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Abstract 29 

Coccolithophores have global ecological and biogeochemical significance as the most 30 

important calcifying marine phytoplankton group. The structure and selection of prokaryotic 31 

communities associated with the most abundant coccolithophore and bloom-forming species, 32 

Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial 33 

communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), 34 

exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-35 

bloom conditions and followed the dynamics of their microbiome composition over one year. 36 

Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II 37 

Euryarchaeota, Rhodobacterales and contained substantial proportions of known indicators of 38 

phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. 39 

Taxonomic richness of bacteria derived from natural communities that associated with axenic 40 

E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms 41 

recruited from the environment were consistently dependent on the composition of the initial 42 

bacterioplankton community. Phycosphere-associated communities derived from the E. 43 

huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas 44 

cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds 45 

new light on the importance of the initial inoculum composition in microbiome recruitment 46 

and elucidates the temporal dynamics of its composition and long-term stability.  47 

 48 

Key-words: Phytoplankton-bacteria interactions, microbiome assembly, phycosphere, 49 

metabarcoding, Emiliania huxleyi 50 

 51 
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Introduction 54 

In the surface ocean, marine phytoplankton generate up to 50% of global primary production 55 

and at least half of this production is remineralized by marine heterotrophic bacteria 56 

(Falkowski, 1994; Field et al., 1998; Pomeroy et al., 2007). From an ecological perspective, 57 

interactions between these essential microbial groups are being increasingly recognized as a 58 

major force shaping microbial communities (Amin et al., 2015, Seymour et al., 2017). 59 

Phytoplankton-bacteria interactions are widespread in marine environments, in particular 60 

within the phycosphere, the region immediately surrounding individual phytoplankton cell 61 

(Bell & Mitchell, 1972; Smriga et al., 2016). This microscale region, analogous to the plant 62 

root rhizosphere, serves as the interface for phytoplankton-bacteria associations. 63 

Phytoplankton exudates fuel the activity of heterotrophic microorganisms, that in exchange can 64 

stimulate microalgal growth through the provision of growth hormones and vitamins (Amin et 65 

al., 2015, Croft et al., 2005), protection against pathogenic bacteria (Seyedsayamdost et al., 66 

2014) and through the facilitation of iron uptake (Amin et al., 2009). In addition, phytoplankton 67 

release broad chemical classes of metabolites (Cirri & Pohnert, 2019) which can influence the 68 

taxonomy of phycosphere-associated bacteria (Buchan et al., 2014; Fu et al., 2020; Shibl et al., 69 

2020).   70 

Recent studies addressing the processes involved in bacterial community assembly in 71 

the phycosphere showed the influence of deterministic factors such as the place/time of 72 

isolation (Ajani et al., 2018) and the host species (Behringer et al., 2018; Lawson et al., 2018; 73 

Kimbrel et al., 2019; Sörenson et al., 2019; Jackrel et al., 2020; Mönnich et al., 2020). However, 74 

a combination between deterministic and stochastic effects in the microbiome recruitment 75 

process was also suggested (Kimbrel et al. 2019; Stock et al., 2022). To date, bacterial 76 

community composition and selection processes that influence the assembly of phycosphere 77 
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microbiomes are not well known in many phytoplankton, in part because of the micrometer 78 

scale at which they take place (Kimbrel et al., 2019; Mönnich et al., 2020).  79 

To overcome this challenge, possible strategies are to study the selection processes in 80 

natural phytoplankton blooms (Zhou et al., 2019), in meso/microcosms or in cultures (Ajani et 81 

al., 2018; Kimbrel et al., 2019; Sörenson et al., 2019; Fu et al., 2020; Mönnich et al., 2020), 82 

when algal cells are at high concentrations. Emiliania huxleyi is the most abundant and 83 

cosmopolitan coccolithophore species and is able to form massive annual blooms in temperate 84 

and subpolar oceans mostly during Spring (Tyrrell & Merico, 2004). E. huxleyi blooms are 85 

characterized by blue turquoise waters that can be observed from satellite images (Tyrrell & 86 

Merico, 2004). These blooms have a critical importance for carbon and sulfur cycles due to the  87 

ecological and biogeochemical roles of coccolithophores as primary producers, calcifiers, and 88 

main contributors to the emission of dimethylsulfoniopropionate (DMSP) to the atmosphere 89 

(Malin & Steinke, 2004; Rost et al., 2004). The potential role of viruses in bloom termination 90 

has been thoroughly investigated (e.g. Bratbak, Egge & Heldal, 1993; Vardi et al., 2012; 91 

Lehahn et al., 2014), but only few studies have targeted the microbial diversity associated with 92 

E. huxleyi in natural environments (Gonzalez et al., 2000; Zubkov et al., 2001) and cultures 93 

(Green et al., 2015; Orata et al., 2016; Rosana et al., 2016). The Roseobacter, SAR86 and 94 

SAR11 lineages were identified as the main bacterial groups associated with natural E. huxleyi 95 

blooms (Gonzalez et al., 2000; Zubkov et al., 2001). The co-occurrence of these groups could 96 

be mediated by the presence of dimethylsulfoniopropionate (DMSP), produced and released 97 

by E. huxleyi during blooms (Malin et al., 1993), which could be used as a sulfur compound 98 

by bacteria (Miller & Belas, 2004; Tripp et al., 2008; Dupont et al., 2012). Meanwhile, 99 

microbiomes of E. huxleyi in cultures are highly dominated by Marinobacter (Câmara dos Reis, 100 

2021) and by Rhodobacteraceae (Green et al., 2015; Barak-Gavish et al., 2018).  101 
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In this study, we followed the dynamics of the prokaryotic community associated with 102 

E. huxleyi along a natural bloom in the Celtic Sea (Eastern North Atlantic) and used natural 103 

bloom and non-bloom samples from different depths to investigate the microbiome selection 104 

by an axenic E. huxleyi culture. We hypothesized that microbiomes recruited from bloom 105 

waters would be enriched in Marinobacter and Rhodobacteraceae, often associated with E. 106 

huxleyi cultures. Since composition can differ between surface and deep chlorophyll maximum 107 

(DCM) prokaryotic communities (Treusch et al., 2009; Allen et al., 2020; Mena et al., 2020) 108 

and is influenced by phytoplankton-bacteria interactions (Seymour et al., 2017), we also 109 

hypothesized that the recruited microbiomes would differ according to the initial prokaryotic 110 

composition.  111 

 112 

Materials and Methods 113 

Study site and sample collection 114 

Samples used in this study were collected aboard the schooner Tara (Sunagawa et al., 2020) in 115 

the Celtic Sea (from 48°19-48°24 N/6°28-7°02 W; Fig. 1A and B), during the ‘Tara 116 

