Clément Aubert

Thomas Rubiano

Neea Rusch

Thomas Seiller

mwp-Analysis Improvement and

Keywords: Implementation: Realizing Implicit Computational Complexity 2012 ACM Subject Classification Automated static analysis, Complexity theory and logic, Logic and verification Static Program Analysis, Implicit Computational Complexity, Automatic Complexity Analysis, Program Verification Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity

published or not. The documents may come L'archive ouverte pluridisciplinaire

Background: the original flow analysis

The original analysis [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF] computes a polynomial bound-if it exists-on the sizes of variables in an imperative while programming language, extended with a loop operator, by computing for each variable a vector that tracks how it depends from other variables-and the program itself gets assigned a matrix collecting those vectors. While this does not ensure termination, it provides a certificate guaranteeing that the program uses at most a polynomial amount of space, and as a consequence that if it terminates, it will do so in polynomial time.

Language analyzed: fragments of imperative language

Definition 1 (Imperative Language). Letting variables range over X and Y and boolean expressions over b, we define expressions e and commands C as follows:

e :=X X -Y X + Y X * Y C :=X = e if b

then C else C while b do {C} loop X {C} C ; C

Although not crucial to understand our development, details about (strong) semi-rings and the mwp semi-ring are in Sect. A.1, and the construction of a semi-ring whose elements are matrices with coefficients in a semi-ring-so, in particular, M(mwp)-is given in Sect. A.2.

Below, we let V 1 , V 2 be column vectors with values in mwp, αV 1 be the usual scalar product, and V 1 ⊕ V 2 be defined componentwise. We write { α i } for the vector with 0 everywhere except for α in its ith row, and { α i , β j } for { α i } ⊕ { β j }. Replacing in a matrix M the jth column vector by V is denoted M j ← -V . The matrix M with M ij = α and 0 everywhere else is written { α i → j}, and the set of variables in the expression e is written var(e). The assumption is made that exactly n different variables are manipulated throughout the analyzed program, so that n-vectors are assigned to expressionsin a non-deterministic way, to capture larger classes of programs [18, Section 8]-and n × n matrices are assigned to commands using the rules presented Fig. 1 [18, Section 5].

The intuition is that if jk C : M can be derived, then all the values computed by C will grow at most polynomially w.r.t. its inputs [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF]Theorem 5.3], e.g. will be bounded by max(x, p 1 (y)) + p 2 (z), where p 1 and p 2 are polynomials and x (resp. y, z) are m-(resp. w-, p-)annotated variables in the vector for the considered output. Since the derivation system is non-deterministic, multiple matrices and polynomial bounds-that sometimes coincide-may be assigned to the same program. Furthermore, the coefficient at M ij carries quantitative information about the way Xi depends on Xj, knowing that 0-and m-flows are harmless and 1 Our implementation allows to relax this condition, as exemplified in inline_variable.c, without losing any of the results expressed in this paper. Assuming a fixed number of variables, known ahead of time, is mostly a theoretical artifact used to simplify the analysis.

C V I T 2 0 1 6 23:4 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity without constraints, but that w-and p-flows are more harmful w.r.t. polynomial bounds and need to be handled with care, particularly in loops-hence the condition on the L and W rules. The derivation may fail-some programs may not be assigned a matrix-, if at least one of the variables used in the body of a loop depends "too strongly" upon another, making it impossible to ensure polynomial bounds on the loop itself. We will use the following example as a common basis to discuss possible failure, non-determinism, and our improvements. From π 0 , the derivation of loop X3{X2= X1 + X2} can be completed using A and L, but since L requires having only m coefficients on the diagonal, π 1 cannot be used to complete the derivation, because of the p coefficient in a box below: π 0 jk X1 + X2 : Similarly, using A after π 2 gives a w coefficient on the diagonal and makes it impossible to use L, hence only one derivation for this program exists.

E1 jk Xi : { m i } E2 jk e : { w i | Xi ∈ var(e)} jk Xi : V 1 jk Xj : V 2 ∈ {+, -} E3 jk Xi Xj : pV 1 ⊕ V 2 jk Xi : V 1 jk Xj : V 2 ∈ {+, -} E4 jk Xi Xj : V 1 ⊕ pV 2

Limitations and inefficiencies of the mwp analysis

Even if the proof techniques are far from trivial, with only 9 rules and skipping over boolean expressions (observe that the condition b has no impact in the rules I or W), the analysis is flexible and easy to carry-at least mathematically. It also has inherent limitations: while the technique is sound, it is not complete and programs such as greatest common divisor fail to be assigned a matrix. We will discuss in Sect. 5.2, the benefits and originality of this analysis, but we would now like to stress how it is computationally inefficient, since the non-determinacy makes the analysis costly to carry and can lead to memory explosions.

Abstracting Example 3, one can see that the base case of non-determinism-e.g., to assign a vector to X1 X2-yields vectors (p m) (using E1 then E3), (m p) (using E1 then E4) and (w w) (using E2). Since none of those vectors is less than the others, only two strategies are available to analyze a larger program containing X1 X2: either the derivations for this base case are considered one after the other, or they are all stored in memory at the same time. Considering the derivations for the base case one after the other can lead to a time explosion, as a program of n lines can have 3 n different derivations-as exemplified by explosion.c, a simple series of applications-and it is possible that only one of them can be completed, so all must be explored. On the other hand, storing those three vectors and constructing all the matrices in parallel leads to a memory explosion: the analysis for two commands involving 6 variables, with 3 choices-that cannot be simplified as explained previously-would result in 9 matrices of size 6 × 6, i.e., 324 coefficients. All in all, a program of n lines with x different variables can require c n 1 different derivations, that can produce up to (c 2 × x) 2 coefficients to store for some constants c 1 , c 2 .

Beyond inefficiency, there are additional limitations: while the analysis is naturally compositional, this feature is not leveraged in the original system; furthermore, an occurrence of non-polynomial flows in the matrix causes the analysis to simply stop, thus not capturing failure in a meaningful way. We will discuss our solutions to these deficiencies next.

A deterministic, always-terminating, declension of the mwp analysis

The problem of finding a derivation in the original calculus is in NP [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF]Theorem 8.1]. But since all the non-determinism is in the rules to assigning a vector, the potentially exponential number of derivations are actually extremely similar. Hence, instead of having the analysis stop when failing to establish a derivation and re-starting from scratch, storing the different vectors and constructing the derivation while keeping all the options open seems to be a better strategy, but, as we have seen, this causes a memory blow-up. We address it by fine-tuning the internal machinery: to represent non-determinism, we let the matrices take as values either functions from choices to coefficients in mwp or coefficients in mwp, so that instead of mapping choices to derivations, all the derivations are represented by the same matrix that internalizes the different choices. Sect. 3.1 discusses this improvement, that results in a notable gain: the (unique) matrix produced for a program involving 6 variables, with 3 choices, is a 6 × 6 matrix that can be represented by 66 coefficients instead of the 324 we previously had-this is because 30 coefficients are "simple" values in mwp, and 6 are functions from a set of choices {0, 1, 2} to values in mwp, each represented with 6 coefficients. For the choices that give coefficients fulfilling the side condition of L or W, the derivation can proceed as usual, but when a particular choice gives a coefficient that violates it, we decided against simply removing it. Instead, to guarantee that all derivations always terminate, we mark that choice by indicating that it would not provide a polynomial bound. This requires extending the mwp semi-ring with a special value ∞ that represents failure in a local way, marking non-polynomial flows, and is detailed in Sect. 3.2. As a by-product, this allows gaining fine-grained information on programs that do not have polynomially bounded growth, since the precise dependencies that break this growth rate can be localized.

