF] Victorius is also known for his arithmetical tables: see A. M. PEDEN, Abbo of Fleury and Ramsey: Commentary on the Calculus of Victorius of Aquitaine. Oxford 2003. Despite the mathematical abilities testified to by these tables, in his Easter table Victorious got involved in a series of mistakes: see JONES, Bedae Opera 63, and MOSSHAMMER, The Easter Computus 239-244. [START_REF]An algorithm for computing the weekday[END_REF] This belief was finally reduced to its historical measure in L. DUCHESNE, La question de la Pâque au Concile de Nicée.

Revue des Questions Historiques 28 (1880) 5-42, and again in F. DAUNOY, La question pascale au concile de Nicée. Échos d' Orient 24 (1925) 424-444, but see already A. DE MORGAN, On the Ecclesiastical Calendar. Companion to the Almanac (1845) 1-36: 6-8. [START_REF]The norm 50 algorithm for Passover; Easter is the Sunday next thereafter {see Anon[END_REF] Sources for the authors mentioned in this list are edited in MOMMSEN, Chronicorum Minorum I 667-756, and KRUSCH, Studien (1938). A recent overview, with discussion of previous scholarship, is found in MOSSHAMMER, The Easter Computus 130-203, 239-277, and 339-356 (on the era of Dionysius). The dates preceding Dionysius and that I have given in the era AD should more accurately be given in the era Diocletian. What KRUSCH, Studien (1938) Dionysius further qualifies as Aegyptiorum. Owing to the principle of marginal areas, a major witness to the early Alexandrian 19-year cycle are the Computi in Ethiopic sources; the same cycle, in Dionysius' version, was also sanctioned in Bede's De Temporum Ratione.

At the end of the whole process a definitive list of Passover and Easter dates [START_REF]Age of the Moon computed for April 4, leap-year, m = 12, | 40[END_REF] and a stable set of rules was arrived at, and the tradition of Eastern Computi branched off from the mainstream of Latin Computi, which culminated in Bede's masterpiece (AD 725) before entering a period of critical re-evaluation of the whole method. Accordingly, our story reaches a branching point, and takes the nearly deserted route to Byzantium. One might ask how the story should not also end, if it is true that a definitive list of Passover and Easter dates was established. Well, part of the answer will be given in the following Section. The remaining part of the answer is that first, the Byzantines adopted a world era different from the Alexandrian world era, a fact that entailed a reorganization of the lunar cycle [START_REF]A computation of the solar cycle year of indiction 8[END_REF] ; second, computistical techniques were an integral part of scientific and notarial lore and were therefore transmitted as such [START_REF]A computation of the lunar cycle year of indiction 8[END_REF] ; and third, the mathematical notions and the algorithms for computing the quantities required to construct a 19-year cycle underwent an evolution. This evolution is the history of Byzantine Easter Computi, which ended with the clear perception that a reform of the cycles was necessary.

Among the earliest Greek sources of interest to our purposes figure the wheel (= table of circular format) IV in the Chronicon Paschale, which records the dates of Passover from AD 344 to 362 [START_REF]An algorithm for computing the lunar cycle years by adding 11 [[END_REF] ; an algorithm for computing the weekday of an assigned date in Paul of Alexandria, Apotelesmatica 19-20 (AD 378) [START_REF]) AM 6338 [= AD 830]; features of the indiction cycle {see[END_REF] ; Anonymus 487 mentioned above and an algorithm for computing the epacts of the Moon, dated Diocletian 239 [= AD 522/3] 24 ; two almost identical algorithms for finding the age of the Moon of a given date, found in Theon of Alexandria, "little commentary" on Ptolemy's Handy Tables 20 (AD 364) [START_REF]The norm 50 algorithm for Passover; | 41r an algorithm for computing Meat-Fare Sunday {= Anon[END_REF] , and in Stephanus of Alexandria, in Ptolemaei Tabulas Manuales 12 (AD 617) [START_REF]A concise computation of Passover {= Anon[END_REF] . In the latter treatise, sects. 28-30 (AD 623) were almost certainly authored by the emperor Heraclius, and contain a concise Easter Computus that will prove important in our perspective [START_REF]A concise | 41v computation of Passover {= Anon[END_REF] . To the same period belong three fully-fledged treatises. The Chronicon Paschale ----- [START_REF]Age of the Moon computed for April 4, leap-year, m = 12, | 40[END_REF] Maximus, Enarratio I.15, in PG XIX 1232, explicitly makes this point. [START_REF]A computation of the solar cycle year of indiction 8[END_REF] On the transition from the Alexandrian era to the Byzantine era, see most recently MOSSHAMMER, The Easter Computus 278-316, with discussion of previous scholarship. See also the commentary on sect. 12 of Anonymus 892. [START_REF]A computation of the lunar cycle year of indiction 8[END_REF] However, no documents prove that this specific lore was taught in Byzantine schools or higher institutions; see also point B of the next Section. On scientific teaching in Byzantium, see most recently D. MANOLOVA -I. PÉREZ MARTÍN, Science Teaching and Learning Methods in Byzantium, in: A Companion to Byzantine Science, ed. S. Lazaris. Leiden -Boston 2020, 53-104. In Latin West, computistical techniques were an integral part of monastic education; see I. WARNTJES, Seventh-century Ireland: the Cradle of Medieval Science? in: Music and the Stars: Mathematics in Medieval Ireland, ed. M. Kelly -C. Doherty. Dublin 2013, 44-72. 22 See the edition in L. DINDORF, Chronicon Paschale. I-II. Bonnae 1832 I 534. A reconstruction is put forward in GRUMEL, La Chronologie 232, and see also discussion at 77-84 (the wheel is reproduced on page 78). A different reconstruction is found in MOSSHAMMER, The Easter Computus 293-296. [START_REF]) AM 6338 [= AD 830]; features of the indiction cycle {see[END_REF] See the edition in E. BOER, Pauli Alexandrini elementa apotelesmatica. Lipsiae 1958, 39.17-41.16. [START_REF]An algorithm for computing the duration of visibility of the waxing and waning Moon {see[END_REF] Anonymus 523 is found in the manuscript Città del Vaticano, Biblioteca Apostolica Vaticana, Vat. gr. 1291 (shortly after 811; Diktyon 67922) f. 47r, and in the apographs of Vat. gr. 1594 (late 9 th century; Diktyon 68225) (most recent edition in F. ACERBI, Topographie du Vat. gr. 1594, in: La «collection philosophique» face à l'histoire. Péripéties et tradition, ed. D. Bianconi -F. Ronconi. Spoleto 2020, 239-321: 285 and n. 19). It accompanies a wheel of epacts of the Moon for the years Diocletian 30-257 [= AD 314-541]. The wheel (for the years Diocletian 30-238 [= AD 314-522]), but not the algorithm, is also found in the manuscript Leiden, Universiteitsbibliotheek, B.P.G. 78 (813-20; Diktyon 37735) f. 2r. This is Table C4 in the typology of A. TIHON, Πτολεµαίου Πρόχειροι Κανόνες, Les Tables Faciles de Ptolémée, volume 1a, Tables A1-A2 (Publications de l'Institut Orientaliste de Louvain 59a). Louvain-La-Neuve 2011, 61-66. [START_REF]The norm 50 algorithm for Passover; | 41r an algorithm for computing Meat-Fare Sunday {= Anon[END_REF] See the edition in A. TIHON, Le "Petit Commentaire" de Théon d'Alexandrie aux Tables Faciles de Ptolémée (StT 282).

Città del Vaticano 1978, 256.8-258.10 and 267.6-268.6. 26 See the edition in J. LEMPIRE, Le commentaire astronomique aux Tables Faciles de Ptolémée attribué à Stéphanos d'Alexandrie. Tome I (Corpus des Astronomes Byzantins 11). Louvain-La-Neuve 2016, 154. 2-158.19 and 176.1-15. 27 See the edition in DINDORF, Chronicon Paschale II 210-219; H. USENER, De Stephano Alexandrino, in: H. USENER, Kleine Schriften III. Leipzig -Berlin 1914, 311-317. See also GRUMEL, La Chronologie 101; TIHON, Le calcul.

(AD 629/30) features a Syntagma de Pascha that provides sparse technical material, whereas the main body of the Chronicon includes a dozen of computistical calculations difficult to harmonize with each other [START_REF]The norm 50 algorithm for Passover; | 42r-v an algorithm for computing the weekday of an assigned day; an algorithm for[END_REF] . In general, the Chronicon is a source of primary importance, but in our perspective it contributes little. Of the utmost importance are two complete Computi-contemporary with each other and possibly in explicit competition-that are embedded in a discursive framework and were quite obviously intended as reference works: first, the Brevis Enarratio Christiani Paschatis of Maximus the Confessor (AD 640/1) [START_REF]An algorithm for computing the weekday of the beginning of a month by using the solar[END_REF] , for some time Heraclius' secretary, the champion of the Alexandrian era and our sole early source for the approach to Computus that goes under the name of πενταπλοῦντες καὶ ἑξαπλοῦντες [START_REF] Mc Carthy -D | The 'Lost' Irish 84-year Easter Table Rediscovered[END_REF] ; second, the computistical portion of the treatise on heresies by George Presbyter (AD 638/9), the champion of the Byzantine era [START_REF]How the bissextile day comes to[END_REF] .

After the proto-Byzantine period and a couple of centuries marked by partial, isolated and still unpublished contributions, the Eastern Greek tradition surfaces in three different stylistic formats: tables, paschalia, and Computi proper, namely, a collection of rules for calculating the quantities involved in a 19-year cycle. The earliest Byzantine Easter Computus that is not embedded in a discursive and doctrinal frame 32 , whose data are not set out in tables, and that is shaped as a collection of bare prescriptions formulated in algorithmic style was written at the end of the 9 th century. It is dated to 892 and it is contained in the tenth-century manuscript fragment Paris, Bibliothèque nationale de France, suppl. gr. 920 (southern Italy, Diktyon 53604) ff. 2r-16r. I shall call it Anonymus 892 [START_REF]An algorithm for computing the duration of visibility of the waxing and waning Moon {see[END_REF] . This is the Computus which I shall edit in the present paper.

Nearly the same computistical material as we read in Anonymus 892 can be found, with the addition of two wheels and of their explanation, in Anonymus 830. This Computus is contained in folios 36r-43v of Ambr. A 45 sup., a twelfth-century collection of non-literary texts assembled in a middle-brow notebook that preserves excellent computistical material. The manuscript witnesses of both Anonymus 830 and Anonymus 892 come from Southern Italy-a further application of the principle of marginal areas-and show that a stable body of very early computistical lore was kept alive for centuries in a peripheral region of the Byzantine empire. Anonymus 830, however, exhibits a marked character of compilation: several algorithms are repeated in different sections of this ----- [START_REF]The norm 50 algorithm for Passover; | 42r-v an algorithm for computing the weekday of an assigned day; an algorithm for[END_REF] See the edition in DINDORF, Chronicon Paschale I 3-31 (Syntagma de Pascha) 368-415 (this [START_REF] Mc Carthy -D | The 'Lost' Irish 84-year Easter Table Rediscovered[END_REF] For this approach, see also the commentary on sect. 8 of Anonyms 892. [START_REF]How the bissextile day comes to[END_REF] See the edition in F. DIEKAMP, Der Mönch und Presbyter Georgios, ein unbekannter Schriftsteller des 7. Jahrhunderts. BZ 9 (1900) 14-51. Two of the three wheels that are missing in Diekamp's reference manuscript-namely, Vat. gr. 2210 (10 th century; Diktyon 68841), which contains an explanation of these wheels-have been recently recovered: GASTGEBER, Neue texte XXX-XXX; however, and contrary to Diekamp's assessment (50-51), I doubt that the explanation of the wheels was an integral part of George's treatise. On George's treatise, see also SCHISSEL, Neue Zeugnisse 322-323; M. RICHARD, Le traité sur les hérésies de Georges hiéromoine. REB 28 (1970) 239-269;LEMPIRE, Le calcul. 32 This framework usually comprises a discussion of theological issues and of competing approaches to the determination of Easter. This is the structure of the treatises of George Presbyter and of Maximus the Confessor, of the Syntagma de Pascha preceding the Chronicon Paschale, and of the 8-book treatise-whose loss is much to be regretted-described in Photius, Bibliotheca, codex 116. Photius' description shows that this Computus included both a doctrinal exposition and computational procedures. See also Bibliotheca, codex 115. A comparison between codex 116 and Psellos' two-book treatise is carried out in G. REDL, Untersuchungen zur technischen Chronologie des Michael Psellos. BZ 29 (1930) 168-187: 172-176. [START_REF]An algorithm for computing the duration of visibility of the waxing and waning Moon {see[END_REF] The principle I have followed in assigning the denominations is to make the name of the author or the word Anonymus followed by the assumed current year. Between the two AD years corresponding to a given year in the Byzantine world era, the current year in a Computus is conventionally set to the year that includes the date of Easter; thus, the conversion shift is always 5508. As for Anonymus 892, the current year in sect. Computus (see the Appendix); the presence of the two wheels and of their explanation disrupts the stylistic continuity of the text. As only a handful of the sections of Anonymus 830 work out dated examples, it is clear that the (much later) copyist of Ambr. A 45 sup. ultimately depends on more disparate sources than the copyist of Par. suppl. gr. 920. Two centuries later, two Computi (Anonymus 1079 and Anonymus 1092A-C) [START_REF]An algorithm for computing the epacts of the Moon {see Maximus[END_REF] drew on the same tradition as Anonymus 830 and Anonymus 892. To the same period belongs Michael Psellos' chronological primer (dated AD 1092) 35 : this is a well-conceived, well-argumented, and moderately verbose literary product organized in two books and in sections itemized as quaestiones; the algorithms and the long lists Psellos provides are embedded in a discursive frame. One century later, Anonymus 1183 was written to be included in Par. gr. 1670 (Diktyon 51293), a manuscript that is a computational primer resulting from a conscious selection of texts, entrusted to an excellent copyist, and intended for conservation purposes 36 . The manuscript was designed to carry a complete technical record, both as regards the proposed material and on account of the possibility of a double level of use. Linguistic excellence, an inflexible formulaic rigidity, and the solutions of layout adopted in Par. gr. 1670 marked a turning point in the development of high-brow technical literature in Byzantium.

After Anonymus 1183, Easter Computi abound in our manuscript sources 37 . Dozens of anonymous Computi and chronological primers 38 , sometimes no more than few lines long and added in ----- (1927-1928) 197-236; 5 (1929-1930) 1976, 311-315. 36 The manuscript is the only independent witness of the two Logarikai, the important treatises of fiscal accounting composed shortly after the death of Alexios Cordoliani's database was huge and still very partial: on the one hand, the Western computistical tradition is incomparably richer than the parallel Byzantine tradition; on the other hand, he only sifted some libraries. Cordoliani's typology is threefold: mnemotechnic verse, tables, argumenta. These categories reduce to two in the case of Byzantine computistical literature, for I know of only one specimen of mnemotechnic verse: the short and incomplete 13 th century text I call Anonymus F, in political verse 45 . As for tables, two subcategories can be identified: real tables and Paschal lists, called paschalia. The former comprise day-finding tables, the Damascene Easter table and Gregoras' Easter table, but also new and full Moon tables, epacts and Passover tables, tables of the motion of the Moon, Horopodia 46 , calendars, chronological tables of any kind, some of which are firmly witnessed in the tradition of Ptolemy's Handy Tables. The paschalia list key chronological data for a specific string of years; such key data normally include the year in a suitable world era, the solar and lunar cycle years, the indiction, the dates of Passover, Easter, and Meat-Fare Sunday, the duration of the Apostles' Fast 47 . The paschalia may either take the form of mere lists or be organized as tables; more often, the data associated with a specific year are singled out by suitable iconic elements, usually circles. These paschalia may be richly illustrated; they present several motives of interest from the iconographic point of view. The paschalia were studied by Ferdinand Piper 48 .

Following a long-standing tradition, Cordoliani calls my "algorithms" argumenta; their collections I call (Byzantine) "Easter Computi" 49 , whose principal features are as follows.

(A) Easter Computi constitute themselves as a tradition: authors feel free to write their own compilation by drawing largely from previous compilations without bothering to mention them. From the material point of view, Easter Computi make a huge corpus, comparable in many respects to the geometric metrological corpus or to the corpus of Rechenbücher 50 . This corpus mainly comprises short, anonymous texts used as fillers of blank pages in manuscripts. However, as we have seen, almost all scientific personalities of the Palaiologan age-do not forget Michael Psellos well before them-set out to write on computistical matters: Nikephoros Gregoras, Matthew Blastares, Barlaam, George Chrysokokkes, Nicholas Rhabdas, Theodoros Meliteniotes, Isaak Argyros, all actively engaged in plagiarizing each other 51 Berlin -Heidelberg -New York 1975, 736-748, and NEU-GEBAUER, Ethiopic Astronomy 209-215. 47 On the meaning of most of these items see the computistical glossary below. 48 F. PIPER, Karls des Grossen Kalendarium und Ostertafel. Berlin 1858, 124-162, with a database of 27 elements. 49 I shall understand "Byzantine" henceforth. Suitable qualifiers will be added whenever I shall refer to other traditions. 50 For the geometric metrological corpus, see volumes IV and V in J. L. HEIBERG -L. NIX -W. SCHMIDT -H. Leiden -Boston 2020, 105-159. 51 Most of these authors appropriated verbatim elaborations of their predecessors and claimed that these were original discoveries of their own. This was a widespread practice in the Palaiologan period: F. ACERBI -D. MANOLOVA -I. PÉREZ MARTÍN, The Source of Nicholas Rhabdas' Letter to Khatzykes: An Anonymous Arithmetical Treatise in Vat. Barb. gr. 4.

(B) As far as we know, Computi were not included in the curriculum taught in Byzantine schools and higher institutions 52 . Nor have Computi ever featured in the scientific encyclopedias called Quadrivia or in manuscript-based wide-ranging collections of primary sources as the one assembled in years 1360-70 by Malachias in the two-volume set Par. gr. 2342 (Diktyon 51974) and Vat. gr. 198 (Diktyon 66829) 53 . The point is that "logistic", the discipline encompassing all computational sciences, was not part of the Greek heritage, with the sole, and marginal, exception of the anonymous Prolegomena to the Almagest, a Late Antiquity primer on the elementary arithmetical operations in the sexagesimal system, intended to assist the student of the Almagest and thereby transmitted, in its earliest manuscript witnesses, as a preface to it 54 . Accordingly, only the kinds of techniques expounded in the Prolegomena might find a place in Quadrivia, as a minor subsection of the discipline headed "astronomy" 55 . Consequently, our knowledge of Byzantine logistic-the highlight of Byzantine science 56 -rests on scattered specimens, on anonymous or authorial treatises such as those I have just mentioned or shall mention below or such as Planudes' Great Calculation According to the Indians, and, most importantly, on dedicated "counting books" assembled for conservation or for personal purposes. An example of the former category of counting books is the above-mentioned Par. gr. 1670, an example of the latter is the early fourteenth-century manuscript Par. suppl. gr. 387 (Diktyon 53135) 57 . Computi were often included in these counting books, along with computational primers on the decimal system, usually featuring Indo-Arabic numerals, geometric metrological collections, and Rechenbücher. A miniature specimen of such a counting book is Nicholas Rhabdas' Letter to Tzavoukhes.

(C) Easter Computi have "patrimonial" purposes: they often compile different (and sometimes contradictory: check Anonymus 892, sects. 14-17 and 2 vs. 20) algorithms for computing one and the same chronological item. No Computus known to me outlines even a sketch of a proof that the algorithms presented as alternatives are equivalent. Almost no Computus known to me outlines even a sketch of a justification of the algorithms presented and of the parameters they contain 58 . Any decently complete Computus counter-checks the algorithms by performing instance computations for a specific year; this is usually asserted to be the current year. Of course, such computa------JÖB 68 (2018) 1-37: 35-37, and ACERBI, Arithmetic and Logistic 107-108. The relevant part of George Chrysokokkes' Syntaxis Persica is edited in USENER, Ad historiam astronomiae symbola, in: H. USENER, Kleine Schriften III. Leipzig -Berlin 1914, 323-371: 369-370. 52 It is possible that counting and the elementary operations were taught in schools or in dedicated apprenticeship curricula, and we do have faint traces of this: see A. TIHON, Enseignement scientifique à Byzance. Organon 24 (1988) tions just confirm well-known and traditionally well-established dates. In a sense, if its goal is calculating the date of Easter in a given year, a Computus is a useless piece of scientific lore, and even more so because any Computus can be replaced by such a widespread tool as a Damascene Easter table and by the simple rules for converting years of the current era to lunar and solar cycle years, and for using the table 59 . On the other hand, this fact shows that Computi were conceived of as general chronological primers 60 , confirms the formidable inertia of any scientific sub-genre constituting itself as a tradition, and in the long run had at least the merit of making discrepancies between schematic and actual lunar phases patent. (D) Byzantine mathematics is "sectional" in its essence 61 : it mainly comprises works that do not display a tight deductive structure; consequently, these works can easily be-or actually aresubdivided into independent sections, or can easily be assembled to generate sectional texts: of this kind are logistic and geometric metrological writings, primers of any kind (including the primers on special astronomical "texts" like the Handy Tables and the Persian Tables) 62 , scholia, isagogic compilations, compendia like the Quadrivia. Even such complex architectures as Metochites' Abridged Astronomical Elements and Meliteniotes' Three Books on Astronomy are sectional writings; a notable exception is Barlaam's Logistic 63 . An extreme example of sectional mathematics are the above-mentioned Rechenbücher: these are collections of computational techniques and of arithmetical or geometric metrological problems unrelated to each other, sometimes in (fictitious) daily-life guise, sometimes organized in sequences of almost identical items, and often formulated in a debased algorithmic code. Mid-way between the extreme of the Rechenbücher and more structured sectional texts lie Easter Computi: a fully-fledged Computus is made of a sequence of selfcontained sections, each of which presents one or, less frequently, more algorithms for computing a specific chronological item. These items include: length and subdivisions of the solar year; reduction of years in a given era to indiction, lunar, and solar cycle years; epacts of the Moon and of the Sun; weekday of an assigned date; date and weekday of Passover, date of Easter; date of Meat-Fare Sunday; duration of the Apostles' Fast; age of the Moon at an assigned date in the year; embolismic months and years. Further chronological items can be computed. The sections of most Computi are usually very short, and contain only the algorithm and the examples.

(E) Easter Computi can be an integral part of several textual constellations. A Computus can be: A treatise embedded in a discursive and doctrinal frame, as Maximus' Enarratio and George Presbyter's Computus.

-----59 See, for instance, the instructions written by John Pediasimos on f. 319r of Vat. gr. 191 A part of an instruction manual to a collection of astronomical tables, as the algorithms contained in Stephanus-Heraclius' in Ptolemaei Tabulas Manuales (sects. 12 and 28-30, respectively), in George Chrysokokkes' Syntaxis Persica (sects. 9-10), in Meliteniotes' Three Books on Astronomy (sects. II. 19-20 and III.17, 23-24), and in the anonymous Paradosis in Tabulas Persicas (sect. 13), the latter three explaining how to use the "persian tables". A part of an anthology; this can be a low-brow notebook intended for personal use, as the one containing Anonymus 892; a middle-brow notebook, as Ambr. (F) Computi elude standard philological methods for establishing filiations among manuscript witnesses: as any highly sectional text, such collections can be assembled and disassembled very easily; moreover, any computistical algorithm or worked-out example can undergo (major) modifications in the process of transmission. Accordingly, hypotheses of filiation between versions of specific algorithms in different manuscripts can seldom be corroborated by uncontroversial textual evidence 67 . The only sensible attitude is to edit every Computus separately, even when there areas there frequently are-overlaps with other Computi. This remark, and the sectional nature of Computi highlighted in the previous point, explain my choice of presenting Anonymus 892 as a sequence of disconnected chapters, each of which is followed by the translation and a commentary.

(G) Computi make exclusive use of the "procedural" and "algorithmic" stylistic codes, as we shall see in the next Section.

(H) Computi are firmly anchored to current linguistic practice; they frequently exhibit the vernacular and an "aberrant" morphosyntax. Special attention to these linguistic features was paid in the editions procured by the school of Otmar Schissel 68 .

THE TRADITION OF EASTER COMPUTI: STYLISTIC FEATURES

The style adopted in Easter Computi requires an explanation. Greek and Byzantine mathematics adopted three stylistic codes: these are the demonstrative, procedural, and algorithmic codes 69 . The demonstrative code is the one in which ancient Greek geometry and number theory-in a word: Euclid's Elements-are written; it does not concern us here. In logistic treatises, the solution of a numerical problem, usually provided without any supporting "proof" in the strict sense, was encoded in two peculiar expository formats, which I have called the "procedural" and the "algorithmic" codes. These are two stylistic resources that formulate chains of operations on numerical entities, and such that the output of an operation is taken as the input of the operation next in order: they are the ancient counterpart of our computer programmes. In particular, the procedural code was aptly used to express in words operational sequences that we would summarize in an algebraic "formula". A description of these two codes runs as follows.

The procedural code formulates its prescriptions as a sequence of coordinated principal clauses with the verb in the imperative or in the first person plural, present or future; to each principal clause are subordinated one or more participial clauses coordinated with each other; the participle is a satellite and performs the function of modifier of the operating subject. There are, moreover, an initializing clause, which inserts the initial input into the procedure, and an end clause, which identifies the result of the chain of operations as the quantity to be calculated. This quantity is usually ----- declared in a clause that precedes the entire procedure. This code is used to formulate operatory prescriptions in the most general way; the verb forms-either finite or participial forms-represent the operations, and each verb form corresponds to exactly one operation; the involved mathematical objects, the "operands", are the complements of the verb forms and are designated by (sometimes extremely long) definite descriptions. The operations may be unary or binary. Procedures prominently figure in the astronomical corpus; they expound how to use numerical tables for computing relevant astronomical quantities. Thus, we find procedures in Ptolemy's Almagest 70 and in his own instruction manual to the Handy Tables, in Pappus' and Theon's commentaries thereon, in Stephanus' commentary on the Handy Tables, and in all similar Byzantine primers like the eleventh-century manual best witnessed in Par. gr. 2425 (Diktyon 52057) 71 , Metochites' Abridged Astronomical Elements (ca. 1316), George Chrysokokkes' Syntaxis Persica (1346), Meliteniotes' Three Books on Astronomy (1352), the anonymous Paradosis in Tabulas Persicas (1352). We also find procedures in the above-mentioned Prolegomena to the Almagest.

To become acquainted with this stylistic resource, let us read some examples in Byzantine writings. First, here is part of sect. 59 of the manual in Par. gr. 2425, which explains "how to find the true degree of the sought for syzygy" 72 : ζήτει πρῶτον τὰς πρὸ τῆς ζητουµένης συζυγίας µεσηµβρινὰς ἐποχὰς τῶν δύο φωστήρων, καὶ ἀπόγραψε ἰδίᾳ ἑκάστην. εἶτα λαβὼν τὴν ὑπεροχὴν τοῦ ἡλίου πρὸς τὴν σελήνην τίθει ἐν δυσὶ τόποις, καὶ πενταπλασίασας τὸν ἕνα τὰ γινόµενα λεπτὰ προστίθει τῷ ἑτέρῳ, καὶ τὰ µὲν ἐκ τοῦ πενταπλασιασµοῦ λεπτὰ πρόσθες τῇ ἐποχῇ τοῦ ἡλίου, τὰ δὲ τοῦ ἑτέρου τόπου -ᾧ προσετέθη τὰ ἐκ τοῦ πενταπλασιασµοῦ λεπτὰ -πρόσθες τῇ ἐποχῇ τῆς σελήνης. καὶ ἐὰν ἀµφοτέρων τῶν φωστήρων αἱ ἐποχαὶ ἴσαι γένωνται, ἐψήφισας ἀκριβῶς.

First seek for noon positions of the two luminaries before the sought for syzygy, and record each by itself. Then, taking the excess of the Sun over the Moon, put it in two places, and quintupling one add the resulting minutes to the other, and add the minutes from the quintuplation to the Sun's position, and add the figure of the other place-to which the minutes from the quintuplation were added-to the Moon's position. And if the positions of both luminaries turn out to be equal, you have computed correctly.

Second, let us read an extract from a geometric metrological compendium that contains only procedures; one is required to find the height of a pyramid 73 : πυραµίδος τήν τε κάθετον καὶ τὸ στερεὸν εὑρεῖν. ποίει οὕτως. καὶ τὴν µὲν κάθετον εὑρεῖν. πολλαπλασίασον µίαν τῶν πλευρῶν ἐφ' ἑαυτήν, καὶ τὸν γενόµενον δίπλωσον• εἶτα τοῦ γενοµένου λάβε τὸ δ ον , καὶ αὖθις ἀρίθµησον ἓν τῶν κλιµάτων ἐφ' ἑαυτό, καὶ ἐκ τοῦ γενοµένου τὸ ῥηθὲν δ ον ἀφελὼν τοῦ λοιποῦ λάβε πλευρὰν τετραγωνικήν, καὶ ἕξεις τὴν κάθετον.

Find both the height and the volume of a pyramid. Do as follows. And find the height. Multiply one of the sides by itself, and double the result; then take a 4 th of the result, and reckon again one of the edges by itself, and removing the said 4 th from the result take the square root of the remainder, and you will have the height.

Finally, here is a Passover algorithm that will deserve a fuller discussion below; we read the formulation found in Meliteniotes' Three Books on Astronomy III.24 74 :

-----70 See Almagest II.9, III.8, III.9, V.9, V.19, VI.9-10, XI.12, XIII. 73 The ancestor of the entire tradition is Vat. gr. 1411, ff. 17v-23r; our text is from f. 23r. A synopsis of the compendium is found in HEIBERG -NIX -SCHMIDT -SCHÖNE, Heronis Alexandrini V IC-CII. 74 Vat. gr. 792, f. 350r. I retain the original accents for the enclitics.