BreizhBloom’ cruise from May 27 to June 2, 2019. To monitor the bacterial dynamics in an E. 117 

huxleyi bloom formed in this area, an Argo float (https://argo.ucsd.edu/) was deployed in the 118 

center of the bloom patch and its position was used twice a day (early morning and end of the 119 

afternoon) for 5 days to determine the geographical locations of the sampling stations.  120 

 On the last sampling day, an additional site about 34 km apart from the bloom area was 121 

also sampled (Fig. 1A). For each sampling event, surface to 50 m depth profiles of temperature, 122 

salinity, turbidity, pressure, photosynthetic active radiation (PAR), chlorophyll a (chla) 123 

fluorescence, oxygen concentrations and pH were conducted by deploying a SBE19+ profiler 124 

(Sea-Bird Scientific). Bloom depth, determined as the maximum turbidity depth, was generally 125 

very close to the DCM depth. Surface and bloom water samples were collected using an 8L 126 

https://argo.ucsd.edu/
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Niskin bottle for nutrient analyses. After collection, nutrient samples (125 mL) were stored at 127 

-20°C for further analysis. Concentrations of nitrate, nitrite, phosphate and silicate were 128 

measured using a AA3 auto-analyzer (Seal Analytical) following the methods described by 129 

Tréguer & Le Corre (1975) and Aminot & Kerouel (2007). Samples for flow cytometry (FCM), 130 

scanning electron microscopy (SEM), and metabarcoding analysis were collected at the bloom 131 

depth by pumping and prefiltered through a 20 µm mesh to eliminate large microplankton. For 132 

FCM analysis of photosynthetic eukaryotes and prokaryotic communities, two replicates (1.5 133 

mL) were fixed using glutaraldehyde (0.25% final concentration) and Poloxamer 10% (0.1% 134 

final concentration) and incubated for 15 min at 4°C before flash freezing in liquid nitrogen. 135 

For SEM analysis, samples of morning sites (two replicates of 250 mL) were gently filtered 136 

onto polycarbonate membranes (47 mm in diameter; 1.2 µm pore-size) (Millipore). Filters were 137 

placed onto PetriSlides (Millipore), dried at least 2h at 50°C, and finally stored at room 138 

temperature. For metabarcoding analysis, cell biomass from bloom depth was collected from 139 

~ 14 L of seawater by successive filtration onto large (142 mm in diameter) 3 µm pore-size and 140 

then 0.2 µm pore-size polycarbonate membranes (Millipore). Filters were flash-frozen in liquid 141 

nitrogen and stored at -80°C for later DNA analyses.  142 

 143 

Scanning electron microscopy analysis 144 

Representative filter portions were fixed in aluminum stubs and sputter coated with gold–145 

palladium (20 nm) (Keuter et al., 2019). Quantitative assessment of E. huxleyi cells was 146 

performed using a Phenom Pro scanning electron microscope. Cells were counted in twenty 147 

random screens (area analyzed = 0.16 mm2) and cell concentrations were calculated based on 148 

the filtered sample volume corresponding to the area analyzed (0.042 mL). 149 

 150 

Community assembly experiments 151 



 

 7 

(i) Axenization. The E. huxleyi strain RCC1212, obtained from the Roscoff Culture Collection, 152 

was axenized following a sequence of washing and centrifugation steps, and variable 153 

incubation periods with increasing concentrations of an antibiotic solution mixture (ASM) as 154 

detailed in the original protocol developed at the Scottish Association for Marine Science 155 

(Oban, UK) available at: https://www.ccap.ac.uk/wp-156 

content/uploads/2020/06/KB_Antibiotic_treatment.pdf.  157 

This method is briefly detailed in the Supplementary Materials and Methods section.  158 

(ii) Sample preparation and inoculation. Four seawater samples were used in the bacterial 159 

community assembly experiment. They consisted of a surface and a DCM sample collected in 160 

the bloom area on day 5 (thereafter named inside bloom surface and inside bloom DCM) and 161 

a surface and a DCM sample collected the same day outside the bloom area (thereafter named 162 

outside bloom surface and outside bloom DCM) (Supplementary Fig. 1). In order to remove 163 

autotrophic picoeukaryotes and cyanobacteria from the inoculum, seawater samples were 164 

gently filtered through a 0.45 µm pore size membrane (Millex-HV, PVFD, Millipore). To 165 

estimate the number of prokaryotic cells lost during the filtration step, aliquots of total and 166 

filtered seawater samples were fixed for FCM analysis using the methods above. After 167 

filtration, 150 µL of each prokaryotic community (final cell concentration of about 6.8 x 103 168 

cells/mL) were transferred in triplicates into 50 mL culture flasks filled with 15 mL of K/2 169 

medium prepared as described in the Supplementary Materials and Methods. Finally, 150 µL 170 

of the axenic RCC1212 culture were added to each flask (final cell concentration of 3.8 x 103 171 

cells/mL). Six flasks filled with 15 mL of K/2 medium and inoculated with 150 µL of the 172 

axenic RCC1212 culture were used as controls. In total, 18 cultures (3 replicates of 4 treatments 173 

and 6 controls) were incubated at 15°C and a 12:12 photoperiod regime.  Due to space 174 

limitation, only one thermostatic chamber with a light intensity of 20 µmol photons s-1m-2 using 175 

a blue neutral density filter was available onboard for incubation.  176 
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(iii) Survey of the culture microbiomes. Back to the laboratory and 10 days after inoculation, 177 

which corresponds to the time needed by E. huxleyi cultures to reach the end of exponential 178 

growth phase, axenic status of controls was checked by FCM. Cultures (3 replicates of 4 179 

treatments and one axenic control) were transferred by inoculating 100 µL of the culture in 10 180 

mL of fresh K/2 medium every 11-14 days for the first 176 days of experiment and then every 181 

3 weeks until its end (day 393). At each culture transfer and at the end of the experiment, 182 

treatments were sampled for FCM analyses and prokaryotic community composition analysis 183 

(3 replicates x 4 treatments x 8 DNA samplings = 96 samples) (Supplementary Fig. 1).  The 184 

axenic control was regularly checked to ensure the clean handling of the cultures. In addition, 185 

culture flasks were randomized daily in the incubator to minimize positional effect on growth.  186 

