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Entropy and freezing in Gaussian models

A new definition of the freezing phenomenon is given in relation with the behaviour of the entropy of Gibbs measures at low temperatures. In particular, for uncorrelated and log-correlated Gaussian models, we show that freezing arises when the entropy of the corresponding Gibbs measures vanishes.

Introduction

The term freezing has been initially introduced in order to characterize the behaviour of the free energy at low temperatures and later on to describe the fact that low temperature measures are dominated by the extreme values of the random fields.

The freezing transition has been discussed forty years ago in the case of a disordered model defined by uncorrelated Gaussian random variables (REM) [START_REF] Derrida | Random-energy model: an exactly solvable model of disordered systems[END_REF] and then studied in a model with logarithmic correlations, namely the directed polymer on a disordered Caley tree in [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF]. The first rigorous descriptions of freezing transition and the related random measures are given in [START_REF] Collet | Large deviations for multiplicative chaos[END_REF][START_REF] Koukiou | The mean-field theory of directed polymers in random media and spin glass models[END_REF] for the multiplicative chaos by making use of the thermodynamic formalism.

The freezing phenomenon plays an important role in the analysis of random models and during the last decades has attracted increasing interest from the physics and, more recently, from the mathematics community. The interested reader can find discussions on the implication of freezing in the context of spin-glasses [START_REF] Koukiou | Freezing and low temperature entropy: the case of mean-field Gaussian model[END_REF], random measures on trees [START_REF] Koukiou | The mean-field theory of directed polymers in random media and spin glass models[END_REF], multiplicative chaos [START_REF] Collet | Large deviations for multiplicative chaos[END_REF], spectra of random measures, random energy landscapes and multifractality [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in liouville and sinh-gordon models[END_REF][START_REF] Fyodorov | Multifractality and freezing phenomena in random energy landscapes: An introduction[END_REF], branching Brownian motion, log-correlated Gaussian fields [START_REF] Webb | Exact asymptotics of the freezing transition of a logarithmically correlated random energy model[END_REF][START_REF] Fyodorov | Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential[END_REF], and properties of the Laplace functionals of limiting extremal processes [START_REF] Subag | Freezing and decorated Poisson point processes[END_REF][START_REF] Madaule | Glassy phase and freezing of log-correlated Gaussian potentials[END_REF]. It is also conjectured, and in some cases proved, that freezing is a generic property, occurring in a wide class of log-correlated Gaussian fields.

In [START_REF] Koukiou | Freezing and low temperature entropy: the case of mean-field Gaussian model[END_REF] we have introduced a new definition of freezing in relation to the behaviour of the entropy of the associated Gibbs measure at low temperatures and we have provided a detailed analysis in the case of mean-field Gaussian models.

In the following, we report on a unified description of the relationship between freezing and entropy for some widely studied uncorrelated and log-correlated Gaussian models. Namely, we show that the random system freezes when the specific entropy of the Gibbs measure vanishes. The main interest of this relationship is that it is simple enough and hopefully provides a new understanding of the freezing transition.

The family of models we shall consider can be described in a unifying manner in terms of the generic Gaussian model (GGM) defined in the next section. In section 3 we present the ideas of the proof.

A generic Gaussian model (GGM)

In order to have an unified description of the models to be considered, we first introduce a generic Gaussian model (GGM) as follows. Let A be the binary alphabet A = {a, b}. With each word (or configuration) α ∈ A n of length n, we associate the random function H n (α, ω). The explicit form of H n (α, ω) depends on the the specific model. Namely, using the one-to one correspondance between words and paths on the binary tree (figure 1), one can define the various models used here.

The random energy model (REM): is defined in terms of a family of i.i.d. centered

Gaussian random "energies" (J α ) α∈A n , indexed by the nodes of the tree, and whose function

H n (α, ω) reads H n (α, ω) = α∈A n J α (ω);
The multiplicative chaos (MC) and random polymers on trees (RP) models: are defined in terms of a family of i.i.d. Gaussian random weights on the edges, extended to random weights on the whole paths (i.e. for every α = α 1 • • • α n ∈ A n , the random variables on the edges induce a family of -dependent -random variables on the paths by

J α = n-1 i =1 J α i ,α i +1
) and with Hamiltonian

H n (α, ω) = α∈A n J α (ω);
The Sherrington-Kirkpatrick (SK) spin-glass model:

H n (α, ω) = 1 n -1 1≤i < j ≤n J i j (ω)σ(α i )σ(α j ),
where (σ(a) = -1, σ(b) = 1) and (J i j ) i , j =1,...,n is a family of i.i.d. centered Gaussian random interactions, indexed by pairs of levels as it is illustrated in the figure 2. 
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Figure 2: The relevant configuration space and interactions for the SK model.

