Maintenance optimization in complex systems using prognostic information - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Maintenance optimization in complex systems using prognostic information

Junkai He
  • Fonction : Auteur
  • PersonId : 1129191
Selma Khebbache
  • Fonction : Auteur
  • PersonId : 1002083
Makhlouf Hadji

Résumé

In this research, we propose effective optimization approaches for multi-component complex systems to support preventive maintenance decision-making. The considered complex system consists of several operational stages, and each stage contains multiple redundant components. To implement predictive maintenance, we use component-level Remaining Useful Life information to achieve system-level availability in generic complex systems. The aim of this work is to coordinate component redundancy and maintenance in different stages to keep the main industry producing continuously such that client demands are satisfied as much as possible in the planning horizon. For the problem, we formulate a mixed-integer linear programming model to minimize the overall cost. Simulation results demonstrate the effectiveness of the proposed approach for providing maintenance decision support.
Fichier principal
Vignette du fichier
ROADEF_2022.pdf (2.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03596187 , version 1 (03-03-2022)

Identifiants

  • HAL Id : hal-03596187 , version 1

Citer

Junkai He, Selma Khebbache, Makhlouf Hadji, Miguel F. Anjos. Maintenance optimization in complex systems using prognostic information. 23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne - Lyon, France. ⟨hal-03596187⟩
107 Consultations
33 Téléchargements

Partager

More