C V I T 2 0 1 6

23:6 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity

∈ {+, -} E A Xi Xj : (0 → { m i , p j }) ⊕ (1 → { p i , m j }) ⊕ (2 → { w i , w j }) E M Xi * Xj : { w i , w j } E S Xi : { m i } (a)
Rules for assigning vectors to expressions

e : V A Xj = e : 1 j ← -V C1 : M 1 C2 : M 2 C C1; C2 : M 1 ⊗ M 2 C1 : M 1 C2 : M 2 I if b then C1 else C2 : M 1 ⊕ M 2 C : M L ∞ loop Xl {C} : M * ⊕ { ∞ j → j | M * jj = m} ⊕ { p l → j | ∃i, M * ij = p} C : M W ∞ while b do {C} : M * ⊕ { ∞ j → j | M * jj = m} ⊕ { ∞ i → j | M * ij = p} (b)
Rules for assigning matrices to commands Taken together (Sect. 3.3), our improvements ensure that exactly one matrix will always be assigned to a program while carrying over the correctness of the original analysis. We give in Fig. 2 the deterministic system we are introducing in full, but will gently introduce it though the remaining parts of this section: note that the rules A, C and I are unchanged, up to the fact that the matrices, sum and product are in a different semi-ring.

Internalizing non-determinism: the choice data flow semi-rings

Internalizing the choice requires altering the semi-ring used in the analysis: we want to replace the three vectors over mwp that can be assigned to an expression by a single vector over {0, 1, 2} → mwp that captures the same three choices. For a program needing to decide p times between the 3 available choices, this means replacing the 3 × p different matrices in M(mwp) by a single matrix in M({0, 1, 2} p → mwp). As proven in Sect. A.3, for any strong semi-ring S and family of sets (A i) i=1,...,p , both A i → S and M(p i=1 A i → S) are semi-rings, using the usual cartesian product of sets, and there exists an isomorphism

M(p i=1 A i → S) ∼ = p i=1 A i → M(S)
. This dual nature of the semi-ring considered is useful: the analysis will now assign an element M of M(p i=1 A i → mwp) to a program; representing M as an element of p i=1 A i → M(mwp) allows to use an assignment a = (a 1 , . . . , a p) ∈ p i=1 A i to produce a matrix M [a] ∈ M(mwp), recovering the mwpflow that would have been computed by making the choices a 1 , . . . , a p in the derivation. Remark 4. As the unique degree of non-determinism to assign a matrix to commands is 3, our modification of the analysis flow consists simply of recording the different choices by letting A i = {0, 1, 2} for all i = 1, . . . , p where p is the number of times a choice had to be taken. Starting with Sect. 4, function calls will require potentially different sets A i . Notation 1. In the following and in the implementation alike, we will denote a function

(a 0 1 × • • • × a 0 p → α 0) + • • • + (a k 1 × • • • × a k p → α k) in A p → mwp with Card(A) = k by, omitting the product, (α 0 δ(a 0 1 , 0) • • • δ(a 0 p , p)) + • • • + (α k δ(a k 1 , n) • • • δ(a k p , p))
, with δ(i, j) = m if the jth choice is i, 0 otherwise. Example 7 will justify and explain this choice.

Our derivation system replaces the E3 and E4 rules with a single rule E A ("additive"), and splits E2 in two exclusive rules, E M for "multiplicative" and E S for "simple" (atomic) expressions-Theorem 10 will prove how they are equivalent. from Example 3 with a single vector pδ(0,0)+mδ(1,0)+wδ(2,0) mδ(0,0)+pδ(1,0)+wδ [START_REF] Amadio | Certified complexity (cerco)[END_REF]0) 0

, that can be read as {0 →p,1 →m,2 →w} {0 →m,1 →p,2 →w} 0

, where we write 0 for {0 → 0, 1 → 0, 2 → 0}2 . Since in particular3 , M({0, 1, 2} → mwp) ∼ = {0, 1, 2} → M(mwp), the obtained vector can be rewritten as 0

→ p m 0 , 1 → m p 0 , 2 → w w 0 .

Internalizing failure: de-correlating derivations and bounds

The original analysis stops when detecting a non-polynomial flow, puts an end to the chosen strategy (i.e. set of choices) and restarts from scratch with another one. We adapt the rules so that every derivation can be completed even in the presence of non-polynomial flows, thanks to a new top element, ∞, representing failure in a local way.

Ignoring our previous modification in this subsection, the semi-ring mwp ∞ we need to consider is (mwp ∪ {∞}, 0, m, + ∞ , × ∞), with ∞ > α for all α ∈ mwp, + ∞ = max as before, and α × ∞ β = 0 if α, β = ∞ and α or β is 0, max(α, β) otherwise. This different condition in the definition of × ∞ ensures that once non-polynomial flows have been detected, they cannot be erased (as ∞ × ∞ 0 = ∞, some additional details are discussed in Sect. A.4).

The only cases where the original analysis may fail is if the side conditions of L or W (Fig. 1) are not met. We replace those by L ∞ and W ∞ (Fig. 2), which replace the problematic coefficients with ∞, marking non-polynomial dependencies, and carry on the analysis. Example 6. The program from Example 3 would now receive three derivations (omitting the one obtained from π 0 , as the resulting matrix is identical):

. . . . π1 X1 + X2 :

m p 0 A X2 = X1 + X2 : m m 0 0 p 0 0 0 m L ∞ loop X3 {X2 = X1 + X2} : m p 0 0 ∞ 0 0 p m E2 X1 + X2 : w w 0 A X2 = X1 + X2 : m w 0 0 w 0 0 0 m L ∞ loop X3 {X2 = X1 + X2} : m w 0 0 ∞ 0 0 0 m
Of course, neither of those two derivations would yield polynomial bound-since they contain ∞ coefficients-but it becomes possible to determine that the last one is "better"since

p ∞ p > w ∞ 0
-and to observe how their "failure" would propagate in larger programs, possibly establishing that one fares better than the other in terms of non-polynomial growths.

Merging the improvements: illustrations and proofs

We prove that our system captures the original system in the sense that set aside ∞ coefficients, both systems agree (Theorem 10), but also that exactly one matrix is produced per program (Theorem 9)-i.e. that we can analyze as many programs as originally, and still be correct regarding the bounds. Before doing so, we would like to give more specifics on our system, by combining the semi-rings and intuitions from the previous two subsections. We have discussed our "axiomatic" (E A , E M , E S) and "loop" rules (L ∞ and W ∞), but remain to discuss the rules for assignment (A), if (I) and composition (C)-which is where both improvements meet. Mathematically speaking, adopting the semi-ring defined over matrices with coefficients in {0, 1, 2} p → mwp ∪ {∞} is straightforward, and we simply write ⊕ and ⊗ the operations resulting from merging the two transformations. We discuss in Sect. 4.3 how, however, those operations are computationally costly and how we address this challenge.

Example 7. Using our deterministic system presented in Fig. 2, consider the following:

E A X1 + X2 : V A X1 = X1 + X2 : 1 1 ← -V E A X1 -X3 : V A X1 = X1 -X3 : 1 1 ← -V I if b then {X1= X1+ X2} else {X1= X1-X3} : (1 1 ← -V) ⊕ (1 1 ← -V) with V = 0 → { m 1 , p 2 } ⊕ 1 → { p 1 , m 2 } ⊕ 2 → { w 1 , w 2 } V = 0 → { m 1 , p 3 } ⊕ 1 → { p 1 , m 3 } ⊕ 2 → { w 1 , w 3 } 1 1 ← -V ∼ = (0 →m)⊕(1 →p)⊕(2 →w) 0 0 (0 →p)⊕(1 →m)⊕(2 →w) m 0 0 0 m = mδ(0,0)⊕pδ(1,0)⊕wδ(2,0) 0 0 pδ(0,0)⊕mδ(1,0)⊕wδ(2,0) m 0 0 0 m 1 1 ← -V ∼ = (0 →m)⊕(1 →p)⊕(2 →w) 0 0 0 m 0 (0 →p)⊕(1 →m)⊕(2 →w) 0 m = mδ(0,1)⊕pδ(1,1)⊕wδ(2,1) 0 0 0 m 0 pδ(0,1)⊕mδ(1,1)⊕wδ(2,1) 0 m
Some care is needed to perform the addition for the I rule: the choices in the left and right branches are independent, so we must use coefficients in {0, 1, 2} 2 → mwp for the 2 3 choices. While the mapping notation would require to use positions to describe which choice is being refereed to, the δ notation makes it immediate, as it encodes in the second value of δ that two choices are considered, numbering the choice in the left branch 0. Hence we can sum the coefficients and obtain the matrix presented in the implementation as example7.c. Example 8. Our deterministic system now assigns to loop X3 {X2 = X1 + X2} from Example 3 the unique matrix

m (0 →p)⊕(1 →m)⊕(2 →w) 0 0 (0 →m)⊕(1 →∞)⊕(2 →∞) 0 0 (0 →p)⊕(1 →0)⊕(2 →0) m = m pδ(0,0)⊕mδ(1,0) ⊕wδ(2,0) 0 0 mδ(0,0)⊕∞δ(1,0)⊕∞δ(2,0) 0 0 pδ(0,0)⊕0δ(1,0)⊕0δ(2,0) m
where we observe that 1. only one choice, one assignment, 0, gives a matrix without ∞ coefficient, corresponding to the fact that, in the original system, only π 0 could be used to complete the proof, 2. the choice impacts the matrix locally, the coefficients being mostly the same, independently from the choice, 3. the influence of X2 on itself is where possible non-polynomial growth rates lies, as the ∞ coefficient are in the second column, second row.

