
HAL Id: hal-03595712
https://hal.science/hal-03595712v1

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ha Long-Cam Pha Cities Evolution Analysis Utilizing
Remote Sensing Data

Giang Cong Nguyen, Khac Vu Dang, Tuan Anh Vu, Anh Khac Nguyen,
Christiane Weber

To cite this version:
Giang Cong Nguyen, Khac Vu Dang, Tuan Anh Vu, Anh Khac Nguyen, Christiane Weber. Ha Long-
Cam Pha Cities Evolution Analysis Utilizing Remote Sensing Data. Remote Sensing, 2022, 14 (5),
pp.1241. �10.3390/rs14051241�. �hal-03595712�

https://hal.science/hal-03595712v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


����������
�������

Citation: Nguyen, G.C.; Dang, K.V.;

Vu, T.A.; Nguyen, A.K.; Weber, C. Ha

Long—Cam Pha Cities Evolution

Analysis Utilizing Remote Sensing

Data. Remote Sens. 2022, 14, 1241.

https://doi.org/10.3390/rs14051241

Academic Editor: Yuji Murayama

Received: 22 January 2022

Accepted: 26 February 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Ha Long—Cam Pha Cities Evolution Analysis Utilizing Remote
Sensing Data
Giang Cong Nguyen 1, Khac Vu Dang 2,* , Tuan Anh Vu 3, Anh Khac Nguyen 2 and Christiane Weber 4

1 Faculty of Civil Engineering, Hanoi Architecture University, Hanoi 12109, Vietnam;
giangnc@kientruchanoi.edu.vn

2 Faculty of Geography, Hanoi National University of Education, Hanoi 11310, Vietnam; khacanh@hnue.edu.vn
3 Vietnam National Space Center, Academy of Sciences and Technologies, Hanoi 11307, Vietnam;

vatuan@vnsc.org.vn
4 Territoires Environnement Télédétection et Information Spatiale, CNRS, Université Montpellier,

34000 Montpellier, France; christiane.weber@teledetection.fr
* Correspondence: khacdv@hnue.edu.vn; Tel.: +84-916461970

Abstract: Socio-economic development has promoted the modification of land cover patterns in
the coastal area of Ha Long, Cam Pha cities since the 1990s. The urban growth, together with
intensive coal mining activities, has improved the life quality of residents. However, it has also
caused many environmental problems in this region. Change detection techniques based on post-
classification comparison were applied for monitoring the spatial and temporal evolution of land
covers. The confusion matrix for 2001 and 2019 showed high overall accuracy (97.99%, 94.95%)
and Kappa coefficient (0.97, 0.92), respectively. Statistics from classified images have revealed that
man-made features increased by about 15.32%, while natural features, mangrove jungles, and water
bodies decreased 10.64%, 1.96%, 2.72%, respectively, and urban evolution presents various dynamics,
soft in the first period (1991–2001), but stronger in the second period (2001–2019) with different
characteristics. The study also expresses the constraint of topographic and geologic resources, which
have prevented the urban development in this coastal area. Such obtained results are very important
for understanding interactions and relations between natural and human phenomena and they
may help authorities by providing indicators and maps able to highlight necessary actions for
sustainable development.

Keywords: Landsat imagery; urban growth; change detection; urban suitability; image classification

1. Introduction

The statistics of the United Nations showed that the Vietnamese urban population
has accelerated from 14.7% in 1960 to 37% in 2020 [1], and the amount of urban centers
has rapidly risen in recent years, reaching to 862 in 2020 [2] in comparison with 480 in
1986 [3]. Ha Long and Cam Pha cities have become the largest centers of the coal mining
industry in the Northern East region of Vietnam owing to considerable coal reserves in the
underground [4]. Over the past decades, rapid socio-economic development has promoted
urbanization at Ha Long and Cam Pha cities. Specifically, the recent statistics show that
their urban population comprised 76.5% of the total population in 2010, but it reached
88.0% in 2019 [5]. The urban development has interacted with the intensity of coal mining
exploitation, causing significant pressures on the environment with many dynamics at
the coastal area of Ha Long and Cam Pha cities, such as the expansion of man-made
infrastructures [6], the modification of hydrologic network and topographic surface [7],
the dissemination of environmental problems such as air pollution, water pollutions, soil
degradation [8], and land subsidence hazard [9], etc. Thus, understanding and monitoring
urban evolution over a long period in the coastal area of Ha Long and Cam Pha cities are
crucial for various purposes such as land management, public service provision, spatial
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planning, territorial organization, and sustainable objectives achievements [10,11]. This
might be an effective support to manage the urban development towards suitable land-use
decisions in the future [12].