ἔστι δὲ καὶ δεύτερος τρόπος τῆς τοῦ Πάσχα καταλήψεως τοιοῦτος. τὸν γὰρ τῆς σελήνης κύκλον ἑνδεκάκις ποιήσαντες καὶ τοῖς γενοµένοις προσθέντες ἐπὶ µὲν τῶν ἄλλων κύκλων αὐτῆς ϛ ἐπὶ δὲ τοῦ ιζ ου καὶ τοῦ ιη ου καὶ τοῦ ιθ ου προσθέντες ζ καὶ ἀπὸ τοῦ οὕτω συναχθέντος ἐκβαλόντες τὰς ἐµπεσούσας εἰ τύχοι τριακοντάδας, εἶτα τῷ λοιπῷ ἀριθµῷ τὸν λείποντα εἰς τὸν ν λαβόντες, εἰ µὲν ἐστὶν λα ἢ ἐλάττων τῶν λα, ἀπογραψόµεθα ἡµέρας τοῦ Μαρτίου, εἰ δὲ ἐστὶ πλείων, τὸν µετὰ ἀφαίρεσιν τῶν λα ἀπογραψόµεθα ἡµέρας τοῦ Ἀπριλλίου, καθ' ἃς τὸ νοµικὸν ἐκτελεσθήσεται Φάσκα.

There is also a second way of taking Easter, namely, the following one. For doing eleven times the cycle of the Moon and adding 6 to the result for the other cycles of it, and adding 7 for <cycles> 17, 18, and 19, and taking away the intervening thirties, if any, from the <number> gathered in this way, then taking what remains to 50 for the remaining number, if it is 31 or less than 31, we shall write it down as days of March; if it is more, we shall write down the <number> after removal of 31 as days of April, on which Passover will be accomplished.

In all commentaries or computational primers mentioned above, procedures precede paradigmatic examples presented in algorithmic form and are intended to validate them.

The algorithmic code features paradigmatic examples featuring specific numerical values. After the initializing clause, the algorithms are expressed as a sequence of principal clauses coordinated by asyndeton; each clause formulates exactly one step of the algorithm and comprises a verb form in the imperative (this is the operation) and a system of one or two objects 75 -a direct and an indirect object-in the form of demonstrative or (cor)relative pronouns or of numerals (these are the operands). The operation is often expressed by means of the preposition that introduces the indirect object, without any verb form: "these by 3" instead of "multiply these by 3". The result of each operation is identified as such in a dedicated clause, with the verb in the present indicative (forms of γίνοµαι "to yield", "to result") 76 , sometimes replaced by an adjective in predicative position (mainly λοιπός "as a remainder" after a subtraction); both syntactic structures are equivalent to our equality sign 77 . An end clause identifies the result of the chain of operations as the quantity to be calculated. This quantity was usually declared in a clause that precedes the entire algorithm. The main feature of an algorithm is the systematic use of parataxis by asyndeton: no coordinants, (almost) no connectors, no subordination. The algorithmic flow is usually one-step: any step (1) accepts a number that is the output of the immediately preceding step as input and ( 2) inserts new data by means of the second operand. Operations in which neither operand is the output of the immediately preceding step are less frequent. Such operations induce a hiatus in the algorithmic flow; the hiatus is often syntactically marked by the presence of particles or of specific verb forms.

Let us read a part of Hero, Metrica I.8, as an example of an algorithm 78 :

οἷον ἔστωσαν αἱ τοῦ τριγώνου πλευραὶ µονάδων ζ η θ.

For instance, let the sides of the triangle be of 7, 8, 9 units. σύνθες τὰ ζ καὶ τὰ η καὶ τὰ θ• γίγνεται κδ• Compose the 7 and the 8 and the 9: it yields 24; τούτων λαβὲ τὸ ἥµισυ• γίγνεται ιβ• take half of these: it yields 12; ἄφελε τὰς ζ µονάδας• λοιπαὶ ε.

remove the 7 units: 5 as a remainder. πάλιν ἄφελε ἀπὸ τῶν ιβ τὰς η• λοιπαὶ δ.

Again, remove the 8 from the 12: 4 as a remainder. καὶ ἔτι τὰς θ• λοιπαὶ γ.

And further the 9: 3 as a remainder. ποίησον τὰ ιβ ἐπὶ τὰ ε• γίγνονται ξ• Make the 12 by the 5: they yield 60; ταῦτα ἐπὶ τὰ δ• γίγνονται σµ• these by the 4: they yield 240; ταῦτα ἐπὶ τὰ γ• γίγνεται υκ• these by the 3: it yields 720; τούτων λαβὲ πλευράν, take a side of these, καὶ ἔσται τὸ ἐµβαδὸν τοῦ τριγώνου. and it will be the area of the triangle.

-----75 Accordingly, the operation is unary or binary, respectively. 76 The former must be used to translate finite verb forms, the latter for participial forms. 77 In mathematical papyri, γίνεται can be replaced by a vertical stroke: see, for instance, PMich. III.145, in J. G. WINTER, Papyri in the University of Michigan Collection. Miscellaneous Papyri (Michigan Papyri 3). Ann Arbor 1936, 34-52. This shows that the verb form is equivalent to our equality sign in a strong sense. 78 ACERBI -VITRAC, Héron d'Alexandrie 174.3-7. This is "Hero's formula" for finding the area of a triangle once its sides are numerically given.

In ancient Greek sources, this code characterizes Hero's Metrica, and it is used exclusively in the geometric metrological corpus. In the Metrica, proofs using the "language of the givens" precede paradigmatic examples of computations in algorithmic form, and are intended to validate them. In all astronomical primers mentioned above, and more generally in all Byzantine texts of this kind, paradigmatic examples presented in algorithmic form are very frequent; they are systematically preceded by procedures; the latter are intended to validate the former. In these texts, algorithms are frequently replaced-or accompanied-by tabular arrangements of the performed operations; the tabular arrangements are nothing but an evolution of the algorithms in a more perspicuous format.

In Meliteniotes' Three Books on Astronomy, for example, each operation is frequently carried out three times: by means of a general procedure (called µέθοδος), by means of a procedure featuring actual numerical values (ὑπόδειγµα "example"), and finally by means of an algorithm in the sense just explained, often organized as a tabular set-up (ἔκθεσις τῶν ἀριθµῶν "setting-out of the numbers"). Let us read the second and third avatar of the procedure in Book III.24, read just above 79 : πάλιν κατὰ τὴν ἑτέραν ἔφοδον τὸν τῆς σελήνης κύκλον (ἤγουν τὸν β) ἑνδεκάκις ποιήσαντες καὶ τῷ γεγονότι ἀριθµῷ κβ προσθέντες ϛ καὶ τῷ συναχθέντι κη τὸν λείποντα εἰς τὸν ν λαβόντες, ὅς ἐστι ὁ κβ, τοῦτον ἀπεγραψάµεθα ἡµέρας τοῦ Μαρτίου, καθ' ἃς τὸ νοµικὸν γενήσεται Φάσκα.

[…] σελήνης κύκλος δεύτερος• τοῦτον ἑνδεκάκις• γίνεται κβ• πρόσθες ϛ• γίνεται κη• ὁ λείπων εἰς τὸν ν• γίνεται κβ. καί εἰσιν ἡµέραι τοῦ Μαρτίου, καθ' ἃς τὸ νοµικὸν ἔσται Φάσκα.

Again, according to the second procedure, making eleven times the cycle of the Moon (namely, 2) and adding 6 to the number that has turned out to result and taking what remains to 50 for the gathered <number> 28, which is 22, we have written this down as days of March on which Passover will occur.

[…] Second cycle of the Moon; this eleven times: it yields 22; add 6: it yields 28; what remains to 50: it yields 22. And they are the days of March on which there will be Passover.

Both the procedural and the algorithmic code are adopted in Easter Computi, as some examples will show. I use an algorithm in Anonymus 1183 as my paradigmatic example. I have selected this Computus because, as said, it is contained in a manuscript redacted for conservation purposes as part of a multi-purpose notarial vade mecum; we may expect a highly regularized style from it. Let us read sect. 9, which presents the algorithms for the epacts and the base 80 of the Moon 81 .

εἰ θέλεις εὑρεῖν τοῦ ἐνισταµένου ἔτους τὴν ποσότητα τοῦ θεµελίου τῆς σελήνης καὶ τὰς ἐπακτὰς αὐτῆς, κράτησον τὰ ἀπὸ κτίσεως κόσµου ἔτη ἕως τοῦ ἐνεστῶτος, καὶ πολυπλασίασον αὐτὰ ἑνδεκάκις, τουτέστιν ἑνδεκαπλασίασον αὐτά• εἰθ' οὕτως πρόσθες καὶ τοῖς ἀπὸ τοῦ ἑνδεκαπλασιασµοῦ ἀναβιβασθεῖσι καὶ τὸ ἐννεακαιδέκατον µέρος τῶν ἀπὸ κτίσεως κόσµου ἐτῶν, καὶ ἑνώσας ταῦτα ὁµοῦ ὕφειλον ἐπὶ τῶν λ, καὶ τὰ καταλειφθέντα κάτωθεν τῶν λ εἰσὶν αἱ ἐπακταὶ τῆς σελήνης• τούτοις προστίθει ἀεὶ τὴν πρώτην τοῦ Ἰαννουαρίου µηνός, καὶ εὑρήσεις τὴν ποσότητα τοῦ θεµελίου τῆς σελήνης.

----- 79 Vat. gr. 792,f. 352r and 353r,respectively. 80 The "base" of the Moon is not used in Anonymus 892. For the "base" of the Moon, see footnote 95 below. 81 The verb forms in the aorist tense must be translated with a present, unless they occur in first or second person verb forms or whenever a second-person subject is expressed. For in algorithms no temporal connotation can be present; the aorist tense there adopted simply intimates absence of temporal or aspectual connotations (the "pure action" expressed by the verb): this is possible only in the aorist, which is the less connotated pole of the aspectual opposition (see J. HUMBERT, Syntaxe grecque. Paris 1960, 133-181 passim, and again my discussion in ACERBI, The Logical Syntax, sects. 1.1-3). The reader will also note that there is an adverbial καὶ in excess in a clause (maybe both adverbial καὶ are in excess there); this feature is common in Computi; it is in fact a general trait of Greek mathematical style: ACERBI, The Logical Syntax, sect. 5.3.5.

If you want to find the quantity of the base of the Moon and its epacts for the present year, keep the years from the foundation of the world up to the present one, and multiply them eleven times, that is, undecuple them; then again also add the nineteenth part of the years from the foundation of the world to the <numbers> brought up from the undecuplation, too, and uniting them together remove by 30, and that which remains down from 30 are the epacts of the Moon; always add the first <day> of the month of January to these, and you will find the quantity of the base of the Moon.

Let us dissect this neatly formulated algorithm: The first column numbers the truly operative steps of the algorithm. The second column sets out the "connector", which links two algorithmic steps; one of these steps can be the "initialization" clause or the "identification of the result". In the column "generality" one finds the linguistic units (usually adverbs) that mark operations or operands that are structural parameters of the algorithm. The "operation" column contains the verb forms that express the operations. Note step 3, where two operations are nested as a principal clause + participial satellite. The next-to-last column sets out the "operands", which are always designated by standard definite descriptions; I have conventionally included in this column the subject of the clause that identifies the result. The asterisks mark the position of the operands/operation omitted in the operation/operands column. Steps (1) and ( 3) of the first algorithm comprise unary operations, steps (2) of the first and (1) of the second algorithm are binary operations, to which two operands are accordingly associated. The last column identifies the "phase" of the entire algorithm. It is clear that two sequentially linked algorithms are at work here. If set against my categorization above, the text we have read is clearly a "procedure", even if I shall consistently use the denomination "algorithm". The procedural character is confirmed by the massive presence of definite descriptions, like "the nineteenth part of the years from the foundation of the world" above, not accompanied by any numerical exemplification.

According to the previous discussion, my symbolic transcription is as follows 82 :

(

1) (2) (3) (1) (y) → 11y → 11y + y/19 → (11y + y/19) mod 30 = e m → e m + 1 J = b m .
where y is the year in the Byzantine world era, e m and b m denote the epacts and the base of the Moon at lunar cycle m, respectively, and 1 J is January 1. The modulo reduction computes the remainder of the division by 30 of what precedes the "mod" sign 83 .

-----As in the above example, the symbolic transcriptions I shall use throughout this article are intended faithfully to represent the computational flow. The initial input is the assumed quantity; it is enclosed in parentheses, thus: (y). A self-contained step of the transcription formalizes a complete "participial clauses + principal clause" sentence of the algorithm (thus, several operations may feature in it). Steps in which the output-input chain is not interrupted are linked by an arrow →. The operands in a given step are usually written in the same order as that in which they are introduced in the text. The sign | separates independent steps that follow one and the same step (that is, a branching has occurred). A full stop indicates an algorithmic hiatus or the end of an algorithmic branch. Levels of brackets go iteratively from parentheses to braces. The final output is preceded by the sign =.

A calculation that is standard in Computi finds the remainder of a reduction by repeatedly removing multiples of the modulus, as in Anonymus 892, sect. 10, where it is shown that 16 ≡ 6400 (mod 28); this is an "algorithm" according to my categorization above: ὕφειλε τὰ αὐτὰ ἔτη ἐπὶ τῶν κη, καὶ εὑρήσεις τὸν κύκλον τοῦ ἡλίου• εἰκοσάκις διακώσιοι, ͵δ• ὀκτάκις σ, ͵αχ• λοιπὸν ἐνέµειναν ω• ὕφειλε καὶ ταῦτα οὕτως. εἰκοσάκις κ, υ• ὀκτάκις κ, ρξ• καὶ ἔµειναν σµ• ὀκτάκις κ, ρξ• ὀκτάκις ὀκτώ, ξδ• καὶ λοιπὸν ἔµειναν ιϛ. καὶ γνώριζε ἓξ καὶ δέκατον κύκλον εἶναι τοῦ ἡλίου.

Remove the same <6400> years by 28, and you will find the cycle of the Sun; twenty times two hundred, 4000; eight times 200, 1600: there remain 800 as a remainder; remove also these as follows. Twenty times 20, 400; eight times 20, 160: and there remain 240; eight times 20, 160; eight times eight, 64: and there remain 16 as a remainder. And recognize that it is the sixteenth cycle of the Sun.

A COMPUTISTICAL GLOSSARY

The computistical terms are in boldface when they are defined; they are in italics when they are mentioned. All the terms here defined are discussed in the commentary on the relevant section(s) of Anonymus 892.

The indiction (ἴνδικτος, ἰνδικτιών, ἐπινέµησις) is a 15-year cycle introduced in the late Roman empire for taxation purposes. There are several regional variants of the indiction cycle, and its initial history is complex; 84 AD 312/3 is year 1 of the most current indiction cycle. The Byzantine civil year and the indiction year begin on September 1.

An era is a non-cyclic count of calendar years starting from a year 1, called epoch. The epoch of the Byzantine world era (τὰ ἀπὸ κτίσεως κόσµου ἔτη "the years from the foundation of the world"; henceforth denoted AM) is BC 5509 September 1 85 , a Saturday; years are Julian years 86 . The epoch of the Alexandrian world era is BC 5493 August 29 (BC 5492 March 25 according to Annianus), a Tuesday; years are Julian years. The Byzantine era is the Alexandrian era shifted 16 ----- 83 The crucial operation in a Computus is finding the remainder of the division of a number x by a number n. In modern terms, this is the "modulo" reduction, whose sign is "x mod n". We also write "x ≡ y (mod n)" (read "x is congruent to y modulo n") to signify that numbers x and y, once divided by n, yield the same remainder. As we shall see in Anonymus 892 (see the commentary on Sect. 3), the division is carried out by removing suitable multiples of the divisor n. Again, in modulo n reductions in our text, if the dividend is a multiple of the divisor, the remainder is frequently taken to be n, and not 0 (or, to be accurate, "nothing"). 84 A detailed study is in S. BAGNALL -K. A. WORP, Chronological Systems of Byzantine Egypt. 2nd ed. Leiden -Boston 2004. GRUMEL, La Chronologie 192-206 provides a brief account and explains the regional variants. See also the account in MOSSHAMMER, The Easter Computus 20-24. 85 To denote dates, I adopt the astronomical convention era -year -month -day. 86 On eras, see the synopsis in GRUMEL, La Chronologie 207-226 and 279-296. See also NEUGEBAUER, HAMA 1143 s.v., and especially 1064-1067 and 1074-1076 (with bibliography), and the dedicated sections in NEUGEBAUER, Ethiopic Astronomy, and NEUGEBAUER, Abu Shaker's.

years backwards. The shift was probably motivated by the requirement of synchronizing lunar, solar, and indiction cycles with each other and with the era: year 1 of the Byzantine world era is also year 1 of the lunar, solar, and indiction cycles 87 . This can be done because the beginning of the solar and lunar cycles is conventional 88 , whereas the indiction is rigidly attached to the era of Diocletian-of which the Alexandrian world era is an avatar shifted 5776 years (= 304 lunar cycles of 19 years) back 89 . The tropical year is the time interval between two successive passages of the Sun through the same point of its own yearly circuit. A tropical year comprises 365 days and a fraction of a day that is very nearly approximated by 1 ⁄ 4 , that is, 6 hours. Julian-style calendar years take into account the fractional nature of the tropical year by introducing an intercalary day every fourth year and in a fixed place in the year; this year is called leap year (βίσεξτον, δίσεξτον, βίσεκτον) 90 . In this way, the tropical year is transformed into a calendrical entity, the Julian year, which comprises a number of days that is either 365 or 366. The Byzantine calendar years are Julian-style years; they employ Roman months endowed with a forward day-count from the first day of the month as the sole monthly epoch; the year begins on September 1; the additional day of a leap year is intercalated every fourth year as February 29 91 .

Solar cycles of equal length exhibit the same sequence of pairings between dates and weekdays. As in Julian years an intercalary day is added every fourth year, the number of weekdays, 7, and 4 are prime to each other, and neither 365 nor 366 are multiples of 7, the shortest solar cycle consists of 7×4 = 28 Julian years. Byzantine solar cycle years begin on October 1.

The natural time interval associated with the motions of the Moon and of the Sun as seen from the Earth is the synodic month, which corresponds to the return of the Moon to the same position with respect to the Sun. The new Moon is traditionally taken as the boundary between two consecutive lunar months. A synodic month comprises 29 days and a fraction of a day that is very close to 1 ⁄ 2 92 . Hence, a synodic month of about 29 1 ⁄ 2 days covers an interval of 30 days. The age of the Moon is the number of days elapsed since the immediately preceding new Moon; these days are traditionally denoted by the word luna followed by an ordinal number: the 14 th day of a lunar -----87 George, sect. II.1, in DIEKAMP, Der Mönch 24.20-31, claims that the synchronization of all cycles is the main virtue of the Byzantine era. As the years of the three cycles begin on different dates, synchronization is not exact: time intervals contained in two consecutive solar or lunar cycle years may belong to one and the same calendar year. However, Passover, Easter, and most movable feasts of the Christian calendar fall in the "safe" time segment bounded by January 1 and August 31. 88 It is enough to call cycle year X of the old cycle "cycle year 1" of the new cycle and to rearrange the epacts in such a way that the Passover dates remain the same. 89 The rule is as follows: i = 1 for Diocletian 14 = Alexandrian AM 5790 = Byzantine AM 5806 [= AD 297/8]. Since 5790 ≡ 0 (mod 15), there is a crucial discrepancy of 1 unit between indiction cycle and Alexandrian era. On the other hand, 5806 ≡ 1 (mod 15). To enforce synchronization while preserving the position of leap years, one must introduce a shift of 15k + 1 = 4p years, for some integers k and p. The smallest solution is (k,p) = (1,4), and the shift is of 16 years. 90 See STERN, Calendars in Antiquity 204-227, especially for a discussion of the problems with intercalation that affected the first decades of application. 91 Unless otherwise stated, this is what I call the "Julian calendar". In counting the days in a year, the Romans used a backward day-count keyed to three monthly epoch: the calends (1 st day of a month), the nones, and the ides (both variably located: 7 th day in March, May, July, and October, 5 th day in the other months; 15 th day in the same four months, 13 th day in the others, respectively); as a consequence, only the days counted from the nones and the ides carried the name of the month in which they were included. The intercalary day of leap years was located as a second February 24 = VI Kal. Mar.

(counted backwards, that is, before our February 24), whence the denomination bis-sextus "twice-sixth". This system is tabulated in GRUMEL, La Chronologie 298-299, and in E. J. The pattern of embedding is a lunar calendar, see HOLFORD-STREVENS, Paschal Lunar Calendars, and footnote 163 below. The new Moons that set the boundaries of these lunar months are fixed once and for all; accordingly, their sequence is also schematic. 94 The periodic sequence in which the embolismic years are arranged in the 19-year cycle is CCECCECECCECCECCECE, where the sign "C" stands for a "common" year, "E" for an "embolismic" year, that is, a year that contains an embolismic month. The qualifier "periodic" in the previous sentence means that the first year of the cycle can be located anywhere in the sequence, according to the epacts assigned to this year. The sequence as given above can naturally be split in two subsequences: the first of them comprises 8 years; the second, 11 years; these were called ogdoas and hendecas in Western Computi (the ogdoas and the hendecas are also marked in the Greek 532-year tables mentioned in footnote 101 below; these tables are witnessed in manuscripts copied in Southern Italy; these manuscripts also contain the Computi Nicholas 916 and Theophylaktos 956, which expound Western computistical procedures): see, for instance, the letter of Dionysius Exiguus to Boniface, in KRUSCH, Studien (1938) 95 Since all numerical sequences related to cycles are periodic, a starting point must be selected for the epacts: see the discussion in the commentaries on sects. 12 and 14. In a lunar cycle that is synchronized with January 1, the epacts coincide with the age of the Moon on December 31. As lunar days are counted from January 1, a base (θεµέλιος, θεµέλιον) of the Moon b m was introduced such that b m = epacts + 1, which is the age of the Moon on January 1; the "base" replaced the epacts in specific algorithms. A "base" adapted to the features of other algorithms and defined by b m = epacts + 3, was also introduced. For this "base", see, for instance, Anonymus 1247, sect. 96 There are 114 lunar months of 29 days and 114 + 7 = 121 lunar months of 30 days. 97 The epacts of the Moon are a good example of an "incipient" quantity, namely, one that is attached to the beginning of a time interval and not to its end: the epacts attached to a given lunar cycle year record the advance accumulated at the end of the previous lunar cycle year. Incipient quantities have the advantage that they can be read off directly in tables: the age of the Moon of today, AD 2021 August 10, must be calculated by using the lunar advance from epoch accumulated up to

Leap years make no difference to the lunar cycle, whose sequence of months is supposed to fit to a leap year exactly as it fits to a non-leap year: this means that the date of the beginning of each lunar month is the same in leap years and in non-leap years 99 . The lunar months in which the intercalary day falls do have an additional day, but sometimes this is assigned an age of the Moon, sometimes it is not, sometimes it is assigned the same age as the previous day 100 . In Byzantine Computi, disregarding leap years amounts to assuming that February has always 28 days in lunar cycle computations. The adaptation of the 19-year cycle to Julian years of 365 or 366 days is possible thanks to the fact that the duration of a synodic month is greater than 29 1 ⁄ 2 days by a quantity that almost exactly offsets, after 19 years, the 19×( 1 ⁄ 4 ) = 4 3 ⁄ 4 mean additional days coming from the leap years. Accordingly, the sequence of lunar months is, by stipulation, extended to Julian years by assuming that it goes unchanged in leap years: and such an extension works remarkably well.

A lunar cycle year is a calendar year whose beginning can be shifted with respect to the beginning of the civil (calendar) year. A 19-year lunar cycle consists thus of 19 calendar years, 19 lunar cycle years, and 19 lunar years (the latter of variable length, since they can be either 12-lunarmonth or 13-lunar-month sequences); these three 19-"year" periods overlap, but they differ from one another because different meanings of "year" are involved. Byzantine lunar cycle years begin on January 1.

Passover (τὸ νοµικὸν Φάσκα / Πάσχα) is defined as the 14 th day of a schematic lunar month and must occur on or straight after the Spring equinox, whose date was fixed to March 21 (this is the rule of the equinox).

Combining the lunar and the solar cycles, we obtain a Period (περίοδος or µέγας κύκλος) of 532 (= 19×28) years, at the end of which the same sequence of Easter dates recurs 101 .

----end AD 2020 (which, qua incipient quantity, would be tabulated in front of AD 2021), and then counting the days contained in the months as far as July, and then counting 10 days. For this reason Ptolemy tabulated incipient quantities of their time-arguments in the Handy Tables, whereas the opposite is the case, with the notable exception of the mean syzygies, for the tables of the Almagest. Roughly speaking, using incipient quantities subsumes the epoch values in the tabulated values. 98 See again the list in GRUMEL, La Chronologie 54-55, and my discussion in the commentaries on sects. 12 and 14. 99 In the 19-year lunar cycle, no assigned lunar cycle year is a leap year or a non-leap year per se: leap years may occur in any year of a 19-year lunar cycle. The reason is simply that 19 is not a multiple of 4. 100 See HOLFORD-STREVENS, Paschal Lunar Calendars passim. The "sometimes" also depends on the lunar cycle adopted. 101 There are at least two Greek manuscripts that set out an entire Period in tabular format. They are Hamburg, SUB, in The tenth-century parchment manuscript Paris, Bibliothèque nationale de France, suppl. gr. 920 is made of 22 folios, written on 19 lines each; its dimensions are mm 150×110, its quire structure is 1 1 , 2 8 , 1 6 -1 . As for its contents 102 , f. 1r is opened by a very short sequence from Herodianus' Περὶ καθολικῆς προσῳδίας 103 . This is followed, on f. 1r-v, by a subscription τέλος σὺν θεῷ τοῦ κειµένου εὐτυχίᾳ χρῶ, and by two lists of the alphabet letters accompanied by numbers. The lists carry the titles "How must one divide the 24 letters in three isopsephic parts?" and "How must one correctly pronounce the 24 letters for <completing> the number of a myriad?" 104 . The Computus I call Anonymus 892 is contained in ff. 1r-16r; the final segment of the manuscript, ff. 16r-22v, contains pieces of astronomical, geographical, and magical lore 105 . No graphic break demarcates these texts from the Computus. A Sicilian chronicle is copied in the margins of ff. 1v-3r, the period ranges from 827 to 982 106 .

The final part of the manuscript is severely damaged and incomplete: a folio has been cut off after f. 20 (some letters can still be read in the stub); the last folio has a big hole in the middle; the last text is truncated in the middle of a sentence. If something is obviously missing at the end, it is not said, despite the presence of the subscription after the extract from Herodianus, that something is missing at the beginning. The first folio looks in fact like a guard-leaf for the three quires that follow; their early codicological continuity is warranted by the presence of the Sicilian chronicle. It is possible that our manuscript has never been a codex; it may well be a part of a multi-quire scrapbook of some moderately literate monk in Southern Italy 107 . The contents of the surviving three quires, which gradually shift from computistical themes to magic (but see sect. 23 of Anonymus 892) passing through basic astronomy, meteorology, and astrology, corroborate this hypothesis.

The copyist of Par. suppl. gr. 920 must have been moderately literate because misspellings are ubiquitous in Anonymus 892. Some examples are: ἀναβαίνις for ἀναβαίνῃς (8), ἀρχηµινίαν and ἀρχηµηνίαν for ἀρχιµηνίαν (24), ἐκὴ for ἐκεῖ (12), ἐνεστότος for ἐνεστῶτος (4), ἔτι for ἔτη (16), ἠ ----year, for the intercalary day precedes Easter, so that the first intervening intercalary day occurs in cycle year 5, and the last and 23 rd intercalary day in cycle year 93. 102 Wien 1975-1979 I 326-340 (nr. 45). 107 Anonymus 892 does not exhibit any explicit connection with Latin Computi.

for εἰ (12-13, 17-18), ἥτι and ἥδε for εἴ τι and εἰ δέ108 (4-6, 8), καθέτος for κατ' ἔτος (19), κράτη for κράτει (8, 12, 14, 17-18), κτήσεως for κτίσεως (9), ὄντως for ὄντος (12), οὗτως for οὗτος (22), παρελθότων for παρελθόντων (12), πληρόσεις for πληρώσεις (12), ψήφησον for ψήφισον (124), ὦν for οὖν (23).

Morphological peculiarities include ὑφείλῃς, ὕφειλε / ὕφειλον, ὑφεῖλαι and similar forms of non-indicative moods of the aorist tense in which the augment is retained (passim); ἐνεµείνασιν, an aorist with primary ending (sect. 14); µένουν for µένουσιν (3); future ἀνοίεται (20); imperatives ἄρχου (12) and ἄρξε (12). Temporal determinations are formulated in the genitive or with εἰς + accusative. Note also the construction, widespread in all Computi I know of, ἀπό + accusative (17, 26).

The copying mistakes and the misspelling in Anonymus 892 show that the scribe of Par. suppl. gr. 920 has slavishly copied a source. The material and methodological mistakes and the inconsistencies in Anonymus 892 show that this source was a compilation; it is less likely that the compilation originates with Par. suppl. gr. 920. One of the inconsistencies in Anonymus 892 is that AM 6396 is assumed as the current year in sect. 7, whereas all other sections carry out the computations for AM 6400. On account of the presence of the gematric computations on f. 1r-v, it is possible that the choice of an end-of-century year as the current year was dictated by arithmological considerations.

A THEMATIC WORD INDEX TO ANONYMUS 892

The first and the last two sections of this index are organized discursively: the English terms are between quotation marks; they are followed by the Greek term they translate; each Greek term is followed by the numbers of the sections of Anonymus 892 in which it occurs. The other sections of this index are a list of words; each Greek word is followed by its translation and by the numbers of the sections of Anonymus 892 in which it occurs.

