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Abstract Chaotic vibrations may appear in nonlinear energy harvest-
ing systems, which can be problematic when using the recovered power,
as it may require an extra expenditure of energy to rectify the voltage
signal or reduce the harvesting process efficiency when charging the
battery. Both cases can derail the energy harvester’s functionality. An
alternative in this situation is to explore chaos control to stabilize the
system dynamics so that the recovered voltage signal is regular and
more suitable for use in the applications of interest. This paper ad-
dress this problem employing an extended delayed feedback method
that combines a displacement actuator and a digital controller to im-
plement the control mechanism. The control strategy is mathematically
formulated and tested in a bistable energy harvesting system that of-
ten operates in a chaotic regime. The controller shows itself capable of
stabilizing the chaotic dynamics at a very low energetic cost.

1 Introduction

Energy harvesting is a process of converting energy available for free in the environ-
ment into electrical power for use in small electronic components, that may be used in
wireless sensors, bio-implants, etc. This technology is capable of obtaining electrical
energy from kinetic, thermal, solar energy sources, etc [1, 2], which enables it as a
potential replacement for batteries, which are intrinsically limited (requires periodic
replacement or recharging) and polluting (toxic and very short life).

Vibration energy harvesters with linear structural dynamics present an important
limitation since if the excitation frequency deviates slightly from the fundamental
resonance frequency of the energy harvester, the electrical power output is drastically
reduced. This limitation can be avoided through the use of geometric nonlinearities,
that induce high-amplitude oscillations even far from a resonance frequency, increasing
in this way the frequency band where it is possible to recover“large”amounts of power
[3, 4, 5, 6, 7, 8, 9, 10].
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Figure 1. Schematic representation of a typical piezoelectric vibration bistable energy har-
vester: (a) uncontrolled system, and (b) system with a digital controller mechanism attached.

A typical prototype for a vibration nonlinear energy harvester that explores this
idea is illustrated in Figure 1(a), it is a bistable electromechanical oscillator, capable of
vibrating at high amplitudes, which can therefore recover energy in a wide frequency
band. This system uses piezoelectric plates bonded to a long cantilever beam to
harvest energy from the ambient vibration. In this mechanism the inertial excitation
from the moving base imposes a deflection in the beam which, consequently, generates
an electric tension in the piezoelectric material [11, 12, 13, 14, 15, 16]. Applications
of this kind of technology can be seen in the the wings of a UAV [17, 18] and for jet
engine monitoring [19], etc.

Although nonlinearity may be beneficial for this system, as it significantly expands
the frequency range where the system can operate, it can also bring an inconvenience
if it starts to vibrate in a chaotic regime. In this case, the rectification process of the
voltage signal generated in the piezoelectric transducer can demand a considerable
part of the available energy or the charging time of the storage battery can be very
long, situations that can make the practical use of the harvester unfeasible [20].

A very appealing alternative in this scenario is to exploit chaos control techniques
[21] to stabilize chaotic dynamics with minimal energy expenditure, so that the en-
ergy harvesting device does not lose its functionality. Some works in this direction
have already been reported in recent literature, exploring the classical OGY discrete
technique [22, 23], as well as a continuous extended feedback approach [24]. Despite
showing that chaos control can be promising in energy harvesting, none of these
works explore a digital architecture for chaos control, which is indispensable for these
techniques to be applied in real-life energy harvesting systems.

Seeking to fill this gap in the literature, and pave the way for an application of
chaos control in a real-life energy harvesting system, this paper combines a digital
controller with a displacement-based actuator to obtain an Extended Time-Delayed
Feedback (ETDF) chaos control system suitable for laboratory implementations of en-
ergy harvesters under harmonic excitation. The underlying mathematical formulation
is presented, and the new controller is tested on a bistable system.

