N

N

OzDES reverberation mapping program: Lag recovery
reliability for 6-yr Civ analysis
Andrew Penton, Umang Malik, Tamara Maree Davis, Paul Martini, Zhefu Yu,
Rob Sharp, Christopher Erik Lidman, Brad E. Tucker, Janie K. Hoormann,
Michel Aguena, et al.

» To cite this version:

Andrew Penton, Umang Malik, Tamara Maree Davis, Paul Martini, Zhefu Yu, et al.. OzDES rever-
beration mapping program: Lag recovery reliability for 6-yr Civ analysis. Mon.Not.Roy.Astron.Soc.,
2022, 509 (3), pp.4008-4023. 10.1093/mnras/stab3027 . hal-03595689

HAL Id: hal-03595689
https://hal.science/hal-03595689
Submitted on 7 Apr 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03595689
https://hal.archives-ouvertes.fr

Monthly Notices

MNRAS 509, 4008-4023 (2022)
Advance Access publication 2021 October 23

https://doi.org/10.1093/mnras/stab3027

OzDES reverberation mapping program: Lag recovery reliability for 6-yr
C1v analysis

A. Penton ”,'* U. Malik,>* T. M. Davis ,'* P. Martini,>** Z. Yu,* R. Sharp,? C. Lidman * >

B. E. Tucker,? J. K. Hoormann,' M. Aguena “,”# S. Allam,’ J. Annis,’ J. Asorey *,'° D. Bacon ”,!!

E. Bertin ,!>!3 S. Bhargava,'* D. Brooks,'’ J. Calcino,! A. Carnero Rosell,'¢ D. Carollo,'’

M. Carrasco Kind,'®'° J. Carretero “,?° M. Costanzi,?"?> L. N. da Costa,>* M. E. S. Pereira,?*

J. De Vicente,'!” H. T. Diehl,” T. F. Eifler ©,>?¢ S. Everett,?’ I. Ferrero “,?® P. Fosalba “,**** J. Frieman,®3!
J. Garcia-Bellido,?? E. Gaztanaga *,>*° D. W. Gerdes,**** D. Gruen ”,*+%3¢ R. A. Gruendl,'®"

J. Gschwend,®* G. Gutierrez,’ S. R. Hinton “,! D. L. Hollowood “,?” K. Honscheid,>*” D. J. James,*®
A. G. Kim,* K. Kuehn,***! N. Kuropatkin,” M. A. G. Maia,®*? J. L. Marshall,** F. Menanteau,'%!°

R. Miquel,?** R. Morgan,* A. Moller,* A. Palmese “,>*!' F. Paz-Chinchén,'®*® A. A. Plazas %

A. K. Romer,'* E. Sanchez,'” V. Scarpine,’ D. Scolnic “,*® S. Serrano,?>** M. Smith “,* E. Suchyta “,>°
M. E. C. Swanson,'® G. Tarle,?* C. To,***>% S. A. Uddin,”' T. N. Varga,’>* W. Wester,’

R. D. Wilkinson,'* and G. Lewis’* (DES Collaboration)

Affiliations are listed at the end of the paper

Accepted 2021 October 14. Received 2021 October 14; in original form 2021 January 18

ABSTRACT

We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform
this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the
OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement
uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C1V emission
line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different
recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These
criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius—Luminosity
relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R—L relation was
recovered within 1o for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered
a R-L relation slope of 0.454 £ 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES
sample of 771 AGN.

Key words: galaxies: active —quasars: emission lines —quasars: general.

supermassive black holes. For this purpose, reverberation mapping

1 INTRODUCTION (RM) can be used to directly measure distances within these compact

The innermost regions of active galactic nuclei (AGN) are powered
by supermassive black holes, whose role in galaxy formation and
evolution is complex and poorly understood. For AGN within the
local Universe, high spatial resolution instruments are capable of
probing the sphere of influence of the central black hole and directly
measuring the mass (e.g. Gebhardt et al. 2000; Greene et al. 2010;
Gebhardt et al. 2011; Kuo et al. 2011; Event Horizon Telescope
Collaboration 2019). However, we require alternate methods to
study AGN at greater distances in order to explore the evolution of

*E-mail: a.penton@uq.edu.au (AP); umang.malik@anu.edu.au (UM);
tamarad @physics.uqg.edu.au (TMD)

regions and infer the masses of the central supermassive black holes
(SMBH).

The technique of reverberation mapping (Blandford & McKee
1982; Peterson 1993) uses time-domain observations to provide
a window to AGN physics on spatial scales below the angular
resolution of contemporary observatories. The prompt and variable
rest-frame UV emission from the accretion disc ionizes the more
extended broad-line region (BLR). Variations in the UV continuum
radiation from the disc produce a variation in the observed emission-
line signal over an extended time-scale, on the order of months to
years. The observed reverberation of the BLR in response to the UV
continuum is due to the light crossing time from the central source
to the BLR and the geometry of the BLR. Therefore, by measuring
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this time delay, v, we can measure the radius of the BLR (Rg g =
ct). The velocity dispersion of the BLR (AV) can be estimated from
the width of the broadened emission lines. The mass of the central
black hole (Mpy) can then be measured using the Virial theorem:

Rp rAV?
MBH=f%, (1)

where f is the virial coefficient; a dimensionless scale factor that
accounts for the geometry, orientation, and kinematics of the BLR.

Extensive time-domain monitoring of both the continuum emis-
sion and emission line flux is required to conduct reverberation
mapping of the BLR. Due to limits of technology at the time,
early campaigns targeted few bright highly variable sources, which
corresponded to relatively low-luminosity AGN in the local Universe.
Subsequent generations of these surveys over many years gradually
produced a sample of reliable lag measurements for 63 AGN (e.g.
Kaspi et al. 2000; Onken & Peterson 2002; Peterson et al. 2004;
Bentz et al. 2009; Denney et al. 2010; Barth et al. 2011; Grier et al.
2012; Bentz & Katz 2015). As most of these sources were at low
redshifts (z < 0.3), most results were obtained using the HB emission
line. The observations confirmed the predicted relationship between
the AGN luminosity and the radius of the BLR (Kaspi et al. 2000;
Bentz et al. 2006; Bentz et al. 2009).