Chronological lexicon

A "cycle" (κύκλος: 1-2, 4-5, 7-8, 10-12, 14-15, 18-20, 22, 26-27) "begins" (ἄρχεται: 1), "reaches" (ἀνέρχεται: 1, 11, 25 αὖθις πότε ἀνέρχεται "when it reaches anew") "to" (ἕως: 1) its last year, and "reverts back again" (πάλιν ὑποστρέφει: 1, 11). Temporal segments and computations go "from" (ἀπό, for instance the "years from the foundation of the world" [ἀπὸ κτίσεως κόσµου ἔτη]: 1, 4-7, 9, 11, 27) the first item in a sequence "up to" (ἕως: 2, 8-9, 11-12, 14-19, 22, 25-26; µέχρι: 4) the last item109 . A numerical interval is identified by "within" (ἔσωθεν: 12), its complement by "outside" (ἔξωθεν: 22), its extremes by "beginning" (ἀρχή, lying "above" [ἄνω(θεν)]: 12, 22, 26) and "end" (τέλος, lying "below" [κάτωθεν]: 22). Past time segments are "past" (παρατρέχοντα: 7) or "bygone" (παρελθόντα: 12); the current month is "ongoing" (κατέχων: 12); the current "year" (ἔτος: 4, 16, 24, 27), "period" (περίοδος: 7; it "comprises" [συνίσταται διά] 532 years), "indiction" (ἴνδικτος: 9; elsewhere 1, 6-7, 27), or cycle (11) is "present" (ἐνεστώς); a year next in a sequence is "next" (µέλλων: 24). The first "day" (ἡµέρα: 1, 3, 8, 12-20, 23-24) of a "month" (µήν: 1, 8, 12-13, 17-20, 22, 24, 26) is its "starting-day" (ἀρχιµηνία: 24), that is, where a month "begins" (ἄρχεται: 24); a month ends with its "last" (τελευταία: 13) day. The "year" is ἔτος (4-7, 9-11, 14-16, 19-21, 24, 26-27), χρόνος (1, 19-20, 24, 27), or ἐνιαυτός (3); the "week" is ἑβδοµάς (1, 12-13, 17-20, 23-24; "holy" [µεγάλη]: 12); a day is made of "hours" (ὧραι: 1, 3, 8, 25), which are made of "minutes" (λεπτά: 1, 8). The determination of the date of a festival is stressed by "there" (ἐκεῖ: 12, 15-18); a date "occurred" (κατήντησε: 18) or "falls" (ἐστί: 12, 24) on a "weekday" (ἡµέρα τῆς ἑβδοµάδος: 12-13, 17-18, 20, 24). The age of the "Moon" (σελήνη 1, 5, 7-8, 11-12, 14-15, 17------20, 22-23, 25-27) is also its "daily quantity" (καθηµερινὴ ποσότης: 8); the age in days is expressed by means of ordinals but also by means of -ταῖος adjectives (25); the "lunar month" is also called φέγγος (8, 23). The Moon "shines" (λάµπει: 25) so many hours in a night. The Moon "is in advance with respect to" (προλαµβάνει: 19) the solar year; this advance is accumulated in the "epacts" (ἐπακταί: 14-15, 19) of the Moon, which periodically consolidate an "embolismic" (ἐµβόλιµος: 19) year or month. The "Sun" (ἥλιος: 1-2, 4, 7, 10, 12, 18-20, 27) completes a year in 365 or 366 days; the latter occurs in a "leap-year" (βίσεκτον: 3, 12, 17, 21, 24; this year includes a "bissextile <day>" [βίσεκτον]: 3, 24; such a day may "be impeding" [ἐπιφέρειν]: 24); at each solar cycle year, the excess in days over a whole number of weeks is accumulated in the "epacts" of the Sun (ἐπακταί: 2, 20). A general meaning of ἐπακταί as anything "brought in" is also adopted (8, 12).

Specific mathematical lexicon 110

Investigation. γινώσκω: to know (1, 2, 8, 12, 20, 22, 24-27); εὑρίσκω: to find (2, 4-14, 17-18, 20, 22, 24, 26-27) and εὕρεσις: finding (12); ζητέω: to seek for (14, 18). (15, 24); µετρέω: to determine (8); πλεονάζω: to exceed (20); πληρόω: to fill (12); φθάνω: to attain (12); ψηφίζω: to calculate (12, 17, 26) and ψῆφος / ψηφοφορία: calculation (4-6, 8-17, 20, 24-26 / 18). Τhe result of any operation can be indicated by ποιέω: to make (15-17).

Initializing
Identification of the result of an operation as a chronological item. γινώσκω: to know (12, 14, 17-18, 24, 26); γνωρίζω: to recognize (10); δηλόω: to show (7, 13); εὑρίσκω: to find (8-10); νοέω: to consider (24-25); σηµαίνω: to signify (25).

Unknown quantities. ὅπου: wherever (24); ὅσος: what (8, 12-13, 25); ὅσπερ: that which (25); ποῖος: what, which (8, 12, 17-18, 24); πόσος: how much (2, 4, 16-17, 25); τοσοῦτος: such, so much (2, 4, 8, 12).

Numerical sets. ἑβδοµάς: week (that is, heptad) (1, 12-13, 17-20, 23-24); ἑνδεκάς: hendecad (19); µυριάς: myriad (1); τετράς: tetrad (2); τριακοντάς: thirty (12); χιλιάς: thousand (7, 27).

Operations

Addition. ἀναβαίνω: to mount (2, 8, 17); βάλλω: to put (8, 12-13); ἑνόω ὅλους: to unite all of them (8, 12); προστίθηµι ἐν / εἰς: to add in / to (7-8, 12, 14-15, 26); συνάπτω: to conjoin (15, 16). The result is indicated by γίνοµαι: to yield (1, 3, 12, 26); σύναξις: gathering (19). The operation is called προσθήκη: addition (19-20, 24, 26 where "remarkable cycles" [σεσηµειώµενοι κύκλοι] may not "admit of it" [προσδέχεσθαι]).

Subtraction. ἀφίηµι: to discharge (7); ὑφαιρέω: to remove (8, 12, 14, 16, 20, 26-27). The "remainder" (λοιπός 16; "remaining" 26-27) is mainly indicated by predicative λοιπόν: as a remainder (9-11, 27), but also by verbs µένω: to remain (3-12, 14, 16, 20, 26-27; ἐπὶ δακτύλων σου 14) and -----περισσεύω: to remain over (19-20, 25), and the related noun περισσεία: remainder (19). The operation is called ὑφειλµός: removal (26-27).

Multiplication. It is formulated by means of an -ακις adverb (3, 8-12, 14, 20-21, 25); this is systematically written, for instance, ἑπτάι or ἑπτάη or ἑπτάει for ἑπτάκις "seven times", a spelling common to many Computi and that I have normalized.

Taking multiples. Imperatives δίπλωσον: double (1, 3); ἑνδεκαπλασίαζε (14) and ἑνδεκαπλασίασον (12, 20): undecuple; ἑξάπλωσον: sextuple (8); πεντάπλου: quintuple (25). Subjunctives ἑξαπλόννῃς: sextuple (8); πενταπλόννῃς: quintuple (8). Participles ἑνδεκαπλασιάσας: undecupling (12) and ἑξαπλώµενον: sextupled (8).

Division. ἀναλύω εἰς: to resolve out into (21, 25). Modulo reduction. ὑφαιρέω ἐπί / διά: to remove by (4-14, 16, 20). The remainder is often indicated by (µένω) κάτωθεν: to remain down from (4-8, 12-14, 16), but the adverb may be absent.

Connectors and particles

Explanations of specific steps are introduced by "for" (γάρ: 14, 19-20, 23), in some cases they are introduced by "since … really" (ἐπειδή: 14, 20) or "since" (ἐπεί: 14). Synonyms are introduced by "namely" (ἤγουν: 7, 19-20) or "viz." (ἤτοι: 20). A refreshed algorithm is introduced by "again" (πάλιν: 8, 11-12, 18, 20, 26), a branching by "with the <following> exceptions" (πλήν: 14). Operations that necessarily precede other steps may be introduced by "as soon as" (ἐπάν: 12, 17). There is just one occurrence of "then" (οὖν: 23); the only occurrence of γε (12) is rendered by italicizing the lexical item the particle has scope over. Negation can be in the form οὐχί (26).

Metadiscourse

Universality of numerical parameters is conveyed by the adverb "always" (πάντοτε: 12-15, 18, 26), genericity by the determiner "whatever" (οἱοσδηποτοῦν / οἱοσδήποτε: 12, 14, 24). Iteration is formulated by "continuously" or "so on" (καθεξῆς: 14, 20, 24-25 or 12, 14, 18). A shortened algorithm is marked by "easily" (εὐκόλως: 26) or referred to as "concise" (σύντοµος: 17, 26). Quantitative correlation is formulated by "how many … so many" ([π]όσος … τοσοῦτος: 2, 8). Examples are introduced by "for instance" (οἷον: 19, 20, 26). Metamathematical markers include the modal operators "one must" (δεῖ: 1, 2, 27) and "one has to" (χρή: 27), the volition verbs "to want" (θέλω: 7-9, 12-13, 20, 24, 26) and "to hesitate" (ὀκνέω: 7), the modal verb "can" (δύναµαι: 12). The verb form "there it is" (ἰδού: 19, 26-27) introduces a result. The verb forms "say" (λέγε: 21-22; εἰπέ: 8, 12) and "do" (ποίει: 24 / ποίησον: 18) initialize a computation. The adverb "as follows" / "in this way" (οὕτως: 2, 9-11, 14, 18, 24 / 3, 12, 19-20, 24-25) introduces an algorithm or refers to an algorithm just carried out. The adverb "how" (πῶς: 2-3, 21, 27) presents an algorithm; the adverb "otherwise" (ἄλλως: 7) presents an alternative algorithm; the adjective "further" (ἕτερος: 5-6, 10-13, 15-17, 20, 25) introduces a new section. The adverbs "similarly" (ὁµοίως: 8, 12, 14, 18, 24) and "likewise" (ὡσαύτως: 18), and the syntagm "in the same way" (τῷ αὐτῷ τρόπῳ: 26) replace an algorithm that is identical to an algorithm previously carried out. The expressions "exactly as we said / taught above" ([καθ]ὼς προείπαµεν / προεδιδάξαµεν: 8, 12) refer to algorithms previously carried out. A hiatus of an algorithm is indicated by "that's fine" (εὖ καὶ καλῶς: 12); a restated rule is introduced by "the other way around" (ἀνάπαλιν: 12). Note the two occurrences of the bewildering clause "for you do not find what is secure" (ἐπεὶ οὐκ εὑρίσκεις τὸ ἀσφαλές: 12, 14), stressing an unexpected branching in an algorithm.

PRELIMINARIES TO THE EDITION

The text of Anonymus 892 is divided into sections according to the titles in the manuscript. The subject-matters of the sections are as follows. Section 1: subdivision of the year; 2: epacts of the Sun; 3: leap years; 4-7 and 9-11, 27 (examples): conversion from a world era year to a year within an assigned cycle; 8: age of the Moon; 12: date and weekday of Passover, dates of Easter and of Meat-Fare Sunday; 13: weekday of an assigned date; 14-17: alternative algorithms for the date of Passover; 18: list of Passover dates in a lunar cycle; 19: embolismic years; 20: epacts of the Sun, names of the weekdays, and periods of the seven planets; 21: leap years; 22: terms for Passover; 23: lucubrations about the phases of the Moon; 24: weekday of the first day of any month; 25: illumination of the waxing and waning Moon; 26: how to compute the Passover dates in sequence. Each section presents the Greek text, its translation, and a commented paraphrase that is printed in reduced font size and is preceded by a title summarizing the contents of the section.

Edition. I have retained the original accents of proclitics and enclitics; otherwise, the accents are normalized to the conventions presently in use. After much hesitation, I have decided not to keep the original punctuation, for the following reasons. Most of the time, Anonymus 892 exhibits a beautiful "algorithmic" punctuation, made of comma and of a point located in a position that, however, covers the entire range between upper and lower. Because of this ambiguity, because the punctuation is not applied consistently in Anonymus 892-which almost uniquely comprises algorithmic texts-and because uniformity of punctuation is required if our aim is to study Computi as a corpus, I have punctuated the text anew, following the "algorithmic" rules I use in editing Greek and Byzantine mathematical texts 112 . In particular, such rules prescribe that consecutive steps of an algorithm are separated by an upper point; that an algorithmic hiatus is marked by a full stop; that commas separate the principal clauses of a procedure and the result of a multiplication from the two factors.

Lexical and morphological peculiarities of Anonymus 892 are kept unchanged: this Computus attests for a use of vernacular Greek that should not be erased. I have corrected the misspellings, but they are all recorded in the critical apparatus. Numeral letters standing for integers are not marked by an apex; ordinals that in the text are given as numeral letters are written with a raised ending; dates are always treated as counting numbers; I have normalized mixed numerals such as ἐννακαιιτου = ἐννεακαιδεκάτου or πεντικονταδ = πεντηκοντατέσσαρες. I have maintained adverbial expressions written in one single word as they appear, like κατέτος = κατ' ἔτος or κατανοῦν = κατὰ νοῦν.

Translation. Different Greek terms are normally translated with different English terms; the translations adopted for the main terms are listed in the thematic word index given in the previous section. As a rule, I do not translate δέ; otherwise, it is rendered by "and"; all other lexical items are translated. Within algorithms, aorist indicative is translated as a present. Words supplied in translation are put within angular brackets <…>; the reference of some pronouns is made explicit between square brackets […]. The translation of the algorithms is punctuated as follows: a colon precedes the statement of a result; a semicolon separates steps in which the output-input chain is not interrupted; a full stop indicates an algorithmic hiatus and precedes the final winding-up, where the outcome of the algorithm is identified as a specific chronological item.

Commented paraphrase. In my commented paraphrase, I provide a symbolic transcription of the algorithms set out in the text 113 . This kind of transcription is more faithful both to the syntactical -----112 These rules are not rooted in the punctuation practice of any specific language; they are expounded in ACERBI, The Logical Syntax, sect. 1.4. 113 The notation used in the commentary is as follows: 1 J , 1 F , 1 M , 1 A , 30 S , etc. = January 1, February 1, March 1, April 1, September 30, etc.; structure and to the "mathematical content" of the original algorithm than an algebraic formula summarizing the entire algorithm in one single equality can be. Nevertheless, such a formula can be found at the end of the algorithm (read the algorithm from right to left). Any symbolic transcription occupies no more than a handful of lines; it is followed by a commented paraphrase that combines rephrased sentences of Anonymus 892 and explanations of mine. The latter are sometimes intended to clarify the stepwise progression of the algorithm. These two components are easily disentangled with the help of the translation. In principle, the commented paraphrase is selfcontained; readers who dislike the symbolic transcriptions may simply skip them 114 .

EDITION AND TRANSLATION OF ANONYMUS 892, WITH A COMMENTARY 1 δεῖ γινώσκειν a ὅτι ἄρχεται ὁ κύκλος τοῦ ἡλίου ἀπὸ τῆς α τοῦ Ὀκτοβρίου, καὶ ἀνέρχεται ἕως κη, καὶ πάλιν εἰς πρῶτον ὑποστρέφει.

Ὁ δὲ τῆς σελήνης κύκλος ἄρχεται ἀπὸ τῆς α τοῦ Ἰαννουαρίου, καὶ ἀνέρχεται ἕως τῶν ιθ, καὶ πάλιν εἰς α ὑποστρέφει.

Ἡ δὲ ἴνδικτος ἀπὸ τῆς α τοῦ Σεπτεµβρίου µηνὸς ἄρχεται, καὶ ἀνέρχεται ἕως τῶν ιε, καὶ πάλιν εἰς α ὑποστρέφει.

Ὁ χρόνος ἔχει ἑβδοµάδας νβ, ἡµέρας τξε δ ον , ὥρας ͵δτπ -ταύτας δίπλωσον, καὶ γίνονται ὧραι ͵ηψξ -λεπτὰ β µυριάδας ͵αϡ.

a γινώσκην

One must know that the cycle of the Sun begins on October 1, and reaches to <cycle> 28, and reverts back again to the first <cycle>

The cycle of the Moon begins on January 1, and reaches to 19, and reverts back again to 1. The indiction begins on the 1 st of the month of September, and reaches to 15, and reverts back again to 1.

The year has 52 weeks, 365 1 ⁄ 4 days, 4380 hours -double these, and they yield 8760 hours -2 myriads and 1900 minutes.

Features of the solar, lunar, and indiction cycles; subdivision of the year. The solar cycle begins on October 1 and lasts 28 years. The lunar cycle begins on January 1 and lasts 19 years. The indiction cycle begins on September 1 and lasts 15 years. The subdivision of the year is: 1 year (χρόνος) = 52 weeks = 365 1 ⁄ 4 days = 4380 [double-]hours = 8760 hours = 21900 minutes. The third equality stated in the text is valid only for a year of 365 days; otherwise, one gets 365 1 ⁄ 4 days = 4383 [double-]hours = 8766 hours = 21915 minutes (see sect. 3). I have introduced the qualifier "double" to distinguish between the two "hours" mentioned in the text; in principle, there is no connection with the "double hours" of the astronomical tradition 115 , nor is there any connection with the algorithms that give the additional day of a leap year 12 hours (see sect. 3). The above subdivision can be summarized as follows 116 :

----- The "minutes" of Anonymus 892, and, more generally, of the Computistical tradition, do not coincide with our 1 ⁄ 60 -hour minutes. Two conventions were used, neatly differentiated by the context. The equivalence 1 hour = 5 minutes → 12 hours = 60 minutes, is usually found in the algorithms that compute the duration of visibility of the waxing and waning Moon (see sect. 25) 118 . The equivalence 2 hours = 5 minutes → 1 day = 60 minutes, was used in other contexts, which in general are related to the age of the Moon 119 .

----- 

τὸ πῶς δεῖ εὑρίσκειν τὰς ἐπακτὰς τοῦ ἡλίου

Αἱ ἐπακταὶ τοῦ ἡλίου εὑρίσκονται οὕτως. κράτει τὸν κύκλον τοῦ ἡλίου, καὶ γνῶθι πόσας τετράδας ἔχεις, τοσαῦται ἐπα| 2v κταὶ εἰσὶν τοῦ ἡλίου a . αἱ ἐπακταὶ ἕως τῶν ἑπτὰ ἀναβαίνουσιν, καὶ πάλιν εἰς τὸν α ἀναστρέφουσιν.

a γνῶθι -ἡλίου corruptum cf. versionem et comm.

How one must find the epacts of the Sun

The epacts of the Sun can be found as follows. Keep the cycle of the Sun, and know how many tetrads you have, <and mount them, and remove by 7, and how many remain down from 7,> so many epacts of the Sun there are. The epacts mount up to seven, and revert back again to 1.

A computation for finding the epacts of the Sun 120 . The reconstructed algorithm is 121 :

(s) → s + ⟦s/4⟧ → (s + ⟦s/4⟧) mod 7 = e s .

See also sects. 12 and 20. This algorithm computes the cumulative excess of the days, counted from the beginning of a solar cycle, of an assigned solar cycle year over a whole number of weeks. To explain the above algorithm, it should be kept in mind that a year of 365 days exceeds a whole number of weeks by 1 day (summand s in the algorithm; it also includes 365 of the 366 days of a leap year), a leap year exceeds it by 2 (further summand ⟦s/4⟧; these are the "tetrads", that is, the number of leap years since the beginning of the cycle) 122 . Reducing the sum modulo 7 eliminates whole weeks. For example, one computes that s = 1 → e s = 1. As expressly stated in the text, the convention is that 7 mod 7 = 7. The transmitted algorithm is corrupt, since the solar cycle year and the tetrads must be added in order to find the epacts of the Sun. 

How a bissextile <day> comes to be

The year has 365 1 ⁄ 4 days, <4380 hours;> double these: and they yield <8>760 hours 123 ; <remove these by 7; seven times 1000, 7000: there remain 1760;> seven times two hundred, 1400: there remain three hundred 60; seven times 50, 350: there remain 10; seven times one, 7: and there -----120 Other occurrences of this algorithm can be found in George, sect. II. 121 The sign ⟦x⟧ denotes the floor (or integral part) of number x, namely, the nearest integer (0 included) less than or equal to

x. The floor function is particularly effective in formalizing leap year computations: if y is a year in the Byzantine world era or in the era AD, ⟦(y mod 4)/4⟧ singles out leap years-which in both eras are such that y = 4k for some integer kbecause y ≡ 1, 2, 3 or 4 (mod 4), and

⟦ 1 ⁄ 4 ⟧ = ⟦ 2 ⁄ 4 ⟧ = ⟦ 3 ⁄ 4 ⟧ = 0, ⟦1⟧ = 1.
As taking the floor of a division amounts to taking its quotient by disregarding the remainder, ⟦y/4⟧ is the number of leap years since epoch. For any two integers m and n, by definition and with a slight abuse of notation, m ⁄ n = ⟦ m ⁄ n ⟧ + (m mod n)/n, for the first addendum is the quotient of the division of m by n, and m mod n is the remainder of the same quotient. Alternatively, we may write m = n⟦ m ⁄ n ⟧ + m mod n. 122 A solar cycle of 28 years contains by definition 7 leap years, whose 1-day-each overall contribution of 7 days is deleted, at the end of the cycle, by the modulo 7 reduction. Thus, the contribution of leap years to the epacts of the Sun can be restricted to the leap years occurring within a single solar cycle. 123 The ensuing calculation makes it necessary to integrate the number 8 before 760, but the text also presents two lacunae; I fill them in my translation according to Anonymus 1092B, sect. 8, in KARNTHALER, Die chronologischen Abhandlungen 11.250-258. See also the commentary.

remain 3 hours per year, and they yield twelve hours in four years, and in this way the bissextile <day> comes to be.

The origin of leap years. The text is incomplete and the calculation mistaken, as it reads as follows: 365 1 ⁄ 4 days = 8760 hours; 8760 mod 7 = 3 hours; in 4 years, these 3 hours add up to 12 hours, namely, to 1 day. The text can be completed readily 124 , but the (correct) modulo 7 calculation is a wrong attempt at coping with the mistake of setting 365 1 ⁄ 4 days = 8760 hours (see sect. 1): the result 8760 mod 7 = 3 fits the number of exceeding doublehours per year only numerically and by coincidence 125 . To explain the presence of 366-day years, it suffices to remark that an excess of 1 ⁄ 4 a day per year becomes an excess of one full day after 4 years.

The modulo reduction is equivalent to computing the remainder of a division between integers. Here, as elsewhere in Anonymus 892 and, more generally, in Byzantine Computi, the calculation is carried out by successively removing multiples of the divisor. This procedure is attested as early as Paul of Alexandria, Apotel. 19-20 126 . As only a few moduli are used in computistical reductions (namely, 7, 15, 19, 28, and 30), it is not necessary to suppose that multiplication tables were used to ease such calculations. Tables of this kind are never included in Byzantine Computi.
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Σὺν θεῷ ψῆφος δι' οὗ εὑρίσκεται ὁ κύκλος τοῦ ἡλίου Γίνωσκε πόσα ἔτη εἰσὶν ἀπὸ κτίσεως κόσµου µέχρι τοῦ ἐνεστῶτος a ἔτους, καὶ ὕφειλε b αὐτὰ διὰ τῶν κη, καὶ εἴ τι c µένουσιν d κάτωθεν τῶν κη, ἔστιν ὁ κύκλος τοῦ ἡλίου• εἴ δε e ὕφειλον τοσοῦτον ἀριθµὸν τῶν ἐτῶν πάντων καὶ µέ| 3r νουσιν κη, εἰκο<σ>τὸς ὄγδοος κύκλος ἐστὶν τοῦ ἡλίου. 

God willing, calculation by means of which the cycle of the Sun can be found

Know how many years there are from the foundation of the world up to the present year, and remove them by 28, and if anything remains down from 28, this is the cycle of the Sun; but if <you> removed such a number of all the years and there remain 28, this is the twenty-eighth cycle of the Sun.

A prescription for finding the year of the solar cycle corresponding to a Byzantine world era year. The algorithm is (y) → y mod 28 = s.

As expressly stated in the text, the convention is that 28 mod 28 = 28. The text writes "cycle of the Sun" and "twenty-eighth cycle", using κύκλος to name both the 28-year solar "cycle" and a solar "cycle year" within a solar cycle. Sections 4-6 allow converting a year in the Byzantine world era to a year within an assigned cycle. The indiction cycle is of no use in computing the date of Easter; its presence shows that an "Easter Computus" was conceived as a general chronological primer. As seen, in Byzantine Computi the solar cycle, the lunar cycle and the reference era are synchronized. For this reason, the reduction rules from world era years to solar and lunar cycle years are straightforward.

----- 

A further calculation, by means of which the indiction can be found

Remove these years from the foundation of the world by 15, and if anything remains down from 15, this is the indiction.

A prescription for finding the year of the indiction cycle corresponding to a Byzantine world era year. The algorithm is (y) → y mod 15 = i.

καὶ ἄλλως

a Εἰ δὲ ὀκνῇς ὑφεῖλαι ἀπὸ κτίσεως κόσµου, ἄφες τὰς ἓξ χιλιάδας τῶν ἐτῶν καὶ τὰ τ ἔτη, καὶ κάτεχε τὰ ἐνενήκοντα b ἓξ τὰ παρατρέχοντα ἄρτι c , καὶ ὕφειλε αὐτὰ ἐπὶ µὲν τοῦ ἡλίου διὰ τῶν κη, καὶ τὰ µένοντα κάτωθεν τῶν κη δηλοῦσιν τὸν κύκλον τοῦ ἡλίου. ἐπὶ δὲ τῆς ἰνδίκτου | 3v ὕφειλε δεκαπέντε, καὶ τὰ κάτωθεν τῶν ιε δηλοῦσιν αὐτήν. ἐπὶ δὲ τῆς σελήνης πρόσθες λ ἔτη εἰς τὰ παρατρέχοντα, καὶ ὕφειλε d διὰ τῶν ιθ, καὶ τὰ µένοντα κάτωθεν τῶν ιθ δηλοῦσιν τὸν κύκλον τῆς σελήνης. ἡ δὲ περίοδος συνίσταται διὰ πεντακοσίων τριακονταδύο ἐτῶν, ἤγουν διὰ τοῦ ἀριθµοῦ τοῦ ἄλφα. καὶ ἐὰν θέλῃς εὑρεῖν τὴν ἐνεστῶσαν περίοδον e , ὕφειλε τὰ ἔτη τοῦ κόσµου διὰ τῶν πεντακοσίων λβ, καὶ τὰ µένοντα κάτωθεν τῶν φλβ δηλοῦσιν αὐτήν. 

And otherwise

If you hesitate to remove from the foundation of the world, discharge six thousand and 300 years from the years, and hold the ninety-six presently past, and for the Sun remove them by 28, and that which remains down from 28 shows the cycle of the Sun. For the indiction, remove <by> fifteen, and that which <remains> down from 15 shows it [scil. the indiction]. For the Moon, add 30 years to those past, and remove by 19, and that which remains down from 19 shows the cycle of the Moon. The Period comprises five-hundred-thirty-two years, namely, the number of alpha. And if you want to find the present Period, remove the years of the world by five hundred 32, and that which remains down from 532 shows it [scil. the Period].

Alternative algorithms, supposedly simpler, for finding the year of the solar, lunar, and indiction cycles, and of the Period. The algorithm for the solar cycle is:

(y) → y -6300 → (y -6300) mod 28 = m.

A computation of y -6300 is carried out for current year AM 6396 [= AD 887/8]; the lunar cycle is not computed. This current year is different from the one assumed in the rest of Anonymus 892.

The algorithm for the indiction cycle is:

(y) → y -6300 → (y -6300) mod 15 = i.

The algorithm for the lunar cycle is:

(y) → y -6300 → (y -6300) + 30 → [(y -6300) + 30] mod 19 = m.

The algorithm for the Period (περίοδος) of 532 years, the number of ἄλφα 127 , is:

(y) → y mod 532 = g.

In these algorithms, the nearest end-of-century year is removed from the assigned world era year before the modulo reduction is carried out. Since 6300 ≡ 0 (mod 28) and 6300 ≡ 0 (mod 15), the algorithms for the solar and indiction cycles are modified by introducing only the shift y → y -6300. The addition of 30 in the computation of the lunar cycle results from the fact that 6300 ≡ 30 (mod 19) 128 .

The three parameters 30 ≡ 11 (mod 19), 0, and 0 are the values of m, s, and i for year 6300, respectively. Below is a table of the values of m, s, and i for the end-of-century years that are relevant to Byzantine Computi; these values are sometimes called the "bases" (θεµέλια) of the relevant cycles (see sect. Since 100 is a multiple of 4 and of 5, the end-of-century year values of s and i have a period of 7 and 3 centuries, respectively. Such values of s and i can only be of the form s = 4k, with k = 0, 1, …, 6, and i = 5k, with k = 0, 1, 2. Since 100 and 19 are mutually prime, no such periodicity exists for the lunar cycle. 8 ψῆφος δι' οὗ εὑρίσκεται ἡ καθηµερινὴ ποσότης τῆς σελήνης Γίνωσκε ποῖος κύκλος ἐστὶν τῆς σελήνης, καὶ εἰ µὲν ἐστὶν α ος , εἰπέ• πεντάκις µίαν, ε• καὶ ἀνάβα τὰς ἡµέρας | 4r τῶν µηνῶν ἀπὸ τοῦ Ἰαννουαρίου ἕως τοῦ µηνὸς οὗ a θέλῃς εὑρεῖν τὴν ποσότητα, καὶ βάλε ὅσας ἔχει, καὶ ὕφειλε διὰ τῶν ξ, καὶ τὰ κάτωθεν τῶν ξ εἰσὶ τὰ λεπτὰ τοῦ φέγγου, καὶ βλέπε ὅσα ξ ὕφειλες, καὶ πρόσθες εἰς τὰ λεπτὰ τοσαύτας ἐπακτάς. γίνωσκε δὲ ὅτι χωρὶς τῶν ἐπακτῶν ----- 127 The "number" of a string of alphabet letters is the sum of their values as digits. Thus, the "number" of ἄλφα is 1(α) + 30(λ) + 500(φ) + 1(α) = 532: see ACERBI, How to Spell. The mention in Anonymus 892 is among the earliest occurrences of the mnemonic device relating the standard Period of 532 years to the "number" of letter ἄλφα. 

Calculation by means of which the daily quantity of the Moon can be found

Know to what the cycle of the Moon amounts, and if it is the 1 st , say: five times one, 5; and mount the days of the months from January up to the month where you want to find the quantity <of the Moon>, and put how many <days> it has, and remove by 60, and that which <remains> down from 60 are the minutes of the lunar month, and look at how many 60s you removed, and add so many epacts 130 to the<se> minutes. Know that, beyond the epacts, the minutes are determined, and keep both the minutes and the epacts in your hands, and again sextuple the cycle of the Moon, that is, six times one, six; and uniting all of them together, both the epacts and the minutes and the cycle of the Moon, remove what has been sextupled by 30, and that which <remains> down from 30 is the quantity of the Moon. Similarly also in the 2 nd cycle, five times two, 10, and mount the months as we said above, and again sextuple the cycle. Similarly also for the 3 rd cycle up to the nineteenth cycle, quintuple first, and remove by 60, and you find the minutes and the epacts, and again sextuple, and remove by 30, and if anything <remains> down from 30, this is the quantity of the Moon. Know also this, that five minutes are one hour, and sixty minutes one day.

