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All battery technologies are known to suffer from kinetic 

problems linked to the solid-state diffusion of Li in 

intercalation electrodes, the conductivity of the electrolyte in 

some cases and the quality of interfaces. For Li-ion 

technology the latter effect is especially acute when 

conversion rather than intercalation electrodes are used. 

Nano-architectured electrodes are usually suggested to 

enhance kinetics, although their realization is cumbersome. 

To tackle this issue for the conversion electrode material 

Fe3O4,  we have used a two-step  electrode design 

consisting of the electrochemically assisted template growth 

of Cu nanorods onto a current collector followed by 

electrochemical plating of Fe3O4. Using such electrodes, we 

demonstrate a factor of six improvement in power density 

over planar electrodes while maintaining the same total 

discharge time. The capacity at the 8C rate was 80% of the 

total capacity and was sustained over 100 cycles. The origin 

of the large hysteresis between charge and discharge, 

intrinsic to conversion reactions, is discussed and 

approaches to reduce it are proposed. We hope that such 

findings will help pave the way for the use of conversion 

reaction electrodes in future-generation Li-ion batteries.

Rechargeable Li-ion batteries now dominate the portable
electronic market. These batteries are based on electrode
reactions using classical intercalation reactions for which

Li+ ions are inserted (or extracted) from an open host structure
with a concomitant addition (or removal) of electrons. Although
such batteries have gained commercial success, they fall short of
satisfying needs for high power and/or capacities for applications
such as power tools, electric vehicles or efficient use of renewable
energies. The limitations to capacity are mainly due to the inability
of the intrinsic capacity of such materials to reversibly incorporate
more than one Li per 3d metal. Recently, conversion reactions of
interstitial-free 3d metal oxide structures (CoO, CuO, NiO, and
so on) with structures unsuitable for intercalation chemistry have
nevertheless been shown to exhibit large, rechargeable capacities
in cells with lithium1,2. The specific capacities of these materials,
which are potential candidates for the negative electrode, can be
as high as 1,000 mA h g−1 (that is, about three times those of
commonly used graphitic carbons). This type of reaction now
seems to be common and has been reported for nitrides, sulphides,
fluorides and phosphides3–6. One drawback to date of conversion
reactions is a marked hysteresis in voltage between charge and
discharge. Therefore, we believe that to fully use these conversion
reactions in practical cells it is imperative to reduce this hysteresis
which currently limits both the energy efficiency and the power
capabilities of batteries using conversion reactions.

The use of nanomaterials is a popular path to improve the
rate capabilities of solid-state electrodes used in batteries because
of the small diffusion lengths. The nanomaterials must then be
elaborated into an electrode that maintains that diffusion length
as well as providing electrical and mechanical contact through
the strain imposed by the electrode reactions, accommodating
structural strains that favour a longer calendar life. Soft-chemistry
routes as well as template syntheses are among the most used
methods to prepare non-self-supported nanometric materials7–10.
Such approaches usually give nanosized materials (rods, wires,
spheres, and so on) with enhanced electrochemical properties
that need to be further processed into an electrode film. This
comes with the risk of negating the gains in diffusion length
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Figure 1 The electrochemical cell and the nanostructured current collector. a, Diagram of the electrochemical cell used for the template synthesis of the nanostructured
Cu current collector. b, Diagram of the nanostructured current collector expected to be obtained at the end of the electrolysis, before and after removal of the AAO membrane.
c, Top view of the Cu current collector obtained after electrolysis and membrane removal. d, Cross-sectional views of Cu-nanostructured current collector before (left) and
after (right) Fe3O4 deposits.

and electronic conductivity associated with the reduced active-
material particle size. There may also be new penalties arising
from the addition of supplementary interfaces (that is, the current
collector/active material and active material/active material). To
preserve the benefits of electrochemistry at the nanoscale, and
to achieve high rate capabilities, new electrode configurations
were pioneered by Martin and co-workers. They consist of the
direct elaboration of nano-architectured electrodes by growing a
nanostructured active insertion electrode material, either LiMn2O4