Urban growth can be highlighted through the environmental impacts caused by in-
creased consumption of food, energy, water, land, etc. [13], which induces energy demands
with the development of residential settlements [14], alters the local climate with the
increase of urban heat flux [15], perturbs the natural water cycle with the extension of
impervious surfaces [16], reduces biodiversity with the rise of habitat fragmentation [17],
stimulates the expansion of the industrial zones with pollutant emission [18], converts land
surface from non-urban to urban uses with the loss of arable soil, and intensive pressure
on agricultural production [19]. However, the researchers noted that these issues could be
described and traced notably via land use/land cover changes studies based on reflected
and emitted measurements at various spectrum wavelengths [20,21]. The spectral varia-
tions between different image acquisitions due to the alteration of land use/land cover
in urbanized areas are used for identifying the changes when the magnitude of spectral
variations is more important than any noises [22].

As a matter of fact, monitoring urban evolution trends have started with the launches
of Earth Observation satellites for spatially and temporarily determining land use/land
cover pattern changes (location, intensity, period) through satellite data processing [23–25].
Studying the urban evolution over several decades requires a historical dataset with the
repetitive acquisitions of multispectral images of the ground surface. The Landsat program
can satisfy these requirements owing to the successive launches of some satellites from
Landsat 1 to Landsat 8 (except Landsat 6 due to the failure after not reaching the velocity
necessary) since the 1970s by the joint mission of the National Aeronautics and Space
Administration (NASA) and the United States Geological Survey (USGS) [26]. This Landsat
program might be expected as a potential source of information for identifying land
use/land cover changes for environmental management support at a regional scale [27]
because it has successively provided identical image specifications with medium spatial
and temporal resolutions [28]. Otherwise, Landsat images with enhanced spatial resolution
at 30 m of multispectral bands could be considered as suitable and reliable datasets for
analyzing urban evolution in a more timely and cost-effective manner [29]. Therefore,
Landsat images have been exploited to investigate when, how, and where Earth’s surface
has been changing because of its historical archive availability over the last five decades.
Although the number of studies using Landsat data has dramatically increased after the
opening of entire Landsat collections for free access in 2008 [30], the studies on urban
evolution have been confined in an inadequate amount in which the methods of change
detection have been revolutionized depending on the number of handled images [31].

Several researchers noted that change detection is the process of identifying muta-
tions in the state of an object or phenomenon by simultaneously processing two or more
images of the same geographical region acquired at different times [32,33]. Meanwhile,
Radke et al. [34] supposed that change detection was considered as a process to determine
considerable differences in sequential pixel appearances due to the emergence, disappear-
ance, movement, or shape alteration of objects on the ground surface [34]. For detecting
changes in land use/land cover, many issues have been discussed and synthesized in
literature reviews of several researchers’ articles [31,33–41]. Salah et al. [42] mentioned the
different categorization schemes in previous reviews, which have usually focused on a
few aspects or dimensions of change detection problems while ignoring others because of
the complexity of this topic. However, Hemati et al. [31] and Zhu [41] have suggested six
categorical change detection methods such as thresholding, differencing, segmentation,
trajectory classification, statistical boundary, and regression, which have been applied
in diverse applications using Landsat data to observe the dynamics caused by human
activities including urban evolution analysis [43,44].

Land use/land cover changes can be detected by comparing satellite images acquired
at two different moments—the bitemporal approach, which is a simple but less comprehen-
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sive understanding of the urban dynamics in comparison to the time-series approach [45].
Indeed, in this recent time-series approach, a set of satellite image scenes taken at many
different times—Satellite Image Time Series (SITS) affords a large amount of information
compared to a single image couple in the context of temporal tendencies of regional evolu-
tion [46]. Despite these benefits, it still raises specific challenges regarding: the irregular
temporal phenological signature of different land cover types; the insufficient sampling
used to train the supervised classification; the missing temporal data [42]; the network
architectures or specific datasets shaping that need to be developed for exploiting the
temporal information jointly with the spatial and spectral information of the data [47].
Thus, in a more classical way, other sets of approaches and methods can be used varying
from manual change interpretation [48] to bi-temporal linear data transformation [49] or
multi-temporal spectral mixture analysis [50] and deep learning [51].

Although in the coming years, together with Van Don Special Economic Zone, the
two adjacent cities of Ha Long and Cam Pha will become the pole of development in the
North-East region. However, there was not research on urban evolution in this dynamic
region except at Ha Long city, where the relevant topic had been considered in the works of
Brömme et al. [52], Hens et al. [6], Jalilov et al. [53]. Therefore, the present study examines
the spatio-temporal land cover change utilizing Landsat multitemporal and multispectral
images for a period of 30 years (i.e., 1991, 2001, and 2019). The aims are to (a) identify land
cover changes using different sensors of Landsat satellites to characterize urban dynamics
at the coastal area of Ha Long—Cam Pha cities over this period and highlight the different
tendencies of urban evolution between these two cities; (b) verify the interest of topographic
gradient issued from Shuttle Radar Topography Mission (SRTM) digital elevation model
for analyzing the land suitability in urban development. It will then analyze the concern
for urban planning policies in the region.

After the context of this study (Section 1), the presentation of the study area is provided
(Section 2), the description of the data used, and the various processing steps are presented
(Section 3). The results are followed with a validation procedure (Section 4). These parts
are subsequent to a discussion (Section 5), a conclusion closes the paper (Section 6).