This Radius—Luminosity (R—L) relationship is a powerful tool
to estimate SMBH masses from a single-epoch spectroscopic mea-
surement. This has allowed single-epoch Virial BH mass estimates
to be made for tens of thousands of objects (Shen et al. 2011), in
order to study SMBH evolution. However, for sources at higher
redshifts (and hence greater evolutionary lookback times), Hf is
redshifted into the near-infrared spectrum and becomes increasingly
challenging to observe. For these more distant sources, both single-
epoch and RM observations rely on emission from Mg 11 and C 1v, for
which a detailed R—L relation calibration is not yet available. This
inhibits the direct construction of single-epoch virial BH estimates
for these important sources. Single-epoch SMBH mass estimators
based on C1v are calibrated based on UV spectra of local sources
(Vestergaard & Peterson 2006).

These AGN have longer lags, due to both the increased intrinsic
luminosity of the observed sources, and the impact of time dilation,
thus requiring long-baseline monitoring. With the C1v line, signifi-
cant RM measurements have been made for an additional 65 AGN to
date (Peterson et al. 2004, 2005; Metzroth, Onken & Peterson 2006;
Kaspi et al. 2007; Trevese et al. 2014; Lira et al. 2018; Grier et al.
2019; Hoormann et al. 2019; Shen et al. 2019).

Recent ‘industrial-scale” Reverberation Mapping campaigns have
probed new regions of the AGN luminosity-redshift parameter space,
with a particular focus on high-redshift sources. The Australian Dark
Energy Survey (OzDES; see Yuan et al. 2015; Childress et al. 2017)
began one of the first multi-object RM campaigns, monitoring 771
AGN over a 6-yr baseline with the Anglo-Australian Telescope.
This was complimented by photometric monitoring of the same
sources in the Dark Energy Survey (DES; see Dark Energy Survey
Collaboration 2016) deep fields for the same time period (see Fig. 1).
With the ability to conduct multi-object spectroscopy, OzDES was
able to target hundreds of AGN over a broad range of redshifts (0.1 <
z < 4.5) and luminosity (apparent r-band AB magnitudes from 17 <
r < 22.5). About one-third of these AGNs are at redshifts greater than
1.7, where the C1V line is visible. Hoormann et al. (2019) published
our first RM results with the C 1V line, for two sources at redshifts of
1.905 and 2.593, which are among the highest redshift and highest
mass black holes measured to date with RM.

OzDES lag recovery techniques 4009

Due to our goal of measuring these high-redshift long-duration
AGN time-lags, the observational window of our survey differed
from traditional RM programs that employ single-object spectro-
graphs. A multiyear baseline was required to ensure the longer
lags could be measured. As the spectroscopic counterpart of the
DES, we monitored the supernova fields (Neilsen et al. 2019), which
were visible for ~6 months of the year. We used a lower cadence
for the spectroscopic monitoring than traditional surveys. Monthly
monitoring of an AGN at z ~ 3 is approximately equivalent to weekly
monitoring of an AGN at z ~ 0.1 because of the factor of ~4 in
time dilation. A similar industrial-scale survey was conducted by the
Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-
RM) (Shen et al. 2015). Simulations for the OzDES RM and SDSS-
RM programs (King et al. 2015; Shen et al. 2015) and recent RM
results from these programs (Grier et al. 2017, 2019; Hoormann et al.
2019; Homayouni et al. 2020) show how the observational window
presents challenges for recovery of these high-z AGN lags, such as
aliasing due to seasonal gaps. In addition, lag recovery depends on
the signal-to-noise of the flux measurements and observed intrinsic
continuum variability of the AGN. We were motivated to develop
more sophisticated statistical techniques by the complications of
seasonal gaps, changes of cadence, and variations in S/N of both the
continuum and emission line data.

The most widely used lag recovery methods in the literature
are the Interpolated Cross-Correlation Function (ICCF; Gaskell &
Peterson 1987) and JAVELIN (Zu, Kochanek & Peterson 2011). These
techniques have proven to recover reliable and consistent lags for tra-
ditional RM surveys; however, this has not conclusively been shown
for large-scale RM programs targeting higher-z AGN. The restricted
signal-to-noise and more limited sampling of these programs dictate a
rigorous analysis of the biases and false positive rates, to devise robust
lag recovery and confidence criteria. Two comprehensive studies
comparing lag recovery methods have been performed recently.
Simulations conducted by Li et al. (2019), specifically for SDSS-
RM, found JAVELIN performed better overall than ICCF, but were
performed with pre-set detection criteria on populations of sources
rather than the individually customized simulations that will be
used here to inform our significance criteria. These results were
corroborated by Yu et al. (2020), who found JAVELIN produced
more correct lag uncertainties; however, their results were based off
simulated light curves of a few local sources that had been monitored
at very high cadence.

In this work, we conduct simulations using mock light curves
representative of our data quality, created on a source-by-source
basis, to compare the performance of these lag recovery techniques.
This is used to determine the recovery and significance criteria that
will be used for following OzDES RM analyses with each emission
line. For each source on the OzDES RM C1v catalogue, a set of
bespoke simulations will be run using the observable parameters
for that source while letting not observable characteristic, such as
time-lag and black hole mass vary. This will be discussed in full in
Section 2. The lag recovery methods and structure of our simulations
are discussed in Section 3. In Section 4 we outline our quality
criteria, and apply these cuts to analyse the resulting R—L relations
in Section 5. We summarize our results and outlook to the future in
Section 6.

2 SIMULATIONS

Simulations have become an important part of assessing the accuracy
of reverberation mapping lag recoveries. Before wide-scale simula-
tions were computationally easy, RM studies used other means to
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gauge the statistical reliability of their lags — such as using the number
of negative lags (r < 0) as a measure of the expected false positive
recovery rate (Grier et al. 2019).! Since then simulations have been
introduced as a means to improve that estimation of uncertainties.
The largest simulation suite to date was run by Li et al. (2019),
who simulated a large variety of mock sources that spanned the
observational features (redshift, luminosity, etc.) of their data. In this
work we go one step further, and make bespoke simulations for each
individual source in our sample.