(refs 11,12), carbon13, V2O5 (refs 14,15), or more recently
LiFePO4 (ref. 16), onto a plane current collector thanks to a
membrane acting as a template. Although quite attractive, this
nano-architectured electrode design cannot be blindly applied to
elaborate ‘efficient’ conversion reaction-based electrodes of several
micrometres thick bearing in mind that kinetic limitations are more
acute for conversion reactions owing to the poor electronic/ionic
conductivity of the MxOy/M0/Li2O matrix. To promote better
current collector/active material surface contacts, we grow an
electrochemically active film onto a nano-architectured current
collector so that each particle of active material has its ‘own’ current
collector. Along that line, insertion electrodes made of TiS2 grown
onto gold microtubular electrodes, made through a template-
assisted synthesis, were successfully made17. However, that work
was somewhat cumbersome with a complex elaboration process
using several steps, and costly metals (Au).

Owing to the above obstacles, it seems that practical electrode
manufacture would require a simpler electrode elaboration process
compatible with the use of low-cost and high-performance
materials, grown on noble metal-free current collectors. Keeping
such needs in mind, we stuck to copper current collectors and chose
Fe3O4 (magnetite) as a prototype conversion electrode material.
Fe3O4 is an attractive material, being one of the cheapest common
oxides, with very low toxicity18, and it is an environmentally
friendly product (part of iron rust). It has been shown to act
as a rechargeable conversion electrode material that reacts with
eight Li per formula unit at a potential of 1.6 V versus Li+/Li0

(refs 19,20). Furthermore, this inverse spinel exhibits one of the
highest electronic conductivities (σ = 2×104 S m−1) of the simple
oxides, which is only an order of magnitude less than the minimum
metallic conductivity21.

Using the active material (Fe3O4) and current collector
metal (Cu), we developed a new, but simple, two-step electrode
fabrication process that differs from the previously reported
procedures enlisting either template-assisted22–26 or costly micro-
and photo-lithography techniques. Briefly, our process consists of
growing a 3D array of copper nanorods onto a copper foil by
electrodeposition through a porous anodic alumina membrane
that is subsequently dissolved followed by electrodeposition of
magnetite by cathodic reduction of a Fe(iii) chelate precursor in
alkaline solution. This process, discussed in greater detail below,
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Figure 2 XRD patterns and scanning electron micrographs of as-prepared copper nanopillar Fe3O4 assemblies. X-ray diffraction patterns of Fe3O4 electrodeposited
onto nano-architectured current collectors for several deposition times at 50 ◦C with an applied current density of −5 mA cm−2 (t1 = 120 s, t2 = 150 s, t3 = 180 s, t4 = 230 s
and t5 = 300 s). (*) denotes the Bragg peaks of the copper substrate. The corresponding scanning electron micrographs are shown below.

affords low-cost rust-based nano-architectured electrodes with
high power capabilities and sustained rechargeability.

Our nano-architectured Cu current collector was made by
direct electrodeposition of copper into the pores of an anodized
alumina oxide (AAO) membrane placed on top of a commercial
copper foil which was polished and cleaned in ethanol before use
(see the Methods section). To make high-quality electrodes we
found it necessary to master, for the reasons described below, three
experimental parameters: (i) the current distribution through the
cell, (ii) the electrolyte feed into the pore of the membrane and
(iii) the reaction kinetics limitations governed by the diffusion
mass transfer.

Bearing in mind that the current distribution through the cell is
the primary factor in controlling electrolysis, because it acts on the
deposition kinetics27 that can be limited by ohmic drops inside the
cell, and charge or mass transfers, we designed our cell as shown in
Fig. 1a to limit the ohmic drop across the cell, and thus to favour
homogeneous copper deposits. We used a large (2.01 cm2) and
thin (150 μm) cathode copper current-collector foil together with
a thick copper anode (500 μm) surrounded by 60-μm-thick Al2O3

(AAO) membranes with 200-nm pore sizes. A constant pressure

of 50 N cm−2 was applied to the stack by means of two stainless-
steel clamps, thus reducing our ohmic drop across the cell down
to 8 � cm−2.