2. Study Area

The study area is mainly located in the Quang Ninh province in the North of Vietnam,
focused on the coastal area of Ha Long and Cam Pha cities, which are adjacent to each other.
The Quang Ninh province is closed to the Chinese frontier and expanded along the Tonkin
gulf. This area has remarkably diverse landscapes: hills and mountains predominating
with elevations ranging from 0 to 1498 m and narrow coastal alluvial plains, where urban
development can be extended toward shallow intertidal zone (Figure 1). The remaining
part is a vast gulf including hundreds of big and small limestone islands.

The territory of these two cities covers an area of 758 km2 from the latitude 20◦54′35′′ N
to 21◦14′05′′ N and from the longitude 106◦54′08′′ E to 107◦24′08′′ E. It is influenced by the
tropical monsoon climate, in which the annual average temperature reaches 22.6–24.4 ◦C,
and the annual average rainfall is approximately 2200–2700 mm [54]. The climate is
separated into two distinctive seasons: hot in the summer (lasting from May to October)
with heavy rainfall (accounting for 80% to 85% of the total annual precipitation) and cold
in the winter (lasting from November to April) with low rainfall (15% to 20% of the total
annual precipitation) [55]. The hydrographic system is mainly composed of small, short
rivers originating from Northern mountainous districts characterized by a fast-rising flow
and quick drainage to the sea due to the steep terrain and heavy rains in the rainy season.

Many coal mines are located at the central part of the study area, and the residential
settlements were developed on both sides of the national road No18 with various man-made
structures extending along the shoreline. However, the tropical rainforest still dominates in
the Northern part. Besides, carbonate sediments with thick limestone layers have developed
in the marine environment, generating unique landscapes with high geomorphological
values. The Ha Long bay is recognized by the United Nations Educational, Scientific and
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Cultural Organization (UNESCO) as the World’s Natural Heritage site since 1994 [56].
These resources provide comparative advantages for the Quang Ninh province in several
developing economic sectors, including coal mining, aquaculture, tourism, etc. For example,
the total number of tourist arrivals reached around 21.78 million, and the tourism sector
contributed 8% to the Gross Domestic Product (GDP) of Quang Ninh province in the period
of 2013–2015 [57]. Otherwise, in the coal mining sector, 80,000 employees have worked in
23 major coal mines yielding more than 38.5 million tons of raw coal in 2020 [58].

Figure 1. Map of Northern Vietnam with the delimitation of the Landsat images (brown rectangle).
The pink dashed line corresponds to the territory of Ha Long—Cam Pha cities in which the Digital
Elevation Model of SRTM is on the background [59].

Local authorities have planned and reorganized functional urban areas, completed
urban infrastructures, developed public facilities, and improved environmental sanitation
in order to constitute major urban centers in the region. As described in Figures 2 and 3,
the evolution of Ha Long city during the last three decades have been officially decided
through a dozen years: it was established on 27 December 1993 based on the territory
of Hon Gai town; recognized as the urban center of class II on 26 September 2003, and
urban center of class I on 10 October 2013. Then its spatial boundary was expanded on
17 December 2019. While Cam Pha bourg was established as the urban center of class III
on 6 January 2005, had become a city on 21 February 2012, and on 17 April 2015, it was
recognized as the urban center of class II [60].

By 2020, the population of the two cities reached 518,300 people, prevailed in 21 wards,
12 communes (Ha Long city), and 13 wards, three communes (Cam Pha city) correspond-
ing to an average density of 292 people km−2 and 570 people km−2 respectively [5]. In
accompanying the dynamic socio-economic activities, local authorities have faced institu-
tional challenges in environmental management [61], especially when these activities have
intertwined with the rapid urban development on narrow piedmont situated along the
coast (Figure 1).
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Figure 2. Administrative mutation of Ha Long, Cam Pha cities over the last three decades.

Figure 3. Administrative boundary modification of: (a) Cam Pha city, (b) Ha Long city. All islands
are not presented in the maps [62].

3. Materials and Methods
3.1. Data
3.1.1. Landsat Images

In change detection analysis, seasonal variation due to solar angles and phenological
changes is taken into consideration as the main source of noise, and it can be minimized
by image selection [41]. In the present study, three aspects were necessary to consider:
(a) the selection of cloud-free images, as in this cloudy region, at least around 10% was
acceptable for the mainland part of the scene; (b) the selected images were captured in the
period between Summer and Autumn when crop makes agricultural land in suburban
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areas highly distinguishing with the residence in urban areas; (c) the acquisition date must
correspond to the moment of changing administrative structures at both cities.

Landsat images were chosen in moderate weather conditions corresponding to
3 acquisition dates. Cloud had partly covered some sections of the scenes, but this had not
seriously impacted the study (Figure 4). The parameters from Landsat images are shown
in Table 1.

Figure 4. Colors composite (b4-b5-b7) of: (a) Landsat 5 on 28 October 1991; (b) Landsat 7 on
29 September 2001; (c) (b5-b6-b7) of Landsat 8 on 23 September 2019.

Table 1. Landsat image parameters.