We use the same AGN variability model as Li et al. (2019). This is
based on Kelly, Bechtold & Siemiginowska (2009), who showed that
a damped random walk (DRW) can be used to model the stochastic
variability of AGN light curves. A DRW is a random walk with an
additional term that pushes deviations back to the mean value. It
is characterized by two parameters, the damping time-scale and the
amplitude, which are unique to the source. Koztowski et al. (2010)
and MacLeod et al. (2010) extended this work and compared this
model to more observed AGN light curves, applying the DRW model
to directly constrain the variability parameters. MacLeod et al. (2010)
determined the correlations between the variability parameters and
physical AGN properties, including luminosity and black hole
mass, using photometric light curves for ~8000 spectroscopically
confirmed quasars in the Stripe 82 field, which were monitored over
a 10 yr baseline by the SDSS.

We simulate light curves following the method described by King
et al. (2015), which is the same DRW model used by Kelly et al.
(2009), Koztowski et al. (2010), and MacLeod et al. (2010), applied
specifically for each of the objects in the OzDES RM program. The
continuum and emission-line light curves are created as described
in the Section 2.1. Following this, we describe the customization for
each source, and the simulation set-up used for our analysis.

2.1 Continuum and emission-line light curves

The following parameters are required to model the continuum and
emission-line light curves for an AGN:

(1) mean of the light curve, u;

(ii) damping time-scale, T p, in days;

(iii) long-term structure function, SF,, in mag;
(iv) lag, 7, in days.

The damping time-scale (also referred to as the relaxation time or
characteristic time-scale) is the average time it takes for the random
walk to return to the mean. The amplitude of the DRW can be
described a function of the standard deviation of the DRW known
as the structure function, SF(Af). The simulated light curves for the
OzDES AGN sample need to be generated for a survey baseline of
at least Ar =7 yr. The asymptotic value of the structure function at
large Atis:

SF(Af > 1p) = SFy = V20, )

where o is the long-term standard deviation of the variability.
The continuum light curve, in magnitudes, is defined by a damped
random walk with a mean p, and variable term AC(7):

C(t) = pn+ AC®), (3)

I'Since negative lags are unphysical, Grier et al. (2019) assumes they are all
spurious, and calculates the FPR on the assumption that there will be as many
random false positives with 7 > 0 as 7 < 0.

OzDES lag recovery techniques 4011

where p© is the monochromatic continuum flux density at a given
wavelength, converted to an apparent magnitude. The variable term
att = 01s AC(t9) = 0G(1l), where o is as defined in equation (2),
and G(1) is a random number drawn from a Gaussian distribution
with a mean of 0 and standard deviation of 1. Subsequent variable
terms are given by:

AC(t;41) = AC(1) exp ("’%‘)"‘) )
+oG(1) [1 —exp (LD‘*")]; . (5)

Blandford & McKee (1982) interpret the emission-line flux varia-
tions as a response to continuum variations using:

AL(t):/\Il(t)AC(t—r)dr, (©6)

where AL(?) is the emission-line light-curve flux relative to its mean
value, W (7) is the transfer function, C(¢) is the variable component of
the continuum light curve flux and r is the lag. The transfer function
describes the BLR emission-line flux response to a delta function
variation of the continuum flux. It has the effect of smoothing the
emission-line light curve and shifting it, relative to the continuum
light curve, by the lag . We convolve the continuum light curve
with a top-hat transfer function to generate the smoothed and shifted
emission-line light curve. As the true form of W(7r) is complex and
related to the geometry and kinematics of the BLR (Peterson 2001),
we use the top-hat as an approximation. As in Zu et al. (2011), we
use a top-hat transfer function of the form:

1
vy =1y t—w/2<t<r+w/2’ %
0  otherwise
where w is the width of the top-hat. Following King et al. (2015), we
adopt w = 0.17.

To generate light curves for the AGN sample monitored by the
OzDES RM program, the four parameters described above (u, 7,
Tp, SFs) were used to create a bespoke simulation for each source.
The parameters were found using the apparent r-band AB magnitudes
and redshifts unique to each source, as described in Appendix A. The
light curve’s magnitudes are also scaled such that their magnitudes
and variations are consistent with the light curve of the source from
which they are modelled (‘parent’ source).

2.2 Cadence and uncertainties

Our custom simulations have the same cadence and noise properties
as the data for each AGN. We construct them by producing high-
cadence light curves using the method illustrated in the previous
sections. These are then subsampled to have identical cadence as their
‘parent’ source. This ensures that any effects that are a function of
the observational window are reflected in the simulations. In addition
to this, the absolute errors from the parent source are used directly.
This ensures that the simulated light curves include any observational
effects caused by the survey. The final result of this process is shown
in Fig. 2.

2.3 Matching simulations to data variability

Due to the subsampling, the difference in variability of different
realizations could vary considerably by chance. This can be shown by
subsampling the same underlying light curve with the same cadence
but with different starting points. The distributions of variability are
shown in Fig. 3. Since it is likely that light curve variability is an
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Figure 2. Comparison of observed continuum and emission line light curves
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that whilst they are inherently different, the uncertainties, cadence, mean, and
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Figure 3. Variability of 1000 subsamples of the same underlying light curve.
This shows the dispersion in the apparent variability from subsampling a
simulation to match the observing cadence. The black vertical line indicates
the measured variability of the parent source.

important parameter in the recoverability of a time-lag, it is vital that
this is representative in the simulations.

To ensure that the simulated light curves closely match the data
we perform a post-selection based on the light curve variability.
Performing the post-selection is done by retaining the photometric-
spectroscopic pair of light curves only if the measured variability
after subsampling is within 33 per cent of the observed variability of
the input source. In this case the variability is quantified to be the
fractional variability Fy, (Fausnaugh et al. 2016) to encapsulate the
variation of the light curve inclusive of errors,

_ 1
T (f@)

F var

1 N
5 2 AL @ = (FO)F o}, ®)

MNRAS 509, 4008-4023 (2022)

where f(1;) are flux values in the light curve and o; are the errors
on each data point. This subsampling process also allows us to
allow some freedom in our input parameters, importantly the BH
mass. Assuming a specific black hole mass would likely bias
the simulations as the black hole mass is not accurately known.
Therefore, for each simulated light curve a new black hole mass
is drawn from the parent distribution (Fig. A1). This allows some
realizations to have a high black hole mass, and therefore a high
intrinsic variability, while others have low black hole mass and a
low intrinsic variability. Both can appear to have the same variability
after subsampling based on observational cadence and this method
allows us to not be biased to any specific black hole mass based on
variability.