Another key technological issue resulting from the introduction
of the AAO membrane deals with its electrolyte loading/feeding
and more specifically with means of ensuring a constant level
of electrolyte inside the porous membrane kept under pressure
between two metal foils. We found that this could not simply
be achieved by dropping the clamped cell stack into the plating
electrolyte. Therefore, the addition of a porous cellulose separator
(Fig. 1a,b) between the anode and the top of the AAO membrane
was found to be the most simple and elegant way to solve this key
issue, while having little effect on the ohmic drop across the cell. In
addition to preventing short circuits between anode and cathode,
the capillary forces provided by the porous separator help maintain
a continuous electrolyte flow from the bulk of the electrolyte to the
porous alumina membrane, avoiding large Cu(ii) concentration
gradients inside the pores of the membrane. Such Cu(ii) gradients
would lead to diffusion-controlled copper electroplating and the
possibility of dendritic or powdery Cu deposits or H2 evolution.
Finally, the separator accommodates the mechanical constraints of
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Figure 3 Potential-capacity profiles for the as-prepared copper-supported
Fe3O4 deposits galvanostatically cycled at a rate of 1 Li+/2 h versus Li.
(t1 = 120 s, t2 = 150 s, t3 = 180 s, t4 = 230 s and t5 = 300 s.) Note that the
corresponding capacities were normalized towards the geometrical surface area of
the commercial copper disk (S= 2 cm2).

the pressure applied to the stack that otherwise would lead to the
destruction of the brittle AAO membrane.

Electrodeposition of Cu was carried out under a pulsed
cathodic current, a technique applied for many years to the plating
of metals or alloys28 to avoid diffusion-limited deposition. We used
a repeated sequence of 300 ms consisting of two steps. Initially, a
low current density of −2 mA cm−2 is applied to the copper cathode
for 250 ms. For the next 50 ms, the current density is increased
to −30 mA cm−2. These current densities were independently
determined using a rotating-disk electrode. The pulse sequence was
repeated for durations ranging from 30 to 60 min, depending on the
type of Cu deposits desired. Herein we only discuss the results for a
30-min deposition time.

Figure 1c,d shows top and cross-section views of the Cu
nanopillar current collectors in AAO after membrane removal.
Obviously, the Cu surface is covered with uniformly distributed
copper rods with diameters of 200 nm, defined by the pore size of
the alumina membrane used, and of a uniform height of about
1,800 nm. Needless to say that by lowering the AAO pore size,
we achieved 50 nm rods with the same uniformity both in width
and height (not shown). Such a surprising uniformity distribution,
approaching that of photolithography, validates the electrochemical
approach described (that is, lower ohmic drop and homogeneous
electrolyte flow).

The second keystone of our electrode preparation process deals
with coating the Cu nanorod array with polycrystalline Fe3O4.
Again, electrochemical deposition emerges as a powerful technique
as it also allows the direct fabrication of a perfect junction between
metal and metal oxide, similar to a solder29. On the basis of
the work of Switzer and co-workers30, we recently succeeded in
making high rate electrodes by electrodeposition of polycrystalline
Fe3O4 films on planar copper foil31. The optimized parameters
(T = 50 ◦C, t = 40 s, cathodic current density j of −5 mA cm−2)
previously established for the deposition on flat copper substrates
failed to give good coverage on the Cu nanorod array owing to the
large surface-area difference. Keeping all of the other parameters
(T and j) constant, longer deposition times ranging from 120 to
300 s were applied to five pairs of Cu nanorod substrates. From
each pair, one of the nano-architectured current collectors was
electrochemically tested versus Li, and the other was analysed by
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Figure 4 Capacity retention. The capacity retention of a Fe3O4 film
electrodeposited onto nano-architectured copper substrate for 150 s and cycled first
at 1 Li+/4 h for 15 cycles followed by a higher rate value of 1 Li+/2 h.

atomic absorption spectroscopy to determine the quantity of Fe3O4

deposited, because we found that the electrodeposition process did
not exhibit 100% coulombic efficiency.