Satellite Landsat 5 Landsat 7 Landsat 8

Sensor TM ETM+ OLI
Processing level 2A 2A 2A

Date 28 October 1991 29 September 2001 23 September 2019
Cloud cover 0% 1% 0%

WRS-2 (Path, Row) 126; 45 126; 45 126; 45
Grayscale level 16 bits 16 bits 16 bits

In this study, Landsat images were downloaded from the website of the USGS:
https://earthexplorer.usgs.gov/ (accessed on 15 August 2021). The images were pre-
processed at the 2A level, providing surface reflectance products (Bottom Of Atmosphere
reflectance—BOA), and they were geo-referenced in the UTM coordinate system (WGS84).
Landsat 5 satellite provides 7 bands in a visible spectrum, infrared, and thermal parts
with different spatial resolutions: 30 m and 120 m, respectively. Landsat 7 satellite has an
additional panchromatic band with a spatial resolution of 15 m. Landsat 8 satellite provides
11 bands with identical characteristics, but it also has a panchromatic band (Table 2). All
spectral bands were exploited to identify the land covers in the study area.

https://earthexplorer.usgs.gov/
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3.1.2. High Spatial Resolution Imagery from Google Earth

Google Earth integrates several types of spatial data such as satellite images in natural
color composite, aerial photos, and geographic information layers. Images can be displayed
at the present time or at a specific time in the past. Currently, Google Earth images are
provided with a super high spatial resolution of less than 1.0 m [63] and are regularly
updated over time. Users can recognize features on the ground using Google Earth Pro
applications. Google Earth images are suitable for interpreting land covers because all
features on the images are clearly identified with prior knowledge via field surveys [64].
In this study, the images captured on 17 August 2001 and 8 November 2019 were used
for selecting the ground truth region of interest (ROIs) by visual interpretation, while the
image of 1991 was not available.

3.1.3. Digital Elevation Model

Figure 1 presents the SRTM Digital Elevation Model Version 1 from NASA with a
spatial resolution of 90 m. It was exploited for identifying the topographic gradient of the
study area [65].

3.1.4. Field Campaign

The selection of training samples for a supervised classification must be independently
applied to three Landsat images. However, the recognition of land cover categories was
difficult due to the ambiguity of features on two ancient images (1991, 2001). A field
campaign needs to be taken place for referencing land cover categories. Each land cover
category was identified with five sampling sites, which supported the selection of the
training samples on Landsat images. Hence, the field campaign was carried out with five
team members on 12–13 November 2019. Photos of some sites are shown in Figure 5.

Figure 5. Some features observed during the field campaign on 12 November 2019: (a) rock dump at
Deo Nai coal mine (Cam Pha city), (b) inland waterway port for construction material at Cua Luc
estuary (Ha Long city), (c) mangrove at Cua Luc estuary (Ha Long city). For the location of photos, it
refers to Figure 14c.
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3.2. Method

Zhu [41] noted that whether change detection approaches were time series or bitem-
poral, the differencing was most commonly adopted among change detection methods by
using images at different acquisition dates. Changes in land cover will be identified by
differencing classification results, also known as a post-classification comparison [35,39,66].
This principle was applied to urban change detection from the early 1970s, and it required
the comparison of classified images corresponding to spectral variations over time due
to the urban land use/land cover changes [67]. In recent years, many advanced classi-
fiers have been taken into account to process satellite images, and image classification
approaches can be distinguished into some categorical classifiers: supervised and unsu-
pervised, or parametric and non-parametric, or hard and soft, or per-pixel, sub-pixel, and
per-field. For detailed information about each category, readers can refer to the research
of Lu and Weng [68]. In general, different image classifiers have their own advantages
and disadvantages, and the selection of suitable classification methods depends on the
sufficient training samples, the distribution of features on the ground, the spatial resolution
of satellite images, the availability of classification software [69].

3.2.1. Pre-Processing

Landsat images were atmospherically corrected for the surface reflectance at 2A level,
geo-referenced to the UTM coordinate system (WGS84) by the USGS. The multispectral
bands of these images with the spatial resolution of 30 m were pre-processed as illustrated
in Figure 6:

1. Co-registration with respect to each image ensures that the images become spatially
aligned thus that all features in one image overlap as well as possible with its footprint
in other images. Accurate image co-registration is a prerequisite to the accurate extrac-
tion of features, and it may subsequently provide correct land cover mapping results.

2. Cropping image aims to discard the unwanted portion outer areas from Landsat’s
scene for preserving the important part—the study area (Figure 1).

3. Stacking layers address to combine several channels of Landsat image with the
identical frame of reference, thus that multi-channels can be processed later in the
image processing software.

Figure 6. The processing procedure applied in this study.
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The reflectance values in integer format were converted into a floating format accord-
ing to Formula (1) for classifying at each acquisition date.

Refn = (Bn × 0.0000275) − 0.2 (1)

Here, Refn is the reflectance value of band n in a decimal number, Bn is the apparent
value of band n in an integer number [70].