We are now in possession of all the material and intuitions needed to state the correspondence between our system and the original one of Jones and Kristiansen.

Theorem 9 (Determinancy and termination). Given a program P , there exists unique

p ∈ N and M ∈ M({0, 1, 2} p → mwp ∞) such that P : M .
Proof. The existence of the matrix is guaranteed by the completeness of the rules, as any program written in the syntax presented in Sect. 2.1 can be typed with the rules of Fig. 2. The uniqueness of the matrix is given by the fact that no two rules can be applied to the same command. Details are provided in Appendix B.

Theorem 10 (Adequacy). If P : M , then for all

a ∈ A p , jk P : M [a] iff ∞ / ∈ M [a].
Proof. The proof uses that P cannot be assigned a matrix in the original calculus iff the deterministic calculus introduce a ∞ coefficient, and from the fact that both calculus coincide in all the other cases. Details are provided in Appendix B.

Corollary 11 (Soundness). If P : M and there exists a ∈ A p such that ∞ / ∈ M [a], then every value computed by P is bounded by a polynomial in the inputs.

Proof. This is an immediate corollary of the original soundness theorem [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF]Theorem 5.3] and of Theorem 10. This proves that the two analyses coincide, when excluding ∞, and that we can re-use the original proofs. However, our alternative definition should be understood as an important improvement, as it enables a better proof-search strategy while optimizing the memory usage, and hence enables the implementation (Sect. 5). It also lets the programmer gain more fine-grained feedback, and illustrates the flexibility of the analysis: the latter will also be demonstrated by the improvements we discuss in the next section.

Extending and improving the analysis: functions and efficiency

To improve this analysis, one could try to extract tight bound, to certify it, or to port it to a compiler's intermediate representation. Adding constant values is arguably immediate [18, p. 3] but handling pointers, even if technically possible, would probably require significant work. This illustrates at the same time the flexibility of the analysis, and the distance separating ICC-inspired techniques from their usage on actual programs. We decided to narrow this gap along two axes: the first one consists of allowing function definitions and calls in our syntax. It is arguably a small improvement, but illustrates nicely the compositionality of the analysis, and includes recursively defined functions. The second extension intersects the theory and the implementation: it details how our semi-ring structure can be leveraged to maintain a tractable algorithm to compute costly operations on our matrices, and to separate the problem of deciding if a bound exists from computing its form.

Leveraging compositionality to analyze function calls

Thanks to its compositionality, this analysis can easily integrate functions and procedures, by re-using the matrix and choices of a program implementing the function called. We begin by adding to the syntax the possibility of defining multiple functions and calling them:

Definition 12 (Functions). Letting R (resp. f) range over variables (resp. function names), we add function calls 4 to the commands (Def. 1) and allow function declarations: Now, given a function declaration computing f , we can obtain the matrix M f by analyzing the body of f as previously done. It is then possible to store the assignments a 0 , . . . , a k , for which no ∞ coefficients appear 5 , and to project the resulting matrices to only keep the vector at R that provides quantitative information about all the possible dependencies of the output variable R w.r.t. input values, possibly merging choices leading to the same result. After this, we are left with a family (M

C :=Xi = f(X1, . . ., Xn) F := f(X1, . . .,
f [a 0])| R , . . . , (M f [a k])| R of
vectors-as the syntax here is restricted to functions with a single output value, even if accommodating multiple return values would be dealt with the same way-that we can re-use when calling the function.

The analysis of the command calling f is then dealt with the F rule below: F Xi = F(X1,. . ., Xn) :

1 i ← -(((M f [a 0])| R)δ(0, c) ⊕ • • • ⊕ ((M f [a k])| R)δ(k, c))
This rule introduces a choice c over k possible matrices, and it is possible that k = 3, but this is not an issue, since our semi-ring construction can accommodate any set of choice A.

Example 13. Consider the following two programs Q and P :

Q = int f (X 1 , X 2){ while b do { X 2 = X 1 + X 1 }; return X 2 ; } P = int foo (X 1 , X 2){ X 2 = X 1 + X 1 ; X 1 = f (X 2 , X 2); } We first have X2 = X1 + X1 : V for V = m pδ(0,0)⊕pδ(1,0)⊕wδ(2,0) 0 0
, and since

V * = m pδ(0,0)⊕pδ(1,0)⊕wδ(2,0) 0 m , applying W ∞ gives Q : m ∞δ(0,0)⊕∞δ(1,0)⊕wδ(2,0) 0 m
. Noting that only one choice gives an ∞-free matrix, we can now carry on the analysis of P:

. . .

X2 = X1 + X1 : V F X1 = f(X2, X2) : 1 1 ← -((w m) δ(0, c)) C P : V ⊗ 1 1 ← -((w m) δ(0, c))
In this particular case, the c choice can be discarded, since only one option is available. Now, to prove that the F rule faithfully extends the analysis (Theorem 16), i.e. preserves Corollary 11, we prove that the analysis of the program "inlining" the function call-as defined below-is, up to some bureaucratic variable manipulation and ignoring some ∞ coefficients, the same as the analysis resulting from using our rule. Intuitively, this mechanism provides the expected result because the choices in the function do not affect the program calling it, and because their sets of variables are disjoint-except for the return variable. Definition 14 (In-lining function calls). Let P be a chunk containing a call to the function f , and F be the function declaration computing the function f . The context P [•], a chunk containing a slot [•], is obtained by replacing in P the function call Xi=f(X1, . . ., Xn), with X'1=X1; . . .; X'n=Xn; [•] Xi=R, for R, X'1, . . ., X'n fresh variables added to the header containing the chunk.

The chunk F is obtained from the body of F by renaming the input variables to X'1, . . ., X'n, and the variable returned by F to R.

Q = while b do { R = X ' 1+ X '1 }; P [•] = int foo (X 1 , X 2 , X '1 , R){ X2 = X1 + X1 ; X '1 = X 2 ; [•] X 1 = R ; }
The analysis of P (excluding the function call) and Q is implemented at example15a.c, and of P[Q] at example15b.c: this latter diverges with Example 13 only up to projection and ∞-coefficients that are removed by F but not when in-lining the function call. Now, we need to prove that the matrices M (P)-obtained by analyzing P and using the F rule for Xi=f(X1, . . ., Xn);-and M (P [F])-obtained by analyzing the inlined P [F]are the same. However, to avoid conflict with the variables and to project the matrices on the relevant values, some bureaucracy is needed: we write Π P (M (P [F])) (resp. (1 -Π P)(M (P [F]))) the projection of M (P [F]) onto the variables in (resp. not in) P . Some non-deterministic choices may appear within the (modified) chunk F inside P [F], i.e. the coefficients of M (P) are elements of the semi-ring p+1 i=1 A i → M(mwp), with one particular choice corresponding to the F rule-we write the corresponding index i 0 ; the coefficients of M (P [F]) are elements of the semi-ring

p+k i=1 B i → M(mwp),
where k choices are made within the chunk F -we write the corresponding indexes j 1 , j 2 , . . . , j k (note these are in fact consecutive indexes).