2.4 Range of time-lags simulated

More luminous AGN tend to have longer time-lags. One can use the
R-L relation to predict the time-lag (T expectea) fOr a source based on
its absolute luminosity. However, for each of the sources that is used
in this analysis, a range of different lags has been considered. This
means that not only were the sources simulated with the expected
time delay but with a range of seven time delays ranging from
40 per cent of T eypecied 10 160 per cent of T eypecied, giving seven sets of
simulations for each source, each containing 200 light curves, all of
which pass the variability selection discussed in the previous section,
giving a total of 1400 simulations per source. This was done in an
attempt to not bias our analysis towards recovering lags that were
exactly what were expected.

3 LAG RECOVERY METHODS

Two of the most commonly used lag recovery methods are the
Interpolated Cross-Correlation Function (ICCF; Gaskell & Peterson
1987; Peterson et al. 1998) and JAVELIN (Zu et al. 2011, 2013).
The ICCF uses linear interpolation to provide information about the
light curve between data points. Under the assumption of smooth
variations in light-curve structure on intermediate time-scales, linear
interpolation of the observational data sets maps the sparse sampled
photometric and spectroscopic light curves to a common sampling
frequency prior to cross-correlation. The statistical and systematic
uncertainties in the cross correlation are estimated via bootstrap
sampling (Gaskell & Peterson 1987; Peterson et al. 1998).

Employing a more sophisticated statistical model, JAVELIN utilizes
a Markov chain Monte Carlo (MCMC) approach based on a damped
random walk model (Section 2) for AGN variability. This is then
used to constrain the time-lag between light curves. The prior range
set on the time-lag search for both ICCF and JAVELIN is 0 d to 3 x
Texp d, Where Teyp is the time-lag that is estimated using the known
R-L relations. While both ICCF and JAVELIN will be considered and
employed in this analysis, the final results will utilize JAVELIN results.

A third contemporary lag recovery methodology, CREAM (Starkey,
Horne & Villforth 2016), uses similar methods as JAVELIN to constrain
the time-lag; however, this method is not considered in this analysis
at this time. For other possible methods for recovering time-lags see
Zajacek et al. (2021).

3.1 Lag posterior analysis

From both JAVELIN and ICCF lag recovery methods the output is a
probability distribution function (PDF) of possible lags as seen in
Fig. 4. There are multiple ways that a time-lag and uncertainty can

€202 ludy 20 uo Jasn O1SI - SUND Ad #G16079/800%/€/60G/2I01E/SEIUW/WOD dNO"DIWBPEDE//:SARY WO papeojumoq


art/stab3027_f2.eps
art/stab3027_f3.eps

Uncertainty Measure
Mean AD
Median AD
—— Count out
Lag Measure

B Peak

*  Mean

@ Median

)
T

800 A

600 A

400 A

200 A

Probability Density (arbitrary units

0 100 200 300 400 500 600 700 800
Time lag (days)
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lag. The black vertical line marks the input lag of the simulation. Note: there
is no Count Out option for the peak lag recovery method as the method often
failed in noisy PDFs.

be computed from the PDF. The choice of how to compute a lag and
uncertainty is important as it can vastly affect the result; see Fig. 4.

Our goal is to obtain an unbiased measurement of the lag and
its uncertainty. For this we must find a method that displays two
important characteristics: no systematic bias and uncertainties that
are the correct size. To answer this we considered three methods
to determine the most representative way to determine the lag: the
mean, the median, and the peak of the PDF. These methods were
then applied to the PDFs from JAVELIN and ICCF for all simulations
discussed in Section 2.4. Note that the PDFs for both JAVELIN and
ICCF have a bin width of 3 d, this was found to be the smallest
bin size that made the PDFs smooth enough to accurately define the
peak.

The difference between the recovered lag and the simulation’s
input lag (At = Tgm—Twe) Should ideally be zero. Fig. 5 compares
the At distributions for the three different methods for computing
the time-lag, for the simulations of our entire sample. From this we
conclude that the mean appears to be the poorest estimator of time-
lag, giving a positively skewed distribution At. This is likely due
to poorly constrained lags having means that are central to the prior
range. Since in this case the prior range is zero to three times the input
lag, the mean estimate will often skew upwards since the center of the
prior range is greater than then input lag. Once the poorly constrained
lags are removed with cuts outlined in Section 3.2, this problem is
greatly reduced.

3.2 Quality cuts

Using the peak of the PDF gives a result for 7 that is well centred
on the input value as desired, but has a tail of spurious detections
at high time-lags. These spurious detections are far fewer when
one uses the median to determine t, but the median distribution
is not as well centred about the input value as the peak distribution.
The desirable behaviour would be a distribution that is centred on
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Figure 5. The effectiveness of the different lag recovery methods based
on whole simulation sample. The black vertical line represents a At of 0,
indicating simulations that accurately recovered their input lag. The panels
showing the effectiveness of JAVELIN and ICCF display similar trends. In
both, the peak measurement is the most well centred on 0; however, both
show significant artefacts at positive At .

zero as the peak is, but without the high At anomalies. To this
end, we impose a restriction on a good recovery, requiring that the
measurement determined by the peak and that determined by the
median be consistent within a certain threshold, to be discussed in
Section4.1. Since the peak measurement is best centred around At =
0, we use this as the measure of t, with the proximity to the median
measurement used as a filter to remove the spurious peak results that
exist at a high At.

Requiring the peak and median measurements to agree within
100 d reduces the prominence of the artefacts present in both JAVELIN
and ICCF at high At while retaining most of the accurate lag
recoveries (see the top panel of Fig. 6). In an attempt to mitigate
the offset still present after applying this cut, we enforce another
cut similar to that implemented in the top panel of Fig. 6; however,
this time we only accept lags for which JAVELIN and ICCF agree.
Both methods should return the same lag for a reliable recovery,
therefore we enforce that they must agree within a certain margin,
the size of which we optimize in Section 4.1.2 This cut further
improves the accuracy of the recoveries, removing almost all of the
remaining outliers at high Az . These two cuts remove 26 per cent
and 41 per cent of realizations, respectively, with 49 per cent removed
with both cuts applied. Without these cuts the average bias is
At =75 d for JAVELIN and At =141 d for ICCF. After applying these
first two cuts, those average biases are reduced to At =24 d and
At =48 d, respectively. We note that this bias arises because of the
skew in the distribution — the median bias for JAVELIN is never over
6 d, even without cuts. After cuts it is reduced to 2 d. (ICCF starts at
a median bias of 46 d without cuts, which reduces to 18 d after cuts).