At the inverse temperature β = 1 T > 0, the disorder-dependent partition function is given by

Z n (β, ω) = α e -βH n (α,ω) e βn 2 =: α W β n (α, ω),
and, for fixed randomness, the corresponding Gibbs measure is

µ n,β,ω (α) = W β n (α, ω) Z n (β, ω) .
We recall also the definition of the entropy of the measure µ n,β (σ):

S(µ n,β ) = - σ µ n,β (σ) log µ n,β (σ).
Moreover, if E J denotes the expectation with respect to the randomness J , the real functions

g n (β) = 1 n E J log Z n (β, ω)
and

g n (β) = 1 n log E J Z n (β, ω),
define the quenched average of the specific free energy and the annealed specific free energy respectively. The corresponding thermodynamic limits are given by

g ∞ (β) = lim n→∞ 1 n log E J σ W n (β) g ∞ (β) = lim n→∞ 1 n E J log σ W n (β).
(For technical reasons we have replaced the Boltzmann factors e -βH n (α,ω) by the weights W β n (α, ω). The difference of g ∞ (β) from the usually defined free energy limit f ∞ (β) is simply given by the factor β/2.)

The thermodynamics and the phase transitions of the previous models have been extensively studied during the last decades at different levels of rigor.

For all models, the critical temperature β c satisfies

β c = sup{β : g ∞ (β) = g ∞ (β)},
and we have that β c ≥ 1.

We define moreover the freezing temperature β f , by

β f = min{β ≥ β c : s(µ β ) = lim n→∞ 1 n S(µ n,β ) = 0}.
Our main result is summarized in the following The formulation of the above statement assumes that the limit lim n→∞ 1 n S(µ n,β * ) exists and is independent of J . This follows from general principles and can immediately be obtained from the existence and self-averaging of the low temperature specific free energy.

Corollary: For all models described by the GGM we have

β c ≥ 1, and, β f ∈ [β c , β * ],
where β * = 4 log 2 = 2.77258 • • • Thus, the value of β * gives the maximum inverse temperature of positive entropy for the GGM.

Remark: All models described by the GGM are frozen for all β ≥ β * . In the particular case of the REM, random polymers and multiplicative chaos one has that β c = β f and s(µ β c ) = 0 a.s. For the SK model, we have β c = 1 and it is an easy calculation to verify that s(µ β c ) > 0. In [START_REF] Koukiou | Freezing and low temperature entropy: the case of mean-field Gaussian model[END_REF], we have proved that the freezing transition occurs for β > β c .

Outline of the proof

In this section we shall outline the main steps of the proof following the detailed version given in [START_REF] Koukiou | Freezing and low temperature entropy: the case of mean-field Gaussian model[END_REF] in the case of mean-field models. The main idea comes from the following remarks:

First, for all β > 0, the quenched limit g ∞ (β) of the GGM exists and is a convex function of β.

Let moreover β = β 1 ≡ 1. From the high temperature results, we have that, almost surely, g ∞ (β) = g ∞ (β). Hence, ∀β > β c , by the concavity of the logarithm, we get that g ∞ (β) < g ∞ (β).

Second, one can easily verify that the normalisation of the Boltzmann factors leads to the following equation

g ∞ (β 1 ) = g ∞ (β 1 ) = s(µ β 1 ).
The particular value of the β * is given by the intersection of the graph of g ∞ (β) and the line β β 1 g ∞ (β 1 ). In the figure 3 we can see that the two lines intersect at β 1 ≡ 1 and

β * = 4 log 2 = 2.77258 • • • . An easy calculation gives that g ∞ (β * ) = β * β 1 g ∞ (β 1 ).
The previous relationship between the two limits g ∞ (β * ) and g ∞ (β 1 ) suggests an underlying connection between the corresponding Gibbs measures at β * and β 1 . We have shown that this connection is indeed provided by the relative entropy of µ β * w.r.t. µ β 1 . Namely, we have proved that for all β ≥ β 1 , the limit g ∞ (β) is given by g ∞ (β) = g ∞ (β 1 ) + s(µ β 1 |µ β ), where s(µ β 1 |µ β * ) is the relative entropy of the measure µ β 1 w.r.t. the measure µ β * (represented by the segment CC , in the figure 3), given by s(µ β 1 |µ β * ) = ( β * β 1 -1)g ∞ (β 1 ).

In [START_REF] Koukiou | Freezing and low temperature entropy: the case of mean-field Gaussian model[END_REF] we give the details of the calculation of the relative entropies s(µ β 1 |µ β * ) and s(µ β * |µ β 1 ) and show that, almost surely, these values are only consistent with s(µ β * ) = 0, and, Z n (β * ) exp(nβ * (s(µ β 1 )s(µ β * |µ β 1 ))). 
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Theorem: 1 n

 1 Almost surely, the freezing temperature for the Generic Gaussian Model (GGM) belongs to the interval [β c , β * ] where β * = 4 log 4 = 2.77258 • • • . Moreover, the specific entropy s(µ β * ) of the Gibbs measure vanishes. s(µ β * ) := lim n→∞ S(µ n,β * ) = -lim n→∞ 1 n σ µ n,β * (σ) log µ n,β * (σ) = 0.
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 3 Figure 3: Graphically determining the value β * .
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