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1 Introduction

In this work, we consider multi-stage adaptive robust optimization (MSARO) problems
formalized as :

min  max Z ¢z (€ + hl s(€Y) (1)
£ eE te[T)

s.t. Atst(Et) + BtSt_l(ﬁtil) + Ct$t(£t) < bt(ft) t e [T], Et € Et (2)
(s:(€"), :(€")) € Xu(€") te(T), &e= (3)

where T denotes the number of decision stages, ¢, hy, Az, By, Cy, by are of conforming dimen-
sions, and uncertain parameters are represented by {&,}_; with support =. We denote by
&' = (&,,...,&,) the history of realizations at stage ¢, where &, is the vector of uncertain
parameters at stage t with elements & (with & = 1). Here, 24(£") and s;(£") are the decision
variables, i.e., nonanticipative policies that only depend on the history of uncertain parame-
ters. Variables (s:(&€"), z:(£")) are restricted to be in the set X;(&") for ¢ € [T, which includes
integrality restrictions, if any. Throughout, we use [a] := {1,2,...,a} for a € Z,. The objec-
tive function (1) minimizes the worst outcome. Constraints (2) and (3) are state and recourse
constraints, respectively : while the former link different stages, the latter are stage-wise restric-
tions. In a similar manner, we will call variables s;(£") and 4(£"), state and recourse variables,
respectively. When the set X;(&") for t € [T, &' € Z* does not have integrality restrictions, we
will talk of continuous recourse, otherwise we will talk of integer recourse.

2 Literature review

Although, exact solution methods for (MSARO) with continuous recourse have been recently
proposed under the assumption that the uncertainty set is stage-wise rectangular, (MSARO)
remains extremely difficult to solve, especially with integer recourse. To alleviate this diffi-
culty, approximations restricting the form of x;(£¢") have been proposed. These are known in
the literature as “decision rules”. Ben-Tal et al. ([1]) propose an affine decision rule where
continuous recourse decisions are expressed as affine functions of uncertain parameters where
the parameters of this function are to be optimized. More elaborate decision rule schemes such
as deflected and segregated affine ([3]), extended affine ([4]), and piecewise affine ([6]) rules
were also proposed. Kuhn et al. ([7]) applied linear decision rules in both the primal and dual
spaces to evaluate the optimality gap resulting from using decision rule approximations. Re-
cently, two-stage ([2]) and Lagrangian dual decision rules ([5]), are introduced for multistage
stochastic programming with mixed-integer recourse and shown to be numerically promising.



3 Methodological development and algorithms

The purpose of this work is to adapt these new decision rules to (MSARO) and assess their
quality with respect to existing decision rules. To this end, let s;(£) C R% be characterized
by a linear decision rule, i.e., s;(¢") = A& such that Ay C R%*% where ¢; = S°%,_; dim(&}).
We then obtain :

min max Z cf o4(€") + b A& (4)
¢he= te[T)

s.t. Ctxt(gt) S bt(gt) — (AtAtgt + BtAt_lstil) te [T], st S Et (5)

(A€’ (1)) € Xi(€) te[l], &€= (6)

Note that the decision rule is only applied to the state variables whereas recourse variables
continue to remain fully adjustable to the uncertain parameter. Problem (4)-(6) is equivalent
to a two-stage robust optimization problem. Indeed, since the temporal dependency between
stages is removed thanks to the decision rule, all decisions z;(&") can be taken simultaneously.
The resulting problem can be solved using the constraint-and-column generation algorithm
in the continuous recourse case, and can be approximated using K —adaptability in the in-
teger recourse case. In a similar manner, linear decisions rules can also be applied to a dual
of (MSARO), obtained by applying the Lagrangian relaxation to its non-anticipative refor-
mulation, and imposing decision rules on the Lagrangian multipliers. The resulting problem
provides an upper bound on the optimal value of (MSARQO) for any probability distribution
that is assigned over =. In order to obtain the best upper bound possible we optimize over the
assigned probability distribution as well. These decision rules allow us to propose primal and
dual bounds on the optimal value of (MSARO), and are well suited to handle non-linearities
including integrality restrictions on x;(&").

4 Conclusions et perspectives

In this work, we adapt the recent decision rules introduced in the stochastic programming
literature to robust optimization both from the primal and the dual perspective. The resulting
problems are challenging and require advanced techniques in their solution. Our methodology
is illustrated with preliminary results on production planning and transportation problems.
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