2 Nonlinear dynamical system

The chaotic dynamics of the nonlinear bistable energy harvesting system shown in
Figure 1(a) can be controlled with an aid of a digital control system that performs the
actuation on the system through a displacement transduction mechanism, as shown in
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the schematic representation in Figure 1(b). The dynamics of this controlled system
can be modeled by the following dimensionless system of equations (see [25] for details)

ẍ+ 2 ξ ẋ− 1

2
x
(

1− x2
)
− χ v = −u(t), (1)

v̇ + λ v + κ ẋ = 0, (2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0, (3)

where x(t) is the transverse displacement of the beam tip; v(t) is the voltage across
the resistor; u(t) is the external excitation; t denotes the time; ξ is the damping factor;
χ the electromechanical coupling coefficient in the mechanical equation; λ the inverse
of the electrical characteristic time; κ the electromechanical coupling coefficient in
the electrical equation; x0 the beam tip initial displacement; ẋ0 the beam tip initial
velocity; and v0 is the initial voltage across the circuit. When the system is not
controlled, as in Figure 1(a), the external excitation takes the form

u(t) = −f cos (Ωt), (4)

where f is the amplitude of the inertial excitation imposed by the moving base, and
Ω is the underlying excitation frequency. On the other hand, when the controller is
activated, such as in Figure 1(b), the external forcing takes the format

u(t) = −f cos (Ωt) + uc(t), (5)

where uc(t) is the control force imposed by the actuator. Remember that all these
quantities are in dimensionless format.

3 Digital controller for chaos

The control system employed in this work, which is based on a displacement transduc-
tion mechanism, is schematically illustrated through block diagrams in Figure 2. The
objective of this controller is to avoid chaotic responses, when the system is subject to
harmonic excitation, by imposing a controlled displacement b(t) which is calculated
by the digital controller using the voltage v(t) as a feedback signal since this is the
easiest state to be observed.
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converter
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clock
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Figure 2. Digital controller used to control the chaotic dynamics of the piezoelectric vibra-
tion bistable energy harvesting system.

Note in Figure 2 that the A/D converter sample the tension with a sampling
period Ts, and the D/A converter uses a Zero Order Holder (ZOH). The idea is to
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implement a control law using a digital version of the ETDF method [26, 27, 28], for
which the control law is defined as

b(t) = K
(
(1−Q) sτ (t)− v(t)

)
, (6)

where

sτ (t) =

∞∑
j=1

Qj−1 v (t− j τ) . (7)

This control law can be discretized as

bk = K
[
(1−Q) sk − vk

]
, (8)

sk =

∞∑
j=1

Qj−1 vk−j , (9)

so that, after applying the Z-transform, the summation becomes

Sτ (z) = zk V (z)

+∞∑
j=1

Qj−1 z−j (10)

= zk V (z)
z−1

1−Qz−1
,

and, consequently, the digital version of the control law is written as

B(z) zk = K zk V (z)

(
(1−Q)

z−1

1−Qz−1
− 1

)
. (11)

Therefore, the ETDF can be digitally implemented using the following Transfer
Function (TF)

B(z) = −K z − 1

z −Q
, (12)

where K and Q are tuning parameters.
The pole of this TF is located at zp = Q and the zero is located at zo = 1. It

can be concluded that it is necessary that |Q| < 1 to guarantee the stability of the
controller, and the consequence is that the digital implementation of the ETDF is
a lead compensator, since zo > zp. Therefore, this well-established compensator for
linear control systems is proposed here to control the chaos.

At this point, it is worth mentioning that the reference [24] uses a Taylor expan-
sion to represent the delayed operator in the proposed control loop, to then solve the
resulting equations by a 4th order Runge-Kutta type integration scheme. In compar-
ison with this approach, the digital filter-based control system proposed here is much
simpler, which makes it more attractive to be implemented in the laboratory or the
field.