3.2.2. Image Classification

Image classification is a favorite method to identify the land cover categories because
it provides the ability to generate a series of land cover maps at different moments. Lu
and Weng [68] described many classifiers, which have been successfully applied into
image classification, such as artificial neural network [71], fuzzy classification [72], or
object-based classification [73], maximum likelihood [74], etc. In the present research,
we applied the Support Vector Machines (SVMs) classifier, an algorithm of Supervised
Machine Learning developed by Cortes and Vapnik [75]. It was initially applied to machine
vision domains such as handwriting digit and text recognition based on Statistical Learning
Theory [76]. Subsequently, it was experienced in satellite image classification [77–79].
Although this classifier was developed for about 3 decades, the results of recent researches
proved the prominence of SVMs in comparison with other usual classifiers due to its ability
to generalize desirable events despite limited training sample sets [80–83]. Otherwise,
Paneque-Gaslvez et al. proved that SVMs outperformed all the rest for establishing an
efficient classification approach to accurate map all broad land cover classes in a large,
heterogeneous tropical area [84], thus that Support Vector Machines (SVMs) were chosen
for classifying land use/land cover categories in urban studies and this classifier yielded
better performance regarding accuracy and generalization [85,86].

In order to proceed with the supervised classification, three sets of training samples
were, respectively, determined here by on-screen digitization based on color composite
images of Landsat 1991, 2001, and 2019. Each sample set corresponds to 10 samples with
an average of 200 pixels/sample for each land cover category (Figure 7).

Figure 7. Illustration of land cover categories from color composite (b4-b5-b7) of Landsat image
(28 October 1991): (a) forest; (b) rice field; (c) coal field; (d) residence; (e) sea water; (f) logging land;
(g) mangrove; (h) rock dump.

A code corresponding to each category of level 2 in Table 2 was assigned to each
class, of which a distinctive radiometric curve was calculated by the average values of
pixels within the window sample for all spectral bands (Figure 8). The SVMs classifier was
executed to separate them from each other using this training sample set.



Remote Sens. 2022, 14, 1241 10 of 24

Table 2. Land cover classification categories were modified from Andrimont et al. [87].

Level 1 Level 2

Woodland Evergreen forest, mangrove, etc.
Artificial land Rock dump, coalfield, residence, etc.

Cropland Rice field, vegetables, etc.
Bare land Logging land, outcrop, sand, etc.

Water bodies Sea, reservoir, lake, river, coal pit, etc.

Figure 8. Spectral profiles for main land cover issued from Landsat 5 image captured on
28 October 1991.

4. Results
4.1. Validation

The accuracy of change detection highly depends on the classification accuracy, and
errors in each classified image are present in the final change products. The obtained
results are thus vulnerable to classification errors [41]. Moreover, classification accuracy
can be affected by many reasons, such as the classification methods, the algorithms used,
and the type of satellite images [68]. In our study, Landsat’s SVMs classification accuracy
was visually adjudged by knowledge of the study area. In accordance with this interest,
the selection of ground truth samples was realized from Google Earth images in order to
quantitatively assess the Landsat’s SVMs classification accuracy using confusion matrix,
on the one hand [88]. In addition, the outline of features issued from the classified images
was visually explicit on Google Earth images to identify the coincidence between these two
data sets, on the other hand [89].

4.1.1. Keys for Visual Interpretation

Land cover categories can be apparently recognized on Google Earth images through
visual interpretation due to high spatial resolution in comparison to Landsat images.
Figure 9 below presents the elements of visual interpretation from satellite images. How-
ever, some interpretation keys are used to choose ground truth samples on Google Earth
images captured on 17 August 2001 and 8 November 2019 as follows:
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Figure 9. Elements of visual interpretation. Source: [90].

Site: The mangrove is often located near the natural water bodies such as the river-
banks or estuaries (Figure 10e). However, many mangrove jungles have been partly
replaced by aquaculture ponds, and the rest of the mangrove jungle became adjacent
ponds where water impoundment is constructed and managed for farming fish, shrimp,
mollusks, etc.

Figure 10. Land cover classes on Google Earth image (8 November 2019): (a) coalfield, (b) forest,
(c) logging land, (d) urban residence, (e) mangrove, (f) rice field, (g) water, (h) rock dump.

Structure and shape: It is easy to distinguish the structure of mangrove with other
vegetation types because mangrove’s foliage leaf often has a finer structure than forest but
coarser structure than a paddy field (Figure 10b,e,f).
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Tone/color: Coalfields are usually black (Figure 10a), while mangrove is dark green,
logging land is brown, rock dump is grey on the natural color composite. It helps to clearly
distinguish mangrove from other vegetation such as terrestrial forest, paddy field, logging
land, etc. (Figure 10b,c,e,f).

Association: It is an indirect sign allowing to recognize the presence of objects or
phenomena that cannot be directly perceived. However, we can identify their existence via
traces, which have been left on the ground. For example, there are often many different
types of equipment such as trucks, excavators, conveyors in coal fields (Figure 10a).