We note π : {1, . . . , p + k} → {1, . . . , p + 1} the projection of the choices in P [F] onto the corresponding choices in P , i.e. π(j)

=    j if j < j 1 i 0 if j 1 j < j k j -k + 1 if j k < j
. We note that each matrix used as axiom in the function call corresponds to a specific assignment on indexes j 1 , . . . , j k . We write Ψ :

A i0 → j k i=j1 B i the corresponding injection, extended to Ψ : p+1 i=1 A i → p+k i=0 B i straightforwardly. Theorem 16. For all a in p+1 i=1 A i , (M (P))[a] = (1 -Π P)(M (P [F]))[Ψ(a)], and for all β in p+k i=0 B i not in the image of Ψ, (1 -Π P)(M (P [F])[β]) contains ∞.
Proof. It is sufficient to prove it for the simplest chunk P containing only one command Xi = f(X1, . . ., Xn). This comes from the compositional nature of the analysis, as a sequence of commands is assigned the product of the matrices of each individual command. Then, checking the theorem in this case is a straightforward, though tedious (due to keeping track of all indices), computation.

Integrating recursive calls, the easy way

The question of dealing with self-referential, or recursive, calls, naturally arises when extending to function calls. It turns out that our approach makes such cases easy to handle.

A program implementing a function rec calling itself cannot use the F rule presented above as is, since the result of the analysis of rec is precisely what we are trying to establish. However, if rec takes two input variables X1 and X2 and its return value is assigned to a third variable X3, then we already know that the vector at 3 will need to be replaced by the vector capturing the dependency between X1, X2, and the return variable of rec (which we will take to be X3 in our example). The solution consists in replacing the actual values in this vector by variables α, β ranging over values in mwp ∞ , terminating the analysis with those variables, and then to resolve the equation-which is easy given the small size of the mwp ∞ semiring.

As an example6 , consider the following program and compute the corresponding matrix: , this gives three systems of equations:

int rec (X 1 , X 2){ X 1 = X 1 + X 2 ; X 3 = rec (X 1 , X 2); return X 3 ; } mδ(0,0)⊕pδ(1,0)⊕wδ(2,0) 0 0 pδ(0,0)⊕mδ(1,0)⊕wδ(2,0) m 0 0 0 m ⊗ 1 3 ← - α β 0 = mδ(0,0)⊕pδ(1,0)⊕wδ(2,0) 0 αmδ(0,0)⊕αpδ(1,0)⊕αwδ(2,0) pδ(0,0)⊕mδ(1,0)⊕wδ(2,0) m αpδ(0,0)⊕αmδ(1,0)⊕αwδ(2,
αm = α αp ⊕ β = β αp = α αm ⊕ β = β αw = α αw ⊕ β = β
The smaller solution to the first (resp. second, third) equational system is {α = m; β = p} (resp. {α = p; β = p} , {α = w; β = w}), and as a consequence, we find two meaningful solutions (all others being larger than those):

Taking advantage of polynomial structure to compute efficiently

Ensuring that the analysis is tractable is an important part of our contribution. For a program accepting n different derivations and having k different derivations that cannot be completed, the original flow calculus must run at most k + 1 times to find one derivation, while our analysis outputs the k + n different derivations in one run, and then sorts them-as discussed next-by listing all the evaluations and looking for ∞ values. In this task, the C rule, that allows building programs from commands, is obviously crucial and consists simply in multiplying two matrices: however, since we are internalizing the choices, those matrices contain a mixture of functions from choices to coefficients in mwp ∞ and of coefficients in mwp. Multiplying such matrices is more costly, but also essential: an 8-line program such as explosion.c requires to multiply elements of its matrix 34,992 times 7 . This forces to represent and manipulate the elements of p i=1 A i → M(mwp)-setting aside ∞ coefficients for a moment-cleverly: simple comparison showed that the improved algorithm presented below made the analysis roughly five times faster (Sect. C.3).

As discussed in Notation 1, elements of this semi-ring are represented as polynomials w.r.t. the generating set given by the functions δ(i, j) : p i=1 A i → mwp defined by δ(i, j)(a 1 , . . . , a p) = m if a j = i and δ(i, j)(a 1 , . . . , a p) = 0 otherwise, i.e. an element of

p i=1 A i → mwp is represented as a polynomial n i=1 α i ki j=1 δ(a i,j , b i,j) with α i ∈ mwp.
This basis has an important property: the monomials α i ki j=1 δ(a i,j , b i,j) in a polynomial can be ordered so that the product with another monomial is ordered, i.e. if α β and both α × γ and β × γ are non-zero, then α × γ β × γ. This order is leveraged to obtain efficient algorithms, similar to what is done using Gröbner bases for computation of standard polynomials [START_REF] Van Der Hoeven | Fast gröbner basis computation and polynomial reduction for generic bivariate ideals[END_REF]. For instance, the algorithm for multiplication of polynomials uses this property to compute the product of an ordered polynomial P with n i=1 α i ki j=1 δ(a i,j , b i,j):

1. compute the products P i = P × α i ki j=1 δ(a i,j , b i,j) for all i; 2. compare and order a list L of all the first elements of those polynomials; 3. append the smallest element to the result and remove it from the corresponding P i ; 7 The need to optimize functions is made even more obvious when we discuss benchmarking in Sect. [START_REF] Barthe | Formal verification of an SSAbased middle-end for compcert[END_REF] When adding or multiplying polynomials, which consist of monomials, we check if a monomial is contained or included by another, and exclude all redundant cases (cf. contains or includes). This is also done when inserting monomials. Thus we keep polynomials free of implementation choices that we would otherwise have to handle during evaluation.

Deciding the existence of a bound faster thanks to delta graphs

Adopting the p i=1 A i → mwp ∞ semi-ring allows completing all derivations simultaneously, but remains to determine if there exists an assignment a ∈ p i=1 A i s.t. the resulting matrix is ∞-free, to decide whenever a program accepts a polynomial bound: this is the evaluation step. Despite the optimizations detailed above that simplifies the task, this phase remains particularly costly, since the number of assignment grows exponentially w.r.t. the number of choice, which is linear in the number of variables. While this step is necessary (in one form or another) if one wishes to produce the actual mwp matrices certifying polynomial bounds, we implemented a specific data structure to keep track of assignments resulting in ∞ coefficients on the fly, thus allowing the analysis to provide a qualitative answer quickly. This section details how those delta graphs allow to immediately determines whenever a polynomial bound exists without having to compute the corresponding matrix, something that was not possible in the original, non-deterministic, calculus.

A delta graph is a graph whose vertices are monomials. The graph is populated during the analysis by adding those monomials that appear with an infinite coefficient-i.e. possible choices leading to ∞ in the resulting matrix. This graph is structured in layers: each layer corresponds to the size of the monomials (the number of deltas) it contains. The intuition is that a monomial-or rather a list of deltas δ(_, _)-defines a subset of the space p i=1 A i ; the less deltas in the monomial, the greater the subspace represented 8 . As we populate the delta graph, we create edges within a given layer to keep track of differences between monomials: we add an edge labeled i between two monomials if and only if they differ only on one delta δ(_, i) (i.e. one is obtained from the other by replacing the first index of δ(_, i)). This is used to implement a fusion method on delta graphs, which simplifies the structure: as soon as a monomial m in layer n has Card(A i) -1 outgoing edges labelled i, we can remove all these monomials and insert a shorter monomial in layer n -1, obtained from m by simply removing δ(_, i). This implements the fact that Card(Ai)-1 k=0 mδ(k, j) = m. Now, remember the delta graph represents the subspace of assignments for which an ∞ appears. If at some point the delta graph is completely simplified (i.e. "fusions" to the graph with a unique monomial consisting in an empty list of δ(_, _)), it means the whole space of assignments is represented and no mwp-bounds can be found. On the contrary, if the analysis ends with a delta graph different from the completely simplified one, at least one assignment exists for which no infinite coefficients appear, and therefore at least one mwp-bound exists. This allows to answer the question "Is there at least one mwp-bound?" without actually computing said bounds. Based on the information collected in the delta graph and the matrix with polynomial coefficients, one can however recover all possible matrix assignments by going through all possible valuations. This last part is implemented with a specific iterator that leverages the information collected in the delta graph to skip large sets of valuations in a single step. For instance, suppose the monomial δ(1, 1) lies in the delta graph-i.e. that an infinite coefficient will be reached if the second index is equal to 1. When asked the valuation after (0, 0, 2, 2) (and supposing that Card(A i) = 3 for all i), our delta_iterator will jump directly to (0, 2, 0, 0), skipping all intermediate valuation of the form (0, 1, a, b) in a single step. Similarly, it will jump from (1, 0, 2, 2) to (1, 2, 0, 0), again skipping several valuations at a time, providing a faster analysis. Note that the implementation required care, to correctly jump when given additional informations from the delta graph, e.g. to produce (2, 0, 1, 0) as the successor of (0, 0, 2, 2) if δ(0, 0), δ(1, 1) and δ(0, 2) all belong to the delta graph.