Figure 2 shows scanning electron micrographs and X-ray
diffraction patterns of as-prepared copper nanopillar–Fe3O4

assemblies for five different deposition times. With the exception
of the reflections owing to metallic copper, all Bragg peaks are
consistent with those of the Fe3O4 phase (ICDD card No. 19-0629)
with no preferred orientation. At the initial stage of the film growth,
small and shapeless polycrystalline Fe3O4 grains cover the entire
surface of the Cu nanorods. Then, with increasing electroplating
time, the round islands at the tip of each nanorod become much
more bulky, but no change is observed in the morphology of the
grains. Note, for deposition times lower than 230 s, the copper
nanorod was not fully covered with Fe3O4, whereas a coalescence
effect is observed for long deposition times (Fig. 2e). The resulting
Cu nanorod electrodes, differentiated by their degree of Fe3O4

coverage, were characterized for their performance as electrodes
in Li half cells which were cycled in a galvanostatic mode at
a rate of 1 Li+ per 2 h (Fig. 3). The potential versus capacity
traces show that all cells behave similarly, showing the well-known
signature of conversion reactions of transition-metal oxides1,2.
Systematically, the potential drops rapidly to reach a well-defined
plateau below 1 V corresponding to the full reduction process of
Fe3O4 into Fe0/Li2O mixture followed by additional capacity. On
cycling, the common hysteretic profile is maintained, but these
electrodes were found to show excellent capacity retention as shown
in Fig. 4 for a 150-s deposition-time electrode. Capacity retention
deteriorated faster for electrodes made using deposition times
greater than 300 s; this is apparently due to the coalescence of the
Fe3O4 particles, which blocks electrolyte accessibility to the space
between the rods.

The self-supported Fe3O4/Cu nano-architectured electrodes
were tested for their rate capability according to a protocol
commonly used in the battery community, referred to as ‘signature
curve’32. Signature curves were collected on charge, using a cut-
off potential of 2.5 V for cells stopped after their third discharge
to 0.02 V at low current rate (1 Li in 2 h) to determine the full
cell capacity (Q). Figure 5a shows the variation of the cell capacity
as a function of the applied rate expressed in terms of C, with
C being defined as the full use of the capacity (Q) in 1 h. For
comparison, similar measurements were made on Li half cells

Untitled-6   4 12/6/06, 11:53:27 am



Table 1 Current density values used to plot the power capability of the
nanostructured and planar Cu electrodes; values are given for the C rate
determination.

t1 (120 s) 0.314 mA cm−2 for C rate
t2 (150 s) 0.363 mA cm−2 for C rate
t3 (180 s) 0.366 mA cm−2 for C rate
t4 (230 s) 0.450 mA cm−2 for C rate
t5 (300 s) 0.655 mA cm−2 for C rate
40 s on planar Cu 0.0755 mA cm−2 for C rate

using, separately, (i) a plastic electrode film, made according to
the Bellcore technology33, containing 2 mg cm−2 of commercial
Fe3O4 powder (Aldrich) and (ii) a Fe3O4 film (referred to as
‘Fe3O4–Cu’ in Fig. 5a,b) grown on a planar Cu foil using the
same electrodeposition technique and a 40-s deposit time. Table 1
lists the applied current densities for a 1C rate with respective
nanostructured electrodes. Excellent rate capability is observed for
all of the nano-architectured electrodes compared with the Fe3O4

powder cell because they can recover 80% of their total capacity at
an 8C rate, that is, in less than 7 min. Furthermore, we found that
the cells retained full capacity for numerous cycles when cycling at
high rates, indicative of the chemical/mechanical robustness of the
electrodes. This was confirmed by a scanning electron microscopy
observation of an electrode, after being cycled 100 times at a real
C/2 rate (that is, 1 Li+/0.25 h), which revealed no peeling or other
morphology changes of either the Fe3O4 or Cu nanorods (Fig. 5a,
inset). Figure 5b stresses the benefit of having a nanostructured
current collector as opposed to a planar one in terms of power
density, because the current scales with the amount of Fe3O4

deposited allowing total discharge at comparable C rates. In short,
the nano-architectured electrode increases the power density by a
factor of six.

The significance of these results is a demonstration that
outstanding power densities from conversion reactions are possible
by using nano-architectured electrodes. Thus, they can be attractive
to intercalation electrodes in Li-ion batteries, affording capacity
gains (2.67 electrons per 3d-metal compared with ∼1 for
intercalation systems) without sacrificing power or cycle life. In
the specific case of Fe3O4, there are also specific advantages of
low cost and toxicity. However, excitement must still be tempered
despite the present efforts aimed towards improving the electrode
kinetics, because of the poor energy efficiency of conversion
reactions which is manifested by a large charge/discharge potential
difference (�E). This large polarization value is quite unusual
and highlights a fundamental difference between conversion and
insertion reactions, for which we do not have, to our knowledge,
insertion materials showing the coexistence of large �E at low
currents together with high rate capabilities. It is crucial to
understand and improve the energy efficiency if conversion-based
electrode materials are to go beyond a research curiosity.