2We choose to make these cuts absolute rather than relative to the time-lag,
as the confidence that we have in a measurement relies upon how close the
measurements are — we have intrinsically more confidence in measurements
that are 100 d apart than 300 d apart regardless of the underlying lag.
An attempt was made to utilize relative cuts but this either made the cuts
unreasonably small for short lags or unreasonably high for large lags. A
relative cut may be more appropriate for samples where the range of time-
lags is smaller than that of the C1Vv lags considered here.
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Figure 6. Distribution of At using the peak of the JAVELIN and ICCF distributions for each of the cuts discussed in Section 3.2. Top: first cut, enforcing a limit
of <100 d between the peak and median measurement for each PDF. Center: second cut, enforcing cut one plus a limit of <100 d between the JAVELIN and ICCF
measurement for each PDF. Bottom: third cut, enforcing cut 2 plus constraining the maximum uncertainty to 80 d measurement for each lag measurement. The
exact thresholds on these cuts will be discussed further in Section 4.1. We can see that the artefacts present in both JAVELIN and ICCF recoveries at high At are
reduced by each subsequent cut. This indicates that the cause of this anomaly is different for JAVELIN and ICCF as well as the peak and median measurements,
and predominantly occurs in lag measurements that have larger uncertainties. This results in each cut reducing the mean offset further for both JAVELIN and ICCF.
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Table 1. The effect of cuts on the acceptance fraction and At offsets. Note
that the mean and median offset are measured in days, with each consecutive
cut improving the positive offset in both the mean and the median.

Mean At Median At
After per cent accepted  JAVELIN ICCF  JAVELIN ICCF
No cuts 100 75 142 6 46
Cut 1 76 41 82 4 33
Cut 2 59 52 59 3 16
Cut 1 and Cut 2 51 24 48 2 18

A summary of both the mean and median offsets at each cut level
for both JAVELIN and ICCF, as well as the proportion of the full
sample that pass those cuts, can be found in Table 1.

3.3 Determining measurement uncertainties

In addition to understanding the optimal way to measure time-
lags from PDFs, we also need to extract the most representative
uncertainties. To do this, we considered three methods to compute the
uncertainty: the mean absolute deviation (Mean AD), the median ab-
solute deviation (Median AD), and the area that encloses 34 per cent
(lo) of the probability on each side of the preferred lag (Count
Out) as is used by default in JAVELIN. To assess the performance of
each of these uncertainty measures, we used the relative distance
of each simulation from its true lag or Ao = %, where o is the
magnitude of the measurement uncertainty. Using the peak as the lag
measure, we can test the comparative distributions for each of the
methods for both JAVELIN and ICCF to determine the optimal measure
and whether any error cuts are needed. We considered the absolute
value of Ao as the sign correlates to the At value, therefore any
biases in the sign were already shown in Fig. 6. We find that the
count out method seemed to be the most representative; however,
due to its asymmetric nature, it often displayed other undesirable
behaviour, such as having uneven upper and lower uncertainties (e.g.
—50, 4+ 500). Of the remaining two methods, the median absolute
deviation closely matched a unitary Gaussian, as should be the
case; however, it displayed an oversupply of higher Ao, meaning
that it often underestimated the size of the uncertainties. Given the
option of a method that tends to overestimate uncertainties versus
underestimate them, an overestimation is preferred as overestimated
uncertainties may take into account unknown systematic errors and
can be mitigated using quality cuts as was done in Section 3.2. Due
to this we will conduct the remainder of this analysis using the mean
absolute deviation as our uncertainty measure.

Given that the confidence we have in a measurement is intrinsically
tied to the uncertainty attached to that measurement, it is logical to
place a cut on the absolute size of the error on each lag recovery.
To show the effectiveness of this cut, we compare the normalized
uncertainties for the mean absolute deviation before and after this
cut. In Fig. 7 we have applied an 80 d uncertainty cut and can observe
the effect this cut has on the behaviour of the sample. Both JAVELIN
and ICCF become much less peaked towards small Ao, with ICCF
in particular being very close to Gaussian. The slight peaking in the
JAVELIN population indicates that the uncertainties are in general
being overestimated.

With an extra cut being applied to the data, it is important to
consider the effect it has on the At distribution. In Fig. 6 we can see
that this uncertainty cut has removed many sources from the central
region of the distribution. This last cut further decreases the mean
offsets; from 24 to 14 d for JAVELIN, and from 48 to 21 d for ICCF.
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Figure 7. Comparison of Ac distributions for the mean absolute deviation
for both javelin and ICCF to a unit Gaussian. Before any error cuts, both
JAVELIN and ICCF have an overabundance of simulations with low Ao,
indicating that there are many simulations where the uncertainties are being
overestimated by these methods. In light of this we apply an error cut of 80 d
(exact size of cut to be determined in Section 4.1). The results of applying this
cut show that ICCF has uncertainties which closely match the unit Gaussian,
while JAVELIN still overestimates the uncertainties.

This is still a positive offset, meaning that it may introduce a bias into
future measurements such as black hole masses and the R—L relation
that would need to be corrected for. A possible solution to this would
be making the prior range symmetric around 0, as opposed to using
on the physical positive regime. However, as displayed in Fig. 8 there
is a negligible difference between the bias these two methods exhibit
besides a sign swap, with the negative baseline inclusion giving a
negative bias of 16 d after the same three cuts are applied. This
indicates that the proportion of the prior range that exists above the
‘correct’ answer versus below has a strong impact on the average
offset. We could make the prior symmetric around the expected lag
which would be more likely to give a minimal offset, but would also
be strongly biasing ourselves toward what we expect. Instead we can
use these simulations and modelling to account for biases that we
find. Now that we better understand the behaviour of the simulation
sample and how to extract the most representative lags, we can move
to construct a statistically meaningful set of quality criteria through
which to assign quality ratings to the observed CIv sample.