Implementing, testing and comparing the analysis

Demonstrating the implementability of the improved and extended mwp-bounds analysis requires an implementation. Our open-source solution, packaged through Python Package Index (PyPI) as pymwp, is a standalone command line tool, written in Python, that automatically performs growth-rate analysis on programs written in a subset of the C programming language. For programs that pass the analysis, it produces a matrix corresponding to the input program and a list of valid derivation choices; and for programs that do not have polynomial bounds, it reports infinity. Our motivation for choosing C as the language of analysis resulted from its central role and similarity with the original while language. Python was an ideal choice for the implementation because of its plasticity, collection of libraries, and because it allowed partial reuse of a previous flow analysis tool [START_REF]Lqicm on c toy parser[END_REF][START_REF] Moyen | Loop quasi-invariant chunk detection[END_REF][START_REF] Moyen | Loop quasi-invariant chunk motion by peeling with statement composition[END_REF]. The source code is available on Github, along with an online demo, and detailed documentation [29] describing its current supported features and functionality. We now discuss how we tested and assesed it, and how it compares (or, rather does not compare) to other similar approaches.

Experimental evaluation

We allocated extensive focus and effort on testing and profiling our implementation, to ensure the correctness and efficiency of the analysis, and with the terminal objective of obtaining a usable tool. The test suite includes 42 C programs, carefully designed to exercise different aspects of the analysis, ranging from basic derivations, to ones producing worst-case behavior (by yielding e.g. dense matrices or exponential number of derivations), and classical examples such as computing the greatest common divisor or exponentiation. We refer to our benchmarks (presented in Appendix C) for measured analysis results for each program. The most salient aspect is that our analysis is extremely fast (the time is measured in milliseconds) despite important numbers of function calls (in the 10k range, excluding builtin Python language calls, for 10-lines programs). Even examples tailored to stress our implementation cannot make the analysis go over 4 seconds. We cannot compare our implementation with implementations of the original analysis, since it has never been implemented, and (according to our attempts) cannot be implemented in any realistic manner.

Related tools and incompatible metrics

This work was inspired by the series of works of the flow analysis from the "Copenhagen school" [START_REF] Amir | Linear, polynomial or exponential? complexity inference in polynomial time[END_REF][START_REF] Jones | Abstract Interpretation: A Semantics-Based Tool for Program Analysis[END_REF]. The overall flow analysis approach is related in spirit to abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Static determination of dynamic properties of recursive procedures[END_REF]; that bounds transitions between states (e.g. commands) instead of states [START_REF] Jones | Abstract Interpretation: A Semantics-Based Tool for Program Analysis[END_REF]. This approach shaped the implementation of tools detecting loop quasi-invariants [START_REF] Moyen | Loop quasi-invariant chunk detection[END_REF][START_REF] Moyen | Loop quasi-invariant chunk motion by peeling with statement composition[END_REF].

Other communities share a similar goal of inferring resource-usage. Complexity analyzers such as SPEED [START_REF] Gulwani | Speed: Precise and efficient static estimation of program computational complexity[END_REF] for C++, COSTA [START_REF] Albert | COSTA: design and implementation of a cost and termination analyzer for java bytecode[END_REF] for Java bytecode, ComplexityParser [START_REF] Hainry | Complexityparser: An automatic tool for certifying poly-time complexity of java programs[END_REF] for Java, Resource Aware ML for OCaml [START_REF] Lichtman | Arrays and references in resource aware ML[END_REF] or Cerco [START_REF] Amadio | Certified complexity (cerco)[END_REF] and Verasco [START_REF] Jourdan | A formally-verified C static analyzer[END_REF] for C generate (certified) cost or runtime analysis on (subsets of) imperative programming languages. Embracing such a large diversity is difficult, but our technique is different from existing implementations and tools: most of them focus on worst-case resource-usage complexity or termination, while we are interested in upper-bounds on the final values of program variables, i.e. we focus on growth instead of actual values. This makes the comparison with our approach difficult, but highlights at the same time its uniqueness in today's landscape of static analyzers.

Further, our approach provides other desirable properties: 1. it is compositional, which allows to "hot-plug" bounds of previously analyzed functions without additional work, 2. it is modular, as the internal machinery can be altered-as in this paper-without having to re-develop the theory, 3. it is language-independent, as it reasons abstractly on imperative languages, but can be applied to real programs, as our implementation illustrates, and should extend to more complex languages, 4. it is lightweight and programmer-friendly, as it is fast, does not require annotations or to record value ranges, 5. it studies growth independently from e.g. iteration bounds, thus sidestepping difficult cases that worst-case analysis has to tackle, and 6. it may enable tight bounds on programs, as it has been done recently [START_REF] Amir | Tight polynomial worst-case bounds for loop programs[END_REF] for a similar analysis [START_REF] Amir | Linear, polynomial or exponential? complexity inference in polynomial time[END_REF]. In particular compositionality is a highly desirable property-because otherwise the analysis needs to be re-run on programs or API whenever embedded into different pieces of software-yet difficult to achieve by most other approaches, as discussed and partially remedied recently [START_REF] Carbonneaux | Compositional certified resource bounds[END_REF]. While we suppose one approach could be used to derive the result obtained by the other, we do believe the originality of our pioneering ICC-based approach may inspire new and original directions in static program analysis.

Conclusion: limitations, strengths and future work

This work attempts to illustrate the usefulness and applicability of ICC results, but also the need to refine and adapt them. We showed that the mwp-flow analysis as originally described cannot scale to programs in a real programming language: while the considered analysis is definitely powerful and elegant, its mathematical nature let some costly operations go unchecked. However we have shown that, extended and coupled to optimizations techniques, its result allows the development of a novel and original static analysis technique on imperative programs, focused on growth rather than on termination or worst-case bounds. This work is a proof of concept and it has limitations, both theoretical and practical: the theory is missing memory uses, pointers, and arrays and the supported feature set of the implementation could be extended. But instead of focusing on what this analysis cannot perform, we would like to stress that all the tools are in place to perform similar analysis on intermediate representations of code in compilers, which will naturally simplify the task of fitting richer program syntax to our analysis, and brings this technique yet another step closer to practical use cases.

Our next steps include certifying the analysis using the Coq proof assistant [START_REF] Moser | Coq documentation[END_REF], and implementing the analysis in certified tools such as the Compcert compiler [START_REF] Leroy | Formal verification of a realistic compiler[END_REF] (or, more precisely, its static single assignment version [START_REF] Barthe | Formal verification of an SSAbased middle-end for compcert[END_REF]) or certified-llvm [START_REF] Zhao | Formal verification of SSA-based optimizations for LLVM[END_REF]. The plasticity of both compilers and of the implemented analysis should facilitate porting our results and approaches to support further programming languages in addition to C. As complexity analysis is notably difficult in Coq [START_REF] Guéneau | Mechanized Verification of the Correctness and Asymptotic Complexity of Programs[END_REF], we believe a push in this direction would be welcome, and that ICC provides all the needed tools for it.

A Technical appendix on semi-rings

A.1 The mwp semi-ring

This subsection briefly recall the definition of semi-ring (Def. 17) and proves that the mwp semi-ring (Def. 2) is indeed a semi-ring (Lemma 18).

Definition 17 (Semi-ring).