To address energy efficiency, we first recall the factors affecting
electrode reaction rates and, therefore, the electrode overpotential
η. An overall electrode reaction basically enlists a sequence
of reacting steps comprising charge-transfer and mass-transfer
processes, adsorption, nucleation, and growth phenomena as well
as chemical events, with its rate limited by any of the above. From
a kinetic point of view, each step is characterized by a certain
overpotential denoted ηct for the charge-transfer overpotential,
ηmt for the mass-transfer overpotential, and so on34, so that
the total electrode potential can be considered as the sum of
each contribution (that is, η = ηct + ηmt + ···), and can be
experimentally determined from the following general relation
η = Emeas − Eeq, where Eeq is the equilibrium potential and Emeas
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Figure 5 Rate capability. a, Rate capability plots for the five Fe3O4 deposits on Cu
nanostructured electrodes, compared with (1) a Fe3O4 deposit denoted ‘Fe3O4–Cu’
grown on a planar Cu foil electrode using the same experimental conditions as the
nanostructured deposits (see ref. 31) and (2) a 1 cm2 plastic positive electrode film
based on commercial Fe3O4 powders. The electrode film was cast and processed
using a procedure reported previously33 from a mixture containing 60 wt% Fe3O4

powder, 22 wt% SP carbon black (MMM Carbon, Belgium), and 18 wt%
poly(vinylidene)fluoride co-hexafluoropropylene copolymer binder. The charge data
were obtained once the cell’s third discharge was completed, by carrying out what is
called a ‘signature curve’ test, according to ref. 32 (also see the Methods section).
Inset: scanning electron micrograph of a copper-supported Fe3O4 deposit cycled
galvanostatically 100 times at a high rate (that is, 1 Li+/0.3 h) showing the good
stability of the electrode although a very small amount of active material (lowest
deposition time, t1 = 120 s). b, For comparison, the normalized capacity (mA h cm−2

of geometrical surface area) is plotted versus rate for our optimized Fe3O4-based
Cu-nanostructured electrode and a Fe3O4-based Cu planar electrode made
according to ref. 31; that is, using the same Fe3O4 electrodeposition technique as
reported herein.

is the experimentally measured potential (against an ideal non-
polarizable electrode). At this stage, it is virtually impossible to
determine the physical origin of the measured η in our cells so
as to spot the rate-determining step. Galvanostatic-intermittent-
titration-technique-type measurements35, which combine transient
and steady-state measurements, are a common way to determine
the equilibrium potentials and obviously η values. However,
we find that very long relaxation periods are needed to reach
equilibrium, indicative of the existence of long-lasting chemical
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gradients, and therefore poor transport kinetics in our conversion
electrodes. This is consistent with the results of Novák on CuO
cells claiming that a 2-month period was necessary for a CuO
electrode to reach a steady equilibrium potential after applying a
current pulse36. Owing to the difficulties in reaching equilibrium,
we directly use the cell polarization values versus Li (that is,
the charge/discharge hysteresis) denoted �E and defined as
�E = Eanodic −Ecathodic = ηanodic −ηcathodic to bypass the knowledge of
Eeq and indirectly determine η, if we consider the Li+/Li0 system as
a non-polarizable electrode. By assuming, in a first approximation,
an equivalent overpotential amplitude both under positive and
negative currents for a fixed extent of reaction, η becomes equal
to (1/2)�E. Thus, the variations in �E as function of rate can
be studied.