A computation of the age of the Moon (called ποσότης "quantity") on day x counted from January 1 131 . The algorithm is:

(m,x) → 5m → 5m + x → 5m + x + (5m + x) mod 60 → 5m + x + [(5m + x) mod 60]/60 + ⟦(5m + x)/60⟧ → → {5m + x + [(5m + x) mod 60]/60 + ⟦(5m + x)/60⟧} + 6m → → ({5m + x + [(5m + x) mod 60]/60 + ⟦(5m + x)/60⟧} + 6m) mod 30 = a m (x).
The age of the Moon on day x in the year is calculated in several steps: (1) add to day x counted from January 1 a number obtained from writing the epacts of the Moon at lunar cycle m-namely, 11m (defined in sect. 14, and see also the commentary on sect. 12-as 5m + 6m; (2a) first, operate only on summand 5m + x, with a correction (see just below); (2b) subtract pairs of lunar months by reducing modulo 60 rather than modulo 59 (= two lunar months of 29 1 ⁄ 2 days each); (2c) add 1 day for every removed set of 60 units (this is summand ⟦(5m + x)/60⟧) in order for the modulo 60 reduction to be equivalent to subtracting pairs of lunar months; (3) second, add 6m to complete the epacts of the Moon; (4) reduce modulo 30, which is required since 6m has been added. The final reduction modulo 30 is the standard way of eliminating whole lunar months, see sect. 12 below.

To understand what are the "corrections" I have alluded to, let us rewrite the last line of the algorithm as follows (for simplicity's sake, the modulo 30 reduction is disregarded):

a m (x) = (11m + x) mod 30 + ⟦(5m + x)/60⟧ + [(5m + x) mod 60]/60.
The first addendum is the canonical contribution "epacts [= the age of the Moon on December 31] + number of days counted from January 1" to the age of the Moon. The other two addenda (the "correction") are the value of 5m + x written not in units but in sixtieths (that is, in minutes): divide 5m + x units by 60 and you get by definition 132 a quotient made of the floor ⟦(5m + x)/60⟧ and of the fractional part [(5m + x) mod 60]/60. This correction ----- 130 Note, here and in sect. 12, the term ἐπακταί in its general meaning of something "brought in". 131 The procedure is tersely phrased; its first formulation suggests replacing my x counted from 1 J with 𝑛 ! !-! !!! + x, where n k is the length of month k in days and x is the assigned day in month X. I have adopted a simpler notation. 132 See footnote 121 above, and sects. 12 and 17.

is equivalent to adding 5 ⁄ 60 = 1 ⁄ 12 a day for every lunar cycle year + 1 ⁄ 60 a day for every day in the lunar cycle year. The " 1 ⁄ 60 a day" addendum contributes 1 day every 2 months and therefore offsets, as explained above, the difference between the reduction modulo 60 performed in the algorithm and the required reduction modulo 59. The " 1 ⁄ 12 a day" addendum not only triggers a saltus lunae in cycle year 12, but also makes the Moon generally older than the Alexandrian Computus does, and this occurs in particular for the Passover luna XIV 133 . In particular, there are cases in which, what the Alexandrian Computus sets as luna XIV and the supporters of this algorithm set as luna XV or XVI, falls on a Sunday. In such cases, either the supporters of this algorithm set Easter to coincide with (Alexandrian) Passover-which is forbidden-or they set it on (their) luna XXII or XXIII, which falls outside the Alexandrian Easter limits. In either case, the supporters qualify themselves as computistically heterodox. This is the algorithm adopted by the so-called πενταπλοῦντες καὶ ἑξαπλοῦντες 134 , and it dates back to early stages of the Alexandrian Computus. As is clear, it is not an algorithm for computing Passover, but an algorithm for checking whether a traditional date of Passover falls on luna XIV or not, on the supposition that January 1 of the year that precedes solar cycle year 1 is luna I. Nevertheless, considering that a Moon age algorithm is in a sense the inverse of a Passover algorithm, this algorithm is incompatible with the Passover algorithms Anonymus 892 sets forth in sects. 12, 14, and 15: this fact shows that Anonymus 892 is a compilation.

Additional information on time-subdivisions, required in the present context, is finally provided in the text: 1 double-hour = 5 minutes; 1 day = 60 minutes (see also sect. 1). 9 ψῆφος σὺν θεῷ εἰς τὸ εὑρεῖν τὴν ἴνδικτον Εἰσὶ τὰ ἔτη ἀπὸ κτίσεως a κόσµου ἕως τῆς ἐνεστώσης b ι ης ἰνδίκτου ͵ϛυ ἔτη. ἐὰν θέλεις εὑρεῖν τὴν ἴνδικτον, ὕφειλε αὐτὰ οὕτως. δεκάκις 

God willing, calculation for finding the indiction

The years from the foundation of the world up to the present 10 th indiction are 6400 years. If you want to find the indiction, remove them as follows. Ten times four hundred, 4000; five times four hundred, 2000: there remain 400 as a remainder; remove also these as follows. Ten times 20, 200; five times 20, 100: there remain 100 as a remainder; remove also them by 15; six times 15, 90: and there remain 10. And you find that the indiction is the tenth.

A computation of the current indiction cycle year.

A computation of the indiction cycle year is carried out for current year AM 6400 [= AD 891/2]; it yields i = 10. In sections 9-11, the general algorithms of sections 4-6 are applied, but in a different order.
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☉ ἕτερος ψῆφος, εἰς τὸ εὑρεῖν τὸν κύκλον τοῦ ἡλίου Ὁ δὲ τοῦ ἡλίου κύκλος εὑρίσκεται οὕτως. ὕφειλε τὰ αὐτὰ ἔτη ἐπὶ τῶν κη, καὶ εὑρήσεις τὸν κύκλον τοῦ ἡλίου• εἰκοσάκις διακώσ<ιοι>, ͵δ• ὀκτάκις σ, ͵αχ• λοιπὸν ἐνέµειναν ω• ὕφειλε καὶ ταῦ------ 133 A complete list, keyed to lunar cycle years, of ages of the Moon according to this algorithm when the Alexandrian Computus sets them as Passover luna XIV is in Maximus, Enarratio II.1, in PG XIX 1255-1256. 134 See also Maximus, Enarratio I.11-12, 16, in PG XIX 1228-1229, 1233, and 

☉ A further calculation, for finding the cycle of the Sun

The cycle of the Sun can be found as follows. Remove the same years by 28, and you will find the cycle of the Sun; twenty times two hundred, 4000; eight times 200, 1600: there remain 800 as a remainder; remove also these as follows. Twenty times 20, 400; eight times 20, 160: and there remain 240; eight times 20, 160; eight times eight, 64: and there remain 16 as a remainder. And recognize that it is the sixteenth cycle of the Sun.

A computation of the current solar cycle year. A computation of the solar cycle year is carried out for current year AM 6400; it yields s = 16.
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☾ ἕτερος ψῆφος, δι' οὗ εὑρίσκεται ὁ κύκλος τῆς σελήνης Ἀνέρχεται ὁ κύκλος τῆς σελήνης ἕως τῶν ιθ, καὶ πάλιν εἰς πρῶτον ὑποστρέφει. ἀπὸ κτίσεως κόσµου ἔτους ἑξακισχιλιοστοῦ τετρακοσιοστοῦ ἕως τοῦ ἐνεστῶτος ἓξ καὶ δεκάτου κύκλου τῆς σελήνης• ὕφειλε καὶ ταῦ| 5v τα τὰ ἔτη οὕτως. δεκάκις τ, ͵γ• ἐννάκις τ, δισχίλια ψ• λοιπὸν ἔµειναν ψ ἔτη• ὕφειλε καὶ ταῦτα οὕτως. δεκάκις λ, τ• ἐννάκις λ, σο• λοιπὸν ἔµειναν ρλ ἔτη• ὕφειλε δὲ καὶ ταῦτα οὕτως. δεκάκις ϛ, ξ• ἐννάκις ϛ, πεντηκοντατέσσαρες a • λοιπὸν ἐµείνασιν ιϛ, ὃς ἐστὶν ιϛ κύκλος τῆς σελήνης. a πεντικονταδ

☾ A further calculation, for finding the cycle of the Moon

The cycle of the Moon reaches up to 19, and reverts back again to 1. <From> the six-thousandfour-hundredth year from the foundation of the world up to the present sixteenth cycle of the Moon; remove also these years as follows. Ten times 300, 3000; nine times 300, two thousand 700: there remain 700 years as a remainder; remove also these as follows. Ten times 30, 300; nine times 30, 270: there remain 130 years as a remainder; remove also these as follows. Ten times 6, 60; nine times 6, fifty-four: there remain 16 as a remainder, which is the sixteenth cycle of the Moon.

A computation of the current lunar cycle year. The lunar cycle lasts 19 years. A computation of the lunar cycle year is carried out for current year AM 6400; it yields m = 16.

12 ἕτερος ψῆφος τοῦ Πάσχα, δι' οὗ εὑρίσκεται ἑκάστου ἕτους Γνῶθι ποῖος κύκλος ἐστὶ a τῆς σελήνης, καὶ ἑνδεκαπλασίασον αὐτόν, καὶ εἰ µὲν ἐστὶν α ος , εἰπέ• ἑνδεκάκις µία, ἕνδεκα• καὶ βάλε τὰς <ϛ> ἐπακτὰς τῶν αἰώνων τῶν παρελθό<ν>των• {ϛ ἐπακτὰς} [[τῶν αἰώνων τῶν παρελθό<ν>των]] καὶ γίνονται ἡµέραι ιζ• καὶ ἄρξε ἀπὸ τῆς α τοῦ Μαρτίου ἕως οὗ πληρώσεις b ἡµέρας ν, καὶ ἐκεῖ c ἐστὶν τὸ νοµικὸν Πάσχα• | 6r καὶ εἰ µὲν πληροῖς ἔσωθεν τοῦ Μαρτίου τὰς ν, εὖ καὶ καλῶς• εἰ δὲ µή γε, βάλε καὶ ἐκ τοῦ Ἀπριλίου, ἵνα πληρωθῶσιν d ν. γνῶθι δὲ ὅτι τὸ νοµικὸν Πάσχα εἰς οἱανδηποτοῦν e [[εὑρέσεως]] ἡµέραν τῆς µεγάλης ἑβδοµάδος εὑρίσκεται. καὶ ἐπὰν εὕρῃς τὸ νοµικὸν Πάσχα, ψήφισον f ἐν ποίᾳ ἡµέρᾳ τῆς ἑβδοµάδος ἐστίν, καὶ ἀνελθὼν ἕως τῆς κυριακῆς εὑρήσεις τὸ ἡµέτερον Πάσχα. ἐπὰν δὲ εὕρῃς τὸ ἡµέτερον Πάσχα καὶ θέλῃς εὑρεῖν τὴν Ἀποκρέωσιν, πρόσθες ἐν αὐτῇ ἡµέρας τρεῖς -εἰ δὲ ἔστιν βίσεκτον, δ -καὶ εἰς τοσαύτας ἡµέρας εὑρίσκεις τὴν Ἀποκρέωσιν. ἀπὸ µὲν κη Μαρτίου τὴν ἄνω (ἄνω δὲ λέγω τὴν ἀρχὴν τοῦ µηνός) εἰς τὸν Ἰαννουάριον εὑρίσκεις τὴν Ἀποκρέωσιν• εἰ δὲ βίσεκτον ἐστίν, ἀπὸ τῶν κζ. καὶ ἀνάπαλιν g Βισέκτου ὄντος h ἀπὸ τῶν κη τοῦ Μαρτίου | 6v δύναται εὑρεθῆναι ἐν τῇ πρώτῃ τοῦ Φευρουαρίου ἡ Ἀποκρέωσις, ἀπὸ δὲ τῶν κθ τοῦ Μαρτίου καθεξῆς ἐν τῷ Φευρουαρίῳ πάντοτε εὑρίσκεται ἡ Ἀποκρέωσις.

ἔστιν δὲ ὁ ψῆφος τῆς οἱασδηποτοῦν εὑρέσεως τῆς ἑβδοµάδος οὗτος. γνῶθι i ποῖος κύκλος ἐστὶν τοῦ ἡλίου, καὶ βάλε τόν τε κύκλον τοῦ ἡλίου καὶ τὰ τέταρτα αὐτοῦ, καὶ ἀρξάµενος ἀπὸ Ὀκτωβρίου j µηνὸς λάβε τοῦ µηνὸς τοῦ ἔχοντος λα τρεῖς ἡµέρας, τοῦ δὲ ἔχοντος λ, β ἡµέρας, καὶ ἄνελθε ἕως τοῦ κατέχοντος µηνός, καὶ βάλε ὅσας ἔχει, καὶ ἑνώσας ὅλας ὁµοῦ ὕφειλε διὰ τῶν ἑπτά, καὶ ἐὰν µένῃ µία ἡµέρα, γίνωσκε ὅτι κυριακὴ ἐστίν, εἰ k δὲ δύο, β α , εἰ δὲ τρεῖς, γ η , εἰ l δὲ τέσσαρες m , δ η , καὶ καθεξῆς ἕως τοῦ σαββάτου. εἰ δὲ µὴ ἔχεις κάτωθεν τῶν ἑπτά, γίνωσκε σάββατόν ἐστιν. | 7r ὁµοίως καὶ εἰς τὸν δεύτερον κύκλον τῆς σελήνης εἰπέ• ἑνδεκάκις δύο, κβ• καὶ βάλε τὰς ἐπακτὰς τῶν αἰώνων ϛ• γίνονται κη• καὶ ἄρξε πάλιν ἐπὶ τῆς α τοῦ Μαρτίου ψηφίζειν καθὼς προείπαµεν. ἐπὰν δὲ φθάσῃς εἰς τρίτον κύκλον τῆς σελήνης, εἰπέ• ἑνδεκάκις γ, τριακοντατρεῖς• καὶ ὕφειλε τὰς τριακοστάς• καὶ µένουσιν τρεῖς• καὶ πρόσθες αὐταῖς τὰς ἐπακτὰς τῶν αἰώνων• καὶ γίνονται ἐννέα• καὶ ἄρξε πάλιν ἀπὸ τοῦ Μαρτίου µηνὸς ψηφίζειν n καθὼς προεδιδάξαµεν. ὁµοίως καὶ εἰς τὸν δ ον καὶ ε ον καὶ ἕως τοῦ ιθ ου κύκλου ἑνδεκαπλασιάσας ὕφειλε τριακοντάδας ὅσας ἔχεις, καὶ τὰς µενούσας ἡµέρας κάτωθεν τῶν τριακοντάδων κράτει o , καὶ πρόσθες αὐταῖς τὰς ἐπακτὰς τῶν αἰώνων, καὶ οὕτως ἄρχου πάντοτε ἀπὸ τῆς α τοῦ Μαρτίου, καθὼς προείπαµεν. | 7v γίνωσκε δὲ καὶ τοῦτο, ὅτι ἀπὸ πρώτου κύκλου ἕως ἑξκαιδεκάτου ἓξ ἐπακτὰς προστίθει p , ἀπὸ δὲ ἑπτὰ καὶ δεκάτου ἕως ιθ ου , ἑπτά, ἐπεὶ οὐκ εὑρίσκεις τὸ ἀσφαλές.

a ἐστὴ b πληρόσεις c ἐκὴ d πληροθῶσιν e οἱανδιποτοῦν f ψήφησον g ἀνάπαλην h ὄντως i γνῶθη j Ὠκτοβρίου k ἠ l ἠ m τεσσάρεις n ψιφίζειν o κράτη p προστίθι

A further calculation of Passover, by means of which it can be found in each year

Know to what the cycle of the Moon amounts, and undecuple it, and if it is the 1 st , say: eleven times one, eleven; and put the 6 epacts of the bygone eras: and they yield 17 days; and begin from March 1 until you will fill 50 days, and Passover is there; and if you will fill the 50 <days> within March, that's fine; but if you do not, put also <days> from April in order for 50 to be filled. Know that Passover can be found on whichever day of the Holy Week. And as soon as you have found Passover, calculate on what weekday it falls, and reaching up to Sunday you will find our Easter. As soon as you have found our Easter and you want to find Meat-Fare Sunday, add three days in it-if it is a leap year, <add> 4-and you find <that> Meat-Fare Sunday <falls> on such-and-such days. <If Easter falls> from March 28 towards above (I mean by "above" the beginning of the month) you find Meat-Fare Sunday in January; if it is a leap year, from <March> 27 <towards above>.

And the other way around If it was a leap year, from March 28 <on> Meat-Fare Sunday was found on the first of February, whereas continuously from March 29 <on> Meat-Fare Sunday is always found in February.

The calculation of whatever finding of the week is this. Know to what the cycle of the Sun amounts, and put both the cycle of the Sun and its quarters, and beginning from the month of October take three days of the month that has 31, 2 days from the one that has 30, and reach up to the ongoing month, and put how many <days> it has, and uniting all of them together remove by seven, and if one day remain, know that <the intended day> is a Sunday, and if two, it is a Monday, if three, a Tuesday, if four, a Wednesday, and continuously up to Saturday. If you do not have <any-thing> down from seven, know that it is a Saturday. Similarly also in the second cycle of the Moon, say: eleven times two, 22; and put the 6 epacts of the eras: they yield 28; and again begin calculating on March 1 exactly as we said above. As soon as you have attained the third cycle of the Moon, say: eleven times 3, thirty-three; and remove the thirtieths135 : and there remain three; and add the epacts of the eras to them: and they yield nine; and again begin calculating from the month of March exactly as we taught above. Similarly also in the 4 th and in the 5 th <cycle> and up to the 19 th cycle, undecupling remove how many thirties you have, and keep the days that remain down from the thirties, and add the epacts of the eras to them, and in this way always begin from March 1, exactly as we said above. Know also this, that from the first cycle up to the sixteenth add six epacts, from the seventeenth up to the 19 th , seven, for you do not find what is secure136 .

A complete set of algorithms for computing Passover, Easter, and Meat-Fare Sunday. This is the core section of Anonymus 892. The algorithm for Passover is137 :

(m) → 11m → | m < 17, 11m + 6 → (11m + 6) mod 30 → 50 -[(11m + 6) mod 30] -: 1 M = p m . | 17 ≤ m ≤ 19, 11m + 7 → (11m + 7) mod 30 → 50 -[(11m + 7) mod 30] -: 1 M = p m .
The first branch of the algorithm can be described as follows: multiply the lunar cycle year m by 11, add 6 units, reduce modulo 30, subtract the result from 50 (a parameter which I shall call norm) and count, from March 1, as many days as the remainder: the resulting day is the date of Passover. This day falls in April if the remainder is greater than 31.

This remarkable algorithm has two main features. First, the addendum 11m fits the definition of the epacts of the Moon given in sects. 14 and 19, but the text-while using the general meaning of ἐπακταί (see sect. 8) in the expression "epacts of the eras"-does not refer to the epacts of the Moon because the branching condition is formulated in terms of the lunar cycle years: therefore, the position of the saltus lunae is a feature of the algorithm, not of the epact sequence (see below and sect. 14 for a discussion). Second, this algorithm simplifies the fundamental algorithm expounded in early sources such as Heraclius and George Presbyter (see sect. 14) 138 , and which is a straightforward adaptation to the Byzantine era of the algorithm adopted in the early Alexandrian Church.

The adaptation of the Passover algorithm from the Alexandrian era to the Byzantine era can be explained as follows. Let us first consider the short Computus added by Heraclius as sect. 30 in Stephanus of Alexandria's in Ptolemaei Tabulas Manuales. Heraclius uses the era Maurice (here denoted y M )139 , and gives the following algorithm for the epacts: As 44 -8 = 36 and no modulo reduction overlaps with this subtraction, this is a norm 36 algorithm in disguise; as shown by O. Neugebauer, this norm characterizes the Alexandrian Computus 140 . As regards the three branches of the algorithm, they result from the fact that the relation p m + e m ≡ 36 (mod 30) typical of the Alexandrian Computus can be solved for p m (as in the first branch of the algorithm), days being counted from 1 M , but one must not forget that (a) a modulo reduction is involved (consequently, one cannot simply write p m = 36 -e m ), and (b) large epacts entail numerically small Passover dates, but these dates may be forbidden by the rule of the equinox if they fall in March. Therefore, for large epacts one must count from 1 A and not from 1 M . This requirement collides with the modulo 30 reduction constitutive of the Passover-epacts relation unless 1 unit is subtracted (second branch of -----the algorithm) or, what amounts to the same, a modulo 31 reduction is performed (third branch). Finally, there is no trace of saltus lunae in the algorithm. A feature of this algorithm, which is also found in other Computi, is that the branching conditions are given as inequalities involving the "norm minus shifted epacts" quantity (which in principle does not straightforwardly coincide with p m , as just seen), and not simply the epacts or the lunar cycle year 141 .

Why does Heraclius use norm 36 but computes with norm 44 and adds 8 to the epacts 142 ? Why use a norm different from 36? A reason can be that 44 is the number of days nearest to 1 lunar month and one half (because 29 1 ⁄ 2 + 14 1 ⁄ 2 1 ⁄ 4 = 44 1 ⁄ 4 ), but George Presbyter will give us a complementary clue. Before seeing this clue, recall that Heraclius computes the date of Passover for AD 623 (e m = 15) with the above algorithm and finds p m = 21 M . He also mentions the existence of a year without epacts and computes that in this case (last branch of the algorithm) p m = 5 A . Thus, Heraclius' epact sequence coincides with the Alexandrian sequence 143 ; moreover, according to the algorithm just seen, the saltus lunae (marked by a double vertical bar in the table below; Passover dates without a subscript fall in April) is located at the end of the cycle: Let us now turn to George Presbyter. He is the avowed champion of the Byzantine world era and epact sequence. His computations are set for current year Heraclius 29 = AM 6147 [= AD 638/9], i = 12.

m 1 2 3 
George finds the lunar cycle as follows: (y) → y mod 19 = m, as in sect. 5 of Anonymus 892. The algorithm for the epacts of the Moon is (m) → 11m → 11m mod 30 = e m (as in sect. 14 of Anonymus 892), but George offers an argument to justify the presence of the saltus lunae after cycle 16 144 , and sets out all Passover days. The resulting list of epacts and Passover dates is as follows (the position of the saltus lunae is again marked by a double vertical bar): This norm 43 algorithm (a norm that is also operative in the second branch of Heraclius' algorithm) is straightforwardly equivalent to a norm 44 algorithm, for the reference epoch has to be 1 M and the actual norm in the second branch of the algorithm is 43 + 1 = 44. As in the case of Heraclius, no trace of saltus lunae is found in the algorithm; this confirms George's argument about the saltus lunae being a feature of the epact sequence.

The change of era, and Heraclius' epacts shift of 8 units, explain the transition from the Alexandrian era and epact sequence to the Byzantine era and epact sequence. To see this, note that the epacts shift of 8 units transforms Heraclius' cycle into -----141 For instance, 44 -(e m + 8) < 20 might simply be phrased 36 -e m < 20, or even e m > 16. But it is not. 142 Of course, 44 -8 = 36, but the crucial point, let me stress it again, is that no modulo reduction separates the minuend and the subtrahend of this subtraction. This is not always the case, as the norm 50 algorithm shows. Thus, Heraclius applies in fact a norm 36 algorithm. 143 The Alexandrian epact sequence and Passover dates are listed in GRUMEL, La Chronologie 54, column II. 144 DIEKAMP, Der Mönch 27.27-28.5.

m
Of course, the saltus lunae remains at the end of the cycle. The 16-year backwards shift from the Alexandrian to the Byzantine world era makes the new cycle begin in (proleptic) Alexandrian m = 4. Therefore, since Heraclius' and George's Passover algorithms are equivalent, George's cycle is as follows (the saltus lunae after cycle year 16 characterizes the Byzantine epact sequence; the relocated cells are shaded gray): 2 22 M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17 5 25 M 13 The argument just outlined explains the crucial transition from the Alexandrian era and epact sequence to the Byzantine era and epact sequence. Conversely, it cannot be a coincidence that Heraclius' additive shift of 8 units gives an epact sequence such that e 1 = 11 after the change of era.

m 1 2 3 4
Let us return to the norm 50 algorithm of Anonymus 892. The simplification of Heraclius' and George's Passover algorithms was carried out by writing 44 as the result of 50 -6, with the norm 50 lying outside the modulo 30 reduction and the parameter 6 lying inside it: this rewriting allowed setting a branching condition much more transparent than the one in Heraclius' and George's algorithm 145 ; it also allowed simplifying both these algorithms and the related, and unwieldy, algorithms we shall see in sects. 14 and 15. This simplification is a consequence of the following fact: counting 50 days starting on March 1 one gets to April 19, which is the upper bound for Passover (see sect. 26), hence no counting from April 1 is required for large epacts, contrary to what one finds in Heraclius' and George's algorithm.

The norm 50 algorithm of Anonymus 892 is attested in other sources; it is also called "notarial" (νοταρική) 146 . The 6 units to be added to 11m are called "epacts of the bygone eras" (ἐπακταὶ τῶν αἰώνων παρελθόντων) 147 , which correspond to the 6 whole millennia elapsed since Creation: this is the basic mnemonic trick in the norm 50 computation of Passover 148 . In the second branch of the algorithm, the additional unit to be added to 11m in the cycle years from 17 to 19 (that is, 7 units are added instead of 6) is the saltus lunae. As usual, whole lunar months are removed by reducing modulo 30 149 .

In this section of Anonymus 892, a complete set of prescriptions (Passover, Easter, Meat-Fare Sunday, weekday of an assigned date) is provided for the first year of the lunar cycle 150 . At the end of the section, however, the Passover algorithm is summarily retrieved for a representative sample of all lunar cycle years.

----- 145 Just one branching remains in the norm 50 algorithm, and it occurs at a most natural place: the position of the saltus lunae.

Moreover, the branching condition is formulated in terms of the lunar cycle, not in terms of the "norm minus shifted epacts" as Heraclius and George do. 146 The denomination is used in Anonymus 1079, sect. 5, in MENTZ, Beiträge zur Osterfestberechnung 98. Other occurrences of this algorithm can be found in Anonymus 830, sects. 147 This expression is also found in Anonymus 1092A, sect. 4, in KARNTHALER, Die chronologischen Abhandlungen 5.42, and in Rhabdas 1342, sect. 10. 148 Matthew Blastares (in RHALLES -POTLES, Σύνταγµα VI 416) adduces another explanation of the parameter 6: because of the excess of 0;1,50 day of a true lunar month over 29 1 ⁄ 2 days, which yields about 6 days in 1 year (immo 6;53 days). 149 Thus, the convention assumes that lunar months are 30-day months. Unnecessary complications would arise from reducing modulo 29 1 ⁄ 2 ; moreover, one would not let Easter coincide with Passover, and reducing modulo 30 rather than modulo 29 1 ⁄ 2 shifts forward, and most conveniently, the schematic date of the computed Passover. There exist, however, algorithms that compute the age of the Moon (but not the date of Passover) by reducing modulo 29 1 ⁄ 2 : see, for instance, Maximus, Enarratio I. 150 In its first occurrence, the Passover algorithm is harmlessly incomplete: since 11m + 6 < 30 for m = 1, the modulo 30 reduction is not operative and hence it is not mentioned.

A computation of Meat-Fare Sunday. A computation of the date of Meat-Fare Sunday (Ἀποκρέωσις) follows; it includes a clarification on the use of the adverb ἄνω "above" as a way to specify the time arrow (see sects. 22 and 26). The algorithm is 151 : (r,y) → r + 3 + ⟦(y mod 4)/4⟧ → (r + 3 + ⟦(y mod 4)/4⟧) mod 31 = t.

If r ≥ 29 M , then t ∊ F; if r ≤ 28 M -⟦(y mod 4)/4⟧, then t ∊ J.

In the Byzantine liturgical calendar, Meat-Fare is the third Sunday of the pre-Lenten period of preparation and repentance; it falls 8 weeks = 56 days before Easter. Since in non-leap years February plus March last 59 days, Meat-Fare Sunday falls numerically 3 days after Easter (summand r + 3) but 2 months before the month in which Easter falls. There is, however, a due adjustment in leap years (summand ⟦(y mod 4)/4⟧) 152 , and one must keep in mind that if the date of Easter falls on a day after March 29 (28 in leap years), then Meat-Fare Sunday falls in February rather than in January. The modulo 31 reduction is not indicated in the algorithm of our text, but it must be introduced in order to take into account Easter dates in March shifting to April because of the addition of 3 + ⟦(y mod 4)/4⟧.

A computation of the weekday of Passover, if this falls in month X. The algorithm is as follows, where n k = length of month k in days 153 : (s,x,X) → s + ⟦s/4⟧ → s + ⟦s/4⟧ + (𝑛 ! -28)

!-! !!! → s + ⟦s/4⟧ + (𝑛 ! -28) !-! !!! + x → → [s + ⟦s/4⟧ + (𝑛 ! -28) !-! !!! + x] mod 7 = w s (x X ).
This algorithm computes the weekday of any date x in month X. To this end, it suffices to count the days elapsed from a date falling on a known weekday and remove whole weeks. It should be kept in mind that a year of 365 days exceeds a whole number of weeks by 1 day (summand s in the above algorithm: recall that the Byzantine world era and the solar cycle are synchronized; this summand also includes 365 of the 366 days of a leap year); a leap year exceeds it by 2 days (further summand ⟦s/4⟧; the first two summands, after reduction modulo 7, are the epacts of the Sun, as seen in sect. 2) 154 ; a month exceeds it by its own length in days minus 28 days (= 4 weeks), namely, n k -28 in our notation. The sum (𝑛 ! -28)

!-! !!!
is the excess over 28 days of the months from O(ctober) to the one preceding the given month X, denoted by X -1 (the sum gives null values when the assigned month is October). The date x must then be added. Reducing the sum modulo 7 involves eliminating whole weeks. Since only months of 31 and 30 days are mentioned and because of the leap year contribution included in the term ⟦s/4⟧, February must be set to 28 days; given the fact that this summand is operative throughout the year, the month X must be a month coming after February. This restriction, however, is of no consequence as far as Passover or Easter computations are concerned. To check the consistency of the algorithm, recall that the weekday of the epoch date of the Byzantine world era is a Saturday = 7, so that w(1 O ) = 2 for the first day of the solar cycle, which is the output for s = 1, x = 1.