A semi-ring S = (S, 0, 1, +, ×) is specified by a set S and two binary operations + (addition) and × (multiplication) such that {0, 1} ∈ S and 1. (S, 0, +) is a commutative monoid: the operation + is associative, commutative, and has 0 as the identity element, 2. (S, 1, ×) is a monoid: the operation × is associative and has 1 as the identity element, 3. the operation × distributes with respect to +: for all a, b, c ∈ S, a

× (b + c) = a × b + a × c and (b + c) × a = b × a + c × a
We call S a strong semi-ring if, additionally, 0 annihilates S, i.e. 4. 0 × a = a × 0 = 0 for all a ∈ S.

Lemma 18 (mwp semi-ring). The tuple ({0, m, w, p}, 0, m, +, ×), with

0 < m < w < p, α + β = α if α β β otherwise α × β = α + β if α = 0 and β = 0 0 otherwise is a strong semi-ring.
Proof. We prove that ({0, m, w, p}, 0, m, +, ×) as defined respects the conditions of Def. 17.

The proof is straightforward but detailed nevertheless.

({0, m, w, p}, 0, +) is a commutative monoid We prove that ({0, m, w, p}, +) is a commutative monoid by showing that it is associative, commutative, and has 0 as identity.

Associativity (α + β) + γ = α + (β + γ) Case 1: α β γ α = α =⇒ α + γ = α + β =⇒ (α + β) + γ = α + (β + γ)
C. Aubert, Th. Rubiano, N. Rusch and Th. Seiller

23:19

Case 2: α γ β

α = α =⇒ α + γ = α + γ =⇒ (α + β) + γ = α + (β + γ) Case 3: β α γ β = β =⇒ β + γ = α + β =⇒ (α + β) + γ = α + (β + γ) Case 4: β γ α β = β =⇒ β + γ = α + β =⇒ (α + β) + γ = α + (β + γ) Case 5: γ α β γ = γ =⇒ α + γ = α + γ =⇒ (α + β) + γ = α + (β + γ) Case 6: γ β α γ = γ =⇒ β + γ = α + γ =⇒ (α + β) + γ = α + (β + γ)
Commutative Property Both cases are immediate: ,m,w,p},m,×) is a monoid We now prove that ({0, m, w, p}, m, ×) is a monoid by showing that it is associative, has m as identity, and has 0 as the annihilator.

Case 1: α β =⇒ α + β = α = β + α Case 2: β α =⇒ α + β = β = β + α Identity element is 0 0 + 0 = 0 0 + m m 0 + w = w 0 + p = p ({0
Associativity (α × β) × γ = α × (β × γ) Case 1: α, β, γ ∈ {m, w, p} α × β = α + β
Associativity of operation + is shown in the proof of the commutative monoid, ({0, m, w, p}, +). Case 2: α, β, or γ equals 0 By definition of multiplication, the product is 0.

Identity element is m 0 × m = 0 = m × 0 m × m = m = m × m w × m = w = m × w p × m = p = m × p C V I T
0 × 0 = 0 = 0 × 0 m × 0 = 0 = 0 × m w × 0 = 0 = 0 × w p × 0 = 0 = 0 × p

Distribution of multiplication over addition

We conclude by proving that × distributes over +.

Right Distribution α × (β + γ) = (α × β) + (α × γ) Case 1: β γ =⇒ α × β = α × β =⇒ α × (β + γ) = (α × β) + (α × γ) Case 2: γ β =⇒ α × γ = α × γ =⇒ α × (β + γ) = (α × β) + (α × γ) Left Distribution (α + β) × γ = (α × γ) + (β × γ) Case 1: α β =⇒ α × γ = α × γ =⇒ (α + β) × γ = (α × γ) + (β × γ) Case 3: β α =⇒ β × γ = β × γ =⇒ (α + β) × γ = (α × γ) + (β × γ)

A.2 Matrix semi-ring

This subsection explains and details how matrices with coefficients in a semi-ring can be used to construct semi-rings.

Lemma 19 (Matrix semi-ring). Given a strong semi-ring S = (S, 0, 1, +, ×), the tuple

M = (M , 0, 1, ⊕, ⊗), with
M the set of all n × n matrices over S, for all n ∈ N, 0 defined by M = 0 iff M ij = 0 for all i and j,

1 defined by M = 1 iff M ij = 1 for i = j, M ij = 0 otherwise, ⊕ defined by C = A ⊕ B iff C ij = A ij + B ij , ⊗ defined by C = A ⊗ B iff C ij = n k=1 A ik × B kj ,
is a strong semi-ring.

Proof. We prove that M = (M , 0, 1, ⊕, ⊗) as defined respects the conditions of Def. 17. Let A,B,C be n × n matrices over S where n ∈ N.

(M , 0, 1, ⊕) is a commutative monoid We prove that (M , ⊕) is a commutative monoid by showing that it is associative, commutative, and has 0 as identity. For simplicity, we will write F as A → S = (A → S, 0, 1, +, ×).

Definition 21 (Semi-ring isomorphism). Two semi-rings S = (S, 0, 1, +, ×) and T = (T , 0, 1, ,) are isomorphic and write S ∼ = T if there exists g : S → T such that

g is a bijection, g(0) = 0, g(1) = 1, g(s 1 + s 2) = g(s 1) g(s 2) for all s 1 , s 2 ∈ S g(s 1 × s 2) = g(s 1) g(s 2) for all s 1 , s 2 ∈ S
For simplicity, we write g : S → T for such morphisms. Proof. First, observe that by Lemmas 19 and 20, both A → M(S) and M(A → S) are strong semi-rings, and we write 0 f (resp. 0 M) and 1 f (resp. 1 M) for the 0 and 1 elements of A → M(S) (resp. of M(A → S)). Now we have to prove that we can construct a bijection g : M (A → S) → (A → M (S)) that respects the conditions of Def. 21.

We define g and g -1 at the same time, then show that they are indeed inverses:

g : M (A → S) → (A → M (S)) Given M ∈ M (A → S) of size n × n, we let g(M) ∈ A → M (S)
be the function that maps a ∈ A to M where the same argument a has been applied to the functions f 1,1 , . . . , f n,n . Graphically:

g(M)a = g(   M 1,1 . . . M 1,n M n,1 . . . M n,n   )a =    M 1,1 a . . . M 1,n a M n,1 a . . . M n,n a    Below, we write f M for g(M). g -1 : (A → M (S)) → M (A → S) Given f ∈ A → M (S), we define g -1 (f) ∈ M (A → S)
to be the matrix of size n × n, for n × n the size of the matrix returned by f , such that (g -1 (f)) i,j is the function that maps a ∈ A to (f (a)) i,j for all i, j. Graphically:

g -1 (f)a =    (f a) 1,1 . . . (f a)
• g -1 = g -1 • g = id. (g -1 • g)(M) = M (g -1 • g)(M) = g -1 (g(M)) = g -1 (f M) (where (fM (a))ij = Mij(a)) = M (g • g -1)(f) = f (g • g -1)(f) = g(g -1 (f)) = g(M f) (where (M f)ija = (f (a))ij) = f g(0 M) = 0 f Let f = g(0 M), then f = 0 f iff f (a) ij = 0 S for all i, j. f (a) ij = (0 M) ij (a) = 0 f (a) (by def. of 0 M) = 0 S (by def. of 0 f) g(1 M) = 1 f Let f = g(1 M), then f = 1 f iff f (a) ij = 1 S for all i = j and f (a) ij = 0 S otherwise. Case 1: i = j f (a) ij = (1 M) ij (a) = 1 f (a) (by def. of 1 M) = 1 S (by def. of 1 f) Case 2: i = j f (a) ij = (1 M) ij (a) = 0 f (a) (by def. of 1 M) = 0 S (by def. of 0 f) g(M 1 + M 2) = g(M 1) + g(M 2) g(M 1 + M 2) = g(M 1) + g(M 2) ⇐⇒ f M1+M2 = f M1 + f M2 ⇐⇒ f M1+M2 (a) = (f M1 + f M2)(a) ⇐⇒ f M1+M2 (a) = f M1 (a) + f M2 (a) ⇐⇒ (f M1+M2 (a)) ij = (f M1 (a) + f M2 (a)) ij ⇐⇒ (M 1 + M 2) ij (a) = (M 1) ij (a) + (M 2) ij (a) (by assoc. of +) g(M 1 × M 2) = g(M 1) × g(M 2) g(M 1 × M 2) = g(M 1) × g(M 2) ⇐⇒ f M1×M2 = f M1 × f M2 ⇐⇒ f M1×M2 (a) = (f M1 × f M2)(a) ⇐⇒ f M1×M2 (a) = (f M1)(a) × (f M2)(a) ⇐⇒ (f M1×M2 (a)) ij = ((f M1)(a) × (f M2)(a)) ij ⇐⇒ (n k=1 (M 1) ik × (M 2) kj)(a) = n k=1 (M 1) ik (a) × (M 2) kj

A.4 Partiality semi-ring

In our improvement of the analysis, we add an ∞ element to the mwp semi-ring, but reason abstractly below with an arbitrary semi-ring and a ⊥ element.

