

Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers-authors' response

Mădălina Maria Muntean, Andrei-Alexandru Muntean, François Guerin, Vincent Cattoir, Elodie Creton, Garance Cotellon, Saoussen Oueslati, Mircea Ioan Popa, Delphine Girlich, Bogdan Iorga, et al.

▶ To cite this version:

Mădălina Maria Muntean, Andrei-Alexandru Muntean, François Guerin, Vincent Cattoir, Elodie Creton, et al.. Optimization of the rapid carbapenem inactivation method for use with AmpC hyperproducers-authors' response. Journal of Antimicrobial Chemotherapy, 2022, 77 (4), pp.1208-1209. 10.1093/jac/dkac058. hal-03595581

HAL Id: hal-03595581 https://hal.science/hal-03595581v1

Submitted on 8 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Revised JAC-2022-0074-R1
3	Author's reply to JAC-2021-1766.R1-FINAL
4	
5	Optimization of the rapid carbapenem inactivation method for use with AmpC
6	hyperproducers
7	Mădălina-Maria MUNTEAN, ^{1,2,3§} Andrei-Alexandru MUNTEAN, ^{1,2,3§} François
8	GUERIN, ^{4,5} Vincent CATTOIR, ^{4,5,6} Elodie CRETON, ^{1,7,8,9} Garance COTELLON, ^{1,7,8,9}
9	Saoussen OUESLATI, ^{1,7,8,9} Mircea Ioan POPA, ^{2,3} Delphine GIRLICH, ^{1,8,9} Bogdan I.
10	IORGA, ¹⁰ Rémy A. BONNIN, ^{1,8,9} and Thierry NAAS ^{1,7,8,9} *
11	
12	1 Team RESIST, INSERM U1184, School of Medicine, Université Paris-Saclay, LabEx
13	LERMIT, Le Kremlin-Bicêtre, France
14	2 The "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
15	3 The "Cantacuzino" National Medico-Military Institute for Research and
16	Development, Bucharest, Romania
17	4 CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.
18	5 CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes,
19	France.
20	6 Université de Rennes 1, Unité Inserm U1230, Rennes, France.
21	7 Bacteriology-Hygiene unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital,
22	Le Kremlin-Bicêtre, France
23	8 French National Reference Center for Antibiotic Resistance: Carbapenemase-
24	producing
25	Enterobacteriaceae, Le Kremlin-Bicêtre, France
26	9 Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics »,
27	Institut Pasteur – APHP - Université Paris Sud, Paris, France

28	10 Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles,			
29	Gif-sur-Yvette, France			
30				
31	Running title: Optimized rCIM for use with AmpC hyperproducers			
32	Word count: 834			
33	References: 10			
34	§ Both authors contributed equally			
35	* Corresponding author: T. Naas, Service de Bactériologie-Hygiène, Hôpital Bicêtre, 78			
36	rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France. Tel: +33 1 45 21 20 19. Fax:			
37	+33 1 45 21 63 40. E-mail: <u>thierry.naas@aphp.fr</u>			
38				
39	Sir,			
40	We read with great attention the comments made by Nordmann and Poirel. Our			
41	work ¹ was meant to challenge the rCIM test with isolates that pose problems for CPE			
42	confirmation using many currently available tests, including the Carba NP test, which is			
43	considered as the reference method.			
44	The rCIM was initially validated in a prospective study on isolates sent to the			
45	French National Reference Center (F-NRC) for CPEs, and thus representing the French			
46	CPE epidemiology. ² Several isolates/resistance mechanisms were identified as being			
47	challenging in terms of CPE identification using the rCIM or the Home-made Carba NP,			
48	which is the technique of choice of the F-NRC. In order to improve the rCIM, we			
49	concentrated on difficult to categorize enzymes from the F-NRC, including Group 3			
50	Enterobacterales isolates, which previously tested positive using the Carba NP test, and			
51	also rarer enzymes. Enterobacter kobei ST125 isolates expressing ACT-28 have			
52	previously been shown to give false-positive Carba NP and rCIM results. ^{2,3} As ACT-28			
53	has very weak carbapenemase activity, is chromosomally-encoded, linked to a specific			

54 lineage of *E. kobei* ST125, and that the carbapenem and cephalosporin susceptibility is

fully restored on cloxacillin-containing media, it should be "functionally" classified as a chromosomal cephalosporinase with limited carbapenemase activity.^{1,3} To consider these isolates as "true" carbapenemases may lead to isolation of the patient and unnecessary high costs. Thus, including 10 different ACT-28-producers from the F-NRC allowed to confirm the false-positivity rate using the Carba NP and the rCIM tests, and validate the improvement of the rCIM-A, as no false positive results were observed anymore.

