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1 Introduction
Let D = (V, A) be a digraph. A kernel K is a subset of vertices that is independent (i.e., all

pairs of distinct vertices of K are non-adjacent) and such that, for every vertex v /∈ K, there exists
w ∈ K with (v, w) ∈ A. Kernels were introduced in 1947 by von Neumann and Morgenstern [9]. It
is now a central notion in graph theory and has important applications in relations with colorings,
perfect graphs, game theory and economics, logic, etc. Chvátal proved that deciding whether a
digraph has a kernel is NP-complete [2] and the problem is equally hard for planar digraphs with
bounded degree [4].

Chvátal and Lovász [1] introduced quasi-kernels in 1974. A quasi-kernel in a digraph is a subset
Q of vertices that is independent and such that every vertex of the digraph can reach some vertex
in Q via a directed path of length at most two. In particular, any kernel is a quasi-kernel. Yet,
unlike what happens for kernels, every digraph has a quasi-kernel. Chvátal and Lovász provided a
proof of this fact, which can be turned into an easy polynomial-time algorithm.
In 1976, Erdős and Székely [3] conjectured that every sink-free digraph D = (V, A) has a

quasi-kernel of size at most |V |/2. This question is known as the small quasi-kernel conjecture. So
far, this conjecture is only confirmed for narrow classes of digraphs. In 2008, Heard and Huang [6]
showed that every digraph D has two disjoint quasi-kernels if D is a sink-free tournament or a
transitive digraph. In particular those graphs respect the small quasi-kernel conjecture. Recently,
Kostochka et al. [7] renewed the interest in the small quasi-kernel conjecture and proved that the
conjecture holds for orientations of 4-colorable graphs (in particular, for planar graphs).

2 Disjoint quasi-kernels
Towards proving the small quasi-kernel conjecture, Gutin et al. conjectured in 2001 that

every sink-free digraph has two disjoint quasi-kernels, which would imply the small quasi-kernel
conjecture. The same authors constructed a nice counterexample with 14 vertices [5] in 2004.
We show that, not only sink-free digraphs occasionally fail to contain two disjoint quasi-kernels,
but it is NP-complete to distinguish those that do from those that do not (our proof uses the
counterexample constructed by Gutin et al.).

Theorem 2.1. Deciding if a digraph has two disjoint quasi-kernels is NP-complete, even for
digraphs with maximum out-degree six.

Whereas the small quasi-kernel conjecture is true for sink-free planar digraphs [7], no sink-free
planar digraph without two disjoint quasi-kernels is known so far. The sink-free digraph constructed



in Theorem 2.1 is not planar as it uses the counterexample constructed by Gutin et al. [5] that
contains an orientation of K7. This raises the question of deciding whether every sink-free planar
digraph has two disjoint quasi-kernels. Although we have not been able to answer to this question,
we show that it is NP-complete to distinguish those sink-free planar digraphs that have three
disjoint quasi-kernels from those that do not.
Proposition 2.2. Deciding if a digraph has three disjoint quasi-kernels is NP-complete, even for
bounded degree planar digraphs.

3 Minimum size quasi-kernels
In this work we also initiate the study of the problem of finding the minimum size of a

quasi-kernel which we call MinQK (and we let QK stand for the related decision problem).
Proposition 3.1. MinQK is polynomial-time solvable for orientations of trees.

The next proposition shows that there is not so much room for extending Proposition 3.1.
Proposition 3.2. QK is NP-complete, even for acyclic orientations of cubic graphs.

Assuming FPT 6= W[2], we show that one cannot confine the seemingly inevitable combinatorial
explosion of computational difficulty to an additive function of the size of the quasi-kernel.
Proposition 3.3. QK is W[2]-complete for parameter the size of the quasi-kernel, even for acyclic
orientations of bipartite graphs.

Combining the inapproximability result for Set Cover by Raz and Safra [8] with the proof of
Proposition 3.3, we obtain the following result.
Proposition 3.4. MinQK cannot be approximated in polynomial time within a factor of c ln(|V |)
for some constant c unless P = NP, even for acyclic orientations of bipartite graphs.

As for non-approximability, we have the following result.
Proposition 3.5. MinQK is APX-complete for acyclic digraphs with maximum in-degree three.
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