For FCM, duplicate samples were fixed as previously described and analyses, performed 187 

according to Marie et al., (1999), are detailed in the Supplementary Materials and Methods 188 

section. For community composition analysis, 2 mL of culture was centrifuged at 2,000 g for 189 

30 sec to reduce the microalgal load. Preliminary tests showed that this procedure reduces 190 

microalgal load while keeping most of the bacterial cells (about 90%). The supernatants were 191 

transferred into new tubes containing 2 μL of Poloxamer 188 solution 10% (Sigma-Aldrich) 192 

and centrifuged at 5,600 g for 5 min. The supernatants were discarded, and the pellets were 193 

stored at -80°C until DNA extraction.  194 

 195 

DNA extraction, PCR amplification and sequencing 196 

DNA extraction from environmental and culture samples and amplification steps used to 197 

amplify the prokaryotic 16S rRNA gene using the universal prokaryote primers 515F-Y (5’-198 

GTGYCAGCMGCCGCGGTAA-3’) labeled with eight-nucleotide tag unique to each sample 199 

at the 5’ end and 926R (5’-CCGYCAATTYMTTTRAGTTT-3’) (Parada et al., 2016) are 200 

detailed in the Supplementary Materials and Methods and in Romac (2022a, 2022b, 2022c, 201 
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2022d). The “tagged-PCR” approach was used (Bohmann et al., 2022). Briefly, DNA samples 202 

were PCR amplified using the above metabarcoding primers with 5′ nucleotide tags and 203 

following PCR amplification, the individually tagged PCR products were purified and pooled. 204 

Pools were sent to Fasteris SA (Plan-les-Ouates, Switzerland) where ligation-based library 205 

preparation was carried out and high-throughput sequencing was performed using Illumina 206 

Miseq paired-end sequencing technology (2x250). In total, three DNA pools were sequenced. 207 

The two first, containing the environmental samples and the first 84 experiment samples (first 208 

7 time points) were sequenced in two independent Illumina runs (technical replicates). The last 209 

12 experiment samples (day 393) were sequenced in another Illumina run without sequencing 210 

replicates.  211 

 212 

Bioinformatics  213 

The steps of library separation, removal of Illumina adapters and first quality control were 214 

performed by Fasteris SA (see Supplementary Materials and Methods). The detailed scripts 215 

used in this study can be downloaded from 216 

https://github.com/mcamarareis/microbiome_assembly. Briefly, raw reads from each 217 

sequencing run were demultiplexed based on the 8 nucleotide tag sequences with cutadapt 218 

(version 2.8.1) (Martin, 2011). The “tagged-PCR” approach we used generated half of both 219 

forward and reverse reads containing a P5 Illumina adapter and the other half a P7 adapter 220 

resulting in forward and reverse reads in both R1 and R2 files (mixed orientation). To deal with 221 

the presence of reads in mixed orientation in the R1 and R2 raw files, the demultiplexing was 222 

performed in two rounds (see details in Supplementary Materials and Methods). Then, primer 223 

sequences were removed using cutadapt (version 2.8.1) (Martin, 2011). Because sequences 224 

from different sequencing runs and from different sequencing cycles can have different error 225 

rates, they were processed independently to obtain an amplicon sequence variant (ASV) table 226 
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using the DADA2 pipeline (version 1.14.0 in R 3.6.1) (Callahan et al., 2016; R Core Team, 227 

2017). The overall read quality of the demultiplexed primer-free sequences was first 228 

investigated with the DADA2 function plotQualityProfile to identify the position where the 229 

quality distribution dropped for R1 and R2 reads. Then, forward and reverse reads were 230 

trimmed where the quality decreased (i.e., at position 215 for R1 and at position 190 for R2 231 

files) and reads with ambiguous nucleotides or with a maximum number of expected errors 232 

(maxEE) superior to 2 were filtered out using the function filterAndTrim. For each combination 233 

of runs and demultiplexing rounds, error rates were defined using the function learnErrors and 234 

denoised using the dada function in pooled mode before being merged with mergePairs (which 235 

generated ASVs of about 373 bp). Then, all the independent processed datasets were merged 236 

in one sequence table (for each sample, reads from the two rounds of demultiplexing were 237 

summed while reads coming from the two sequencing runs were kept separate) and processed 238 

for chimera removal using the function removeBimeraDenovo, also performed in pooled mode 239 

and with a “minFoldParentOverAbundance” of 8.  The parameters used at each DADA2 step 240 

are specified in the Supplementary Table 1.  241 

ASVs shorter than 366 bp and longer than 377 bp were filtered out, and the remaining 242 

ones were taxonomically assigned using IDTAXA (50% confidence threshold) with the Silva 243 

database v138 (Quast et al., 2013; Murali et al., 2018). Chloroplasts and mitochondrial ASVs 244 

were removed. ASVs not classified at the domain level by IDTAXA were assigned to the best 245 

hit in Silva v138 by pairwise global alignment (usearch_global VSEARCH’s command) 246 

(Rognes et al., 2016). These ASVs were removed if they could not be classified and/or were 247 

classified as chloroplasts or mitochondrial sequences by VSEARCH (at 80% identity 248 

threshold). The resultant ASV table was filtered to remove ASVs accounting for less than 249 

0.001% of the total number of reads (abundance filter). Consistency of technical replicates was 250 

evaluated by Procrustes analysis (function procrustes from vegan package), which measures 251 
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the similarity between two ordinations of the same objects, followed by a protest, which 252 

measures the significance of the correlation (Oksanen et al., 2015). For this, we used a 253 

comparative principal component analysis performed on the Hellinger transformed data. After 254 

consistency was confirmed (p < 0.001 and correlation = 0.99), independent technical replicates 255 

of each culture were merged by the sum of the number of reads of the ASVs present in the two 256 

replicates of the same culture (prevalence filter). The abundance and prevalence filters 257 

described above removed about 68% of the total number of ASVs while keeping 99% of the 258 

number of reads. The final dataset (filtered ASV table used for further analysis) contained 107 259 

samples (11 from the environment and 96 from cultures) for a total of 6,017,019 reads and 294 260 

prokaryotic ASVs.  261 

 262 

Community composition and statistical analyses 263 

(i) Environmental samples.  All the analyses were conducted in R version 4.0.2 in Rstudio 264 

(1.1.442) and the plots were produced with ggplot2 (RStudio Team, 2016; Wickham, 2016; R 265 