4 CRITERIA TO ESTABLISH LAG
MEASUREMENTS

The purpose of studying the cuts discussed in Section 3 is to assign a
quality rating to each recovery to encapsulate the reliability of each
recovery. Each successful recovery will be given a ration of gold,
silver, or bronze with gold being the most reliable lags. In order to
assess the efficacy of the quality cuts, we investigated the number of
sources that pass the quality cuts discussed in Section 3.2 but recover
the lag incorrectly. After these cuts approximately 15 per cent of the
remaining measured lags produced by JAVELIN and ICCF didn’t satisty
the following criteria:

@ ITsim — Twel =|AT[ < 80d
(i) A = Ao <3

These false detections show that recovering incorrect lags remains
possible even after applying the cuts. To mitigate this effect there
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Figure 8. Distribution of At using a prior centred around zero with the same cuts and processing as the bottom panel on Fig. 6. Note that the mean offset for
the JAVELIN recoveries is consistent in magnitude with the that measured using only the positive prior range (consistent with 2/3 of the prior range now being
below the expected lag, whereas previously 2/3 was above). The mean ICCF offset is closer to zero than that of JAVELIN; however, it has a significantly larger

dispersion.

are two courses of action: more stringent cuts to reduce the false
detection rate, and a source-by-source test to measure this effect.
Since we can individually simulate sources, a source by source false
positive test will be implemented that considers the probability of
recovering the lag that was recovered in each ‘real’ source by chance.

For any lag measured from a real light curve, we define the
false positive rate (FPR) as the fraction of simulations, drawn from
across the full range of simulated input lags for that source, which
erroneously present as the measured lag with high confidence. This
quantity will remove sources that include a systematic error in the
time-lag signal, for example a signal that arises from aliasing due to
the observing cadence.

Fig. 9 graphically shows how we compute the FPR. The black
points show the simulations where the recovered lag is within 1o of
the lag that was recovered in the observed light curve. Of these, we
find the instances where the recovered lag disagrees with its input
lag beyond a 30 level, these are presented in blue. This is important
as, assuming Gaussian errors, we would only expect 1 percent to
be inconsistent at this level. In the case pictured, the blue points
make up ~ 5 per cent of the non-red points, this means that having
recovered a lag of ~400 d there is a ~ 5 per cent chance that your
recovery passes the first two quality cuts but is inconsistent with the
physical lag in the light curves. In addition to this test, we can require
high quality recoveries pass more stringent cuts compared to those
discussed in Section 3. We test the bulk behaviour of the simulated
sample with respect to these cuts; however, a cut on the source by
source FPR will also be applied for each quality level.

4.1 Determining cut sizes

In Sections 3.2 and 3.3, we found that introducing three data quality
cuts improved the accuracy of lag recoveries as well as removing
the artefacts at high At . For that initial proof of concept, we used a
threshold of 100 d for the first two cuts (peak agrees with median, and
JAVELIN agrees with ICCF) and 80 d for the third cut (uncertainty).
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Figure 9. Graphical representation of the false positive test conducted on
randomly selected C 1V source. The points on the plot represent all of the
points that pass the quality cuts. We choose only the points that are consistent
with the recovered lag in the data at a 1o level; these are shown in black. The
black stars show the points with an input lag consistent with the recovered lag.
On the other hand, the blue points show the simulations where the recovered
lag is consistent with the lag recovered in the real data when the input to that
simulation is more than 30 away from the point. From these we define our
FPR as the number of blue points as a percentage of the number of blue and
black combined.

However, to determine the optimal size of these cuts we now consider
the impact of the cut size on four lag-quality measures:

(i) the average offset from the true lag (mean A7);
(i1) the median offset from the true lag (median At);
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Figure 10. Contours showing the characteristics of the full simulation sample after cuts. We can see that the uncertainty cut is the main driver for all three of the
measured quantities, with the difference between the peak and median measurements having more of an impact when the uncertainty cut is relaxed. Note that
the bluer areas denote the desired outcome with yellower areas being less desirable. The decided upon cuts are denoted by the gold, silver, and bronze points.

Table 2. Statistics for the samples that satisfy each of the different quality criteria. The median offset does not change significantly between cuts; however, the
average offset does. This indicates that there is a systematic offset that is present at all cut levels, with the cuts mostly removing outliers that skew the average
to higher offsets. Also note that the percentage accepted includes those in the quality tier above (e.g. Bronze includes those that pass Silver and Gold).

Cut Size (days) Quality Measure (days or per cent)
Quality JAVELIN-ICCF Peak-Median ~ Uncertainty Mean At Median At False detection per cent per cent accepted
Gold 100 65 65 13 6 12 12 per cent
Silver 100 80 80 15 6 15 19 per cent
Bronze 100 110 110 18 6 19 29 per cent

(ii1) the false detection rate (Section 4); and
(iv) the proportion of the simulations that pass the cuts.

‘We varied the three cuts from 30 to 200 d, and examined the four
lag-quality measures in each case. The ideal set of cuts would have
low offsets and false detection rates, with a high acceptance fraction.
In practice, as we loosen the cuts the acceptance fraction increases
but the quality declines. We use this to define a set of quantitative
quality cuts.

First, we considered the effect of each of the cuts separately on
each of the measurable quantities described previously. We find that
the cut on the agreement between JAVELIN and ICCF produces the
same average result for mean offset, acceptance fraction, and false
detection rate regardless of the size of the cut (between 30 and 200 d).
In light of this, we set 100 d as the maximum acceptable difference
between measurements made by JAVELIN and ICCF.

With this cut made, we can visualize the effect of the other two
cuts on the mean offset, acceptance fraction, and false detection rate
as shown in Fig. 10. It is obvious that the cut on uncertainty size is
the main driver for low mean offset and false detection rate; however,
the difference between peak and median offset also makes an impact
in certain regimes. Using this information, we can choose thresholds
in both of these cuts that provide differing qualities of recovery while
still giving reliable recoveries across the board. The chosen cuts are
shown in Table 2.