4.1.2. Accuracy Assessment

The accuracy of established land cover maps is often assessed via the confusion
matrix [91] and the Kappa coefficient [92]. In fact, the land cover maps issued from
Landsat’s SVMs classifications are compared with ground truth samples, which were
independently selected by visual interpretation on high spatial resolution satellite of Google
Earth images. Due to the unavailability of Google Earth images in 1991, only two sets of
random samples were respectively determined on Google Earth images (17 August 2001
and 8 November 2019) corresponding to eight classes of land covers mentioned in Figure 7.
Each set consists of 10 samples with an average of 200 pixels/sample for each land cover
category. Various indices might be pointed out from the confusion matrix: the overall
accuracy, producer’s accuracy, user’s accuracy, Kappa coefficient, which are summarized
in Table 3. The statistical parameters for 2001 and 2019 show that the overall accuracy
alternately reached 97.99%, and 94.95%, while the Kappa coefficients reached 0.97 and 0.92.
The user’s and producer’s accuracies of individual classes are consistently high, ranging
from 72% to 100%.

Table 3. Landsat classification accuracy for 1991, 2001, and 2019.

Land Covers
1991 2001 2019

Producer’s User’s Producer’s User’s Producer’s User’s

Forest n/a n/a 100.0 96.0 99.6 72.3
Mangrove n/a n/a 99.6 99.6 100.0 99.1

Rock dump n/a n/a 98.4 96.2 89.3 99.2
Coal field n/a n/a 99.5 99.4 99.58 83.8
Residence n/a n/a 92.1 99.3 100.0 76.3

Water n/a n/a 100.0 99.8 99.43 100.0
Logging land n/a n/a 79.3 83.2 79.9 100.0

Rice field n/a n/a 86.4 95.9 98.3 99.7

4.1.3. Comparison with High Spatial Resolution Image

In order to validate SVMs classification results, the outline of the land cover map
issued from Landsat image (23 September 2019) was investigated by overlaying on Google
Earth image (8 November 2019). The five random specific frames are closed-up in Figure 11,
showing the properly geometric and thematic matching between two datasets in the
validation context.

4.2. Land Cover Maps
4.2.1. Filtering Noise

After SVMs classification, the patches of pixels representing detached small and
discrete land covers are quite common in the raster dataset and considered as noise.
This unwanted noise can cause disturbance in image quality assessment and affect the
reader’s ability to grasp the information. The filtering approach is introduced into the post-
classification stage as an appropriate solution [93–95]. Thus, the filters help to eliminate
discrete pixels in the image but still preserve the accuracy of results. In this study, the
Median filter with a dimension of 3 × 3 window is applied to the SVMs classification
products for all acquisition dates. The results show that noises were reduced in the final
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land cover maps. However, the general shape of objects in the classified images was still
preserved (Figure 12).

Figure 11. Comparison of land cover classes extracted from Landsat 8 and images of Google Earth.
For the location of frames, refer to Figure 14c.

Figure 12. Land cover at Cua Luc: (a) after SVMs classification, (b) after filtering.
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4.2.2. Combining Classes

Mapping land cover products based on Landsat’s SVMs supervised classification
identified eight land cover categories for each year (1991, 2001, 2019). However, change
detection in urban areas focused on man-made features analysis because they are the most
important artifacts reflecting the interactions between human activities with the natural
environment. Therefore, eight original classes were selectively aggregated for responding
to the study objectives, and new land cover maps were established with four derived
classes: natural features, man-made features, mangrove, water (Figure 13a,b). Specifically,
man-made features are composed of artificial land with coal fields, settlements, and rock
dumps. In contrast, natural features consist of woodland (forest), bare land (logging
land), and cropland (rice field). Meanwhile, mangroves and water were considered as two
independent classes with natural features strongly affected by human activities in the study
area (Figure 14).

Figure 13. SVMs classification: (a) original land cover map (b) after combining.

Figure 14. Land cover maps issued from Landsat images (a) 28 October 1991, (b) 29 September 2001;
(c) 23 September 2019.
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5. Discussion
5.1. Change Detection

The change detection matrix of land covers is deduced from 3 classified images. They
are synthesized in Tables 4 and 5. The land cover categories can be determined when
and what has been changed to what during an interval of time. In the present study,
two periods are considered I: from 1991 to 2001 and II: from 2001 to 2019, corresponding
to the administrative adjustments of Ha Long, Cam Pha cities. For change detection
analysis, the post-classification approach was applied to the comparison of independent
classified images for each period. The main benefit of the post-classification approach is
the capability to provide the matrix of change information and to minimize external impact
from atmospheric and environmental differences between the multi-temporal images [38].

Table 4. Statistics of land cover and their changes in two periods deduced from the transfer matrix.

Land Cover
Categories

1991 2001 2019 I (1991–2001) II (2001–2019)

Area (ha) Area (ha) Area (ha) Area (ha) (%) Area (ha) (%)

Natural features 65,714.31 64,230.91 53,067.94 −1483.4 −1.25 −11,162.97 −9.39
Man-made features 7473.96 9952.06 25,693.65 +2478.1 +2.08 +15,741.59 +13.24

Mangrove 3404.43 2661.83 1075.7 −742.6 −0.62 −1586.13 −1.33
Water 42293.7 42,041.55 39,048.93 −252.15 −0.21 −2992.62 −2.52

Table 5. Situation of land covers at Ha Long—Cam Pha cities in two periods deduced from the
transfer matrix.