-----151 Other occurrences of this algorithm can be found in Anonymus 951, sect. 17; Anonymus 982, sect. 9; Anonymus 1079, sect. A further calculation, by means of which each weekday can be found Always keep in mind the last day of the month of September, and if it is a Sunday, hold one; if it is a Monday, hold 2; if a Tuesday, three; if a Wednesday, 4; if a Thursday, 5; if a Friday, 6; if a Saturday, 7; and from the month of October begin taking three days of the month that has 31, 2 days of the one that has 30, and, of the month in which you want to find the day, put how many <days> it has, and remove by 7, and that which <remains> down from 7 shows <the weekday>. If you do not have <anything> down from 7, it is Saturday.

A computation of the weekday of date x in month X. The algorithm is as follows, where n k = length of month k in days155 :

(w[30 S ],x,X) → w(30 S ) + (𝑛 ! -28) !-! !!! + x → [w(30 S ) + (𝑛 ! -28) !-! !!! + x] mod 7 = w(x X ).
This algorithm for computing the weekday of date x in month X takes the weekday of September 30 (= the day before the beginning of a solar cycle) and then computes as in the previous algorithm. The solar cycle year begins on October 1; consequently, w(30 S ) takes the role of the epacts of the Sun. As the algorithm mentions only months of 31 and 30 days, and years are absent, we may suppose either that February has always 28 days, and the algorithm is accordingly valid if month X is not later than February, or that the case of February having 29 days has been omitted by negligence or mistake, and the algorithm is accordingly valid in general. All in all, the prescriptions for finding the weekday of a given date are carelessly formulated in Anonymus 892.
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ψῆφος <εἰς> τὸ εὑρεῖν τὸ νοµικὸν Πάσχα Κράτει a ἐπὶ χειρῶν σου πάντοτε µγ, καὶ ὕφειλον ἐξ αὐτῶν τὰς ἐπακτὰς τῆς σελήνης ἑκάστου ἔτους, καὶ ὑφειλόντος δέ σου τὰς ἐπακτὰς τῆς σελήνης ἐνεµείνασιν ἐπὶ δακτύλων σου πλέον τῶν λ, τὰ µὲν λ ὕφειλε τὰ δὲ κάτωθεν τῶν λ, ἐὰν εἰσὶν ἀπὸ µιᾶς ἕως ιθ, γινώσκε ὅτι ἐν τῷ Ἀπριλίῳ ἐστὶν τὸ νοµικὸν Πάσχα• εἰ δὲ µένουσιν b κ ἢ κα ἢ κβ ἢ κγ καὶ καθεξῆς, πάντοτε πρόσθες ἡµέραν µίαν, καὶ ζήτει τὸ νοµικὸν Πάσχα ἐν τῷ Μαρτίῳ, πλὴν εἰς τὸν ιη ον κύκλον µὴ προσθήσεις, εἰς δὲ τὸν ἑπτὰ καὶ δέκατον κύκλον τῆς σελήνης ἑπτὰ ἐπακτῶν µενουσῶν σοι ὀκτὼ ὕφειλε ἐκ τῶν τεσσαρακοντατριῶν. ὁµοίως c καὶ εἰς τὸν ιθ ον κύκλον κθ ἐπακτῶν µενουσῶν σὺ τρίακοντα ὕφειλε ἐκ τῶν µγ, ἐπεὶ | 8v οὐκ εὑρίσκεις τὸ d ἀσφαλές. εὑρίσκονται δὲ αἱ ἐπακταὶ τῆς σελήνης οὕτως. ἐν µὲν τῷ πρώτῳ κύκλῳ ἔχει ἕνδεκα ἐπακτάς, καὶ ἐν τῷ δευτέρῳ, κβ, ἐν δὲ τῷ γ ῳ , τρεῖς, ἐπειδὴ ἀπήρτισται ὁ τριακοστὸς ἀριθµός• τρεῖς γὰρ ἑνδεκάκις, τριακοντατρεῖς• καὶ ὑφειλόντος σου τὰ λ µένουσιν γ. αὗται εἰσὶν αἱ ἐπακταὶ τοῦ τρίτου κύκλου. ὁµοίως καὶ καθεξῆς ἕως ἐννεακαιδεκάτου e κύκλου τῆς σελήνης ἑνδεκαπλασίαζε τὸν οἱονδηποτοῦν f κύκλον τῆς σελήνης, καὶ ὕφειλε τριακοστά, καὶ τὰ µένοντα κάτωθεν τῶν τριάκοντα εἰσὶν αἱ ἐπακταὶ τῆς σελήνης.

a κράτη b µήνουσιν c ὁµοίος d τω e ἐννακαιδεκάτου f οἱονδιποτοῦν -----Calculation <for> finding Passover Always keep 43 in your hands, and remove the epacts of the Moon of each year from them, and if, once you removed the epacts of the Moon, there remain more than 30 in your fingers, remove 30 and, if that which <remains> down from 30 is from one up to 19, know that Passover is in April. If there remain 20 or 21 or 22 or 23 and so on, always add one day, and seek for Passover in March, with the <following> exceptions: in the 18 th cycle you will not add <anything>, in the seventeenth cycle of the Moon, where 7 epacts remain for you, remove eight from forty-three. Similarly also in the 19 th cycle, where 29 epacts remain, remove thirty from 43, for you do not find what is secure. The epacts of the Moon can be found as follows. In the first cycle it has eleven epacts, and in the second, 22, in the 3 rd , three, since the thirtieth number really turns out to be completed: for eleven times three, thirty-three; and once you removed 30, there remain 3. These are the epacts of the third cycle. Similarly also, continuously up to the nineteenth cycle of the Moon, undecuple whatever cycle of the Moon, and remove thirtieths, and that which remains down from thirty are the epacts of the Moon. In the last three branches of the algorithm, the month in which Passover is located is tacitly determined by the inequalities that single out the first two branches. The branching conditions involve both a "norm minus epacts" quantity 43 -e m (see the commentary on sect. 12) and the lunar cycle m; the latter is the case after the saltus lunae. The formulation of the last branch makes it certain that e 19 = 29; consequently, the list of epacts has a discontinuity at the end of cycle year 19, whereas the saltus lunae is shifted back by the algorithm to the end of cycle year 16. Thus, in this case the saltus lunae is a feature of the algorithm, not of the epact sequence.

To clarify this statement, recall that the epacts are the accumulated advance of 12 lunar months over a calendar year of 365 days; this advance is of 11 days for each lunar cycle year. Whenever this sum exceeds 30 units, these are subtracted to form an embolismic month. Since 11 and 30 are mutually prime, the sequence of epacts is cyclic and runs through all numbers from 1 to 30 before returning to the initial value. The order in which the numbers from 1 to 30 appear is as follows: 30 11 22 3 14 25 6 17 28 9 20 1 12 23 4 15 26 7 18 29 10 21 2 13 24 5 16 27 8 19 30 Choosing the initial point of the sequence amounts to fixing the age of the Moon on the first day of the first cycle. Any initial point can be selected; the list is cyclic, as I have emphasized by repeating number 30. Two "natural" starting points are 30 ≡ 0 (mod 30), so that the first day of the first cycle is luna I, and 11, the value of the yearly lunar advance. These values also occupy consecutive places in the list; the former was adopted as a starting point in the Alexandrian Computus, the latter in the Byzantine Computus (see sect. 12). If returning to the starting point takes an entire cycle, a good approximation of an exact return is after 19 steps, where the difference is 1: 11×19 = 209 ≡ -1 ≡ 29 (mod 30) 157 . The epact sequence singled out by this approximation is the sequence of the 19-year cycle, with a "saltus lunae"-namely, a "discontinuity" of the epact sequence-at the end: the epact value that follows 29 in this 19-token sequence is again 11, which is obtained from 29 by adding 12, not 11, and then reducing modulo 30. However, one must be careful in distinguishing between the saltus lunae and the "discontinuity" of the epact sequence. The point is that any cyclic sequence of epacts that does not coincide with the whole -----156 See George, sect. II.4, in DIEKAMP, Der Mönch 30.5-31.2, Anonymus 982, sect. 15, and the discussion in sect. 12 above. 157 30-token sequence must have a "discontinuity" (that is, a disruption of the principle of constant difference 11) somewhere: a saltus lunae at the point of discontinuity has exactly the function of making consecutive lunar cycles fit to each other. However, the saltus lunae can be placed at any point of the cycle, but this does not entail a displacement of the discontinuity of the epact sequence. For this reason, in Byzantine Computi, actually set out or reconstructed lists of epacts can be found that differ as to the position of the discontinuity (not of the saltus lunae) but that nevertheless give rise to the same list of Passover dates, which is impossible if equivalent Passover algorithms are intended: very simply, there is a one-to-one correspondence between epact values and Passover dates for any given algorithm. In the same way, a list of epacts is not significant unless the algorithm in which it is used is also provided. To sum up, one must look at the Passover algorithm actually used in order to ascertain where the saltus lunae is really located. Since 50 -6 = 44, and on account of the definition of the epacts of the Moon provided later in the text and of the position of the modulo 30 reduction, the norm 43 algorithm for computing Passover expounded in this section is equivalent both to the norm 50 algorithm of sect. 12 and to the norm 44 algorithm of sect. 15. The latter equivalence is proved by observing that the number 44 (= 43 + 1) figures in the algorithm branch for 43 -e m > 19 (namely, if Passover falls in March). If, conversely, 43 -e m ≤ 19, one unit is absorbed by the shifted origin of daycounting from 1 M to 1 A because of the discrepancy between modulo 30 reduction and March having 31 days. Since most Easter dates fall in April, the norm is set to 43 rather than 44. For m = 18, the unit to be added to the epacts because of the saltus lunae is offset by the unit to be added for 43 -e m > 19. For m = 17, e 17 = 7, to which 1 must be added because of the saltus lunae, and the second branch of the algorithm applies. For m = 19, e 19 = 29, to which 1 must be added because of the saltus lunae, and the first branch of the algorithm applies. The number of branches makes this algorithm unwieldy.

The text continues by showing how to find the epacts of the Moon 158 . The rule is:

e 1 = 11; e m = [e 1 + 11(m -1)] mod 30 if m > 1.
This is a simple variant of the standard rule for finding the epacts. No mention is made of the saltus lunae; therefore, the discontinuity is located at the end of the epact sequence. The resulting epacts are set out in the following table; again for the convenience of the reader, the 

A further calculation of Passover

Know the epacts of each year of the Moon, and conjoin them from March until you will make number 44: Passover is there. If you have lunar epacts 25 or 26 or 27 or 28 or 29, always add one day in them, and count from April until you will arrive at number 44, and Passover is there. In the 17 th and in the 18 th cycle, add one epact to each one, and count from March up to 44. In the nineteenth cycle, just begin from March without conjoining any epact to it, until you will arrive at number 44: Passover is there. This norm 44 algorithm for computing Passover is straightforwardly equivalent, after deletion of the modulo 30 reductions, to the norm 43 algorithm of sect. 14. Adding 1 to large epacts (as in the second branch) derives from counting from 1 A and from March having 31 days. The additional unit in cycle years 17 and 18 (third branch) is the saltus lunae. The no-epacts prescription for cycle year 19 (fourth branch) originates from e 19 + 1 = = 29 + 1 = 30 ≡ 0 (mod 30): the additional unit coming from the saltus lunae leads to an epactsless branch if days are counted from 1 M . This shows that the value e m = 29 should be deleted from the second branch. The explicit mention of the epact value e m = 29 shows that the discontinuity of the epact sequence is located after cycle year 19. However, the saltus lunae is placed after lunar cycle 16; therefore, it is a feature of the algorithm. As in sect. 14, the number of branches makes this algorithm unwieldy. This algorithm is equivalent to the algorithm of sect. 12 because, by definition, y mod 19 = m and because 6 ≡ -13 (mod 19); hence, 11(y -13) ≡ 11m + 66 (mod 19). Finally, 11m + 66 ≡ 11m + 6 (mod 30). However, the -----159 See Anonymus 982, sects. 10 and 14; Anonymus 1172, sect. 8 (an incomplete algorithm); Anonymus 1273, sect. 7, in BUCH-EGGER, Wiener griechische Chronologie 31.58-75; Meliteniotes 1352, sect. III.24. These two algorithms do not mention the epacts, replacing them with their definition e m = 11m mod 30. See also the discussion in sect. 12 above. An algorithm that is straightforwardly equivalent to this norm 44 algorithm is a norm 45 algorithm in which the epacts are replaced by the "pastoral base" b m = e m + 1: see Anonymus 1079, sects. 3-4, in MENTZ, Beiträge zur Osterfestberechnung 78; Anonymus 1172, sect. 7 (an incomplete algorithm), and sect. 18 for the "base"; Anonymus 1273, sect. 6, in BUCHEGGER, Wiener griechische Chronologie 30.43-31.57; Anonymus 1095. In all these algorithms, the saltus lunae is a feature of the sequence of bases. compiler omitted to include the saltus lunae after cycle 16. This algorithm can also be found in Anonymus 830, sect. 26; Anonymus 982, sect. 11. 17 ἕτερος ψῆφος σύντοµος τοῦ Πάσχα Γίνωσκε ἀκριβῶς τὸ πόσας ἡµέρας ἔχει ἡ σελήνη τὴν α τοῦ Ἰαννουαρίου, καὶ κράτει a αὐτάς, καὶ ἀνάβα ψηφίζων b ἀπὸ τὴν α τοῦ Ἰαννουαρίου τὰς ἡµέρας τῶν µηνῶν ἕως οὗ ποιήσεις ρε ἡµέρας, καὶ ἐκεῖ ἐστὶν τὸ νοµικὸν Πάσχα. εἰ c δὲ ἔστιν βίσεκτον, <ρ>ϛ. ἐπὰν δὲ εὕρῃς τὸ νοµικὸν Πάσχα, ψήφισον d ἐν ποίᾳ ἡµέρᾳ τῆς ἑβδοµάδος ἐστίν, καὶ ἀνελθὼν ἕως τῆς κυριακῆς εὑρήσεις τὸ ἡµέτερον Πάσχα.

a κράτη b ψιφίζων c ἠ d ψίφησον A further, concise, calculation of Passover Know exactly how many days the Moon has on January 1, and keep them, and calculating from January 1 mount the days of the months until you will make 105 days, and Passover is there. If it is a leap year, <mount up to> <10>6. As soon as you have found Passover, calculate on what weekday it is, and reaching up to Sunday you will find our Easter.

A computation of Passover. The algorithm is:

(y,a[1 J ]) → 105 + ⟦(y mod 4)/4⟧ -a(1 J ) -: 1 J = p y .
This norm 105 algorithm for computing Passover shifts the origin of day-counting from 1 M to 1 J and thereby introduces the age of the Moon on January 1 (in other Computi, this is the "base" b m ) as a reference. As seen in sect. 12, the shift adds 59 days to the count; these become 60 days in leap years (summand ⟦(y mod 4)/4⟧) 160 . Since 105 -59 = 46 and looking for instance at the norm 44 algorithm of sect. 15, one gets that, at lunar cycle m and including the saltus lunae in the sequence of epacts, a m (1 J ) = b m = e m + 2, instead of e m + 1 as one should expect. If we accept that the latter is correct, the norm of the algorithm should be corrected to 104 161 . The text adds that Easter is the first Sunday after Passover. a ψηφοφορίη b ἐννεκαιδεκάτου c γινώµενα d µινὶ e εὗραι f ἠ g ὡσαύτος h κράτη 2 nd calculation of Passover Know that the Passover lists can be found in the 19 cycles of the Moon, that is, from the 1 st up to the nineteenth, all of them amounting to 19 Passover's. These 19 are found in each month in order as follows, that is, 1 Passover in March or in April. In the first <cycles> always keep two days of April in your fingers, that is, the first and the second, and you will not do anything else than seek for what the cycle of the Sun amounts to, and find from it on what weekday occurred the second of April, and if it occurred on a Sunday, the Holy Easter is on the other Sunday; if it was found a Tuesday or a Wednesday or a Thursday or a Friday, and continuously up to Saturday, reach up to the <following> Sunday, and there you will find the most divine Easter. On the embolismic year Know that from the first year of the Moon (namely, cycle) up to the 19 th , the Moon has thirteen months every three years because of the remainder of 11 days by which it was in advance with respect to the year of the Sun; for the year of the Sun is of 365 days disregarding 1 ⁄ 4 , the <year> of the Moon is of 354; for from 354 up to 365 there are 11 days; for there remain over 11 days of the Moon per year, the so-called epacts. For instance, in the 1 st <year> there remain over 11 days, and in the second, 11; there it is, 22 because of the addition of 11; and in the 3 rd , 11; there it is, three eleven, 33, and that year of the Moon has 13 months because of the gathering of the hendecads; for after the completion of the 12 months of the Moon there remains over one month, the one also called embolismic; for in this way there remains over an embolismic month of the Moon every three years.

Embolismic years. There are 7 "embolismic lunar years" (they contain 13 lunations instead of 12; the additional lunar month has 30 days) 162 because the solar year of 365 1 ⁄ 4 days exceeds 12 lunar months (= 354 days) by 11 1 ⁄ 4 days. If we neglect fractional parts, these 11 days-the so-called "epacts of the Moon" (τῆς σελήνης ἐπακταί)-complete an "embolismic" lunar month of 30 days every two or three solar years; these days are subtracted from the cumulating epacts. Accordingly, the cumulating epacts must be reduced modulo 30. The text computes the epacts of the first three lunar cycles as an example; the implicit algorithm is e m = 11m mod 30. In a whole cycle of 19 years, there are 209 (= 11×19) additional days, which complete 7 embolismic months of 30 days via the trick of the saltus lunae (that is, the age of the Moon is increased by one day at some point of its cycle). Hollow years (κοιλοί) in the 19-year cycle are years 1, 2, 4, 6, 7, 9, 10, 12, 13, 15, 17, 18; embolismic years (ἐµβόλιµοι) are years 3, 5, 8, 11, 14, 16, 19 163 .

Below is a table of the main numerical data related to the lunar cycle that are explicitly or implicitly assumed in Anonymus 892, sects. 12, a ἐκπακστὴ b ἥµησυ c καθέκαστον d ὀνόµαζον e θεορεῖν f Ἑρµεῖ g Διή h ζώνι i Ἄρις j Ἀφροδήτης k µεινῶν l µεινῶν m κατοτέρα n λέγωνται A further calculation, for finding the epacts of the Sun If you want to find the epacts of the Sun of each year, know that the year has 365 1 ⁄ 4 days, and remove them by 7, and that which remains down from 7 are the epacts of each year of the Sun, viz. cycle. For instance, the 1 st cycle of the Sun (namely, year) has one epact and a quarter, since we really removed 365 1 ⁄ 4 by 7: that is, seven times 50, 350: and there remain 15 1 ⁄ 4 days. Again, twice seven, 14: and there remains 1 1 ⁄ 4 , which is called "solar epact". And again, the second <cycle> has two and a half epacts, since there really remains over 1 1 ⁄ 4 per year. And the third has three and a half and a quarter. The fourth has 5 epacts because of the addition of the quarters. The fifth has six and a quarter epacts. The sixth has seven and a half; remove seven, and there remain a half of an epact. <Do> also in this way continuously up to the 28 th cycle of the Sun. Whenever a number exceeds 7, remove seven, and keep what <remains> down. Know that they are called "epacts" for every cycle of the Sun, and "epacts of the Gods" by the Egyptians. For the Egyptians were used to refer to the week by taking the 7 planets as model, which planets were also named "gods" by those who think wrongly; those who do not think in this way called them "gods" not because of their nature but because of the kind of their activity; for they called them "gods" because of their "going", that is to say "running", whereas <that which is> god because of its nature is called "god" because of its "begolding" everything164 . Know, as the ancient wise men say, that God made the seven days of the week by taking the 7 heavenly bodies, also called "planets", as model, and He likens Sunday to the Sun, Monday to the Moon, Tuesday to Mars, Wednesday to Mercury, Thursday to Jupiter, Friday to Venus, Saturday to Saturn.

♄ 1 st Saturn is in the first zone of the heaven, and travels over the 12 signs in 30 years. ♃ 2 nd Jupiter is in the second one, and travels over the 12 signs in 12 years. ♂ 3 rd Mars is in the third one, and travels over the 12 signs in 15 years. -----☉ 4 th the Sun is in the fourth one, and travels over in 12 months. ♀ 5 th Venus is in the fifth one, and travels over in 8 months. ☿ 6 th Mercury is in the sixth one, and travels over in 3 months. ☾ 7 th the Moon is in the seventh one, and travels over in 30 days. The Moon is the lowest <heavenly body>; for, as when you will make a pole inside another pole, the inner pole will be found to be smaller, so the motion of the Moon, insofar as it is lower, is also smaller and it will be carried up faster. They are called "planets" not because they deceive people, but because they travel transversely across their course 165 .

A computation for finding the epacts of the Sun. The algorithm is 166 : (s) → [(365 1 ⁄ 4 mod 7)s] mod 7 = e s . This algorithm, which computes with the crudest fractional approximation of the tropical year, is equivalent to adding 1 1 ⁄ 4 ≡ 365 1 ⁄ 4 (mod 7) for every year of the solar cycle and to reducing the result modulo 7; see sect. 2. A complete list of epacts of the Sun is provided in the text, as in the following table; in this section, 7 mod 7 = 0, and fractional remainders are admitted (they "pass through" the modulo reduction). The text states that these epacts are called "epacts of the gods" (θεῶν ἐπακταί) by the Egyptians, for they named the weekdays after the seven planets, which were also called "gods" because of the names of most of them; a polemical remark on the real etymology of the epithet follows 167 . The text continues by mentioning a wellknown piece of astrological lore about the generation of the seven weekdays by imitation of the seven planets, in the order Sun, Moon, Mars, Mercury, Jupiter, Venus, Saturn 168 , and by listing location and periods of the seven planets, as follows 169 : planet Saturn Jupiter Mars Sun Venus Mercury Moon period 30years 12y 15y 12months 8m 3m 30days

s
The section ends with a remark on the fact that the Moon is the innermost planet and on the etymology of the word "planet".

-----165 I was unable to render the two Greek paraetymologies (πλανήτης vs. πλανάω and πλανήτης vs. πλαγίως) in English. The former paraetymology plays with the two meanings of πλανάω: "to wander" but also "to deceive". 166 Other occurrences of this algorithm can be found in the computistical section of the 18. 169 The list is also found in Anonymus 1092B, sect. 11, in KARNTHALER, Die chronologischen Abhandlungen 13.322-328. Many ancient and Byzantine sources list the periods of the planets; the following table sets out those found in Geminos, Isagoge I. 24-30, and How a leap year comes to be Resolve out the years of the world into four-times, and if it gets completed to a fourth <year>, say that it is a leap year.

A criterion for identifying a leap year. If y ≡ 4 (mod 4), then y is a leap year.

22

| 13v Γίνωσκε τὸν σεληνιακὸν a κύκλον τῆς σελήνης ἐν ᾧ καὶ τὸ νοµικὸν εὑρίσκεται Πάσχα ἀρχόµενον ἀπὸ κα Μαρτίου ἕως ιη Ἀπριλίου. γίνωσκε δὲ ὅτι ἔξωθεν τοῦ µηνὸς τούτου νοµικὸν Πάσχα οὐ γίνεται, οὔτε ἄνωθεν οὔτε κάτωθεν. νόησον δὲ τὴν µὲν ἀρχὴν ἄνω εἶναι τὸ δὲ τέλος κάτωθεν. οὗτος b ὁ σεληνιακὸς µὴν λέγεται καὶ µέσος µὴν τῆς σελήνης.

a σελινιακὸν b οὗτως Know that the lunar cycle of the Moon in which Passover is also found begins from March 21 <and reaches> up to April 18. Know that outside this month there cannot be Passover, <viz.,> neither above nor below. Consider that the beginning is above and the end is below. This lunar month is also called the "middle month of the Moon". 1920, 261-268) and 782-785. Geminos' value for the Moon is the length of the sidereal month. 171 The opposite convention can be found in George, sect. II.3, in DIEKAMP, Der Mönch 29.29-30, and in Maximus, Enarratio I.14, in PG XIX 1232.

Question

Why does the lunar month keep 30 days and four weeks? Answer Then, the Moon also has four turning points: for <at the end of> the 1 st week it becomes a θ, < at the end of> the second, an ϵ, <of> the 3 rd , an ο, and <of> the 4 th , a ϲ, and it writes θϵοϲ. Through Ursa Major ζ, through the Pleiads ω, through South ν, and the lunar month θϵοϲ; and it writes θϵοϲ ζων [scil. "Living God"].

Why does the lunar month (φέγγος) have 30 days and 4 weeks? Because the Moon has 4 turning-points (τροπαί); they bound 4 periods within the lunar month at the end of which the phases of the Moon, if they are put together one after the other, trace the word θϵοϲ. Moreover, through (?) Ursa Major ζ, through the Pleiads ω, through South ν, yielding θϵοϲ ζων. I have been unable to understand the connection with Ursa Major, the Pleiads, and South, nor have I found parallel texts.
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σὺν θεῷ ψῆφος <εἰς> τὸ [[εὐ]] εὑρίσκειν τὴν ἀρχιµηνίαν a ἑκάστου µηνὸς ἐν ποίᾳ ἡµέρᾳ τῆς ἑβδοµάδος ἐστίν Γίνωσκε ἐφ' b οὗ θέλεις µηνὸς τοῦ ἐνεστῶτος χρόνου τὴν ἀρχιµηνίαν c ἐν ποίᾳ ἡµέρᾳ τῆς ἑβδοµάδος ἐστίν, καὶ εἰ d µὲν ἐστὶν κυριακὴ ἡ τοῦ ἐνεστῶτος χρόνου ἀρχιµηνία e , τοῦ µέλλοντος χρόνου ἐν δευτέρᾳ εὑρίσκεται, καὶ οὕτως καθεξῆς κατὰ τὴν τάξιν τῆς ἑβδοµάδος γίνωσκε κατ' ἔτος f ἄρχεσθαι τὸν οἱονδηποτοῦν g µῆνα.

Γίνωσκε δὲ καὶ τοῦτο, ὅτι ἐὰν ἐστὶν τοῦ ἐνεστῶτος χρόνου ἀρχιµηνία h ἐν οἱῳδήποτε µηνὶ ἐν κυριακῇ καὶ ἐπιφέρεται βίσεκτον i , τρίτην νόησον τὴν ἀρχιµηνίαν j τοῦ µέλλοντος χρόνου διὰ τὴν προσθήκην τῆς ἡµέρας. ὁµοίως καὶ καθεξῆς | 14v ὅπου καταντήσει βίσεκτον k , οὕτως ποιεῖ• τὰς δὲ πρὸ τοῦ βισέκτου καὶ µετὰ τὸ βίσεκτον κατὰ τὴν τάξιν τῆς ἑβδοµάδος γίνωσκε εἶναι.

a ἀρχηµινίαν b εἰ c ἀρχηµινίαν d ἠ e ἀρχηµινία f καθ' ἔπ τ ος g οἱονδιποτοῦν h ἀρχηµηνία i ἐπιφέριται βήσεκτον j ἀρχηµηνίαν k βήσεκτον God willing, calculation for finding on which weekday the starting-day of each month falls Know on what weekday the starting-day falls of the month you want of the present year, and if the starting-day of the month of the present year is a Sunday, next year is found on Monday, and in this way know that whatever month of every year coninuously begins according to the weekly ordering.

Know also this, that, if the starting-day of whatever month of the present year falls on a Sunday and a bissextile <day> is impending, consider that the starting-day of next year will be a Tuesday because of the addition of a day. Similarly also, whenever a leap year will be arrived at, continuously do in this way; know that the <days> before a leap year and after a leap year fall according to the weekly ordering.

A computation of the weekday of the first day of month X in year y + 1, if the weekday of the first day of month X in year y is given. The implicit algorithm is (I have been charitable with our text, translating βίσεκτον both as "bissextile <day>" and as "leap year"):

(y,X) → | 1 X > 28 F , w y (1 X ) → w y (1 X ) + 1 + ⟦[(y + 1) mod 4]/4⟧ → [w y (1 X ) + 1 + ⟦(y mod 4)/4⟧] mod 7 = w y+1 (1 X ). | 1 X < 28 F , w y (1 X ) → w y (1 X ) + 1 + ⟦(y mod 4)/4⟧ → {w y (1 X ) + 1 + ⟦(y mod 4)/4⟧} mod 7 = w y+1 (1 X ).

Since 365 ≡ 1 (mod 7), the weekdays of the same dates in consecutive years are consecutive, unless the interval between the two dates includes February 29, in which case the difference is of two weekdays. I could not find this algorithm in other Computi.
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ἕτερος ψῆφος, εἰς τὸ γνῶναι πόσας a ὥρας λάµπει ἡ σελήνη καὶ αὖθις b πότε ἀνέρχεται Ἀπὸ α ου ἕως ιε ου τῆς σελήνης, πεντάπλου c ἅπερ ἔχεις, καὶ ἀνάλυε εἰς τὸ τετράκις d , καὶ τὰ περισσεύοντα σηµαίνουσιν πόσας ὥρας λάµπει. ἀπὸ δὲ ιϛ ου γίνωσκε• τὴν µὲν ἑξκαιδεκαταίαν νοῇ λάµπειν ὥρας τῆς σελήνης e ὅσας ἔλαµπεν τῇ τεσσαρεσκαιδεκαταίᾳ f , καὶ τὴν ἑπτὰ καὶ δεκάτην ὅσας ἔλαµπεν τῇ τρεῖς καὶ δεκάτῃ, καὶ καθεξῆς οὕτως νόησον ἕως τέλους τοῦ ἀριθµοῦ τῆς σελήνης.

a πώσας b αὖθης c πεντάπλοι : expect. τετράπλοι d expect. πεντάκις e expect. τὴν σελήνην f τεσσαρισκαιδεκατέᾳ A further calculation, for knowing how many hours the Moon shines and when it reaches anew From the 1 st to the 15 th <day> of the Moon, quadruple what you have, and resolve out into fivetimes 172 , and that which remains over signifies how many hours it shines. From the 16 th know <as follows>; consider that in the sixteenth day the Moon shines as many hours as it shone in the fourteenth day, and in the seventeenth <day> as many as it shone in the thirteenth, and continuously consider in this way up to the end of the number of the Moon. The duration of visibility of the waxing (waning) Moon173 is supposed to increase (decrease) stepwise every day of the lunar month. Since the full Moon is supposed to "shine" for the length of the interval between sunset and moonset, the step is 4 ⁄ 5 an hour, which is the scaling factor between 12 hours and 15 days. This, and comparison with other sources174 , shows that the algorithm in our text must be corrected by inverting its implied scaling factor 5 ⁄ 4 . Seasonal hours are intended175 . How one must find the cycle of the Sun. 20 <times> 200, 4000; 8 <times> 200, 1600; 20 <times> 20, 400; 8 <times> 20, 160. There it is, we removed 6 thousand and 160: and there remain 240 from <6>400; 20 <times> 5, 100; 8 <times> 5, 40: there remain 100 as a remainder; 20 <times> 3, 60; 8 <times> 3, 24: there remain 16 as a remainder from 100, which is the 16 th cycle of the Sun.