5 R—L RELATION ANALYSIS

One of the important products that is generated through analysing an
RM data sample is the R—L relation. Given that we have access to a
large number of representative simulations, we have the opportunity
to test the accuracy with which we can measure the R—L relation
given that the input R—L relation for the simulations is known. To
test the effectiveness of the quality criteria, we can fit the R—L
relation using only sources that fit into each quality criterion. With
the large number of simulations we have generated we can do these
fits many times choosing a different subset of measurements each
time. This will allow us to not only observe the overall quality of
the fits but also the effect that the cuts have on the R—L relation
fits. For each iteration of this test, a sample of recovered lags was
chosen that contained only one realization of any one source, with
the fit being repeated 1000 times to determine the reliability of
the fits.

It is important to note that our sources cover a fairly small
range of radii and luminosities. Due to this we have included
literature measurements to anchor the R-L relation fits at the low and
high luminosity ends. Combining data sets in this way is standard
when generating the C1v R—L relation. The extra sources cover a
luminosity range of 43.6 erg s~ < log AL, < 47.2 erg s~ and time
delay range of 4 d < tgrr S 460 d. Detailed information on these
sources is shown in Table B1 and visualized relative to our data in
Fig. B2.
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Figure 11. Best-fitting R—L relations for a sample of 50 iterations, computed using a subsample of sources from each cut group. The cuts have an obvious
effect on the quality of the R—L relation recovery with the gold standard fits having very little variation from true fit.
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) and intercepts [logjo(days)] computed using a subsample of sources from each cut group. These

histograms contain 1000 iterations of the fitting procedure. The cuts have an obvious effect on the quality of the R—L relation recovery with the gold standard
fits being centred around the truth value for the slope and closest of the three groups for the intercept. Next most reliable is silver and then bronze as expected.
All three distributions are offset from the truth value with regards to the intercept; this is likely due to the positive offset seen in the simulation results and may
be compensated for if well understood. Note that the mean uncertainties in the intercept measurements are approximately 0.034 for all cuts, with the average
uncertainty in the intercept being 0.070, 0.077, and 0.086 for the gold, silver, and bronze level cuts, respectively.

The effect that the cuts have on the R—L relation fits is shown in
Figs 11 and 12. The gold standard cuts provide the most accurate
fit on average, and also display the least variance in the fits with
a mean slope of 0.454 and a standard deviation in slope of 0.016.
In contrast, the silver and bronze fits have slopes and deviations of
0.445 £ 0.027 and 0.447 £ 0.034, respectively. The average fits for
each of the three quality tiers are within 1o of the true value for
the R—L relation, suggesting that they are all reliable, with the gold
standard simply being the most well constrained.

All three of the quality levels do display slight offsets in both the
slope and the intercept from the input value (Fig. 11). Given the small
residual offset we found in the lag recoveries, this is to be expected.
Even though the offsets are less than the 1o uncertainties, we would

MNRAS 509, 4008-4023 (2022)

like to take them into account and derive an even more accurate
relation. The ultimate source of the bias comes from the imperfect
or incomplete observational data (e.g. sampling limitations, survey
window functions, malmquist biases). Some of those are irreducible
systematic uncertainties, but with a thorough simulation suite some
of these can be accounted for (as is done in many astrophysics
applications, such as supernova cosmology; e.g. Kessler et al. 2019).
In Section B we show that simply adding the mean time-delay offset
(A7) between the simulated time delays and the recovered time
delays to each AGN data point (7) improves the recovery of the R—L
relation. We defer a more thorough examination of bias-correction
methods to a future paper. Even without any further correction, our
recovery of the R—L relation is accurate to within 1o, so it is already
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useful for many astrophysical questions (such as the relative size
of black holes at different epochs), but the bias will be critical to
address for applications, such as using AGN as standard candles for
cosmology.

6 SUMMARY

In this paper, we have developed an extensive set of simulations
that can be used to model individual sources based on their exact
variability, cadence, and other observable traits. We use this powerful
tool to quantify the lag recovery of each AGN in our sample rather
than derive summary results from an observable distributions of
parameters.

Using these simulations we investigated how best to extract a
time-lag from the posterior lag distribution produced by JAVELIN and
ICCF. We found that the peak of this distribution is the best measure
of the time-lag and the mean absolute deviation is the best measure
of the uncertainty. From there we developed a set of quality cuts to
show which of the recoveries exhibit the characteristics of a reliable
time-lag. We use cuts based on the deviation between ICCF and
JAVELIN recoveries, the deviation between the peak and median of
the underlying PDF for each recovery, and on the absolute uncertainty
of the lag. We also designed a false positive test that quantifies the
likelihood that the recovered lag has been measured in an incorrect
location. Using these cuts, we implemented a gold, silver, and bronze
rating system, and used these ratings to test the quality of the resulting
R-L relation. All of these quality levels produced R—L relations that
were correct within a 1o confidence level, with the gold sample
producing the least variance in fits.

In future work we aim to make improvements to several aspects
of our analysis:

(1) Where in this paper we estimated the spectroscopic calibration
uncertainties using the method described in Hoormann et al. (2019),
we are developing a new empirical model of estimating the cali-
bration uncertainties based on the F-star spectra for the upcoming
OzDES papers. This has been implemented for Mgll measurements
(Yu et al. 2021) and we will apply it to the C 1V region in the future.

(ii) The photometry used in this analysis was measured in the
g—band; however, we also have r— and i—band magnitudes. These
are currently used only in our spectrophotometric calibration but
it is possible that they could be used in constraining time-lags
as well. Using JAVELIN it is possible to cross-correlate multiple
photometric bands as well as the spectroscopic light curve, in theory
this would provide better constraints. The slight time-delay between
the photometric bands due to the continuum emission for the host
black hole’s accretion disc (Mudd et al. 2018), would provide slightly
different time domain information and may reduce effects such as
aliasing. This method would be computationally expensive and thus
was not explored here but is a consideration moving forward.

With a well understood set of criteria to help understand our
confidence in measurements made on the full DES/OzDES sample,
we now have a strong frame work on which to build the bulk analysis
of the remainder of the data set (Penton et al. in preparation, Malik
et al. in preparation, Yu et al. in preparation).
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release 2 at https://datacentral.org.au/services/download/. The data
sets were derived from sources in the public domain Abbott et al.
(2021) and Lidman et al. (2020).
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APPENDIX A: SIMULATION PARAMETERS

A1 Variability time-scale, tp, and amplitude, SF
MacLeod et al. (2010) determined the following power-law relation-
ship between 7 and SF4, and the physical properties of AGN:

logo() = Ay + By logy, ( ) + Co(M; + 23)

4000

Mgy ) ’ (A1)

+Da lOglO (W

where « refers to 7 (in days) or SF., (in mag), A (A) is the rest-frame
continuum wavelength, M; is the absolute i-band magnitude of the
source and Mpy is the mass of the black hole (in solar masses). The
coefficients are given in Table A1. The correlations were found after
converting time-scales to the rest frame of the sources, therefore the
estimated 7 values were multiplied by (1 + z) to create simulated
light curves in the observed frame.