Land Covers
I (1991–2001) II (2001–2019)

(−) ha (0) ha (+) ha (−) ha (0) ha (+) ha

Natural features 3726.26 61,988.05 2242.85 12,908.89 51,322.02 1747.93
Man-made features 2138.31 5335.65 4616.41 1445.21 8506.86 17,186.79

Mangrove 1598.56 1805.82 855.91 1886.92 774.81 300.96
Water 2061.89 40,231.81 1809.74 4658.68 37,382.86 1666.07

(−) Disappearance, (0) No change, (+) Emergence.

The statistic numbers show that land covers had been slightly changed over the first
period, but their mutation in the second period was considerably faster. For instance, the
absolute values indicate that the areas of man-made features increased 2.08% for 10 years
of the first period, but they have reached 13.24%, corresponding to 6 times for 18 years
of the second period. However, the average area of man-made features increased from
248 ha/year in the first period to 828 ha/year in the second period corresponding to
3.3 times, while the area of natural features, mangrove, and water bodies decreased due to
the coal exploitation or sea encroachment from 148 ha, 74 ha, and 25 ha/year in the first
period to 620 ha, 88 ha, and 166 ha/year in the second period, respectively. That manifests
that the temporal interval of the second period is almost twice as long as the first period,
the change of land covers does not occur linearly.

5.2. Analysis of Urban Evolution

After integrating two classified maps of each period, the situation of each land cover
category over two periods is expressed in Table 5.

Ha Long city was established in the early 1990s based on Hon Gai town and then
followed by Cam Pha city in the early 21st century based on Cam Pha bourg. These
major urban centers provide labor sources for coal mines in the region. After the national
opening economy plan in the middle 1980s, the urban evolution at Ha Long—Cam Pha
cities emerged with slight changes during the first period and stronger dynamics after 2001.
The changes in Ha Long city were bigger than in Cam Pha city (Figure 15).
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Figure 15. Man-made features change at Ha Long, Cam Pha cities in periods I and II (ha).

In the first period in Ha Long city, natural features have not changed yet (Figure 16a)
because the flat intertidal zone at the North part of Cua Luc estuary, Hung Thang, and Gieng
Day wards was affected, where the large patches of mangrove forest (1372.72 ha) and water
bodies (1288.16 ha) were replaced by man-made features (Figure 16c,d). In Cam Pha city,
the significant emergence of man-made features was related to activities of open-pit coal
mines, where the denudation of natural features was recognized (Figure 16a,b). Otherwise,
many small patches of man-made features were expanded by pouring waste rock into
the sea with the replacement of water bodies (473.94 ha) at Cam Trung and Cam Thinh
wards (Figure 16d). The disappearance of man-made features at two cities is explained by
environmental reclamation when coal mines have been exhausted (Figure 16b).

Figure 16. Change of land covers in the first period: (a) natural features, (b) man-made features,
(c) mangrove, (d) waterbodies.
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In the second period, the population growth and economic development promoted the
rapid increase of urban change. Specifically, in 2010 the population of Ha Long and Cam
Pha cities reached 223,700 people and 177,400 people, respectively. In 2020, the population
reached 327,000 and 191,300 people [5]. Moreover, Table 6 illustrates the differentiation
of economic structures between the two cities: industrial sectors have been concentred at
Cam Pha city, where coal exploitation became dominant. Meanwhile, service sectors have
been concentred in Ha Long city of which the potential is tourism with recreation activities.
However, the changes are identical between the two cities (Figure 15).

Table 6. Distribution of economic structures of two cities [96–98].

Industry (%) Agriculture (%) Services (%)

2011 2020 2011 2020 2011 2020

Ha Long city 46.4 44.0 1.48 1.2 52.12 54.8
Cam Pha city 75.54 73.7 2.0 0.7 22.46 25.6

In Ha Long city, man-made features have expanded large patches causing an important
reduction of about 2911 ha of water bodies in the left and right banks of Cua Luc estuary,
around Tuan Chau island, Bai Chay beach, and at Viet Hung, Ha Khanh, Hung Thang,
Cao Xanh, Hong Hai, Hong Ha wards (Figure 17d), where the demand of real estate has
risen with the installation of infrastructures for recreation areas, residential settlements and
luxury hotels due to the close proximity to world heritage site [99]. This has constituted a
driving force to stimulate the widening of man-made features toward the intertidal zone,
which will be described in next Section 5.3 (Figure 17b). Although provincial authorities
have perceived the ecological role of mangrove jungles and they desired to preserve them,
mangroves have lost 1142.55 ha in comparison with the previous period (Figure 17c). In
Cam Pha city, man-made features have continued to expand toward the intertidal zone
at the Cam Trung, Cam Thinh, Quang Hanh wards, occupying 744.37 ha of mangrove
jungles (Figure 17c) and 1747.45 ha of water bodies; making the National Route No18 no
longer adjacent to the sea, but located in the interior with the farthest distance about 1 km
(Figure 17d). During this period, open-cast coal mining flourished in the territory of both
cities with 23 major coal mines, which caused the expansion of man-made features for
encroaching upon the natural features (Figure 17a,b). These areas are mainly located in the
mountains in the central and northern part of the study area.