Core Team, 2017). Taxonomy treemaps of environmental samples were produced at the genus 266 

level considering the best hits classified by VSEARCH. To facilitate visualization, low 267 

abundant genera (accounting to less than 3% of relative abundance at each sample) present at 268 

the raw community table were grouped. To compare environmental samples and cultures, mean 269 

alpha diversity indices (richness and Shannon index) were measured after rarefying the ASV 270 

table 100 times at the minimum number of reads (2,479) using the function rtk (Saary et al., 271 

2017). Hierarchical cluster analysis (HCA) (method “ward.D2”) was used to identify 272 

differences in the free-living prokaryotic communities by sites using the Hellinger distance 273 

(Euclidean distance of the Hellinger-transformed matrix; Legendre & Gallagher, 2001) using 274 

the function hclust from stats package (R Core Team, 2017). 275 
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(ii) Experiment. To analyze alpha diversity dynamics of the cultures, rarefaction was 276 

performed at a read depth of 5,957 reads using the same approach as for the environmental 277 

samples. For beta diversity analysis, the Jaccard dissimilarity was calculated on the rarefied 278 

table using the function decostand from vegan package. Hellinger distance was calculated from 279 

the non rarefied table also using the function decostand (Legendre & Gallagher, 2001).  To 280 

explore beta diversity patterns, we performed a principal component analysis (PCA) on the 281 

Hellinger transformed data using the function rda from vegan. A principal coordinates analysis 282 

(PCoA) was performed using the Jaccard dissimilarity using the function pcoa from ape 283 

package (Paradis & Schliep, 2019). To test the influence of the treatments, replicates and time 284 

on the microbiome beta diversity, we performed a permutational analysis of variance 285 

(PERMANOVA) (Anderson, 2005). Before running the analysis, the functions betadisper from 286 

the package vegan and anova-like permutation test from stats package were used to identify 287 

significant deviations on the multivariate beta dispersion of the data for treatments, replicates, 288 

time and of the interaction between treatments and time (Oksanen et al., 2015). The effect of 289 

treatments and replicates (nested within treatments) was tested using the function 290 

nested.npmanova from the package BiodiversityR (Kindt & Coe, 2005). To test the effect of 291 

time and the interaction between treatments and time, we used the function adonis from vegan 292 

including treatments, replicates, and time (number of days) as fixed variables in the model, 293 

with permutations restricted to the replicates level. HCA was done using the Hellinger distance 294 

as previously described. Taxonomy barplots were produced by showing the three most 295 

abundant genera (considering the best hits classified by VSEARCH), while the less abundant 296 

were merged as “others”. IndVal analyses were run with the rarefied table to identify indicative 297 

species of the three groups of treatments evidenced in the beta diversity analysis (inside and 298 

outside bloom DCM and both surface samples) using the function multipatt from the package 299 

indicspecies v1.7.9 with 10,000 permutations (De Cáceres and Legendre, 2009). P-values were 300 
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adjusted for multiple comparisons using the false discovery rate method using the function 301 

p.adjust from the package stats. 302 

 303 

Results  304 

Physico-chemical parameters and bacterial community structure dynamics in the E. 305 

huxleyi bloom 306 

Coccolithophore blooms occur seasonally from April to June in the Bay of Biscay along 307 

the continental shelf to the Celtic Sea (Holligan et al., 1983; Poulton et al., 2014; Perrot et al., 308 

2018). Here, we followed and sampled an E. huxleyi bloom for a week from end of May to 309 

early June 2019 in the Celtic Sea (Fig. 1A and 1B) using near-real time interpolated images of 310 

non-algal suspended particulate matter (SPM) derived from MERIS and MODIS satellite 311 

reflectance data (Perrot et al., 2018; Gohin et al., 2019) as provided by Ifremer 312 

(http://marc.ifremer.fr/en) . 313 

During the 5-day sampling period, temperature and salinity ranged from 12.4°C to 314 

15.4°C and from 35.4 to 35.5 PSU, respectively (Supplementary Table 2). In both inside and 315 

outside bloom waters, nutrient concentrations were low with NO2 + NO3 and PO4 ranging from 316 

the detection thresholds to 1.25 µmol and 0.05 to 0.2 μmol/L, respectively. These low values 317 

were typical of a bloom event where cells consume most of the nutrients. E. huxleyi whose cell 318 

densities ranged from 1.6 x 103 to 5.6 x 103 cells/mL within bloom waters (Fig. 1C) dominated 319 

the total photosynthetic eukaryotic community (2.5 x 104 cells/mL on average). In these 320 

samples, total numbers of heterotrophic bacteria varied from 8.1 x 105 to 2.0 x 106 cells/mL 321 

(Fig. 1D) whereas the lowest prokaryotic cell concentration was measured in the outside bloom 322 

sample (Fig. 1D and Supplementary Table 2).  323 

Overall, the inside and outside bloom DCM samples displayed a prokaryotic richness 324 

of about 140 ± 29ASVs (mean ± SD, n=11) (Fig. 2A). Richness increased over the course of 325 

http://marc.ifremer.fr/en/results/turbidite
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the bloom, reaching a maximum at day 4. The DCM samples collected on day 5 inside and 326 

outside the bloom for the community assembly experiments contained 148 and 133 ASVs, 327 

respectively. The Shannon diversity index displayed homogeneous values (mean 4.1 ± 0.2) 328 

across samples (Fig. 2B).  329 

Hierarchical clustering revealed 3 groups of sampling periods, the first one comprising 330 

samples from day 1 to day 2 AM, the second grouping those of day 2 PM and day 3 AM, and 331 

the third clustering those of day 3 PM to day 5 PM. These successive sampling periods reflected 332 

the distinct shifts in the bacterial community during the bloom and may be related to the bloom 333 

development (Supplementary Fig. 2). During the whole bloom survey, mean abundances of 334 

prokaryotic communities inside the bloom showed that Proteobacteria (64% of the total of 335 

reads) and Bacteroidota (15%) were the two major dominant phyla, followed by Cyanobacteria 336 

(7%), Thermoplasmatota (4%), and Verrucomicrobiota (4%). Pelagibacteraceae (15%), 337 

Pseudoalteromonadaceae (12%) and Rhodobacteraceae (12%) were the most abundant 338 

proteobacterial families while Flavobacteriaceae (11%) dominated within the Bacteroidota.  339 

Among the dominant genera, abundances of SAR11 clade Ia (about 10% of the total reads), 340 