How the removal of the Moon can be found. 19 <times> 300, 5700; 19 <times> 30, 570. There it is, we removed 6 thousand and 270 years: there remain 130 as a remainder; 19 <times> 6, 114: there it is, there remain 16, which is the cycle of the Moon of the present year. ----- 179 For instance, the cell in the middle ring carrying number 13 corresponds to the cell in the inner ring carrying number 3. This means that, in lunar cycle year 3, Passover falls on April 13. 

  (i) *(ii) * (i) the first <day> of the month of January (ii) to these algorithm and you will find * * the quantity of the base of the Moon identification of the result

Easter

  (τὸ Χριστιανῶν Πάσχα) is the first Sunday after Passover. If Passover falls on Sunday, Easter is celebrated on the Sunday next thereafter. Meat-Fare (Ἀπόκρεως) is the third Sunday of preparation to Lent in the Byzantine liturgical calendar; it falls 8 weeks = 56 days before Easter. The terms of a festival are the extremes of the interval in which it may occur. The terms for Easter are 22 M ≤ r ≤ 25 A . The terms for Passover are 21 M ≤ p ≤ 18 A . The former terms are an immediate consequence of the latter: Easter cannot coincide with Passover, whence the lower bound March 22; Easter is the first Sunday after Passover, whence the upper bound April 25. The Passover terms result from the facts that the lower bound is the Spring equinox (March 21) and that Passover is allowed to fall within 1 lunar month from that date. THE COMPUTUS IN PAR. SUPPL. GR. 920: ANONYMUS 892

  Descriptions of the manuscript are found in Catalogus Codicum Astrologorum Graecorum VIII.4 89-92, and CH. ASTRUC -M-L. CONCASTY, Bibliothèque Nationale. Catalogue des manuscrits grecs. Troisième Partie. Le Supplément Grec III. Paris 1960, 18-19. 103 Grammatici Graeci. I-IV. Lipsiae 1867-1910 III.1 521.11 ἔχοντας-13. 104 The material contained in f. 1r-v is studied in F. ACERBI, How to Spell the Greek Alphabet Letters. Estudios bizantinos 7 (2019) 119-130; I have recently found two more witnesses of these gematric computations: Leiden, Universiteitsbibliotheek, Voss. gr. Qº 20 (13 th century; Diktyon 38127) f. 5r, and Bologna, Biblioteca Universitaria, 3632 (middle of 15 th century; Diktyon 9761) f. 284r. 105 They can partly be found also in Anonymus 1092B, sects. 11-15. 106 See the edition in P. SCHREINER, Die byzantinischen Kleinchroniken. I-III (Corpus Fontium Historiae Byzantinae 12).

  a m (x) = age of the Moon on day x in the calendar year at lunar cycle year m; a m (x X ) = age of the Moon on day x of month X at lunar cycle year m; b m = base of the Moon at lunar cycle year m; e m = epacts of the Moon at lunar cycle year m; e s = epacts of the Sun at solar cycle year s; f = Meat-Fare Sunday; g = Period year; i = indiction cycle year; J, F, M, A, Ma, Jn, Jl, Au, S, O, N, D = January, February, March, April, May, etc. or counting number of their position in this sequence (the context always decides); l = leap year cycle year; m = lunar cycle year; p m = date of Passover at lunar cycle year m; r m = date of Easter at lunar cycle year m; s = solar cycle year; y = year in the Byzantine world era; w s (x X ) = weekday of day x of month X at solar cycle year s.
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  τὸ πῶς γίνεται βίσεκτον Ὁ ἐνιαυτὸς ἔχει ἡµέρας τξε δ ον • ταύτας δίπλωσον• καὶ γίνονται ὧραι <͵η>ψξ a • ἑπτάκις διακώ-σ<ιοι>, ͵αυ• µένουν τριακόσια ξ• ἑπτάκις ν, τν• µένουν ι• ἑπτάκις µίαν, ζ• καὶ µένουν γ ὧραι κατ' ἐνιαυτόν, καὶ εἰς τοὺς τεσσάρες b ἐνιαυτοὺς γίνονται ὧραι δώδεκα, καὶ οὕτως γίνεται τὸ βίσεκτον. a corruptum cf. versionem et comm. b τεσσάρεις

a

  ἐνεστότος b ὕφηλε c ἥτι d exp. µένει e ἥδε

a

  ση(µείωσαι) marg. b ἐνενίκοντα c ἄρτη d ὕφηλε e περίωδον

  [[..]] τετρακώσ<ιοι>, ͵δ• πεντάκις τετρακώσ<ιοι>, ͵β• λοιπὸν ἔµεινεν υ• ὕφειλε καὶ ταῦτα οὕτως. δεκάκις κ, σ• πεντάκις κ, ρ• λοιπὸν ἔµειναν ρ• ὕφειλε καὶ αὐτὰ ἐπὶ τῶν ιε• ἑξάκις ιε, ϙ• | 5r καὶ ἔµειναν ι. καὶ εὑρίσκεις ὅτι δεκάτη ἐστὶν ἡ ἴνδικτος. a κτήσεως b ἐνεστῶσις

  (y M ) → 11y M → 11y M mod 30 = e m . He then carries out a computation for April indiction 11 [= AD 623 April]; this yields e m = 15 (no correlation is established by Heraclius between lunar cycle years and epacts, but I shall keep the subscript m). Heraclius' Passover algorithm computes the quantity "norm minus shifted epacts" 44 -(e m + 8), and then counts as many days from 1 M or from 1 A as the value thus obtained; the resulting day is the date of Passover: (e m ) → e m + 8 → 44 -(e m + 8) → | 20 ≤ 44 -(e m + 8) ≤ 31, 44 -(e m + 8) -: 1 M = p m ∊ M. | 44 -(e m + 8) < 20, 44 -(e m + 8) -1 = [44 -(e m + 8) -1] -: 1 A = p m ∊ A. | 44 -(e m + 8) > 31, [44 -(e m + 8)] mod 31 -: 1 A = p m ∊ A.

  M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17 5 25 M 13 George gives the following Passover algorithm, which is a slightly modified, 2-branch version of Heraclius' algorithm: (e m ) → 43 -e m → | 43 -e m < 20, (43 -e m ) mod 30 -: 1 A = p m ∊ A. | 43 -e m ≥ 20, 43 -e m + 1 → 43 -e m + 1 -: 1 M = p m ∊ M.

13

  ἕτερος ψῆφος, δι' οὗ εὑρίσκεται ἑκάστη ἡµέρα τῆς ἑβδοµάδος Ἔχε κατανοῦν πάντοτε τὴν τελευταίαν a ἡµέραν τοῦ Σεπτεµβρίου µηνός, καὶ εἰ µὲν ἐστὶν κυριακή, ἔχε µίαν• εἰ δὲ ἐστὶν δευτέρα, ἔχε β• εἰ b δὲ τρίτη, τρεῖς• εἰ c δὲ τετάρτη, δ• εἰ d δὲ πέµπτη, ε• εἰ e δὲ ἕκτη, ϛ• εἰ f δὲ σάββατον, ζ• καὶ ἄρξαι ἀπὸ τοῦ Ὀκτωβρίου g µηνὸς λαµβάνειν τοῦ µηνὸς τοῦ ἔχοντος λα τρεῖς ἡµέρας, τοῦ δὲ ἔχοντος λ ἡµέρας β, τοῦ δὲ µηνὸς ἐν ᾧ θέλεις εὑρεῖν τὴν ἡµέραν βάλε ὅσας ἔχει, καὶ ὕφειλε διὰ τῶν ζ, καὶ τὰ κάτωθεν τῶν ζ δηλοῦσιν h . εἰ i δὲ µὴ ἔχεις κάτωθεν τῶν | 8r ζ, σάββατόν ἐστιν. a τελευτέαν b ἠ c ἠ d ἠ e ἠ f ἠ g Ὀκτοβρίου h pauca verba omissa vide versionem i ἠ

A

  computation of Passover. The algorithm is as follows 156 : (e m ) → 43 -e m → | 43 -e m ≤ 19, 43 -e m → (43 -e m ) mod 30 = p m ∊ A. | 43 -e m > 19, 43 -e m → (43 -e m ) mod 30 + 1 = p m ∊ M. | m = 18, (43 -e m ) mod 30 = p 18 . | m = 17, 43 -8 → [43 -8] mod 30 + 1 = p 17 . | m = 19, 43 -30 → [43 -30] mod 30 = p 19 .

  A 30-year cycle might underlie the Paschal canon presented by the Eastern bishops at the Council of Serdica (ca. AD 343): see SCHWARTZ, Christliche und jüdische Ostertafeln 121-125, GRUMEL, La Chronologie 41-43, and MOSSHAMMER, The Easter Computus 184-186. This cycle began in AD 328.

A

  computation of Passover. The (annotated) algorithm is as follows 159 : (e m ) → | m = 1-4, 6-7, 9-15, 44 -e m -: 1 M = p m . | 25 ≤ e m ≤ 29, e m + 1 → 44 -(e m + 1) -: 1 A = p m . {m = 5, 8, 16, 19} | 17 ≤ m ≤ 18, e m + 1 → 44 -(e m + 1) -: 1 M = p m . {saltus lunae} | m = 19, 44 -: 1 M = p 19 . {p 19 = 13 A }

16

  ἕτερος ψῆφος τοῦ Πάσχα Γνῶθι a πόσα ἔτη b εἰσὶν ἀπὸ Ἀδὰµ ἕως τοῦ ἐνεστῶτος, καὶ ὕφειλε ἐξ αὐτῶν ιγ, καὶ τὰ λοιπὰ πάντα ὕφειλε διὰ τῶν ιθ, καὶ τὰ µένοντα κάτωθεν τῶν ιθ | 9v ἑνδεκαπλασίασον, καὶ ὕφειλε διὰ τῶν λ, καὶ τὰ µένοντα κάτωθεν τῶν λ σύναψον ἀπὸ α Μαρτίου ἕως οὗ ποιήσεις ν ἡµέρας, καὶ ἐκεῖ ἐστὶν τὸ νοµικὸν Πάσχα. a Γνώθη b ἔτι A further calculation of Passover Know how many years there are from Adam up to the present one, and remove 13 from them, and the whole of the remainder remove by 19, and undecuple what remains down from 19, and remove by 30, and conjoin what remains down from 30 from March 1 until you will make 50 days, and Passover is there. A computation of Passover. The algorithm is: (y) → y -13 → (y -13) mod 19 → 11[(y -13) mod 19] → {11[(y -13) mod 19]} mod 30 → → 50 -{11[(y -13) mod 19]} mod 30 -: 1 M = p y .

  2 nd Passover. Similarly again keep 22 days of March in your fingers, and do likewise, that is, find the day of Passover. <3 rd Passover.> Keep the ten of April in your fingers. 4 th Passover 30 of March. 5 th Passover 18 of April. 6 th Passover 7 of April. 7 th Passover 23 of March. 8 th Passover 15 of April. 9 th Passover 4 of April. 10 th Passover 24 of March. 11 th Passover 12 of April. 12 th Passover 1 of April. 13 th Passover 21 of March. 14 th Passover April 9. 15 th Passover March 29. 16 th Passover April 17. 17 th Passover April 5. 18 th Passover March 25. 19 th Passover April 13. The list of Passover dates. There are 19 different Passover dates, one for each year of the lunar cycle. Easter is the first Sunday after Passover. A complete list of Passover dates is provided, as in the following table:

  M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17 5 25 M 13 19 περὶ ἐµβολίµου a χρόνου Γίνωσκε ἀπὸ πρώτου ἔτους τῆς σελήνης (ἤγουν κύκλου) ἕως ιθ ου κατὰ τρία ἔτη δεκατρεῖς b µῆνας ἔχει ἡ σελήνη ἐκ τῆς περισσείας c τῶν ια ἡµερῶν ὧν προέλαβεν τὸν χρόνον | 11r τοῦ ἡλίου• ὁ γὰρ χρόνος τοῦ ἡλίου τξε ἡµερῶν ἐστὶν ἄνευ τοῦ δ ου , ὁ δὲ τῆς σελήνης τνδ• ἀπὸ γὰρ τῶν τνδ ἕως τῶν τξε ια ἡµέραι εἰσίν• κατέτος d γὰρ ια ἡµέραι περισσεύουσιν τῆς σελήνης αἱ ἐπακταὶ λεγόµεναι. οἷον ἐν τῷ α ῳ ἔτη περισσεύουσιν ἕνδεκα, καὶ ἐν τῷ δευτέρῳ ια, ἰδοὺ κβ διὰ τὴν προσθήκην τῶν ια, καὶ ἐν τῷ γ ῳ ια, ἰδοὺ τρὶς e ἕνδεκα, λγ, καὶ ἔχει τὸ ἔτος ἐκεῖνο f τῆς σελήνης ιγ µῆνας ἐκ τῆς συνάξεως τῶν ἑνδεκάδων• µετὰ γὰρ τὸν ἀπαρτισµὸν τῶν ιβ µηνῶν τῆς σελήνης περισσεύει µὴν εἷς, ὁ καὶ ἐµβόλιµος λεγόµενος• οὕτως γὰρ κατὰ γ ἔτη περισσεύει ἐµβόλιµος µὴν τῆς σελήνης. a ἐµβολήµου b δεκατρὶς c περισσίας d καθέτος e τρεῖς f ἐκεῖνω

  Terms for Passover. The terms for Passover are: 21 M ≤ p ≤ 18 A (see sect. 26). A clarification follows, on the use of the adverbs ἄνωθεν and κάτωθεν as ways to specify the time arrow (see sects. 12 and 26)171 . The Passover interval is also called "middle month of the Moon" (µέσος µὴν τῆς σελήνης).

  Διὰ τί κρατεῖ τὸ φέγγος λ ἡµέρας καὶ ἑβδοµάδας τέσσαρες b ; ἀπόκρισις οὖν c καὶ ἡ σελήνη τέσσαρες d τροπὰς ἔχει• γίνεται γὰρ τὴν α ην ἑβδοµάδα θ, καὶ τὴν δευτέραν, ϵ, καὶ τὴν γ ην , ο, καὶ τὴν δ ην , ϲ, καὶ γράφει θεός. διὰ τῆς Ἄρκτου e ζ, διὰ τῆς Πλείαδος f ω, διὰ τῆς νοτίου ν, καὶ τὸ φέγγος θεός• | 14r καὶ γράφει θεὸς ζῶν. a ἐρώτισις b τέσσαρις c ὦν d τέσσαρεις e ἄκτρου f πλίαδος -----170 See J. MOGENET, Les scholies astronomiques du Vat. gr. 1291. BIBR 40 (1069) 69-91, Text 4. For other sources see NEUGEBAUER, HAMA 604-607 (on the "great year", on which Psellos wrote, see also P. TANNERY, Psellus sur la grande année. REG 5 [1892] 206-211, repr. ID., Mémoires scientifiques IV. Toulouse -Paris

  Duration of visibility v a of the waxing and waning Moon. The implicit algorithm is as follows, where a = age of the Moon:(a) → | 1 ≤ a ≤ 15, 4a → 4a/5 = v a . | 16 ≤ a, v a = v 30-a .

26 a

 26 σὺν θεῷ ψῆφος σύντοµος τοῦ νοµικοῦ Πάσχα | 15r Γίνωσκε ὅτι ἐν τῷ α ῳ κύκλῳ τῆς σελήνης εἰς τὰς β τοῦ Ἀπριλίου εὑρίσκεται πάντοτε τὸ νοµικὸν Πάσχα, καὶ ἐὰν θέλεις εὑρεῖν εὐκόλως τὰ λοιπὰ Πάσχα ἀπὸ α ου κύκλου ἕως ιθ ου , πρόσθες κ, καὶ ὕφειλε ιβ, καὶ εὑρίσκεις ἑκάστου ἔτους τὸ νοµικὸν Πάσχα. οἷον πρόσθες εἰς τὰς β τοῦ Ἀπριλίου κ• καὶ γίνονται κβ. καὶ ἰδοὺ εἰς τὰς κβ τοῦ Μαρτίου ἐστὶν τὸ νοµικὸν Πάσχα. καὶ πάλιν ὕφειλον ἐκ τῶν κβ τοῦ Μαρτίου ιβ• καὶ µένουσιν ι. ἰδοὺ εἰς τὰς ι τοῦ Ἀπριλίου ἐστὶν τὸ νοµικὸν Πάσχα. τῷ b αὐτῷ τρόπῳ ἀπὸ πρώτου ἕως ἐννεακαιδεκάτου c κύκλου ψήφιζε• προστιθέντος σου κ καὶ ὑφειλόντος d ιβ εὑρήσεις ἑκάστου ἔτους τὸ νοµικὸν Πάσχα, σεσηµειωµένων γ κύκλων µὴ προσδεχοµένων τὴν προσθήκην τῶν κ | 15v ἀλλὰ ὑφειλµὸν e ια καὶ οὐχὶ ιβ (εἰσὶν δὲ οὗτοι ϛ θ ιβ), ἀλλὰ καὶ ὁ f ιζ µὴ προσδεχόµενος τὴν προσθήκην τῶν κ προσδέχεται ὑφειλµὸν g ιβ καὶ οὐχὶ ια. γίνωσκε δὲ καὶ τοῦτο, ὅτι ὅταν ἔχεις πλεῖον τῶν κ ἡµερῶν ἀριθµόν, ἐν τῷ Μαρτίῳ ἐστὶν τὸ νοµικὸν Πάσχα• ἀπὸ δὲ ιη καὶ τὴν ἄνω (ἄνω δὲ λέγω τὴν ἀρχὴν τοῦ µηνός) ζήτει αὐτὰς ἐν τῷ Ἀπριλίῳ. a α marg. b τὸ c ἐννακαιδεκάτου d ὑφηλόντος e ὑφιλµὸν f οἱ g ὑφιλµὸν -----quence of Passover dates, identified by the associated lunar cycle year 179 . The direction of the 11-day cyclic backward shift is exemplified inside the wheel, by means of dots (first three steps) and of two arrows. The shift is cyclic in the sense that March 21 is adjacent to April 19 and the shift crosses this border. In this diagram, the saltus lunae occurs after lunar cycle year 19: the Passover date of lunar cycle year 1 is found 12 cells (and not 11 cells) counterclockwise to the Passover date of lunar cycle year 19. 27 χρὴ γινώσκειν τὸ πῶς ὑφείλονται τὰ ἔτη ἀπὸ κτίσεως κόσµου εἰς τὸ εὑρίσκειν τὴν ἴνδικτον καὶ τοὺς λοιποὺς a κύκλους ιε υ, ͵ϛ b • ιε κ, τ• ιε ϛ, ϙ. τὸ πῶς δεῖ εὑρίσκειν τὸν κύκλον τοῦ ἡλίου. κ σ, ͵δ• η σ, ͵αχ• κ κ, υ• η κ, ρξ. ἰδοὺ ὑφείλαµεν ϛ χιλιάδας καὶ ρξ• καὶ ἐµείνασιν σµ ἐκ τῶν <͵ϛ>υ• κ ε, ρ• η ε, µ• λοιπὸν ἐµείνασιν ρ• κ γ, ξ• η γ, κδ• λοιπὸν ἐµείνασιν ιϛ ἐκ τῶν ρ, ἥτις ἐστὶν ιϛ ος κύκλος τοῦ ἡλίου. | 16r τῆς σελήνης ὑφειλµὸς c τὸ πῶς εὑρίσκεται. ιθ τ, ͵εψ• ιθ λ, φο. ἰδοὺ ὑφείλαµεν ϛ χιλιάδας καὶ σο ἔτη• λοιπὸν ἐµείνασιν ρλ• ιθ ϛ, ριδ• ἰδοὺ ἐµείνασιν ιϛ, ἥτις ἐστὶν ὁ κύκλος τῆς σελήνης τοῦ ἐνεστῶτος χρόνου. a λυποὺς b ͵ϛ e corr. m.2 c ὑφιλµὸς One has to know how the years from the foundation of the world are removed for finding the indiction and the remaining cycles 15 <times> 400, 6000; 15 <times> 20, 300; 15 <times> 6, 90.

A

  computation of indiction, solar, and lunar cycle years. The computation is carried out, for current year AM 6400 [= AD 891/2], by subtracting suitable multiples of 15, 28, and 19, respectively. The results are i = 10, s = 16, and m = 16 (see sect. 7).

  75-81 edits as Dionysius' argumenta is a reworking to be dated to AD 675: I. WARNTJES, The Argumenta of Dionysius Exiguus and Their Early Re-

censions, in: Computus and Its Cultural Context in the Latin West, AD 300-1200, ed. I. Warntjes -D. Ó Cróinín (Studia Traditionis Theologiae 5). Turnhout 2010, 40-111. The earliest reworking, dated AD 562, is edited in P. LEHMANN, Cassiodorstudien. Philologus 71 (1912) 278-299. Studies of the argumenta that derive from Dionysius Exiguus' rules are also found in O. NEUGEBAUER, On the Computus Paschalis of "Cassiodorus". Centaurus 25 (1982) 292-302, and in MOSS-HAMMER, The Easter Computus 97-106.

  Anonymus 1079 is witnessed in Par. gr. 854 (second half of 13

th century; Diktyon 50441; on this manuscript, see Catalogus Codicum Astrologorum Graecorum. I-XII. Bruxelles 1898-1953 VIII.4 3-5; G. DE GREGORIO, Teodoro Prodromo e la spada di Alessio Contostefano (Carm. Hist. LII Hörandner). Νέα Ῥώµη 7 [2010] 191-295: 194-205; A.-L. CAUDANO, Cosmologies et cosmographies variées dans les manuscrits byzantins tardifs. Byz 85 [2015] 1-25: 10-12) ff. 168r-171r; for the edition, see A. MENTZ, Beiträge zur Osterfestberechnung bei den Byzantinern. Dissertation Königsberg 1906, 76-100. Anonymus 1092A-C is witnessed in the manuscript Firenze, Biblioteca Medicea Laurenziana, Plut. 57.42 (12 th century, southern Italy; Diktyon 16411) ff. 154ra-156rb, 156rb-161va, 161va-162vb; see the edition in F. P. KARNTHALER, Die chronologischen Abhandlungen des Laurent. Gr. Plut. 57, Cod. 42. 154-162 v . BNJ 10 (1933) 1-64. 35 Michael Psellos, Ποίηµα περὶ τῆς κινήσεως τοῦ χρόνου, dated 1091/2. The tradition originates in Laur. Plut. 87.16 (end of 13 th century; Diktyon 16833) ff. 324v-346v. The edition is G. REDL, La chronologie appliquée de Michel Psellos. Byz 4

  See also O. SCHISSEL -M. ELLEND, Berechnung des Sonnen, Mond und Schaltjahrszirkels in der griechisch-christlichen Chronologie. BZ42 (1942) 150-157. 38 Published Computi of this kind include the following. Anonymus 1247, witnessed in Laur.Plut. 87.16, ff. 18r-20r and 21v, edited in O. SCHISSEL, Chronologischer Traktat des XII. Jahrhunderts, in: Εἰς µνήµην Σπ. Λάµπρου. Ἀθῆναι 1935, 105-110. Anonymus 1273, on the basis of the manuscript Wien, Österreichischen Nationalbibliothek, phil. gr. 222 (second half of 14 th century; Diktyon 71336; this is a copy of Laur. Eine blank spaces within manuscripts, prelude the authorial achievements of the 14 th century: these are the Computi by Nicholas Rhabdas and Matthew Blastares 39 , the latter embedded in a larger work; Nikephoros Gregoras' scattered expositions (ca. 1324) as well as his (self-)celebrated performance before the Emperor 40 ; the monographs by Barlaam of Seminara and Isaak Argyros 41 ; the computistical sections included in more comprehensive astronomical primers, such as Theodoros Meliteniotes' Three Books on Astronomy 42 . Gregoras and Barlaam, and Blastares drawing from the latter, discussed a possible reform; Gregoras even ventured to construct a revised Damascene-style table. They wisely concluded that, after all, they would not bother seriously to engage in such a reform: exeunt Byzantine critical computists 43 . Divus Thomas 15 (1937) 78-90: 89-90 (this includes a description of the chronological fragments in Αθήνα, Εθνικὴ Βιβλιοθήκη της Ελλάδος, 483; 16 th century; Diktyon 2779); SCHISSEL -ELLEND, Berechnung 152 n. 3. On Vat. Urb. gr. 80, see P. CANART -G. PRATO, Les recueils organisés par Jean Chortasménos et le problème de ses autographes, in: Studien zum Patriarchatsregister von Konstantinopel I, ed. H. Hunger. Wien 1981, 115-178: 132-146, repr. in P. CANART, Études de paléographie et de codicologie. I-II (StT 450-451). Città del Vaticano 2008, 577-675: 594-608. 39 Nicholas Rhabdas wrote a fully-fledged Computus (dated 1342), autograph in the manuscript Leeds University Library, See the edition in R. LEURQUIN, Théodore Méliténiote, Tribiblos Astronomique. Livre I; Livre II (Corpus des Astronomes Byzantins 4-6). Amsterdam 1990-1993 (Book III, which contains the computistical material dated 1352, is still unpublished; I have checked Meliteniotes' autograph Vat. gr. 792); see also the studies in R. LEURQUIN, La Tribiblos astronomique de Théodore Méliténiote (Vat.gr. 792). Janus 72 (1985) 257-282, and R. LEURQUIN, Un manuscrit autographe de la Tribiblos astronomique de Théodore Méliténiote: le Vaticanus graecus 792. Scriptorium 45 (1991) 145-162. There exists an anonymous version of Meliteniotes' Book III, traditionally called Paradosis in Tabulas Persicas; an edition is found in A. BARDI, Persische Astronomie in Byzanz. Ein Beitrag zur Byzantinistik und zur Wissenchaftsgeschichte. PhD thesis, Ludwig-Maximilians-Universität. München 2017.

	-----
	Plut. 87.16, ff. 324v-325v) ff. 3r-5r, edited in F. BUCHEGGER, Wie-
	ner griechische Chronologie von 1273. BNJ 11 (1934-35) 25-54. Anonymus 1350, witnessed in Vindob. med. gr. 29 (ca.
	1400; Diktyon 71054) ff. 124r-125r, edited in O. SCHLACHTER, Wiener griechische Chronologie von 1350. Dissertation
	Graz 1934. Anonymus 1377, witnessed in Par. gr. 2509 (15 th century; Diktyon 52141) ff. 152r-156v, edited in PETAU, Ura-
	nologion 384-392 = PG XIX 1316-1329; see also O. SCHISSEL, Die Osterrechnung des Nikolaos Artabasdos Rhabdas.