Lemma 23. Given a strong semi-ring S = (S, 0, 1, +, ×) and an element ⊥ / ∈ S, S ⊥ = (S ∪ {⊥}, 0, 1, + ⊥ , × ⊥) with, for all a, b ∈ S ∪ {⊥},

a + ⊥ b = a + b if a, b = ⊥ ⊥ otherwise a × ⊥ b = a × b if a, b = ⊥ ⊥ otherwise is a semi-ring.
Proof. The proof is immediate, but note that S ⊥ is not strong, as ⊥ × 0 = ⊥.

A good intuition on this construction comes from partial functions. Indeed, we can define A S as the semi-ring of partial functions from A to S, i.e. of functions from A to S ⊥ . Furthermore, if we identify a matrix in M(S ⊥) where at least a coefficient is ⊥ with the matrix ⊥, then we get that M(A S) ∼ = A M(S). However, note that none of those semi-rings are strong.

In the particular case of M(mwp ∞), having 0 × ∞ = ∞ instead of 0 × ∞ = 0 as required by the strength property allows to make sure that no non-polynomial growth is deleted. Indeed, if part of the program computes an exponential value but then throws it away, having 0 × ∞ = 0 would hide the super-polynomial computation and results in an incorrect analysis. However, 0 × ∞ = 0 could still be useful, at the cost of losing the bounds on time and space usage for terminating programs, but providing the benefit of analyzing programs that ultimately have polynomial dependency of the values w.r.t. the inputs.

B Omitted Proofs

Theorem 9 (Determinancy and termination). Given a program P , there exists unique p ∈ N and M ∈ M({0, 1, 2} p → mwp ∞) such that P : M .

Proof. The proof proceeds by induction on the length of the program P , expressed in number of commands. We let p be the number of variables in P , but observe that any program P can be treated as manipulating p > p different variables, by simply adding p -p additional rows and columns to the matrix, and leaving them unchanged by the derivation of P . While a complete proof would need to constantly account for the number of actual and potential variables used by P , we will simply assume that the reader understands that accounting for this technicality obfuscate more than it clarifies the proof, and we will freely resize the matrices to account for additional variables when needed.

If P is of length 1 Then we know P is of the form X = e, and only the rule A can be applied. But then we need to prove that all expression e can be typed with exactly one vector. An expression e is either a variable X, or a composed expression X * Y, X -Y, or X + Y. But then, respectively, only E S , E M or E A (for addition and substraction) can be applied, and this case is proven.

C V I T
P : M [a] iff ∞ / ∈ M [a].
Proof. The proof proceeds by induction on the length of the program P , expressed in number of commands.

If P is of length 1 Then we know P is of the form X = e, and only the rule A can be applied, in both systems. Hence, we need to prove that all expression e can be typed the same way in both systems. A careful comparison of Figures 1 and2 shows that if e is of the form Xi, then there is a small mismatch. In the original system, we can use either E2, and obtain jk Xi : { w i }, or E1, and obtain jk Xi : { m i }, while the only derivation in the deterministic system is using E S to get jk Xi : { m i }. As m < w, we argue that the deterministic system cannot obtain a derivation that is not useful anyway, and hence that it can be ignored. As for the other cases, if e is a composed expression X * Y, X -Y, or X + Y, it is easy to observe that E A and E M encapsulates all the possible combinations of E2 and of E1 followed by E3 or E4 that can be used. If P is of length n > 1 Then the result holds by induction, once we observed that L ∞ and W ∞ are introducing ∞ coefficients only if L and W cannot be applied.

C Benchmarks

C.1 Descriptions of program groups

Basics -C programs performing operations corresponding to simple derivation trees. Implementation paper -example programs presented in this paper.

Original paper -examples taken from or inspired by the original analysis [START_REF] Jones | A flow calculus of mwp-bounds for complexity analysis[END_REF]. Infinite -programs whose matrices always contain infinite coefficients.

Polynomial -programs whose matrices do not always contain infinite coefficients.

Other -other C programs of interest.

C.2 Results

The benchmarks are categorized and grouped to distinguish the type of system behavior they exercise. For each program we capture in Table 1 Collectively the LOC, time, and function calls columns provide insight into the behavior of the analysis as different aspects of the system are being stress-tested. From the results column we report expected results on each benchmarked program. In the benchmarks table a passing result is represented with and ∞ otherwise. We do not report manually computed bounds as comparison, because the analysis is carried out on individual variables, thus calculating them on multivariate programs is tedious and futile. However, for simple programs such as while_2.c, it is straightforward through visual inspection to verify the obtained 2 × 2-matrix is indeed the correct result.

These benchmarks were obtained using Python's built-in cProfile utility, extended in pymwp implementation to enable batch profiling. The clock times are slight overestimates because the utility adds minor runtime overhead. The number of function calls includes primitive calls, but exclude built-in Python language calls. Full detailed results are viewable in the source code repository: https://github.com/statycc/pymwp/releases/tag/profile-latest Details of executing machine: linux (Ubuntu), OS release: 20.04.

C.3 Comparison

It is not really meaningful or possible to compare those results with any other static analyzer, and impossible to compare it with any other implementation of this type of flow analysis. While we could, in theory, analyze our examples with other static analyzers, their results would be incomparable, as they would produce guarantees on termination or worst case resource usage, which are both orthogonal to our polynomial bounds on value growth. To our knowledge, the only static analyzer using similar metrics [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF] was developed only for functional languages, thus preventing comparison. As for implementations of the original analysis, our first attempts showed that a naive implementation would likely fail to handle the memory or time explosions. We did, however, compare the gains resulting from the optimizations described in Sect. 4.3. In a nuthsell, our improved algorithm for adding and multiplying polynomials resulted in the analysis being roughly five times faster for two programs that we estimate to be representative.

C V I T

 (a) Rules for assigning vectors to expressionsjk e : V A jk Xj = e : 1 j ← -V jk C1 : M 1 jk C2 : M 2 C jk C1; C2 : M 1 ⊗ M 2 jk C1 : M 1 jk C2 : M 2 I jk if b then C1 else C2 : M 1 ⊕ M 2 jk C : M ∀i, M * ii = m L jk loop Xl {C} : M * ⊕ { p l → j | ∃i, M * ij = p} jk C : M ∀i, M * ii = mand ∀i, j, M * ij = p W jk while b do {C} : M * (b) Rules for assigning matrices to commands

Figure 1 :

 1 Figure 1: Original non-deterministic ("Jones-Kristiansen") flow analysis rules

Example 3 .