The black hole mass that is often used in simulations of this type
is that predicted from the following Gaussian distribution used by
MacLeod et al. (2010):

_ (log,y Mu—log;y Mgn)*

1
P(log,y Mgu|M;) = exp oy
O Mgy

\/ 2oy
(A2)

with mean log, Mgy = 2.0-0.27M; and standard deviation OMy =
0.58 + 0.011M; which signifies the dispersion in the black hole
population.

In general, equation (A2) can be used to estimate the black hole
masses for a large population of SMBH, However, it was found that,
due to our survey target selection, the expected masses for our sources
were tightly localized to much smaller regions than this distribution
would predict.

Fig. Al shows the difference in distributions between the masses
for the OzDES sample as predicted by equation (A2) in comparison
with the distribution of these same black hole masses estimated
using the virial relation (equation 1). To use the virial relation we
have used the R-L relation from Hoormann et al. (2019) to find
an approximate radius of the BLR. Then used the RMS spectrum
for each source to find the velocity of the region. The two distinct
groups of blue in Fig. Al represent the HB sources (~ 10% M)
and the C1v and Mg sources (~ 10°-10'%° My). The reason for
the distinct groups is due to both survey design and astrophysical
constraints. All of the nearby sources utilize the Hp line and are
generally smaller or dimmer sources. This in general means that
they host a lower mass SMBH. At a higher redshift we target much
brighter objects, which generally house much larger SMBHs. There

Table Al. Coefficients of the power-law relation defined for the damping
time-scale and structure function.

(9)) SFOO
A 2.4 —0.51
B 0.17 —0.48
C 0.03 0.13
D 0.21 0.18
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Figure Al. Histograms showing that our lag measurements primarily sample
the high-mass end of the black hole mass distribution predicted by equation
(A2). This is expected since we are primarily sensitive to long lags. The data
in blue was obtained using the lag estimated from the R—L relation listed in
Hoormann et al. (2019) and the line velocities from the RMS spectra for each
source. These are then used to compute a mass using the virial relation (equa-
tion 1). The green distribution is the prediction of the black hole mass distribu-
tion using equation (A2) and the absolute i—band magnitudes for each source.

are also simply no quasars that house (> 10° M) SMBH at z < 0.6
in our survey footprint. Due to these differences from the commonly
accepted population distribution we conclude that the distributions
in blue are much more likely to represent the physical characteristics
of our sample. The BH mass that is used in our simulations is drawn
randomly from these distributions, split into the appropriate emission
line, as opposed to the global distribution from MacLeod et al. (2010),
which is commonly used.

OzDES lag recovery techniques 4021

A2 Expected lag,

We estimated the rest-frame lag for each source using published R—L
relationships for each of the emission lines, which have the form:

log,y(R) = K + o x log,y(ALy) (A3)

where R is the radius of the BLR in light-days (i.e. the lag, 7, in
days), L; is the monochromatic continuum luminosity at wavelength
A(A) in ergs™' A~!, K is the zero-point for the relation, and « is
the slope of the power-law relationship. We use the R—L relation
calibrated for C 1v from Hoormann et al. (2019) with coefficients of
K=—20.74+£2.2,a =0.47 £ 0.04, and 1 (A)=1350. The simulated
light curves were generated in the observed frame, so to generate the
expected observe-frame lags for each source, the rest-frame lags
were multiplied by (1 + z).

APPENDIX B: RADIUS-LUMINOSITY
RELATION FITTING AND CORRECTIONS

As mentioned in Section 5 we use some previous C IV lag measure-
ments to help anchor the Radius—Luminosity relationship for our
simulated data. These are shown in Table B1. In order to assess
whether the small residual bias in the R—L relation can be removed,
we take the average magnitude offset we see in each of our Gold,
Silver, and Bronze samples, and add that offset to the results for
each time delay in our simulated sample. For example, the Gold
sample had a mean offset At = 13 d (Table 2), so we add that
to each recovered t before fitting the R-L relation. The result is
shown in Fig. B1, in which an improved recovery of the relation is
achieved.

We note that this offset is not applied to previous data because that
sample would have different statistical properties that would require
its own simulation analysis. A more sophisticated technique would
be to apply a different offset for different subsets of the data, e.g. as
a function of luminosity or lag. We defer such explorations to future
work.

251 7
—— Truth value
201 1 1 Gold
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2 151 | Bronze
N
E
= 101 1
z AL
] | ‘
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_,.J
0 — -
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Figure B1. Best-fitting R—-L relation slopes (log (erg 5T
10 .

0.5 0.6 0.7 0.8
R-L relation intercept

) and intercepts [logjo(days)] computed using a subsample of sources from each cut group, with

corrections for each based on the average offset shown in Table 2. We can see that the biases seen in Fig. 12 are greatly reduced. This indicates that using these

simulations to account for biases can be effective.
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Figure B2. An example of a best-fitting R—L relations computed using a
subsample of sources. This figure shows the wide range of luminosities in the
literature values that are used to supplement the smaller luminosity range of
the simulated values.

Table B1. Rest frame time-lags and 1350 A luminosities for all C1v lags
used to anchor the R—L relationship.

AGN log AL, [ergs s TRF [days] Ref.
NGC 3783 43.59 £ 0.09 4.07}9 1
NGC 5548 Year 1 43.66 % 0.14 9.8%12 1
NGC 5548 Year 5 43.58 + 0.06 6.7797 1
CT286 47.05 £ 0.12 45977 2
CT406 46.91 £0.05 11578 2
1214355 46.96 + 0.07 12813 2
1221516 47.16 +0.12 165+7% 2

Note. References: (1) Peterson et al. (2005) and references therein; (2) Lira
et al. (2018).
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