I Komnenos in 1118; see C. E. Z. von LINGENTHAL, Jus Graeco-Romanum, Pars III, Novellae constitutiones. Lipsiae 1857, 385-400 (who resorts to a tabular set-up that destroys the original layout), M. F. HEN-DY, Coinage and Money in the Byzantine Empire 1091-1261
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. Washington (DC) 1969, 50-64, and C. MORRIS-SON, La logarikè: Réforme monétaire et réforme fiscale sous Alexis I er Comnène. TM

7 (1979) 

419-464, with a French translation. On this manuscript, see F. ACERBI, Struttura e concezione del vademecum computazionale Par. gr. 1670. S&T 19 (2021) XXX-XXX; the edition of Anonymus 1183 is in Appendix 5 of this study. 37 BNJ 14 (1938) 43-59: 46-50. Anonymus 1379 or Pseudo-Andreas, 14 th century, witnessed in Vat. gr. 578 (end of 14 th century; Diktyon 67209) ff. 177r-187v, edited in PETAU, Uranologion 393-395 = PG XIX 1329-1334. Μέθοδος ἀκριβεστάτη, 14 th century, witnessed in Vat. Urb. gr. 80 (end of 14 th -beginning 15 th century; Diktyon 66547) ff. 33r-35v, edited in P. COLLET, Deux textes relatifs à la fête de Pâques. Mémoire de Licence, Université Catholique de Louvain. Louvain 1969 (non vidi); studied and partly edited in SCHISSEL, Neue Zeugnisse 323-333; see also O. SCHISSEL, Niketas Seidos. Handschriftenstudie. Brotherton Coll. MS 31/3 (Diktyon 3761) ff. 64r-69r; it is edited in F. ACERBI, The "Third Letter" of Nicholas Rhabdas: an Autograph Easter Computus. Estudios Bizantinos 9 (2021); see also Ι. ΣΚΟΥΡΑ, Μια ανέκδοτη επιστολή του Νικολάου Ραβδά για τους εκκλησιαστικούς λογαρισµούς. Νεύσις 27-28 (2019-20) 353-399. One year earlier, a part of this Computus was included by Rhabdas in the so-called Letter to Tzavoukhes, dated 1341. The tradition of the Letter to Tzavoukhes originates in Vat. gr. 1411 (end of 14 th -beginning of 15 th century; Diktyon 68042) ff. 23r-25v (incomplete, des. 132.31 ἐστιν ὁ κε Tannery); the edition is P. TANNERY, Notice sur les deux lettres arithmétiques de Nicolas Rhabdas. Notices et extraits des manuscrits de la Bibliothèque Nationale 32 (1886) 121-252, repr. ID., Mémoires scientifiques IV. Toulouse -Paris 1920, 61-198: 134.23-138.28. See also O. SCHISSEL, Die Osterrechnung. Matthew Blastares included a computistical section in his Σύνταγµα, dated 1335. The earliest known witness of this treatise is the manuscript Moskva, Gosudarstvennyj Istoričeskij Muzej, Synod. gr. 149 (Vlad. 327), dated year 1342 (non vidi; Diktyon 43774); I have checked the manuscript Modena, Biblioteca Estense Universitaria, α.V.8.14 (Puntoni 190; Diktyon 43522) ff. 308v-316v, written before 1344; the edition is G. RHALLES -M. POTLES, Σύνταγµα τῶν θείων καὶ ἱερῶν κανόνων κατὰ στοιχεῖον. VI. Ἀθῆναι 1859, 404-425 = PG CXLV 65-104; see also MENTZ, Beiträge zur Osterfestberechnung 108-132. 40 Epist. XX is edited in S. BEZDEKI, Nicephori Gregorae epistulae XC. Ephemeris Dacoromana 2 (1924) 239-377: 330-336; for Historia Byzantina VIII.13 see L. SCHOPEN, Nicephori Gregorae Byzantina Historia. I-II. Bonnae 1829-1830 I 364-373 = PG CXLVIII 548-558. Gregoras' Easter table is in PG XIX 1313-1316; as for manuscript evidence, this table can be found for instance in Vat. gr. 792 (ca. 1352; Diktyon 67423) f. 2r (but here beginning of the 15 th century), Venezia, Biblioteca Nazionale Marciana, gr. Z. 328 (early 15 th century; Diktyon 69799) f. 19r. The best discussion of Gregoras' contribution is TIHON, Barlaam 393-407; see also P. KUZENKOV, Correction of the Easter Computus: Heresy or Necessity? Fourteenth Century Byzantine Forerunners of the Gregorian Reform, in: Orthodoxy and Heresy in Byzantium, ed. A. Rigo -P. Ermilov. Roma 2010, 147-158. 41 Barlaam of Seminara' short treatise is dated 1333. It is witnessed, with autorial corrections, in Marc. gr. Z. 332 (first half of 14 th century; Diktyon 69803) ff. 67r-71v; the edition and a discussion are found in TIHON, Barlaam 362-393 and 402-411. On Marc. gr. Z. 332, see A. GIOFFREDA, Su scrittura, libri e collaboratori di Barlaam calabro. S&T 14 (2016) 361-378. Isaak Argyros' Computus is De cyclis Solis et Lunae ad Andronicum, dated 1372. This treatise is autograph in Laur. Plut. 28.13 (Diktyon 16194), ff. 91r-97v; see the editions in PETAU, Uranologion 359-383 = PG XIX 1279-1316; H. BAUFAYS, Isaac Argyre, Cycles solaire et lunaire. Comput pascal. Mémoire de licence, Université Catholique de Louvain. Louvain-La-Neuve 1981 (the editor used Marc. gr. Z. 328, ff. 1r-18v, which is in fact a recension). See also G. MER-CATI, Notizie di Procoro e Demetrio Cidone, Manuele Caleca e Teodoro Meliteniota ed altri appunti per la storia della teologia e della letteratura bizantina del secolo XIV (StT 56). Città del Vaticano 1931, 229-236. 42 43 One finds the same attitude in Bede, De Temporum Ratione XLIII. The denomination "critical computists" has become a technical term to describe Western computists seeking a re-dating of the incarnation era since it was introduced in J. WIESENBACH, Sigebert von Gembloux, Liber decennalis (Monumenta Germaniae Historica. Quellen zur Geistesgeschichte des Mittelalters 12). Weimar 1986, 63-112.

  THE TRADITION OF EASTER COMPUTI: GENERAL STRUCTURE Sixty years ago, Alfred Cordoliani published two masterly studies, in which he established a typology of Western computistical literature, enriched by long lists of occurrences in manuscripts 44 .

  On Horopodia or "shadow-tables", see O. SCHISSEL, Antike Stundentafeln. Hermes 71 (1936) 104-117, and O. NEUGE-BAUER, Über griechische Wetterzeichen und Schattentafeln. Österreichischen Akademie der Wissenschaften. Philos.-hist. Kl. Sitzungsberichte 240(2) (1962) 27-44; O. NEUGEBAUER, A History of Ancient Mathematical Astronomy (Studies in the History of Mathematics and the Physical Sciences 1). I-III.

	.
	-----

44 

A. CORDOLIANI, Contribution à la littérature du comput ecclésiastique au moyen âge. SM 1 (1960) 107-137, and SM 2 (1961) 169-208.

45 

See SCHISSEL, Note sur un Catalogus 290-291, where the beginning of Anonymus F is published. This Computus is witnessed in Laur. Plut. 87.

16, f. 17r-v. 46 

  See again ACERBI, Arithmetic and Logistic 116-128. I would now include Computi in my survey.57 A detailed analysis of both manuscripts is carried out in ACERBI, Struttura e concezione.58 Exceptions are for instance Maximus the Confessor, Psellos, Matthew Blastares, and Isaak Argyros (who lifts much of his material from Blastares).

	89-108, ACE-
	RBI, Arithmetic and Logistic 109, and MANOLOVA -PÉREZ MARTÍN, Science Teaching. There is a widespread yet unjustifi-
	ed tendency in scholarship to regard an educational context as the prime mover for technical writings of Byzantine scholars
	(contra, see F. ACERBI -A. GIOFFREDA, Un Aristotele di Massimo Planude. REB 77 [2019] 203-223). I contend that the
	educational perspective is unsuitable for a correct assessment of the ancient Greek and Byzantine scientific output: this
	comprises first and foremost literary products, and it must be evaluated in this perspective. Computi are no exception.
	53 On these manuscripts see F. ACERBI, Byzantine Recensions of Greek Mathematical and Astronomical Texts: A Survey.
	Estudios bizantinos 4 (2016) 133-213: 154-160, with bibliography. On Malachias, olim "anonymus aristotelicus", see
	B. MONDRAIN, La constitution de corpus d'Aristote et de ses commentateurs aux XIII e et XIV e siècles. CodMan 29 (2000)
	11-33: 19-24; B. MONDRAIN, L'ancien empereur Jean VI Cantacuzène et ses copistes, in: Gregorio Palamas e oltre. Studi
	e documenti sulle controversie teologiche del XIV secolo bizantino, ed. A. Rigo (Orientalia Venetiana 16). Firenze 2004,
	249-296: 278-290 and 292; and most recently T. MARTÍNEZ MANZANO, Malaquías mónaco, alias anonymus aristotelicus:
	filosofía, ciencias y exégesis bíblica en la Constantinopla de la controversia palamita. Aevum 93 (2019) 495-558.
	54 See F. ACERBI -N. VINEL -B. VITRAC, Les Prolégomènes à l'Almageste. Une édition à partir des manuscrits les plus
	anciens : Introduction générale -Parties I-III. SCIAMVS 11 (2010) 53-210, and the forthcoming edition F. ACERBI, Les
	Prolégomènes à l'Almageste (Mathematica Graeca Antiqua 5). Pisa -Roma 2022.
	55 For instance, a short computational primer is found in sects. 1-6 and 26 of the astronomical "way" of Pachymeres'
	Quadrivium, edited in P. TANNERY, Quadrivium de Georges Pachymère (StT 94). Città del Vaticano 1940.

56 

  AION 41 (2019) 208-234. My approach to editing Computi collides with Borst's, best exemplified in BORST, Schriften: through his editorial approach, he suggests that there have been master texts, from which fragments and extracts were then distributed widely. For a criticism of Borst's approach, see I. WARNTJES, The Computus Cottonianus of AD 689: A Computistical Formulary Written for Willibrord's Frisian Mission, in: The Easter Controversy of Late Antiquity and the Early Middle Ages, ed. I. Warntjes -D. Ó Cróinín (Studia Traditionis Theologiae 10).Turnhout 2011, 173-212: 199 n. 82. I am grateful to Immo Warntjes for a discussion on this point; in collaboration with J. ter Horst and Th. Snijders, Warntjes is currently preparing a database centred on "computistical objects".68 See REDL, La chronologie appliquée, for Psellos; KARNTHALER, Die chronologischen Abhandlungen, for Anonymi 1092A-

	67 These observations apply to most sectional writings, such as geometric metrological collections, Rechenbücher, and
	grammatical compendia; see, in this order, ACERBI -VITRAC, Héron d'Alexandrie sect. III; ACERBI, Byzantine Re-
	chenbücher; the categorization and the examples in G. UCCIARDELLO, 'Atticismo', excerpta lessicografici e prassi didatti-
	che in età paleologa.

C; BUCHEGGER, Wiener griechische Chronologie, for Anonymus 1273; SCHLACHTER, Wiener griechische, for Anonymus 1350. 69 These notions were first introduced in F. ACERBI, I codici stilistici della matematica greca: dimostrazioni, procedure, algoritmi. QUCC 101 (2012) 167-214. See also ACERBI -VITRAC, Héron d'Alexandrie sect. II.2, for the algorithmic code in Hero's Metrica, and my comprehensive discussion in F. ACERBI, The Logical Syntax of Greek Mathematics (Sources and Studies in the History of Mathematics and the Physical Sciences). Heidelberg -New York 2021, sects. 1.1-3.

  6. 71 See the edition in A. JONES, An Eleventh-Century Manual Of Arabo-Byzantine Astronomy (Corpus des Astronomes Byzantins 3). Amsterdam 1987. A preliminary study is in O. NEUGEBAUER, Commentary on the Astronomical Treatise Par.

gr. 2425 (Académie royale de Belgique. Classe des Lettres et des Sciences morales et politiques. Mémoires 59.4). Bruxelles 1969. 72 JONES, An Eleventh-Century 84 (text) and 85 (translation, slightly modified).

  BICKERMAN, Chronology of the Ancient World. Ithaca (NY) 1980, 125. See also A. E. SAMUEL, Greek and Roman Chronology. Calendars and Years in Classical Antiquity (Handbuch is luna XIV. A schematic lunar month is the approximation of the synodic month to 29 1 ⁄ 2 days, counted from one new Moon to the next and embedded in a calendar year. Such an embedding is usually put into effect by alternating lunar months of 30 or 29 days 93 . A lunar cycle is any period after which the sequence of pairings between calendar dates and ages of the Moon repeats itself. The 19-year lunar cycle comprises 19 calendar years of 365 days, which equal 6935 days; these are organized as a sequence of 228 alternating lunar months of 30 and 29 days (= 6726 days) plus 7 embolismic (ἐµβόλιµοι) months of 30 days each (= 210 days) occurring in specific years94 and resulting from the fact that 12 lunar months of 29 1 ⁄ 2 days (a lunar year) correspond to only 354 days. The 11 days needed to complete a calendar year of 365 days accumulate (the quantity accumulated at each lunar cycle year is called epacts [ἐπακταί] of the Moon) 95 until they exceed 30 days; when this happens, an embolismic lunar month of 30 days is formed, and these days are subtracted from the cumulating epacts. In this case, a calendar year comprises 13 lunations, and the lunar year has 13 months. A 19-year lunar cycle therefore comprises 228 + 7 = 235 lunar months of 30 or 29 days 96 . These 235 lunar months equal 6936 days: the discrepancy of 1 day between the 6935 days counted by 365-day calendar years and the 6936 days counted by lunar months is eliminated by increasing the age of the Moon by one day at some point of its cycle, an operation that is equivalent to deleting one lunar day: this is the saltus lunae, the "leap of the Moon". Accordingly, the lunar cycle year that follows the year in which the saltus lunae is inserted carries 12 epacts and not 11 97 . In Byzantine Computi, the saltus lunae is normally inserted towards the end of the 16 th lunar cycle year.

der Altertumswissenschaft I.7).

München 1972, 152-170

. The structure of the Roman calendar is explained in the Computus contained in Par. suppl. gr. 690, sect. 6 (= TIHON, Le "Petit Commentaire" 364, text nº 55).

92 

The duration of the lunar month is in fact highly variable: there is a difference of more than 13 hours between the longest and the shortest lunations in the time span 1760-2200; see J. MEEUS, More Mathematical Astronomy Morsels. Richmond (VI) 2002,

19-31. 

month 98 -----93

  20, in SCHISSEL, Chronologischer 105-110; Anonymus 1256, sect. 18, in Vat. Pal. gr. 367 (ca. 1317-20; Diktyon 66099; this important manuscript is the paradigmatic example of the script type called "chypriote bouclée", see P. CANART, Un style d'écriture livresque dans les manuscrits chypriotes du XIV e siécle: la chypriote "bouclée", in: La paléographie grecque et byzantine. Actes du Colloque Paris, 21-25 octobre 1974, ed. J. Glénisson -J. Bompaire -J. Irigoin [Colloques internationaux du C.N.R.S. 559]. Paris 1977, 303-321, repr. in CANART, Études 341-359; an analysis of the manuscript, inclusive of the several datings occurring in it and of a rich bibliography, can be found in A. TURYN, Codices graeci Vaticani saeculis XIII et XIV scripti annorumque notis instructi. In Civitate Vaticana 1964, 117-124 and pl. 96) ff. 85r-88r; Blastares 1335, in RHALLES -POTLES, Σύνταγµα VI 414-415 and 416-417; Argyros 1372, sect. 7, in PG XIX 1293 (but he calls the bases "epacts"); Anonymus 1377, sect. 5, in PG XIX 1321; Anonymus 1379, in PG XIX 1334. See also the list of epacts and bases in GRUMEL, La Chronologie 54-55.

  Studi,Strumenti 24].Spoleto 2008, 345-410: 386-390) ff. 5r-11v (these areCodex A and Codex C of Gregory of Nazianzus, respectively). In both of them, the period is AM6385- 6916 [= AD 877-1408]. The table is conceived like the one in GRUMEL, La Chronologie 266-277: the 532 Cycle years are listed sequentially; the lunar and solar cycle counts run independently on separate columns. A lengthy explanation of the properties of the 532-year cycle is found in the computistical section of the Florilegium Coislinianum, letter Π, nº 164; a more concise exposition is found in Nicholas 916, sect. 1, and in Anonymus 1172, sect. 1, a Computus first witnessed in Vat. gr. 432 (14 th century; Diktyon 67063) ff. 139v-146r, a copy of which is Vat. gr. 509 (14 th century; Diktyon 67140) ff. 312v-316v. See also the lists of 532-year cycles in GRUMEL, La Chronologie 137-139. BORST, Schriften 1106-1108 provides a list of 33 manuscripts containing 532-year Dionysiac Easter tables. The Damascene Easter table, which reduces the 532-year table to a manageable size without loss of information, is based on the observation that there are seven partially cyclical structures within a solar cycle of 28 years. In the Damascene table, the 28 solar cycle years in a cycle are subdivided into 7 groups of 4; to each group there corresponds a single Easter date for each lunar cycle year (the elements

scrin. 50a (end of 10 th century; Southern Italy; a part of

Laur. Conv. Soppr. 177 [Diktyon 15877]

; Diktyon 32373; see M. MOLIN PRADEL, Katalog der griechischen Handschriften der Staats-und Universitätsbibliothek

Hamburg [Serta Graeca 14]

.

Wiesbaden 2002, 32-37) 

ff. 2r-11r, and London, BL, Add. 18231 (971/2; Diktyon 38944; Southern Italy; see A. CATALDI PALAU, Manoscritti greci originari dell'Italia meridionale nel fondo 'Additional' della 'British Library' a Londra, in: A. CATALDI PALAU, Studies in Greek Manuscripts [Testi, of each group are the "Evangelists" of the Ethiopic Computus: NEUGEBAUER, Ethiopic Astronomy 127-128). A mathematical analysis I shall present elsewhere shows that this structure formalizes the well-known 95-year imperfect subcycle of the 532-year table. Since the Passover dates are in any case the same after 95 years (for 95 = 19×5), the same Easter dates recur at the end of a 95-year period if and only if the intervening intercalary days are 24 and not 23, for 95 + 24 = 119 ≡ 0 (mod 7). In the Julian calendar, the unfavourable case occurs if and only if the first year of the 95-year period is a leap

-19, 22, 24 / 12, 16); ζήτησον

  : seek for(18); ἔχε κατανοῦν: keep in mind(13); κάτεχε: hold (7, 18 ἐπὶ δακτύλων σου: in your fingers); κράτει: keep(2, 8

an algorithm. βλέπε: look at (8); γίνωσκε / γνῶθι: know (4, 8, 15, 17 ἀκριβῶς: exactly, 18

, 12, 14, 17, 18, 20); κράτει

  εἰς τὰς χεῖρας σου / ἐπὶ χειρῶν / δακτύλων σου: keep in your hands / in your fingers (8, 14, 18) 111 .

Counting and reckoning. ἀνέρχοµαι: to reach (12, 17, 18)

; ἀπαρτίζω: to complete

(14, 21) 

and ἀπαρτισµός: completion

(19)

; ἀριθµέω: to count

(15) 

and ἀριθµός: number (4, 7

, 14-15, 20, 25- 26

  

); ἄρχοµαι: to begin (12-13, 15, 22); καταντάω: to arrive at

  114 I shall insert in footnotes references to analogous procedures or to similar sets of data found in early, unpublished, sources or in later Computi, as Psellos' or Anonymus 1092A-C; in the case of the latter, the relation with Anonymus 892 is obvious. The Appendix contains a concordance with Anonymus 830. 115 For double-hours, see F. BÖLL, Sphaera. Neue griechische texte und Untersuchungen zur Geschichte der Sternbilder.

	year	day [double-]hour hour minute
	1 365 1 ⁄ 4		4380 8760 21900
		1		12	24	60
				1	2	5
					1	2 1 ⁄ 2
	Other subdivisions of the year are adopted in Byzanine Computi. A standard subdivision is as follows 117 :
	year	day hour minute	point momentum
	1 365 1 ⁄ 4 8766 43830 175320	2103840
		1	24	120	480	5760
			1	5	20	240
				1	4	48
					1	12
	whereas Anonymus 1256, sect. 16, sets out the following subdivision:	
	year day hour	point momentum
		1 365 8760 26280	105120
		1	24	72		288
			1	3		12
				1		4
	The subdivision of the hour adopted by Anonymus 1092A, sect. 2, in KARNTHALER, Die chronologischen Ab-
	handlungen 5.20-26, is as follows:					
	[double-]hour point minute degree momentum indication	atom
	1	5	10	150	1200	14400 864000
		1	2	30	240	2880 172800
			1	15	120	1440	86400
				1	8	96	5760
					1	12	720
						1	60
	Leipzig 1903, 311-319. For the subdivisions of an hour, see P. TANNERY, Sur les subdivisions des heures dans l'antiquité.
	RA, 3 e série, 26 (1895) 359-364, repr. ID., Mémoires scientifiques II. Toulouse -Paris 1912, 517-526.
	116 The subdivision in Anonymus 1092A, sect. 1, in Laur. Plut. 57.42, f. 154v, reads: 1 year = 52 weeks = 365 1 ⁄ 4 days = 4380

[double-]hours = 8760 hours = 43830 points = 21915 minutes. On account of sect. 2 of Anonymus 1092A, the text should be corrected as in KARNTHALER, Die chronologischen Abhandlungen 5.16-18: 1 year = 52 weeks = 365 1 ⁄ 4 days = 4383 [double-]hours = 8766 hours = 21915 points = 43830 minutes. Sect. 1 of Anonymus 892 should be corrected in the same way. Note the subdivision in Anonymus 1172, sect. 12: 1 year = 12 months = 52 weeks plus 1 day = 365 days = 4380 [double-]hours = 11900 [lege 21900] points.

  117 See Anonymus 1041, sect. 1 (only the subdivisions of an hour), a Computus witnessed in the manuscript Napoli, Biblioteca Nazionale Vittorio Emanuele III, II.C.34 (beginning of 16 th century; Diktyon 46080) ff. 100r-106v; Psellos 1092, sect. II.22, in REDL, La chronologie appliquée II 257.12-22; Anonymus 1183, sect. 1; Anonymus 1247, sect. 22, in SCHISSEL,

	Chronologischer 110.
	118 See Anonymus 830, sects. 24 and 33 (the fractions of an hour are called "points" [στιγµαί]), in GASTGEBER, Neue texte
	XXX and XXX; Theophylaktos 956 sect. 5-6 (πενταπλοῦντες καὶ ἑξαπλοῦντες and waxing and waning Moon, respective-
	ly); Anonymus 982, sect. 23; Anonymus 1041, sects. 1 and 19 (the latter waxing and waning Moon); Anonymus 1092B,
	sect. 5, in KARNTHALER, Die chronologischen Abhandlungen 9.159-170; Anonymus 1172, sect. 21; Rhabdas 1342, sect. 9;
	Anonymus 1377, sect. 7, in PG XIX 1324-1328. Anonymus 892, sect. 25, does not mention minutes. In Anonymus 951,
	sect. 13 (an independent section) these fractions of an hour are called "points".

119 

See Anonymus 892, sect. 8 (age of the Moon computed according to the πενταπλοῦντες καὶ ἑξαπλοῦντες); Anonymus 1079, sect. 5, in MENTZ, Beiträge zur Osterfestberechnung 82, and the Computus contained in Par. suppl. gr. 690, sect. 1 (πενταπλοῦντες καὶ ἑξαπλοῦντες); Anonymus 1092B, sect. 7, in KARNTHALER, Die chronologischen Abhandlungen 11.234 (saltus lunae distributed among the lunar cycle years); Rhabdas 1342, sect. 8 (epacts of the Moon). In Anonymus 951, sect. 1 (Horopodion) these fractions of an hour are called "momenta" (ῥοπαί).

  3, in DIEKAMP, Der Mönch 26.3-14 (the epacts of the Sun are called ἐπακταὶ τῶν ἑβδοµάδων "epacts of the weeks"); Maximus, Enarratio I.29, in PG XIX 1248; Anonymus 830, sects. 6 (identical wording) and 14, in GASTGEBER, Neue texte XXX and XXX; Anonymus 951, sect. 4; Anonymus 1092B, sect. 10 (identical wording), in KARNTHALER, Die chronologischen Abhandlungen 12.281-285; Anonymus 1172, sect. 19.

  124 Other early occurrences of this algorithm can be found in the computistical section of the Florilegium Coislinianum, letter Π, nº 169; Anonymus 830, sect. 31, in GASTGEBER, Neue texte XXX; Anonymus 951, sect. 12; Anonymus 1041, sect. 14; De Temporum Ratione XXXIX), see also JONES, Bedae Opera 372-374, and M. SMYTH, Once in Four: The Leap Year in Early Medieval Thought, in: Late Antique Calendrical Thought and Its Reception in the Early Middle Ages, ed. ἕτερος ψῆφος, δι' οὗ εὑρίσκεται ὁ κύκλος τῆς σελήνης Ὕφειλε ταῦτα τὰ ἔτη ἀπὸ κτίσεως κόσµου διὰ τῶν ιθ, καὶ εἴ τι a µένει κάτωθεν τῶν ιθ, ἔστιν ὁ κύκλος τῆς σελήνης. further calculation, by means of which the cycle of the Moon can be found Remove these years from the foundation of the world by 19, and if anything remains down from 19, this is the cycle of the Moon. A prescription for finding the year of the lunar cycle corresponding to a Byzantine world era year. The algorithm is (y) → y mod 19 = m. 6 ἕτερος ψῆφος, δι' οὗ εὑρίσκεται ἴνδικτος Ὕφειλε ταῦτα τὰ ἔτη ἀπὸ κτίσεως κόσµου διὰ τῶν ιε, καὶ εἴ τι a µένει κάτωθεν τῶν ιε, ἔστιν ἴνδικτος.

	Anonymus 1090, sect. 4, contained in the manuscript Berlin, Staatsbibliothek (Preußischer Kulturbesitz), Ham. 625 (Dik-
	tyon 9305) ff. 327r-329v; Anonymus 1172, sect. 22. An in-depth discussion of this algorithm (which is Dionysius' argu-
	mentum XVI: KRUSCH, Studien [1938] 80.17-81.6; see also K. SPRINGSFELD, Alkuins Einfluß auf die Komputistik zur Zeit
	Karls des Großen [Sudhoffs Archiv 48]. Stuttgart 2003, 203-214) in Western Computi is found in a study in preparation by
	T. Loevenich and I. Warntjes. On the tradition that the annual contribution to a leap-year was 3 hours (it is refuted by
	Bede,

I.

Warntjes -D. Ó Cróinín (Studia Traditionis Theologiae 26)

.

Turnhout 2017, 229-264: 236-247. 125 

If hours are employed, 8760 should read 8766, and a modulo 24 reduction must be performed; if "[double-]hours" are employed, 4383 [double-]hours and a modulo 12 reduction are required, respectively. 126 Alexandrian and Byzantine Early Computi may formulate the modulo reduction as a division: see for instance the Computus in Ambr. A 45 sup., ff. 7r-8r, in GASTGEBER, Neue texte XXX-XXX; George passim. 5 a ἥτι A a ἥτι

  A similar statement is found in Anonymus 830, sect. 16 (see also sect. 7)-in GASTGEBER, Neue texte XXX (and XXX)-which claims that this computation was established by Hero and Athanasius (see GASTGEBER, Neue texte XXX-XXX for the edition and a discussion); Anonymus 1092A, sect. 1, in KARNTHALER, Die chronologischen Abhandlungen 4.2-3; Anonymus 1172, sect. 1, which mentions the view that, because of this relation, "the completion of the Period will also bring about the perfection of the world" (εἰς τὸ πλήρωµα τῆς περιόδου τότε καὶ ἡ συντέλεια τοῦ κόσµου γενήσεται).128 Of course, the most economical summand is 11.129 Other Computi in which end-of-century years are subtracted are Anonymus 830, sect. 22, in GASTGEBER, Neue texte XXX;[[ροσ]]τροῦνται τὰ λεπτά, καὶ κράτει b εἰς τὰς χεῖρας σου τά τε λεπτὰ καὶ τὰς ἐπακτάς, καὶ ἑξάπλωσον πάλιν τὸν κύκλον τῆς σελήνης, τουτέστιν ἑξάκις µίαν, ἕξ• καὶ ἑνώσας ὅλας ὁµοῦ τάς τε ἐπακτὰς καὶ τά τε λεπτὰ καὶ τὸν κύκλον τῆς [[..]] σελήνης τὸν ἑξαπλώµενον ὕφειλε διὰ τῶν λ, καὶ τὰ κάτωθεν τῶν λ ἐστὶν ἡ ποσότης τῆς σελήνης. ὁµοίως καὶ εἰς τὸν β ον κύκλον, πεντάκις δύο, ι, καὶ ἀναβαίνῃς c τοὺς µῆνας ὡς προείπαµεν, | 4v καὶ πάλιν ἑξαπλόννῃς τὸν κύκλον. ὁµοίως καὶ εἰς τὸν γ ον κύκλον ἕως τοῦ ἐννεακαιδεκάτου d κύκλου, πρῶτον πενταπλόννῃς, καὶ ὑφείλῃς e διὰ τῶν ξ, καὶ εὑρίσκεις τὰ λεπτὰ καὶ τὰς ἐπακτάς, καὶ πάλιν ἑξαπλώννῃς, καὶ ὑφείλῃς διὰ τῶν λ, καὶ εἴ τι f µένει κάτωθεν τῶν λ, ἔστιν ἡ ποσότης τῆς σελήνης. γίνωσκε δὲ καὶ τοῦτο, ὅτι πέντε λεπτὰ ὥρα µία, καὶ ἑξήκοντα λεπτὰ ἡµέρα µία. τοῦ b κράτη c ἀναβαίνις d ἐννακαιιτου e ὑφήλῃς f ἥτι

	Anonymus 982, sect. 4, contained in the manuscript Ambr. B 113 sup. (gr. 134; Diktyon 42357) ff. 210r-215r (this Compu-
	tus is obviously related to Anonymus 892). Anonymus 1092A, sect. 1, and 1092B, sect. 1 (both in computing indiction), in
	KARNTHALER, Die chronologischen Abhandlungen 5.1-3 and 8.136-138, respectively; Anonymus 1172, sects. 2-4; Anon-
	ymus 1204, contained in the manuscript Marc. gr. Z. 528 (coll. 777; middle of 14 th century; Diktyon 69999) ff. 5r-6v;

Anonymus 1247, sects. 2, 6, 8, in SCHISSEL, Chronologischer 106-107; Anonymus 1256, sects. 5-7; Anonymus 1273, sect. 3, in BUCHEGGER, Wiener griechische Chronologie 29.19-27; Blastares 1335, in RHALLES -POTLES, Σύνταγµα VI 414-416; Rhabdas 1342, sects. 2, 4-5, and 12; Anonymus 1350, sects. 1-3, in SCHLACHTER, Wiener griechische 5.3-6.14; Argyros 1372, sects. 3 and 6, in PG XIX 1284-1285 and 1292; Anonymus 1377, sects. 1-2, 4, in PG XIX 1317 and 1321; Anonymus 1379, in PG XIX 1329.

µεa

  the entire chapter II, in PG XIX 1252-1264; οὕτως. εἰκοσάκις κ, υ• ὀκτάκις κ, ρξ• καὶ ἔµειναν σµ• ὀκτάκις κ, ρξ• ὀκτάκις ὀκτώ, ξδ• καὶ λοιπὸν ἔµειναν ιϛ. καὶ γνώριζε ἓξ καὶ δέκατον κύκλον εἶναι τοῦ ἡλίου.

	Anonymus 830, sect. 19, in GASTGEBER, Neue texte XXX; Theophylaktos 956, sect. 5 (the algorithm is incomplete); Anon-
	ymus 1041, sect. 2; Anonymus 1079, sect. 5, in MENTZ, Beiträge zur Osterfestberechnung 80-84, and also Mentz's discus-
	sion at 51-66; the Computus contained in Par. suppl. gr. 690, sects. 1-2; Anonymus 1090, sect. 3; Anonymus 1092A,
	sect. 3, and 1092B, sect. 2, in KARNTHALER, Die chronologischen Abhandlungen 5.29-38 and 8.142-150, respectively.