5.3. Analysis of the Urban Development

Urban development requires a suitable space to respond to the specific needs of
construction. However, suitable spaces have been limited at Ha Long and Cam Pha cities
due to the topographic constraint with high and steep mountains. These limited spaces
are also occupied by coal mining fields in the central part of the study area. These settings
make both cities face the sea and lean against the cliffs (Figure 18a). Lofrano et al. [100] have
assumed that urban development is initially compelled by underlying geologic resources
and overlying geomorphologic forms. In addition, Yang, He, and Xu [101] also recognized
the role of terrain slope as one of the most important factors for evaluating land suitability
for urban development in the mountainous area, and the perfectly suitable steepness ranges
from 0◦ to 6◦. For analyzing the relationship of urban evolution and urban development at
Ha Long and Cam Pha cities, the SRTM digital elevotion model was used to calculate slope
map. The values of slope have ranged from 0◦ to 71.5◦ (Figure 18a) and two gradient classes
of suitability for urban development were derived as illustrated in Figure 18b together with
the distribution of coal mines.
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Figure 17. Change of land covers in the second period: (a) natural features, (b) man-made features,
(c) mangrove, (d) waterbodies.

Rivkin [102] mentioned that urban evolution was the adaptation of organisms to
heavily populated urban areas. Anthropogenic environmental and geographical changes
brought to habitats when urbanization takes place have a significant evolutionary impact
on organisms inhabiting these city areas. Whereby, people initially exploited the flat ground
located in narrow ravines and along the coast to establish urban settlements, which are
connected by the inadequate road network. The national route No18 is a unique backbone
for serving the communication of two cities for a long time. The analysis of urban evolution
in the previous section expressed that urban development in the next stages occupied
suitable places in terms of steepness by filling mining waste rock into water bodies or
mangrove jungles at intertidal zones. This tendency is clearly observed in Ha Long city,
where man-made features extended across the Cua Luc estuary and at the Northern part of
Ha Long bay, while man-made features have principally spread in the Northern part of
Bai Tu Long bay in Cam Pha city. Figure 18b presents the disappearance of water bodies
and mangroves jungles corresponding to the emergence of man-made features across the
period from 1991 till 2019.

In fact, this phenomenon matched with the policy of provincial authority relating to the
general land use planning from 2000 to 2020 of Ha Long city [103] and Cam Pha city [104].
By 2019, the flat terrain for urban development in both cities was depleted. Therefore, Ha
Long city has been merged with Hoang Bo district to be able to exploit flat terrain at the
Northern part of Cua Luc bay and the areas located along with highway No. 9 connecting
Ha Long city with Van Don airport. However, the open space for urban development of
Cam Pha city has still rested a critical problem. However, over the last decades, on the
one hand, the opencast coal mining has emptied coal deposits, and on the other hand,
the provincial authority would like to protect the environment by fostering tourism at the
World’s Natural Heritage site—Ha Long Bay. In consequence, all opencast coal mines in this
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coastal area have been gradually closed in 2025 to minimize environmental pollution [105].
The reclamation then returns the disturbed land from mining activities into natural habitats.
A vast surface near cities’s old centers can be exploited to decrease the pressure on open
space, although it does not belong to suitable places for urban development.

Figure 18. (a) Topographic gradient (b) Suitability for urban development (location of coal mines
issued from geological map [106].

6. Conclusions

This study has proved the ability of Landsat datasets to produce accurate land cover
maps and to analyze urban evolution at the coastal area of Ha Long—Cam Pha cities
using change detection techniques with post-classification comparison approach. The
application of SVMs classifier from spectral bands of Landsat images allows classifying
land-cover categories at different periods of time. The accuracy assessment based on
visual interpretation from Google Earth image captured at the identical period and in-situ
observation provides suitable confidence with an overall accuracy of 97.99% and 94.95%,
while Kappa coefficients reached 0.97 and 0.92. The study also expresses the constraint
of topographic and geologic resources to urban development at the coastal area of Ha
Long—Cam Pha cities. The steep slope mountains have prevented the enlargement of
these cities to the North direction, while the bays and estuaries characterized by flat terrain
are a lifeline for urban expansion to the South direction. Although the spatial resolution
of Landsat images up to 30 m has been applied to distinguish the land cover categories,
the resolution is not fine enough for features recognition because many small features are
not identified in comparison with Google Earth images. However, Landsat images are the
single remote sensing dataset providing freely historical image series with long enough
duration. The results could help the local authorities to propose appropriate solutions
and policies for conserving natural resources and developing socio-economic in a more
harmonized manner for this coastal area.
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