Synechococcus sp. (7%), SAR86 clade (5%), and uncultured Rhodobacteraceae members (4%) 341 

remained stable along the bloom survey (Supplementary Fig. 3). Several other genera 342 

demonstrated substantial abundance shifts. Ascidiaceihabitans and Sulfitobacter, accounting 343 

for 7% in the first sampling period, decreased in the second and third sampling periods. 344 

Nitrosopumilus (Thaumarchaeota), Thermoplasmata (Marine group II euryarchaeota), Vibrio 345 

and Pseudoalteromonas exhibited an inverse pattern. As low as 2% or less in the first sampling 346 

period, their abundance increased significantly (9 to 14%) in the second sampling period. 347 

Pseudoalteromonas proportions persisted (14%) in the third sampling period while those of 348 

other taxa decreased to their initial numbers.  Not detected or at very low abundance in the first 349 

sampling periods, Alteromonas peaked (up to 4%) only at the end of the bloom survey. 350 
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On day 5, prokaryotic communities outside the bloom grouped with those collected inside the 351 

bloom area (Supplementary Fig. 2). In both samples, the fourth most abundant taxa making up 352 

to >44% of the total reads were identical and displayed very close proportions 353 

(Pseudoalteromonas 19% and 21% in inside and outside bloom, respectively, Synechococcus 354 

9% and 7%, SAR11 clade Ia 8% and 11%, and Alteromonas 8% in both samples). The main 355 

compositional differences these samples that served as inocula for the community assembly 356 

experiment were the abundance of Lentimonas (5% inside vs 2% outside bloom), and of the 357 

OM60 (NOR5) clade and Marine group II members (each of them accounting for 2% inside vs 358 

4% outside bloom). Relative abundances of the clades that were recruited from these samples 359 

during the experiment were lower and close in both samples (OM43 clade, 1.5% and 2.3% in 360 

inside and outside bloom, respectively; KI89A clade, 0.6% and 0.4%; Luminiphilus, 0.7% and 361 

0.3%; Aurantivirga, 0.1% and 0.3%; Polaribacter, 0.5% and 0.2%) or similar (SAR92 clade, 362 

1.5%). 363 

 364 

Community assembly experiment 365 

(i) Dynamics of cell concentrations and alpha diversity patterns  366 

Seawater samples used to inoculate axenic E. huxleyi cultures were filtered through 367 

0.45 µm membranes to remove phototrophs (autotrophic eukaryotes and Synechococcus 368 

populations) and overcome their effects on microbiome assembly. FCM analysis demonstrated 369 

that about 40% of the initial bacterial cell concentration was lost after this filtration step. As 370 

addressed in the Discussion, we acknowledge that this step may have also biased the bacterial 371 

composition in the inocula. Due to limited incubation space onboard, cultures were incubated 372 

at low light (20 µmol photons s-1m-2) and these light conditions were maintained during the 373 

first weeks of incubation. However, a drastic decrease (~ 80%) of E. huxleyi cell concentrations 374 

was observed in all the treatments between the day 10 and day 33 (Supplementary Fig. 4A). 375 
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To avoid culture crash, we increased the light intensity to 70 ± 20 µmol photons s-1m-2 and 376 

larger microalgal inocula (10% of the final culture volume instead of 1%) were used to transfer 377 

the cultures at day 33. E. huxleyi cell densities gradually increased at each subsequent transfer 378 

until day 71. At that point, they reached the highest cell concentration (9.9 x 105 ± 1.2 x 105 379 

cells/mL) and remained stable up to the end of the experiment (Supplementary Fig. 4A). 380 

Bacterial cell concentrations followed an opposite trend during the first weeks of incubation. 381 

After a rapid increase (~94%) from day 10 to 47, they decreased once E. huxleyi abundance 382 

became higher and remained relatively stable up to the end of the experiment (Supplementary 383 

Fig. 4B).  384 

Regarding the structure of the bacterial community, a severe loss of richness was 385 

observed between the environmental and culture samples (Fig. 2A). At day 10, the bacterial 386 

richness in the cultures was about one fifth of the richness in the natural samples (30 ± 8 SD, 387 

n=12) (Fig. 2A). This reflected a parallel decrease in the Shannon index, which at day 10, was 388 

about one third the values recorded in environmental samples (1.4 ± 0.6 SD, n=12, Fig. 389 

2B). Over the course of the experiment, we observed a decrease in richness along the first five 390 

weeks (mean decrease 25 ± 7 SD, n=12, until day 47) (Fig. 2A and Supplementary Fig. 4C). 391 

After an increase at day 59 that corresponded to the period of culture recovery, the richness 392 

values decreased again and remained stable until day 393 (12 ASVs ± 2). The decrease of 393 

richness was mainly associated with the loss of low abundance ASVs, while the dominant ones 394 

remained over the course of the experiment (Supplementary Fig. 5). In general, the Shannon 395 

index also decreased over the from day 10 to day 33 (mean decrease of 0.5 ± 0.6 SD, n=12) 396 

and then gradually increased to values (i.e. 1.2 ± 0.4 at day 393, n=12) similar to that from day 397 

22. The highest richness and Shannon indexes were obtained in the treatments amended with 398 

the inside bloom DCM sample (richness, 26 ± 12 ASVs; Shannon, 1.6 ± 0.4, n=24). 399 

 400 
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Dynamics of beta diversity patterns in recruited microbiomes  401 

In order to identify the influence of the different initial prokaryotic community 402 

composition and to follow the changes in the microbiome beta diversity with time, we used 403 

two metrics, the Hellinger distance (Euclidean distance of Hellinger-transformed data) and the 404 

Jaccard dissimilarity. PCoA using Jaccard dissimilarity demonstrated that E. huxleyi cultures 405 

inoculated with surface samples grouped together (Fig. 3A), while those inoculated with inside 406 

and outside bloom DCM samples formed two other independent clusters.  407 

Statistical significance of the effect of treatments, replicates and time, as well as the 408 

interaction of treatment and time on the diversity of the microbiomes was assessed by 409 

PERMANOVA and nested PERMANOVA. Before performing PERMANOVA analysis we 410 

tested the beta-dispersion (variance) of the microbiomes grouped by treatments, time, 411 

treatments over time, and replicates. The dispersions (variance) of treatments as well as the 412 

interaction of treatments over time were not homogeneous for both metrics tested (p < 0.05). 413 

On the other hand, dispersions were likely homogeneous over time and across replicates (p > 414 

0.05). Still, PERMANOVA results were robust to dispersion for balanced designs like ours 415 