Anonymus 1092A calls the algorithm χαρτουλαρικός "archive-keeper-style": KARNTHALER, Die chronologischen Abhandlungen 5.28; Anonymus 1172, sect. 13. None of these sources sets out a clear-cut algorithm. Assessing the aims of the πενταπλοῦντες καὶ ἑξαπλοῦντες is not simple: see SCHWARTZ, Christliche und jüdische Ostertafeln 81-88; GRUMEL, La Chronologie 54 and 117-124. Modulo 60 algorithms for computing the age of the Moon can also be found in Anonymus 1183, sect. 9; Anonymus 1204; Rhabdas 1342, sect. 7. τα

  M 13 2 22 M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17

	4	5	6	7	8	9	10 11 12 13 14 15 16 17 18 19
	e m 30 11 22 3 14 25	6	17 28	9	20 1	12 23 4	15 26	7	18
	p m 5 25								

  13 2 22 M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17

		1	2	3	4	5	6	7	8 9 10 11 12 13 14 15 16 17 18 19
	e m + 8 8 19 30 11 22	3	14 25 6 17 28 9	20	1 12 23	4	15 26
	p m	5 25 M					

  18, 25 (same wording as Anonymus 892), and 28, in GASTGEBER, Neue texte XXX, XXX and XXX; Anonymus 951, sect. 15; Anonymus 982, sect. 9; Anonymus 1041, sect. 8; Anonymus 1079, sect. 5, in MENTZ, Beiträge zur Osterfestberechnung 100; the Computus contained in Par. suppl. gr. 690, sect. 3; Anonymus 1090, sects. 1 and 5; Anonymus 1092A, sect. 4, and 1092B, sect. 6, in KARNTHALER, Die chronologischen Abhandlungen 5.40-6.47 and 9.191-10.198, respectively; Anonymus 1172, sect. 5; Anonymus 1183, sect. 6; Anonymus 1204; Anonymus 1247, sect. 3, in SCHISSEL, Chronologischer 106; Anonymus 1256, sect. 9; Blastares 1335, in RHALLES -POT-LES, Σύνταγµα VI 416; Rhabdas 1342, sect. 10; Meliteniotes 1352, sect. III.24; Anonymus 1377, sect. 8, in PG XIX 1328; Anonymus 1379, in PG XIX 1329.

  2, in MENTZ, Beiträge zur Osterfestberechnung 78; the Computus contained in Par. suppl. gr. 690, sect. 5; Anonymus 1041, sect. 8; Anonymus 1090, sects. 1 and 5; Anonymus 1172, sect. 10; Anonymus 1183, sect. 8; Anonymus 1256, sect. 12; Blastares 1335, in RHALLES -POTLES, Σύνταγµα VI 418; Rhabdas 1342, sect. 13; Meliteniotes 1352, sect. III.24; Argyros 1372, sect. 12, in PG XIX 1301-1304. 152 For the meaning of this formula, see footnote 121 above. 153 This algorithm is ubiquitous in Computi. See, for instance, Maximus, Enarratio I.24, in PG XIX 1244 (second algorithm); the computistical section of the Florilegium Coislinianum, letter Π, nº 168; Anonymus 830, sects. 15 and 28, in GASTGEBER, Neue texte XXX and XXX; Anonymus 951, sect. 14; Anonymus 982, sect. 9; Anonymus 1041, sect. 8; Anonymus 1079, sects. 1 and 7, in MENTZ, Beiträge zur Osterfestberechnung 76 and 90-92, respectively; Anonymus 1090, sect. 2; Psellos 1092, sect. I.13, in REDL, La chronologie appliquée II 229-232; Anonymus 1092A, sect. 5, in KARNTHALER, Die chronologischen Abhandlungen 6.69-77; Anonymus 1172, sect. 9; Anonymus 1183, sect. 7; Anonymus 1256, sect. 11 (one of the algorithms uses the "epacts of the months" [see just below], also computed in sects. 11-12); Blastares 1335, in RHALLES -POTLES, Σύνταγµα VI 418; Rhabdas 1342, sect. 11; Meliteniotes 1352, sect. III.23; Anonymus 1377, sect. 3, in PG XIX 1317-1320; Anonymus 1379, in PG XIX 1332. As for the "epacts of the months", they correspond to Western regulares: the epact of a given month is the weekday of the last day of the previous month (a further example of an "incipient" quantity), gauged to w(1 O ) = 2: thus e O = 1; see Maximus, Enarratio I.26, in PG XIX 1244-1245; Anonymus 830, sect. 1, in GASTGEBER, Neue texte XXX; Anonymus 1092B, sect. 11, in KARNTHALER, Die chronologischen Abhandlungen 12.286-13.1; Anonymus 1172, sect. 20; Anonymus 1204; Anonymus 1247, sect. 16, in SCHISSEL, Chronologischer 109; Anonymus 1256, sect. 11 and 14; Anonymus 1350 sect. 6, in SCHLACHTER, Wiener griechische 7; Argyros 1372, sect. 5, in PG XIX 1285-1288; Anonymus 1377, sect. 3, in PG XIX 1320 (but only the excess of each month over 4 weeks is tabulated); Anonymus 1379, in PG XIX 1332-1333. 154 Solar cycle years are used only in computistical algorithms of this kind.

  table includes the Passover dates: ἑκάστου ἔτους τῆς σελήνης, καὶ σύναπτε αὐτὰς ἀπὸ Μαρτίου ἕως οὗ ποιή| 9r σεις ἀριθµὸν µδ• ἐκεῖ ἐστὶν τὸ νοµικὸν Πάσχα. ἐὰν δὲ ἔχεις ἐπακτὰς σεληνιακὰς a κε ἢ κϛ ἢ κζ ἢ κη ἢ κθ, πρόσθες ἐν αὐταῖς πάντοτε ἡµέραν µίαν, καὶ ἀρίθµησον ἀπὸ Ἀπριλίου ἕως οὗ καταντήσεις εἰς τὸν τῶν µδ ἀριθµόν, καὶ ἐκεῖ ἐστὶν τὸ νοµικὸν Πάσχα. Εἰς δὲ τὸν ιζ ον καὶ ιη ον κύκλον, πρόσθες ἑνὶ ἑκάστῳ ἐπακτὴν µίαν, καὶ ἀρίθµησον ἀπὸ Μαρτίου ἕως µδ. Εἰς δὲ τὸν ἐννεακαιδέκατον b κύκλον, ἀπὸ Μαρτίου µόνον ἄρξαι µηδεµίαν ἐπακτὴν συνάπτων αὐτῷ ἕως οὗ καταντήσεις c εἰς τὸν τῶν µδ ἀριθµόν• ἐκεῖ ἐστὶν τὸ νοµικὸν Πάσχα. For the epacts of the Moon in Byzantine Computi, see the early and clear expositions by George, sect. II.2, in DIEKAMP, Der Mönch 25.25-35, and by Maximus, Enarratio I.7, in PG XIX 1223. Early Computi in which the epacts of the Moon are calculated or tabulated include Stephanus-Heraclius' in Ptolemaei Tabulas Manuales, sects. 12 (the era Philip and the era Constantine are used) and 30 (the era Maurice is used), in LEMPIRE, Le commentaire 154.2-156.12, and USENER, De Stephano Alexandrino 315-316, respectively; the table in the computistical section of the Florilegium Coislinianum, letter Π, nº 166 (with fractional parts generated by accumulating twelfths); Anonymus 830, sects. 7 and 34, in GASTGEBER, Neue texte XXX and XXX; Theophylaktos 956, sect. 4 (the AD era is used); Anonymus 1183, sects. 9 and 12 (with fractional parts generated by accumulating nineteenths: the saltus lunae is evenly distributed among the lunar cycles). Epacts with fractional parts are also found in Anonymus 1092B, sect. 7, in KARNTHALER, Die chronologischen Abhandlungen 11.207-248 (3 minutes are added for each cycle, plus 1 minute every time six cycles have been completed: the saltus lunae is unevenly distributed among the lunar cycles).

	m	1	2	3	4	5	6	7	8	9	10 11 12 13 14 15	16 17 18 19
	e m 11 22	3	14 25 6	17 28 9	20	1	12 23	4	15	26	7	18 29
	p m 2 22 M 10 30 M 18 7 27 M 15 4 24 M 12	1 21 M 9 29 M 17	5 25 M 13
											15	
		ἕτερος ψῆφος τοῦ νοµικοῦ Πάσχα				
	Γίνωσκε τὰς ἐπακτὰς a σελινιακὰς b ἐννακαιδέκατον c καταντίσεις				
	-----									
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  18β α ψηφοφορία a τοῦ Πάσχα Γίνωσκε ὅτι ἐν τοῖς ιθ κύκλοις τῆς σελήνης εὑρίσκονται τὰ πασχάλια, | 10r τουτέστιν ἀπὸ α ου ἕως ἐννεακαιδεκάτου b , τὰ πάντα γινόµενα c ιθ Πάσχα. ταῦτα τὰ ιθ εὑρίσκονται ἐν ἑκάστῳ µηνὶ d κατὰ τάξιν οὕτως, τουτέστιν Μαρτίῳ καὶ Ἀπριλίῳ α Πάσχα. ἐν πρώτοις κάτεχε ἐπὶ δακτύλων σου πάντοτε δύο ἡµέρας τοῦ Ἀπριλίου, τουτέστι πρώτην καὶ δευτέραν, καὶ µηδὲν ἄλλο ποιήσεις, ἀλλὰ ζήτησον ποῖος κύκλος ἐστὶν τοῦ ἡλίου, καὶ εὗρε e ἐξ αὐτοῦ ἐν ποίᾳ ἡµέρᾳ τῆς ἑβδοµάδος κατήντησεν ἡ δευτέρα τοῦ Ἀπριλίου, καὶ εἰ µὲν κατήντησεν ἐν κυριακῇ, [[..]] ἐν ἄλλῃ κυριακῇ ἐστὶν τὸ ἅγιον Πάσχα• εἰ f δὲ εὑρέθη β α ἢ γ η ἢ δ η ἢ ε η ἢ ϛ η καὶ καθεξῆς ἕως τοῦ σαββάτου, ἄνελθε εἰς κυριακήν, καὶ ἐκεῖ εὑρήσεις τὸ θειότατον Πάσχα. β ον Πάσχα. ὁµοίως πάλιν κράτει ἐπὶ δακτύλων σου κβ | 10v ἡµέρας τοῦ Μαρτίου, καὶ ποίησον ὡσαύτως g , τουτέστιν εὗρε τὴν ἡµέραν τοῦ Πάσχα. <γ ον Πάσχα.> κράτει h ἐπὶ δακτύλων σου δέκα τοῦ Ἀπριλίου. δ ον Πάσχα λ τοῦ Μαρτίου. ε ον Πάσχα ιη τοῦ Ἀπριλίου. ϛ ον Πάσχα ζ τοῦ Ἀπριλίου. ζ ον Πάσχα κζ τοῦ Μαρτίου. η ον Πάσχα ιε τοῦ Ἀπριλίου. θ ον Πάσχα δ τοῦ Ἀπριλίου. ι ον Πάσχα κδ τοῦ Μαρτίου. ια ον Πάσχα ιβ Ἀπριλίου. ιβ ον Πάσχα α As leap years must be disregarded in lunar computations, adding this summand constitutes a misunderstanding of the procedure. The supplementary unit in leap years is not mentioned in Anonymus 1079, sect. 1, MENTZ, Beiträge zur Osterfestberechnung 76. The mention of leap years in our Computus might be a faulty annotation that was inserted in the text. 161 This is confirmed by Anonymus 1172, sect. 6, and by Anonymus 1273 (which do not add the unit of leap years, either).Ἀπριλίου. ιγ ον Πάσχα κα τοῦ Μαρτίου. ιδ ον Πάσχα Ἀπριλίῳ θ. ιε ον Πάσχα Μαρτίῳ κθ. ιϛ ον Πάσχα Ἀπριλίῳ ιζ. ιζ ον Πάσχα Ἀπριλίῳ ε. ιη ον Πάσχα Μαρτίῳ κε. ιθ ον Πάσχα Ἀπριλίῳ ιγ.

	-----
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Both computists calls the standard base b m = e m + 1 "pastoral base" (ποιµενικὸς θεµέλιος): see the text inserted in the wheel in

Vat. gr. 432

, on f. 144v, and BUCHEGGER, Wiener griechische Chronologie 30-31, respectively; see also MENTZ, Beiträge zur Osterfestberechnung 46-47 n. 11. Unsurprisingly, Anonymus 830, sect. 35, in GASTGEBER, Neue texte XXX, uses the incorrect norm 105. On "bases", see footnote 95 above.

14, 15, 17, 19: these

  data are the epacts (the saltus lunae is placed after cycle year19) the location of the embolismic year, and the date of Passover. M 10 30 M 18 7 27 M 15 4 24 M 12 1 21 M 9 29 M 17 5 25 M 13 20 ψῆφος ἕτερος, εἰς τὸ εὑρεῖν τὰς ἐπακτὰς τοῦ ἡλίου | 11v Ἐὰν θέλεις εὑρεῖν τὰς ἐπακτὰς τοῦ ἡλίου ἑκάστου ἔτους, γίνωσκε ὅτι ἔχει ὁ χρόνος ἡµέρας τξε δ ον , καὶ ὕφειλε αὐτὰ διὰ τῶν ζ, καὶ τὰ µένοντα κάτωθεν τῶν ζ εἰσὶν αἱ ἐπακταὶ ἑκάστου ἔτους τοῦ ἡλίου ἤτοι κύκλου. οἷον α ος κύκλος τοῦ ἡλίου (ἤγουν χρόνος) ἔχει ἐπακτὴν µίαν τέταρτον, ἐπειδὴ ὑφείλαµεν τὰς τξε δ ον διὰ τῶν ζ• οἷον ἑπτάκις ν, τν• καὶ µένουσιν ιε δ ον ἡµέραι. πάλιν δὶς ἑπτά, ιδ• καὶ µένει µία δ ον , ἥτις λέγεται ἐπακτὴ a ἡλιακή. καὶ πάλιν ὁ δεύτερος ἔχει δύο ἥµισυ ἐπακτάς, ἐπειδὴ κατέτος περισσεύει µία τέταρτον. καὶ ὁ τρίτος ἔχει τρὶς ἥµισυ b τέταρτον. ὁ δὲ τέταρτος ἔχει ε ἐπακτὰς ἐκ τῆς προσθήκης | 12r τῶν τετάρτων. ὁ δὲ πέµπτος ἔχει ἓξ τέταρτον ἐπακτάς. ὁ δὲ Other expositions of lunar embolism include George, sect. II.4, in DIEKAMP, DerMönch 31.3-15; Maximus, Enarratio I.7-10, and 12-13, in PG XIX 1224-1232; Anonymus 830, sect. 32, in GASTGEBER, Neue texte XXX; Anonymus 982, sect. 12; Psellos 1092, sects. II.24-25 and 27, in REDL, La chronologie appliquée II 261.14-264.9 and 270.21-271.7; Anonymus 1172, sect. 14; Anonymus 1183, sect. 11. 163 A prescription for locating all new Moons in a lunar cycle is a "lunar calendar"; such calendars were paid special attention in Latin West; Dionysius Exiguus' table did not include one. Most of the range of variability I shall mention just below is mentioned at appropriate places in HOLFORD-STREVENS, Paschal Lunar Calendars. It must be stressed that some lunar calendars we find in secondary literature are reconstructed, and that, frequently, lunar calendars are not uniquely determined by the available data: additional constraints must be imposed, such as the base principle of alternation of full and hollow months (a principle that is not followed in the latercus), or the requirement that full lunar months end in odd-place solar months of the Julian calendar. Consequently, extant or reconstructed lunar calendars display some variability as to: (a) the exact mechanism of embolism (this can be the standard insertion of 30-day months, or a clever disposition of lunar months entirely included in a calendar month-the lunae abortivae-as in the De ratione conputandi); (b) the exact position of the embolismic months; (c) the exact position of the saltus lunae, as in principle any full month in the year that carries the saltus can be made hollow; (d) how the intercalary days of any Julian-style calendar are to be taken into account; (e) where the lunar year begins (Bede canonically has the "lunar years" begin on the first new Moon of Spring; Psellos 1092, sect. II.25, in REDL, La chronologie appliquée II 263.1-267.2, has the "lunar years" begin on Passover [the same in Dionysius, KRUSCH, Studien (1938) 85-86]; the first month of a lunar cycle year ends with the first new Moon of January). The matter is complicated by the fact that a lunar cycle year does not coincide with a "lunar year", and it is not obvious whether the embolisms should be keyed to the former or to the latter. Bede's lunar calendar coincides with the one printed in the excellent edition of the Carolingian standard calendars A. BORST, Der karolingische Reichskalender und sein Überlieferung bis ins 12. Jahrhundert (Monumenta Germaniae Historica. Libri Memoriales 2). I-III. Hannover 2001, 1647-1727; see also GRUMEL, La Chronologie 303, who corrects a mistake in GINZEL, Handbuch III 136-137, from where he draws the table, but introduces several more by his decision to mark full lunar months in italics; it is better to check HOLFORD-STREVENS, Paschal Lunar Calendars 202, and passim for the other lunar calendars. Other schemes of embolismic years in a late Western source are discussed in O. NEUGEBAUER, Astronomical and Calendrical Data in the Très Riches Heures, in: M. MEISS, French Painting in the Times of Jean de Berry: The Limbourgs and Their Contemporaries. Paris 1974, 421-432. ἕκτος ἔχει ἑπτὰ ἥµισυ• ὕφειλε δὲ τὰς ἑπτά, καὶ µένει ἥµισυ ἐπακτῆς. οὕτως καὶ καθεξῆς ἕως τοῦ κη ου κύκλου τοῦ ἡλίου. πλεονάζοντος ἀριθµοῦ ὑπὲρ τῶν ζ ὕφειλε τὰ ἑπτά, καὶ τὰ κάτωθεν [[τῶν]] κράτει. γίνωσκε δὲ ὅτι [[ἐ]] καθ' ἕκαστον c κύκλον τοῦ ἡλίου ἐπακταὶ λέγονται, καὶ θεῶν ἐπακταὶ κατ' Αἰγυπτίους. οἱ γὰρ Αἰγύπτιοι τὴν ἑβδοµάδα κατὰ µίµησιν τῶν ζ πλανητῶν ἔλεγον, οὕστινας πλανήτας καὶ θεοὺς ὠνόµαζον d οἱ κακῶς φρονοῦντες• οἱ δὲ µὴ οὕτως φρονοῦντες θεοὺς µὲν ἔλεγον αὐτοὺς οὐ φύσει δὲ ἀλλ' ἐνεργείᾳ• διὰ γὰρ τὸ θέειν, ὃ ἐστὶν τρέχειν ἔλεγον αὐτοὺς θεούς, ὁ δὲ | 12v φύσει θεὸς διὰ τὸ θεωρεῖν e τὰ πάντα λέγεται θεός. γίνωσκε δὲ ὅτι, ὡς λέγουσιν οἱ ἀρχαῖοι σοφισταί, κατὰ µίµησιν τῶν ζ ἀστέρων τῶν καὶ πλανητῶν λεγοµένων ἐποίησεν ὁ θεὸς τὰς ἑπτὰ ἡµέρας τῆς ἑβδοµάδος, καὶ ἀναλογεῖ ἡ µὲν κυριακὴ τῷ ἡλίῳ, ἡ δὲ δευτέρα τῇ σελήνῃ, ἡ δὲ τρίτη τῷ Ἄρει, ἡ δὲ τετάρτη τῷ Ἑρµῇ f , ἡ δὲ πέµπτη τῇ Διί g , ἡ δὲ ἕκτη τῇ Ἀφροδίτῃ, ἡ δὲ ἑβδόµη τῷ Κρόνῳ. ♄ α ος ὁ Κρόνος [ἐν] ἐν τῇ πρώτῃ ζώνῃ h τοῦ οὐρανοῦ ἐστι, καὶ ὁδεύει τὰ ιβ ζῴδια διὰ ἐτῶν λ. ♃ β ος ὁ δὲ Ζεὺς ἐν τῇ δευτέρᾳ, καὶ ὁδεύει τὰ ιβ ζῴδια διὰ ἐτῶν ιβ. ♂ γ ος Ἄρης i ἐν τῇ τρίτῃ, καὶ ὁδεύει τὰ ιβ ζῴδια διὰ ἐτῶν ιε. ☉ δ ος ὁ ἥλιος ἐν τῇ τετάρτῃ, καὶ ὁδεύει δι| 13r ὰ µηνῶν ιβ. ♀ ε η ἡ Ἀφροδίτης j ἐν τῇ πέµπτῃ, καὶ ὁδεύει διὰ µηνῶν k ὀκτώ. ☿ ϛ ος ὁ Ἑρµῆς ἐν τῇ ἕκτῃ, καὶ ὁδεύει διὰ µηνῶν l γ. ☾ ζ η ἡ σελήνη ἐν τῇ ἑβδόµῃ, καὶ ὁδεύει διὰ ἡµερῶν λ. ἡ σελήνη κατωτέρα m ἐστίν• ὡς γὰρ ἐὰν ποιήσεις πόλον ἔνδον ἄλλου πόλου, ὁ ἔνδον πόλος µικρότερος εὑρεθήσεται, οὕτως καὶ ὁ δρόµος τῆς σελήνης κατωτέρας οὔσης ὀλιγώτερος ἐστὶν καὶ ἀνοί<σ>εται τάχιον. πλανῆται δὲ λέγονται n οὐχ ὅτι πλανοῦσιν τινάς, ἀλλ' ὅτι πλαγίως πορεύονται τὸν δρόµον αὐτῶν.

	m	1	2	3	4	5 6	7	8 9 10 11 12 13 14 15 16 17 18 19
	e m	11 22	3	14 25 6 17 28 9 20	1 12 23	4	15 26 7	18 29
	emb.			*		*		*	*	*	*	*
	p m 2 22 -----					
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  Florilegium Coislinianum, letter Π, nº 165 (only a table); Anonymus 830, sects. 4 and 9, in GASTGEBER, Neue texte XXX and XXX; Anonymus 1092B, sect. 10, in KARNTHALER, Die chronologischen Abhandlungen 11.268-12.279; Anonymus 1183, sects. 13-14. A wheel of fractional epacts of the Sun is also found in Maximus, Enarratio I.1, in PG XIX 1219-1220; the fractional parts are deleted in the PG edition, but they are present in all manuscripts. 167 See Theophilus of Antioch, ad Aut. I.4, PG VI 1029A, and also Nicomachus, Ench. 3, 241.15-18 Jan. The solar epacts are called "days of the Gods" by Paul of Alexandria, Apotel. 19-20. For the occurrence of the expression in the Index of Athanasius' Festal Letters (Athanasius died in AD 378), see MOSSHAMMER, The Easter Computus 82-83 and 163-166 (an edition of the text, with a translation and a commentary, is found in A. MARTIN -M. ALBERT, Histoire « acéphale » et Index syriaque des Lettres Festales d'Athanase d'Alexandrie [Sources Chrétiennes 317]. Paris 1985). For the transliterated occurrence in Ethiopic Computi, see O. NEUGEBAUER, Ṭentyon. Orientalia 44 (1975) 487-488. A list of the names of the planets designated by θεῶν ἡµέραι is found in a Pompei graffito: E. SCHÜRER, Die siebentägige Woche im Gebrauche der christlichen Kirche der ersten Jahrhunderte. ZNW 6 (1905) 1-66, 27, relying on [A. MAU], Bullettino dell'Instituto di Corrispondenza Archeologica (1881) 30; the list begins with Saturn. 168 See Dio Cassius XXXVII.

  in an end ninth-century scholium in Vat. gr. 1291 170 : Τὰ τοῦ κόσµου ἔτη ἀνάλυσον εἰς τὸ τετράκις, καὶ ἐὰν εἰς τέταρτον ἀπαρτισθῇ, λέγε εἶναι τὸ βίσεκτον.

	planet	Saturn Jupiter Mars Sun Venus Mercury Moon
	Geminos	30y	12y	2y6m 12m	12m	12m	27d 1 ⁄ 3
	Vat. gr. 1291	30y	12y	1y6m 12m 11m6d	8m	30d
					21		
	τὸ πῶς γίνεται βίσεκτον				

The Last Supper took place the day before, according to John.

Cycles are of crucial importance for their Christological import: as all Christian eras were devised in strict correlation with Easter cycles, different cycles entailed different dates for Christ's birth and for the Passion. Further constraints came from the Genesis account that the Moon came to existence as a full Moon on the fourth day of Creation, and from the numerological requirement that the Incarnation had to occur 5500 years after Creation.

 9 Since the lunar phases depend on the position of the Sun, a lunar cycle should more properly be called a "lunisolar cycle", but I shall use the shorter denomination.

I keep faithful to the text in making δέ enclitic and in attaching or not attaching enclitics to the previous word.

In most Computi, but not in Anonymus 892, a καί "also" is added if the last item is included.

The technical lexicon of Computi overlaps with the technical lexicon of Rechenbücher. For the latter, see K. VOGEL, Ein byzantinisches Rechenbuch des frühen 14. Jahrhunderts (Wiener ByzantinischeStudien 6). Wien 1968, 141-143, and the "thematic word index" in ACERBI, Byzantine Rechenbücher, whose translations I adopt.

In logistic and astronomical texts, Rechenbücher, and Easter Computi, the verb κρατέω for "keeping" a number in order to use it in an operation is frequently found. However, this does not imply anything as to a possible application of a fingernotation, even if the verb is qualified by an expression like "in your hands".

Here and in sect. 14, note the ordinal αἱ τριακοσταί "the thirtieths", where "thirty" would normally be used.

The same clause occurs in sect. 14, and in Anonymus 830, sect. 25, in GASTGEBER, Neue texte XXX; Anonymus 1092A, sect. 4, in KARNTHALER, Die chronologischen Abhandlungen 6.68. See also Anonymus 982, sects. 9 and 15.

The act of counting is denoted by the sign "-:". Thus, 50 -: 1 M are 50 days counted from March 1.

See USENER, DIEKAMP, respectively. 

The epoch of the era Maurice is AD 589 August 29, a Monday; this the 8 th year of his reign, AD 582 August 14 -602 November 23; years are Julian years. As 588 + 5493 -1 = 6080 ≡ 0 (mod 19), the Maurice era is an avatar of the Alexandrian era.

 140 NEUGEBAUER, 

Other occurrences of this algorithm can be found in Anonymus 830, sect. 13, in GASTGEBER, Neue texte XXX; Anonymus 1256, sect. 15.

I have tried to keep the paraetymology by forging the misspelled verb "to begold" for "to behold".

The text wrongly reads "quintuple" and "four-times"; see the commentary.

This quantity coincides with the illuminated part of the lunar disk measured as a fraction of its diameter.

For this algorithm, see also Anonymus 830, sects.24 and 33, in GASTGEBER, Neue texte XXX and XXX; Anonymus 982, sects. 20, 23, and 27; Anonymus 1041, sect. 19; Anonymus 1092B, sect. 5, in KARNTHALER, Die chronologischen Abhandlungen 9.159-170; Anonymus 1172, sect. 21; Rhabdas 1342, sect. 9; Anonymus 1377, sect. 7, in PG XIX 1324-1328, where the procedure is described in detail. Latin computistical treatises include Bede, De Temporum Ratione XXIV and the Computus printed in PL CXXIX 1305. The connection with Western sources is also made explicit in Theophylaktos 956 (µάθηµα τοῦ ψήφου τῶ<ν> Λατίνω<ν> ἑρµινευθὲν [sic] παρὰ τοῦ ἐλαχίστου Θεοφυλάκτου), whose sect. 6 expounds the same algorithm, and, in the same manuscript, in Nicholas 916, sects. 5-8 (which, however, does not present this algorithm). See alsoNEUGEBAUER, HAMA 830, and NEUGEBAUER,

165. 175 The conversion from seasonal hours to equinoctial hours is carried out in Rhabdas 1342, sect. 9, and in Anonymus 1377, sect. 7, in PG XIX 1325-1328.
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God willing, a concise calculation of Passover Know that, in the 1 st cycle of the Moon, Passover is always found on April 2, and if you want to easily find the remaining Passover's from the 1 st cycle up to the 19 th , add 20, and remove 12, and you find the Passover of each year. For instance, add 20 to April 2: and they yield 22. And there it is, Passover is on March 22. And again remove 12 from March 22: and there remain 10. There it is, Passover is on April 10. Calculate in the same way from the first up to the nineteenth cycle; adding 20 and removing 12 you will find the Passover of each year. There are 3 remarkable cycles that do not admit of the addition of 20 but a removal of 11 and not of 12 (these are <cycles> 6, 9, 12), and also <cycle> 17, while not admitting of the addition of 20, does admit of a removal of 12 and not of 11. Know also this, that whenever you have a number of days greater than 20, Passover is in March; from <number> 18 and above (I mean by "above" the beginning of the month), seek for them [scil. the days] in April.

A computation of Passover. To follow the prescription more easily, recall the sequence of Passover dates: The algorithm is 176 :

This algorithm formalizes the following data: since each year the epacts increase by 11 units, the date of Passover shifts backwards by 11 days from an assigned year to the next (second branch of the algorithm). However, Passover cannot fall earlier than March 21; therefore, such early dates are replaced by a day falling one lunar month later (this lunar month lasts 30 days, as we shall see in a moment); to this day does not correspond the same date in April, but the numerically precedent date because March has 31 days. Therefore, whenever the Passover date falls outside the lower bound, March 21, of the Passover interval 21 M ≤ p ≤ 18 A

177

, it enters again this interval from its upper bound numerically lowered by 12 units instead of 11 (third branch of the algorithm). Finally (first branch of the algorithm), adding 20 comes from 20 ≡ -11 (mod 31). Thus, the prescription is as follows: from the date of Passover of cycle year 1 alternately add 20 and subtract 12, with the exceptions of cycles 6, 9, 12 (resp. 17), which are reached by subtracting 11 (resp. 12) from the previous cycle instead of adding 20. Of course, the special case of cycle 17 corresponds to the saltus lunae. The text has a final remark (see sects. 12 and 22 for the clarification about the adverb ἄνω): if p m > 20, then p m ∊ M; if p m ≤ 18, then p m ∊ A.

Both in primary sources and in secondary literature 178 , the Passover terms are the 29-day time interval 21 M ≤ p ≤ 18 A , but the principle of 11-day backward shift of lunar dates entails that the real terms are the boundaries of the 30-day time interval 21 M ≤ p ≤ 19 A : April 19 is discarded because this date coincides with a gap in the Passover sequence and it is located at the end of the interval. This can be seen in the "wheel" (τροχός) below, which is the standard representation of many cyclic structures in early Computi. The days in the time interval 21 M ≤ p ≤ 19 A (middle ring) are numbered in succession (outer ring, clockwise); the inner ring carries the se-