 3 Consider loop X3{X2= X1 + X2}. The body of the loop command admits three different derivations, obtained by applying A to one of the three derivation of the expression X1 + X2, that we name π 0 , π 1 and π 2 :

Figure 2 :

 2 Figure 2: Deterministic improved flow analysis rules

 The code P [F] is finally obtained by computing the chunk F , and inserting it in place of the symbol [•] in P [•]. That P and P [F] have, at the end of their executions, the same values stored in the variables of P is straightforward in our imperative programming language. Example 15. The in-lining of Q in P from Example 13 would give the following chunck Q and context P [•], P [Q] being obtained by replacing in the latter [•] with the former:

2 0 1 6 23:

 6 20 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity 0 annihilates {0, m, w, p}

Identity element is 1 (1 f

 11 defined componentwise: (f g)(a) = (f (a)) × (g(a)), for all f , g in F and a ∈ A, is a strong semi-ring.Proof. (F , 0,) is a commutative monoid We first prove that (F , 0,) is a commutative monoid by showing that it is associative, commutative, and has 0 as identity.Associativity((f g) h)(a) = (f (a) + g(a)) + h(a) = f (a) + (g(a) + h(a)) (by assoc. of +) = (f (g h))(a) (by def. of) Commutativity (f g)(a) = f (a) + g(a) = g(a) + f (a) (by commutativity of +) = (g f)(a) (by def. of)Identity element is 0(0 f)(a) = 0(a) + f (a) = 0 + f (a) (by def. of 0) = f (a) (by identity prop of +) (F ,1,) is a monoid We now prove that (F , 1,) is a monoid by showing that it is associative and has 1 as identity. Associativity ((f g) h)(a) = (f (a) × g(a)) × h(a) = f (a) × (g(a) × h(a)) (by assoc. of ×) = (f (g h))(a) (by def. of))(a) = 1(a) × f (a) = 1 × f (a) (by def. of 1) = f (a) (by identity prop of ×) Distribution of multiplication over addition We conclude by proving that distributes over . Right Distribution (f (g h))(a) = f (a) × (g(a) + h(a)) = (f (a) × g(a)) + (f (a) × h(a)) (by right distribution of ×) = ((f g) (f h))(a) Left Distribution ((f g) h)(a) = (f (a) + g(a)) × h(a) = (f (a) × h(a)) + (g(a) × h(a)) (by left distribution of ×) = ((f h) (g h))(a)

Lemma 22 .

 22 For all set A and strong semi-ring S, M(A → S) ∼ = A → M(S).

 (a) (by assoc. of + and ×)

 3 (LTS), version: 20220131.1; CPU Cores: 2; CPU model: Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz; Kernel release: 5.11.0-1028-azure; total memory bytes: 7284846592; Python version: 3.10.2 (x64).

Aubert, Th. Rubiano, N. Rusch and Th. Seiller 23:13 4. insert

 the (new) first element of P i to the list L if it exists; 5. if L is non-empty, go back to step 3.

.1.

C.

0 1 6 23:26 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity g is a bijection

 We first prove that g

			1,n	
	 
	(f a) n,1 . . . (f a) n,n	
	Below, we write M			

f for g -1 (f). C V I T 2

2 0 1 6 23:28 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity If P is of length n > 1

 The we proceed by case on the structure of the command:If P is of the form if b then P1 else P2, then by induction we know for i ∈ {1, 2} there exists p i and M i of size p i × p i such that Pi : M i . If p 1 = p 2 , then letting Mj being the smaller matrix, it is easy to rewrite Pj's derivation to account for |p 1 -p 2 | additional variables, and as ⊕ is uniquely defined, we know that M 1 ⊕ M 2 results in a unique matrix of size max(p 1 , p 2). If P is of the form while b do P', this is immediate by induction hypothesis on P', considering that only W ∞ can be applied, and that this rule produces a unique matrix. If P is of the form loop X {P'}, this case is similar to the previous one, using L ∞ instead of W ∞ . If P is of the form P1;P2, this case is similar to the if case, with the possible need to resize one of the matrix obtained by induction, and using that ⊗ is uniquely defined.Theorem 10 (Adequacy). If P : M , then for all a ∈ A p , jk

Rusch and Th. Seiller 23:29 3. clock

 time taken by the full analysis (excluding saving result to file, which is otherwise default behavior), 4. number of function calls excluding builtin Python language calls, and 5. the result of the analysis.

1. program variable count 2. the lines of code in the source program (LOC column) C. Aubert, Th. Rubiano, N.

2 0 1 6 23:30 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity Program name Variables LOC Time (ms) Function calls Bound

	Basics					
	assign_expression	2	8	133	81614	
	assign_variable	2	9	115	81238	
	if	2	9	118	82046	
	if_else	2	7	118	82928	
	inline_variable	2	9	118	81979	
	while_1	2	7	117	82934	
	while_2	2	7	117	83964	
	while_if	3	9	122	91572	
	Implementation paper					
	example7	3	10	122	86898	
	example15_a	2+2	25	122	88763	
	example15_b	4	16	137	122016	
	Original paper					
	example3_1_a	3	10	110	85286	
	example3_1_b	3	10	120	87637	
	example3_1_c	3	11	121	89173	
	example3_1_d	2	12	116	80002	∞
	example3_2	3	12	118	83182	∞
	example3_4	5	18	134	108890	∞
	example5_1	2	10	116	81185	
	example7_10	3	10	119	86053	
	example7_11	4	11	139	119379	
	Infinite					
	exponent_1	4	16	127	99893	∞
	exponent_2	4	13	123	92846	∞
	infinite_2	2	6	143	128275	∞
	infinite_3	3	9	120	89880	∞
	infinite_4	5	9	3274	5924420	∞
	infinite_5	5	11	369	529231	∞
	infinite_6	4	14	1624	2836726	∞
	infinite_7	5	15	631	964189	∞
	infinite_8	6	23	880	1444782	∞
	Polynomial					
	notinfinite_2	2	4	119	86174	
	notinfinite_3	4	9	131	104826	
	notinfinite_4	5	11	169	168242	
	notinfinite_5	4	11	174	176179	
	notinfinite_6	4	16	195	215765	
	notinfinite_7	5	15	1161	1961806	
	notinfinite_8	6	22	1893	3172293	
	Other					
	dense	3	16	157	151428	
	dense_loop	3	17	269	353068	
	explosion	18	23	1296	2327071	
	gcd	2	12	114	84914	∞
	simplified_dense	2	9	118	85098	

Table 1 :

 1 Benchmark results produced by pymwp on C programs.

The implementation supports both coefficients from mwp and coefficients from {0, 1, 2} p → mwp, cf. e.g. a simple assignment example assign_expression.c.

This is a variant of Lemma 22 from Sect. A.3. While the latter lemma applies to algebras of square matrices, a similar result holds for rectangular matrices of a fixed size; the algebraic structure is no longer that of a semi-ring as rectangular matrices do not possess a proper multiplication, but the proof can be adapted to show the existence of an isomorphism of modules between the considered spaces.

Function calls that discard the output-procedures-could also be dealt with easily, but are vacuous in our effect-free, in particular pointer-free, language

Allowing ∞ coefficients would not change the method described nor its results, but it does not seem relevant to allow calling functions that are not polynomially bounded.C V I T 2 0 1

Where we use variables that are not parameters, following footnote 1, and where our recursive call does not terminate: we are focusing on growth rates and not on termination, and keep the example compact.

Our intuitions here come from the standard topological structure of spaces of infinite sequences, where such a monomial represents a "cylinder set", i.e. an element of the standard basis for open sets.

Funding This research is supported by the Th. Jefferson Fund of the Embassy of France in the United States and the FACE Foundation, and has benefited from the research meeting 21453 "Static Analyses of Program Flows: Types and Certificate for Complexity" in Schloss Dagstuhl. Th. Rubiano and Th. Seiller are supported by the Île-de-France region through the DIM RFSI project "CoHOp".

Code): https://github.com/statycc/pymwp Software (Documentation and Demo): https://statycc.github.io/pymwp

23:21

Identity element is 0 Let A = 0, then A ij = 0 for all i, j, and 0 is the identity element iff

We now prove that (M , ⊗) is a monoid by showing that it is associative and has 1 as identity.

23:22 mwp-Analysis Improvement and Implementation: Realizing Implicit Complexity

Distribution of multiplication over addition Right Distribution

For simplicity, we will write M as M(S) = (M (S), 0, 1, ⊕, ⊗).

A.3 Choices semi-ring

This subsection explains and details how functions into semi-ring coefficients can be used to construct semi-rings (Lemma 20), and the interplay between this construction and the matrix semi-ring from the previous subsection (Lemma 22) using the notion of semi-ring isomorphism (Def. 21).

Lemma 20 (Choices semi-ring). Given a strong semi-ring S = (S, 0, 1, +, ×) and a set A, the tuple F = (F , 0, 1, ,), with