To carry out this study, another Li half cell using a
self-supported Cu-nanorod Fe3O4 electrode as the positive
electrode was galvanostatically cycled at rates ranging from C/32
(1 Li+/4 h) to C/2 (1 Li+/0.25 h) and the polarization values were
extracted from the middle of the sloppy plateaux. Interestingly,
a conventional polarization plot (Iapplied or C versus �E) did not
fit well with a linear relation, disclaiming an ohmic behaviour of
the conversion reaction at a relatively low rate. However, to our
surprise, a quasi-linear correlation was noted (Fig. 6) when the
data was plotted according to a Tafel plot (ln Iapplied versus �E).
Therefore, the electrochemical system behaves as an impedance
with an activation step and not as a pure resistance. As the
charge transfer process is the rate-determining step for conversion
reactions as deduced by electrochemical impedance spectroscopy37,
which has revealed a Randless-like behaviour (that is, the presence
of one small semicircle plus a Warburg impedance on the Nyquist
plot), the Tafel-like behaviour is strongly indicative that the kinetic
barrier could be nested in an Arrhenius-type limiting kinetic.
Chemically speaking, as conversion reactions enlist three solid-
state components during the charge/discharge processes, it is easily
conceivable that the reaction is governed by mass transfer through
grain boundaries. In this respect, a comprehensive comparison
is easily made if we consider solid-state double decomposition

reactions, for which large activation energies are measured and
found to decrease with decreasing reagent particle size38. Thus,
although we have a high rate capacity electrode, the activation
barrier to trigger the oxidation and reduction reactions is still
high and quite similar to a conventional powder-based conversion
electrode. So, whatever the initial configuration of the conversion
electrode (powder-based or nano-architectured) the activation
barrier seems to be directly linked to the size and the nature of
the uniformly dispersed nanocomposite electrode produced in situ
after the first discharge.

Finally, this scenario is also consistent with previous reports
showing a decrease in �E when oxides and phosphides are used
instead of Co-based binary fluorides because the nanometric
matrix is chemically different when changing the anion (Li+ as well
as Mn+ or Xm− can be more mobile). Naively, temperature could
be thought of as the easiest way to trigger the energetic barrier,
and thus to realize conversion reactions with low polarization.
As previously mentioned3, to bypass this limitation inherent to
this peculiar heterogeneous electrochemical process, the second-
kind electrode concept, where only two solid phases are involved,
should be considered. Relevant examples are known to the field of
batteries, such as ZEBRA batteries, which use liquid salt (NaAlCl4)
and metallic nickel as the raw material39, or the cadmium-based
electrode which, for a long time, has commonly been used as
the negative electrode in Ni–Cd cells. In the former case, the half
reaction can be written as Cd(OH)2(s) + 2e− � Cd0 + 2 OH−

(aq)
,

which is quite similar to the conversion reactions based on oxides
except that the oxygen vehicles are soluble rather than solid species.

Advances in these directions may emerge with further
chemistry considerations aiming towards the identification/design
of the ‘magic’ soluble salt in non-aqueous media required when
using Li. Preliminary attempts towards such a direction are in
progress. Finally, we recognize that this is only one electrode and
a battery must have two electrodes. The high-rate LiMn0.5Ni0.5O2

positive material recently reported by Ceder and co-workers40

would provide a 2 V cell.

METHODS

FABRICATION OF COPPER NANOPILLAR ARRAYS

Arrays of highly perpendicular copper nanopillars on copper disk substrate
(2 cm2, 150-μm thick, 99.9% Cu, Goodfellow) were fabricated by cathodic
electrodeposition from an electrolytic bath consisting of CuSO4 ·5H2O
100 g L−1, (NH4)2SO4 (Acros Organics) 20 g L−1 and diethyl-tri-amine (DETA,
Acros Organics) 80 mL L−1, inside the pores of an alumina oxide membrane
(AAO, Whatman, Anodisc 47, reference 6809 5022), with an Arbin BT2000
potentiostat/galvanostat. The membrane was 60-μm thick, with a maximum
porosity between 50 and 65%, a diameter of about 47 mm, and a pore density
of 1010 cm−2. Before using the cathode foil, it was mechanically polished, first
with SiC paper then with 6, 3, 1 and 0.25-μm alumina slurry. After being rinsed
with deionized water and ultrasonically cleaned in ethanol, the copper cathode
was assembled in front of a copper anode. The outer parts of the copper anode
and cathode were protected from dissolution or deposition by isolating
adhesive film. The cellulose paper separator (Whatman, reference 1441-055)
was 215-μm thick, with a weight of 85 m2 g−1 and a mean porous diameter of
20 μm. The resulting two-electrode stack was kept under a constant pressure by
using two stainless-steel clamps during the deposition process.