To assess the efficiency of this control strategy over a time-window of length T , it
is necessary to make a comparison between the RMS power recovered by the harvester

Ph =

√
1

T

∫ T

0

λ v(t)2 dt, (13)

with that which is consumed by the control system

Pc =
1

T

∫ T

0

(
b̈(t)
)+ (

ḃ(t)
)+

dt , (14)

where (·)+ denotes the positive part.
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4 Results and discussion

The energy harvesting dynamical system is simulated using the parameters that cor-
respond to the 145 × 26 × 0.26 mm3 piezo-magneto-elastic steel beam analyzed by
Stanton et al. [29]. In this harvester, the equivalent dimensionless parameters are
ξ = 0.01, χ = 0.51, κ = 0.51, λ = 0.04 and Ω = 0.8. The initial condition adopted is
(x0, ẋ0, v0) = (1, 0, 0). The value of excitation amplitude f is varied.

Initially, we observe the effect of the K and Q gains on the controller’s operation
with aid of the 0-1 test for chaos [30] shown in the left part of Figure 3, where the
dark blue regions correspond to regular dynamics, while the regions in light yellow to
chaos. For reference, the chaotic trajectory and a (typical) regular period 1 orbit are
shown on the right. It is clear that the effective functioning of the control strategy
strongly depends on a good choice for the pair (K,Q).

Figure 3. Contour map corresponding to the 0-1 test for chaos as function of the K and Q
gains with f = 0.7 (left), as well as the chaotic trajectory and a typical regular orbit (right).
Dark blue regions correspond to regular dynamics, while the regions in light yellow to chaos.

The optimal choice for these gains can be done, for instance, employing the cross-
entropy method for optimization [31], but due to space limitation this issue is not
addressed here (it will be the subject of a future work). Instead, let’s focus on show-
ing that, even without optimizing the gains, the proposed chaos control strategy is
quite effective. See Figure 4, which compares two diagrams obtained with test 0-1
as function of the amplitude f and frequency Ω of the external excitation, without
control (left) and with control (right), assuming for the controlled case the gains
(K,Q) = (−1.9, 0.85). It is quite clear that control substantially reduces the occur-
rence of chaos, once the light yellow region is smaller in the right map.

Figure 5 shows the voltage across the resistor for both, uncontrolled and controlled
systems, as well as the corresponding power spectrum (obtained with steady-state
part of the series). This result makes it very clear that the digital controller used
is capable of regulating a chaotic voltage signal to facilitate its use, note that the
spectrum changes from a continuum of frequencies to a signal with a few frequencies.

Finally, Figure 6(a) shows the excitation force compared to the transducer force.
The control signal amplitude is small with respect to ambient vibration, which trans-
lates into a low energy cost for the digital controller, as shown in Figure 6(b), which
compares generated and consumed power. The RMS value of the consumed power is
just 11% of the generated power. Depending on the orbit where the system is stabi-
lized, substantial power gains may or may not occur (already including rectification
costs). But even with no power gain, the regularization of a chaotic orbit favors the
efficiency of the energy recovery process by reducing the battery charging time [20].
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Figure 4. Comparison between test 0-1 for chaos as function of the amplitude f and fre-
quency Ω of the external excitation, without control (left) and with control (right), assuming
for the controlled case the gains (K,Q) = (−1.9, 0.85).

Figure 5. (a) Chaotic voltage time series for the uncontrolled system; (b) Power spectrum
of this chaotic voltage; (c) Regular voltage time series for the controlled system; (d) Power
spectrum of this controlled voltage.

5 Final remarks

This work presented the design of an Extended Time-Delay Feedback digital controller
for the chaotic dynamics of a bistable energy harvester. This digital implementation
seems to be a promising method to be implemented in chaos control, since it is an easy
task using digital filters only. The results show that many orbits can be controlled,
depending on the value of Q and the suppression of the chaos depends on K. The
remaining problem is to establish the best values of K and Q, what can be done
with aid of optimization [31] and sensitivity analysis [32] techniques. Furthermore,
extending this formalism to a situation of non-harmonic excitation is an interesting
line for future work. The simulations reported here used the computational package
STONEHENGE — Suite for Nonlinear Analysis of Energy Harvesting
Systems [33], which available for free and can used to reproduce the reported results.
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Figure 6. (a) Ambient and control forces (b) Power generated by the harvester, and the
power consumed by the controller.
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