(Anderson & Walsh, 2013). PERMANOVA results of Hellinger and Jaccard dissimilarities 416 

showed that significant proportions of the variance in microbiome composition among samples 417 

were explained by treatments (31% and 25%, respectively), replicates (31% and 15%, 418 

respectively), and time (6% and 7%, respectively) (p < 0.01) (Fig. 3B, Supplementary Tables 419 

3 and 4). Although the interaction between treatments and time was significant using Hellinger 420 

distance (F = 2.23; p = 0.016), it explained a small proportion of the variance (2.5%).  421 

Clustering using Hellinger distance revealed that the prokaryotic community 422 

composition of all the cultures grouped into three major clusters (Fig. 3C) supporting the PCoA 423 

using Jaccard dissimilarity results. Based on the Hellinger distance, the outside bloom DCM 424 

treatment samples (cluster a) formed two subclusters, highlighting the compositional 425 
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differences between the 3 replicates. Replicate 1 was dominated by Alcanivorax (78%, n=8), 426 

while Erythrobacter prevailed in replicate 2 (88%) and 3 (45%). Cluster b mainly consisted of 427 

microbiomes recruited from both surface water samples. Surface treatments were dominated 428 

by bacteria related to OM43, KI89A, and SAR92 clades, and to Luminiphilus. The third main 429 

cluster (c) entirely formed by microbiomes from the inside bloom DCM treatment was 430 

dominated by members of the OM43 (29%), KI89A (28%), SAR92 clade and Polaribacter 431 

(11% each). With the exception of those related to Sulfitobacter, Luminiphilus, OM43 and the 432 

OM60(NOR5) clades, ASVs that dominate (≥ 1%) in the cultures amended with inside and 433 

outside bloom DCM samples were generally low in abundance or not detected in the initial 434 

bacterioplankton community (Supplementary Fig. 6). 435 

The number of indicative ASVs for each treatment varied widely and was significantly 436 

higher (21 out of 29) in cultures amended with inside bloom DCM waters (Supplementary 437 

Table 5). Flavobacteriales, with Aurantivirga and Polaribacter in particular, was the order 438 

containing the most indicative ASVs of microbiomes recruited from the inside bloom DCM 439 

sample. Members of SAR92 and KI89 clades displayed high Indval indexes in both inside 440 

bloom DCM and surface samples. The indicator ASVs of outside bloom DCM treatment were 441 

related to Erythrobacter, Alcanivorax, and OM60(NOR5) clade.  442 

Besides the compositional differences among treatments, we observed a somewhat 443 

cyclic pattern of the beta-diversity over time using Hellinger distance (Fig. 4). Microbiome 444 

community compositions clearly differed from each other from days 10, 22 and 33 for all 445 

treatments, but they gradually tended to become similar to their initial status at the following 446 

time-points. This cyclic pattern was observed for inside and outside bloom surface treatments 447 

(Fig. 4A and C) and was particularly evident in the inside bloom DCM treatment (Fig. 4B). In 448 

these treatments, the dynamic was mainly driven by the dominance of the OM43 clade (ASV1) 449 

during the alga crash. In the algal growth recovery phase, the increased abundance of 450 



 

 19 

Luminiphilus (ASV6) in surface treatments and of Aurantivirga (ASV12) and Polaribacter 451 

(ASV15) in inside bloom DCM cultures were also involved (Supplementary Fig. 7). The 452 

contributions of these ASVs were also supported by the PCAs species loadings. No cyclic 453 

pattern was observed for outside bloom DCM cultures (Fig. 4D). Instead, in line with 454 

hierarchical clustering results (Fig. 3C), dissimilarities in these cultures were higher between 455 

replicates than over time.  456 

 457 

Discussion 458 

In this study, we monitored the diversity of bacterial communities associated with an E. huxleyi 459 

bloom in the Celtic Sea, and collected bacterioplankton samples for conducting a microbiome 460 

selection experiment in axenic E. huxleyi cultures.  461 

 462 

Prokaryotic communities associated to the demise phase of the E. huxleyi bloom 463 

The composition of the bacterial community, i.e. the presence of Flavobacteriaceae, 464 

Pseudoalteromonadaceae, Alteromonadaceae and members of the genus Sulfitobacter, 465 

indicated that the E. huxleyi bloom had already entered the decaying phase when we started the 466 

sampling (Lovejoy et al., 1998; Buchan et al., 2014). Indeed, Flavobacteriia are reported 467 

amongst the main bacteria present in the declining phase of phytoplankton blooms (Teeling et 468 

al., 2012, 2016; Landa et al., 2016), which seems linked to their capacity to degrade high 469 

molecular weight substrates such as proteins and polysaccharides (Cottrell and Kirchman, 470 

2000; Kirchman, 2002; Fernández-Gomez et al., 2013; Kappelmann et al., 2019; Francis et al., 471 

2021). Furthermore, the algicidal effects of Pseudoalteromonas, Alteromonas, and 472 

Sulfitobacter strains and species have been documented in many microalgae including E. 473 

huxleyi (Holmström & Kjelleberg, 1999; Meyer et al., 2017; Li et al., 2018; Barak-Gavish et 474 

al., 2018), which calls attention to their potential role in the E. huxleyi bloom termination 475 
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(Lovejoy et al., 1998; Barak-Gavish et al., 2018). Satellite images and post-cruise analyses 476 

support that we started sampling the bloom in its decline phase. First, the high reflectance patch 477 

visible on the satellite images (Fig. 1A) and the daily vanishing of the coccolith-derived 478 

turbidity signal observed from the interpolated images of non-algal SPM were both indicative 479 

of detached coccoliths from dead E. huxleyi cells (Neukermans & Fournier, 2018; Perrot et al., 480 

2018). This assumption was confirmed by the complete disappearance of the coccolith-derived 481 

turbidity signal a couple of days after we left the sampling area. Second, a suite of ongoing 482 

experiments on the bloom samples using diagnostic lipid- and gene-based molecular 483 

biomarkers (Vardi et al., 2009; Hunter et al., 2015; Ziv et al., 2016; Vincent et al., 2021) 484 

revealed the detection of specific viral polar lipids and visualized E. huxleyi infected cells 485 

during bloom succession, suggesting that Coccolithovirus infections may have partially 486 

participated in the demise of E. huxleyi bloom (F. Vincent, C. Kuhlisch, G. Schleyer, pers. 487 

comm.) as often proposed (Bratbak et al., 1993; Vardi et al., 2012; Laber et al., 2018).  488 