Electrochemical Cu deposit was achieved using a pulsed cathodic current
technique. This technique differs from the standard constant current deposit in
that the current profile changes with time. The pulsed current deposition
technique is generally used to limit the active-species depreciation in
complex-geometry electrochemical cells. Here, a two-step profile is used:

Step 1: a cathodic current pulse of −2 mA cm−2 for 250 ms
Step 2: a cathodic current pulse of −30 mA cm−2 for 50 ms.
After deposition, the two-electrode stack is removed from the solution

under current, and the cell is dismantled. The cathode is soaked in hot alkaline
solution (pH = 14, 80 ◦C) to remove the AAO membrane, then in an acidic
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copper sulphate bath (pH = 1, 25 ◦C) to dissolve the surface copper oxide.
Current collectors are then stored into a glove box under a 6.0 argon
atmosphere preventing them from further oxidation.

Cu-NANOPILLARS-Fe3O4 ASSEMBLY AND CHARACTERIZATION

Copper nanopillars were covered with Fe3O4 by means of an electrodeposition
process from an alkaline aqueous solution (pH = 12.3) consisting of 2 M
NaOH, 0.09 M Fe2(SO4)3 ·5H2O (Alfa Aesar) complexed with 0.1 M
tri-ethanol-amine (Acros Organics)30,31. The magnetite coating was produced
under stirring at a constant current density (j = −5 mA cm−2) using a
three-electrode cell set-up maintained at a fixed temperature of 50 ◦C. Copper
substrate containing copper nanopillars acted as the working electrode, whereas
a coil of platinum wire served as the auxiliary electrode. All potentials were
quoted against an HgO/Hg0 reference electrode. The electrodeposits were
carried out for several deposition times using a VMP Potentiostat/Galvanostat
(Princeton Applied Research) operating in a galvanostatic mode. All electrode
assemblies were systematically examined by X-ray diffraction (Inel CPS 120,
Cr Kα) and scanning electron microscopy (QUANTA 200 F). The amount of
deposited Fe3O4 was determined by a preliminary study using the atomic
absorption spectroscopy (Perkin Elmer Analyst 300, lFe = 248.3 nm) as the
analytical tool.

ELECTROCHEMICAL BEHAVIOUR WITH LITHIUM

Coin-type cells were assembled in an argon-filled dry box using the copper
nanopillar-Fe3O4 assembly as the positive electrode and the Li metal as the
negative electrode. Both positive and negative electrodes were electronically
separated by a Whatman GF/D borosilicate glass-fibre sheet saturated with 1 M
LiPF6 electrolyte solution (in EC:DMC/1:1 in mass ratio) purchased from
Merck. Unless it is stated otherwise, the cells were first galvanostatically cycled
between 2.5 and 0.02 V for two-and-a-half cycles at a rate of 1 electron
exchanged per Fe3O4 formula unit in 2 h (1 Li+/2 h). From the as-obtained
electrochemical data, the real full delivered capacity of the positive electrode
(denoted Q, mA h) was calculated for the entire examined cell once the cell’s
third discharge, carried out in galvanostatic mode at low current density
(1 Li+/2 h rate), was complete. It is then possible to determine the rate
capability aptitude of our copper-supported Fe3O4 deposits using a ‘signature
curve’32 according to the following conditions.

As an example, for the cell based on our t2 samples, we used a charge
current of j1 = 2.904 mA cm−2 (8C) to a charge cut-off voltage of 2.5 V versus
Li+/Li. When the battery reaches 2.5 V, the cell has delivered the capacity Qp,1

(with Qp,1 = j1 × tp,1) and it is automatically placed in open-circuit potential
for 300 s (j = 0). Afterwards, the same sequence is repeated seven more times
with the charging current always being reduced by a factor 2 during subsequent
steps (that is, j2 = j1/2 and so on). The capacity versus rate curve is then
obtained by cumulating the measured capacity for each step (that is, Qp,1, j1;
Qp,1 +Qp,2, j2; Qp,1 +Qp,2 +Qp,3, j3) that represents the total cell capacity
delivered at current density values j1, j2 and j3, respectively.
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