As the bloom decline progressed, rapid and important shifts of the prokaryotic 489 

community were observed, probably reflecting a direct response by certain bacterial taxa to 490 

specific E. huxleyi-derived organic matter. Senescence compounds from decaying E. huxleyi 491 

cells probably fueled members of the genus Ascidiaceihabitans (formerly Roseobacter OCT 492 

lineage) (Wemheuer et al., 2015), whose relative abundances typically fluctuate during 493 

phytoplankton blooms (Hahnke et al., 2015; Lucas et al., 2016; Chafee et al., 2018; Choi et al., 494 

2018) and promoted other functionally different transient taxa that represent key prokaryotic 495 

members during bloom decline. Among them, Thermoplasmata are generally associated with 496 

protein and lipid degradation (Orellana et al., 2019) while Nitrosopumilus may be favored by 497 

nitrite accumulation caused by algal release (Kim et al., 2019). The opportunistic Vibrio was 498 

among the most rapidly responding bacterial heterotrophs in the bloom termination conditions, 499 

likely degrading organic matter released from algal cells (Eiler et al., 2007) while Alteromonas 500 
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sp. have the metabolic capacity to degrade a diverse set of complex compounds like 501 

polysaccharides during the later stages of the bloom (Reintjes et al., 2019). 502 

 503 

Community composition of environmentally recruited E. huxleyi microbiomes 504 

Since our primary objective was to study the bacterial community selection and 505 

assembly by a single phytoplankton host, we used a filtration step to discard autotrophic 506 

phytoplankton cells, such as Synechococcus and picoeukaryotes abundantly represented in the 507 

initial planktonic communities (Supplementary Table 2). We acknowledge that this filtration 508 

strategy has removed large and particle-attached prokaryotes, the latter probably being 509 

abundant in the demise phase of the bloom, and has induced substantial modifications in the 510 

initial community composition of the inocula and finally in recruited microbiomes. Indeed, 511 

some of the main taxonomic groups recruited in the treatments were not previously reported in 512 

E. huxleyi and other phytoplankton cultures or in low abundance, notably Luminiphilus, and 513 

the clades SAR92, KI89A and OM43 (Green et al., 2015; Câmara dos Reis, 2021). Except 514 

members of the OM43 clade (Yang et al., 2016), these bacteria are known as important groups 515 

of oligotrophic marine Proteobacteria that do not usually grow in the rich organic matter 516 

conditions provided in phytoplankton-derived cultures (Cho & Giovannoni, 2004; Spring & 517 

Riedel, 2013). Another unexpected result of our study is the very low representation of 518 

Marinobacter sp. in the recruited microbiomes whereas previous studies have reported their 519 

dominance in cultures of worldwide E. huxleyi isolates (Green et al., 2015; Câmara dos Reis, 520 

2021). We found them in low abundance in inside and outside bloom waters (0.15-0.2%), 521 

similar to multiyear average values (0.18%) in the Western English Channel (Gilbert et al., 522 

2012). Since Marinobacter can be closely associated with particulate organic matter, including 523 

the eukaryotic phytoplankton population (Sonnenschein et al., 2012; Thompson et al., 2020), 524 

we cannot fully exclude the possibility that the filtration step impacted the abundance of 525 
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Marinobacter in the inocula and finally in the E. huxleyi cultures. A more likely hypothesis 526 

however is that low light conditions might have induced algal cell death promoting the release 527 

of methylated compounds (Reese et al., 2019; Fisher et al., 2020). The release of methylated 528 

compounds by E. huxleyi may have provided a selective advantage to the specialist OM43 529 

clade methylotrophs (Neufeld et al., 2008), dominant in all the cultures, and to other less 530 

common bacterial taxa in the absence of strong competitors such as Marinobacter. This 531 

hypothesis is in line with the opposite dynamics of E. huxleyi (decrease) and bacteria (increase) 532 

coupled to the sharp decrease of the bacterial alpha diversity during the first month of culture, 533 

indicating that a few bacterial taxa were outcompeting others.  Despite the above limitations, 534 

the high reproducibility of microbiome community composition across the biological replicates 535 

suggests that they did not alter the general conclusions raised from our study.  536 

Our results illustrate the importance of niche differentiation in natural communities. 537 

Indeed, although no major differences were observed between environmental inside and 538 

outside bloom bacterial communities, E. huxleyi microbiomes recruited from these samples 539 

differed. Similarly, although we did not analyze the initial bacterial composition of epipelagic 540 

surface samples (collected 34 km apart), they converged towards similar compositions, 541 

dominated by Luminiphilus, SAR92, KI89A and OM43 clades. Other microbiome studies of 542 

phytoplankton cultures have highlighted the impact of the initial community composition on 543 

microbiomes after short (Ajani et al., 2018; Sörenson et al., 2019; Jackrel et al., 2020), and 544 

long-term selection (Behringer et al., 2018). Remarkable features were found in the 545 

microbiomes resulting from inside bloom DCM waters where several indicative flavobacterial 546 

ASVs, mainly assigned to Polaribacter and Aurantivirga, were initially selected and remained 547 

among the most prevalent and abundant ASVs after growth recovery of the host. Both genera 548 

were identified as the main degraders of polysaccharides during diatom blooms (Krüger et al., 549 

2019) and showed clear successions along the bloom stages (Teeling et al., 2012; Landa et al., 550 
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2016; Krüger et al., 2019; Liu et al., 2020). This may be related to the differential capacity of 551 

these bacteria to degrade phytoplankton-derived polysaccharides during blooms (Teeling et al., 552 

2012; Krüger et al., 2019; Avci et al., 2020; Francis et al., 2021). Interestingly, SAR92 and 553 

Luminiphilus were also identified as important degraders of algal polysaccharides in bloom 554 

conditions (Francis et al., 2021), suggesting their potential functional role in our cultures.   555 

We observed contrasting results between the inside and outside bloom DCM recruited 556 

microbiomes that can be linked to the origin of the samples. First, recruited microbiomes from 557 

inside bloom DCM samples were more diverse and displayed higher number of indicative 558 

ASVs, probably reflecting the higher diversity observed in the original seawater (Fig.2). We 559 

assume that exopolysaccharides/exudates of axenic E. huxleyi cultures have strongly 560 

influenced the recruited microbiomes and their long-term stability. We hypothesize that the 561 

higher diversity conferred stability to the microbiomes allowing the recovery after disturbance. 562 

This may likely explain the almost complete cyclic pattern they followed (Fig. 4B). Such cyclic 563 

patterns were shown in the surface microbiome of the seaweed Delisea pulchra (Longford et 564 

al., 2019) after experimental disturbances. These authors hypothesized that the production of 565 

halogenated furanones by the red algae exert a selective force for the establishment and 566 

persistency of early-colonizing bacteria which may protect the host against the colonization of 567 

pathogenic bacteria in later successional stages (Longford et al., 2019). In line with our data, 568 

this study favored the view that higher diversity in disturbed microbiomes may be a source of 569 

stability and resilience against perturbation (Longford et al., 2019). We consistently observed 570 

cyclic patterns in treatments having a high degree of uniformity in the replicates. This was not 571 

the case for the outside bloom DCM cultures whose bacterial communities displayed high 572 

levels of between-replicate variability.  573 

Our study suggests the combined effect of deterministic processes and stochasticity on 574 

the microbiome assembly. The significant imprint of the original community in the inside 575 
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bloom DCM treatments suggests that deterministic processes (e.g. pre-exposition to algal 576 

exudates in the bloom assemblages adapted to E. huxleyi bloom exudates) influenced the final 577 

microbiome composition. On the other hand, variable communities grown from outside bloom 578 

DCM treatment are consistent with stochastic assembly overwhelming any signal of ecological 579 

selection. In line with our results, both deterministic and stochastic processes were found to 580 

influence community assembly in both the surface and DCM waters of the South Pacific Gyre 581 

(Allen et al., 2020). Homogeneous selection was the dominant community assembly process 582 

at both depths. However, stochastic processes had more effect at the DCM than in the 583 

temporally stable surface waters, presumably due to the greater influence of vertical nutrient 584 

supply and higher productivity and lower influence of horizontal dispersal (Allen et al., 2020 585 

and references therein).  586 

 587 

Conclusions  588 

In this work, we combined an observational and an experimental approach to reveal 589 

the bacterial community structure in an E. huxleyi bloom and to address whether different 590 

microbial composition could influence microbiome assembly in a E. huxleyi culture. Our 591 

environmental data showed that the E. huxleyi bloom created unique ecological conditions 592 

favoring the combination of bacterial and archaeal groups that followed a clear successional 593 

trajectory. This trajectory suggests both potential algicidal bacteria-algae interactions and niche 594 

specialization by different taxa possibly corresponding to different stages in the successive 595 

degradation of E. huxleyi-derived organic compounds. Our experimental approach showed that 596 

the compositional homogeneity of the prokaryotic community of an E. huxleyi bloom in the 597 

demise phase influenced community assembly through deterministic processes. We showed 598 

that the source of the initial bacterioplankton communities influences the resulting composition 599 

of E. huxleyi microbiomes. Further studies using diverse phytoplankton cultures isolated from 600 
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a variety of oceanic regions and different trophic regimes could be useful to disentangle 601 

deterministic and stochastic factors driving microbiome assembly in the marine environment. 602 

Axenic phytoplankton cultures also represent a valuable resource to explore phytoplankton-603 

bacteria interactions. Co-cultivation of isolates corresponding to indicative ASVs and E. 604 

huxleyi will be helpful to decipher how they interact. Future analyses combining transcriptomic 605 

and metabolomic analyses will provide valuable information about the genes and molecules 606 

involved in these ecologically key interactions. 607 
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Figures and Captions 1095 

 1096 

 1097 

 1098 
 1099 

Fig. 1. Sampling area and characteristics of the E. huxleyi bloom in the Celtic Sea. A) Map 1100 

showing the bloom area and spatio-temporal sampling strategy (AM and PM denote morning 1101 

and afternoon samplings). B) True-color satellite image of the bloom area on May 21, 2019 1102 

(source: https://www.star.nesdis.noaa.gov/sod/mecb/color/ocview/ocview.html. C)  E. huxleyi 1103 

cell concentrations at morning bloom sites during the survey, measured from duplicate filters 1104 

using scanning electron microscopy. D) Heterotrophic bacterial cell concentrations at morning 1105 

and afternoon sites during the survey, measured from duplicate samples by flow cytometry.  1106 

 1107 

 1108 
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 1109 

Fig. 2. Composite representation of the dynamics of the prokaryotic richness (A) and Shannon 1110 

(B) indexes in natural samples (0.2 – 3 µm DCM samples only) and culture experiments. ASV 1111 

tables were rarefied to 2,479 (minimum number of reads of the environmental samples. The 1112 

boxes represent the interquartile range. The thin horizontal lines represent the 25 th and 75th 1113 

percentiles and while the thick horizontal line represents the median. The vertical lines indicate 1114 

the minimum and maximum values (using 1.5 coefficients above and below the percentiles). 1115 

The dots represent the values measured for each culture. Dots further than the vertical lines 1116 

represent potential outliers. X-axis in the in the experiment plot are not proportional to the time 1117 

length between samplings. The black dotted line represents the time where the cultivation 1118 

conditions changed. 1119 

 1120 
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 1121 
Fig. 3. Beta diversity patterns of E. huxleyi microbiomes across treatments and time. (A) 1122 

Principal coordinates analysis (PcoA) using Jaccard dissimilarity matrix of the presence-1123 

absence transformed rarefied table. Colors correspond to each treatment that received 1124 

prokaryotic communities from different water samples: green - Inside bloom DCM; yellow - 1125 

Inside bloom surface (SRF); purple - Outside bloom DCM; red - Outside bloom SRF. Ellipses 1126 

represent 95% confidence. (B) Permutational multivariate analysis of variance 1127 

(PERMANOVA) and nested PERMANOVA r2 of significant variables (p < 0.01) using both 1128 

metrics (see Supplementary Tables 3 and 4 for detailed results). (C) Hierarchical clustering 1129 

produced with the Hellinger distance matrix using “ward.D2” method. Codes of each 1130 

microbiome are experiment sampling day_treatment_replicate. On the left, colors used for each 1131 

treatment are the same than in Fig. 3A. Bar plots indicate the taxonomy of the 3 most abundant 1132 

genera. The other genera were merged as “others”. 1133 

 1134 
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 1135 
 1136 
Fig. 4. Principal component analysis (PCA) showing the cyclic patterns of the microbiome beta 1137 

diversity. Community distances (Euclidean distances of Hellinger-transformed data) are shown 1138 

for microbiomes from inside bloom surface (SRF) (A), inside bloom DCM (B), outside bloom 1139 

SRF (C), and outside bloom DCM (D). The polygons link replicates (shape coded) at each 1140 

DNA sampling (color coded). The black line links the barycenters of the replicates. 1141 
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