61 It was never claimed in the study by Muntean *et al.*¹ that the isolates represented 62 the French CPE epidemiology, but it was clearly stated that "the strength of the study was that broad range of CREs, which included true CPEs as well as AmpC hyperproducers 63 64 (both natural and acquired) were investigated". Our work constitutes a "stress-test" of the optimization step of the rCIM, rather than a determination of the sensitivity and 65 specificity of the Carba NP. Moreover, there was no cherry-picking of isolates that would 66 advantage the rCIM, or the rCIM-A over the Carba NP, and the reported sensitivity and 67 specificity of rCIM-A was lower than that originally reported for rCIM, simply due to the 68 69 challenging isolates tested. All the isolate/enzyme combinations are published, thus allowing the reader to judge if their particular epidemiological situation is amenable for 70 71 the use of the tests. Of note, we concluded that rCIM is still lacking sensitivity with IMI-72 and OXA-23-type carbapenemases, which is likely due to their weak hydrolysis of meropenem, unlike imipenem, which is strongly hydrolyzed. This can be of particular 73 74 importance, regarding certain epidemiological situations.

Several slow-hydrolyzing OXA-48 variants (OXA-162, -181, -204, -232, -244) included, as they have been reported to be missed or inconclusively detected by Carba NP, ⁴⁻⁶ yet they were correctly identified by rCIM and rCIM-A.^{1,2} While some of these variants are still rare, others such as OXA-244-producers are increasingly encountered.^{6,7} As their under-detection may lead to silent spread, these isolates should be particularly targeted in the process of the validation of a novel CPE confirmation tests.⁶ Even though a sensitivity and specificity of 100% for CPE detection have been initially reported for

the Carba NP by Nordmann *et al.*,⁸ other studies have subsequently reported sensitivities 82 (ranging from <70 - 90%), in particular with OXA-48-like-producers, as these enzymes 83 have weak carbapenemase activity as compared to the other carbapenemases.⁴⁻⁶ In 84 85 addition, it was noticed in the comments that high rates of OXA-23-producing 86 Enterobacterales were included in our study, while in Switzerland, they represent only 87 0.02% of total CPEs. OXA-23 producing Proteus mirabilis are increasingly reported and 88 more prevalent than expected.⁹ Indeed the prevalence of OXA-23 recorded at the F-NRC 89 (0.5% of all CPEs), is likely underestimated as a recent French Nationwide study reported 26% of OXA-23-producers among Co-Amoxiclav resistant P. mirabilis. Difficulties in 90 91 their detection as a consequence of low carbapenem MICs contributes to their silent spread.9 92

93 Regarding the time to test positivity, we would like to stress out that even though the Carba NP is faster and may provide a positive test result in 15-30 minutes, it still 94 95 requires up to 2 hours of incubation for some isolates and to confirm a negative test result. 96 The rCIM(-A) may already give a positive result at 2 hours (30 minutes incubation and 1.5 hours growth monitoring of the E. coli ATCC 25922 indicator strain) using standard 97 98 routine equipment and reagents (carbapenem disks, Trypticase Soy Broth, a table-top 99 centrifuge, a vortex and a nephelometer). We agree that rCIM requires extra hands-on time, thus making it less attractive for high-throughput laboratories, but it may be 100 appropriate for low throughput and low resource settings^{1,2}. Finally, both assays have 101 102 similar turn-around-times, as both require overnight bacterial cultures, and the longer detection time of the rCIM is only a small fraction of total reporting time. Moreover, for 103 104 initiating appropriate antibiotic treatments in critically-ill patients, rapid susceptibility testing using techniques that have been developed and endorsed by EUCAST are crucial, 105 even in low-and middle-income countries.¹⁰ 106

107

108 Transparency declarations

109	None to declare.		
110			
111			
112	Re	ferences	
113	1.	Muntean MM, Muntean A-A, Guerin F, et al. Optimization of the rapid carbapenem	
114		inactivation method for use with AmpC hyperproducers. J Antimicrob Chemother	
115		2021; 76 : 2294–301.	
116	2.	Muntean M-M, Muntean A-A, Gauthier L, et al. Evaluation of the rapid	
117		carbapenem inactivation method (rCIM): a phenotypic screening test for	
118		carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 73:	
119		900-8.	
120	3.	Jousset AB, Oueslati S, Bernabeu S, et al. False-Positive Carbapenem-Hydrolyzing	
121		Confirmatory Tests Due to ACT-28, a Chromosomally Encoded AmpC with Weak	
122		Carbapenemase Activity from Enterobacter kobei. Antimicrob Agents Chemother	
123		2019; 63 : e02388-18	
124	4.	Tijet N, Boyd D, Patel SN, et al. Evaluation of the Carba NP test for rapid detection	
125		of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa.	
126		Antimicrob agents chemother 2013; 57: 4578–80.	
127	5.	Kumudunie W, Wijesooriya LI, Wijayasinghe YS. Comparison of four low-cost	
128		carbapenemase detection tests and a proposal of an algorithm for early detection of	
129		carbapenemase-producing Enterobacteriaceae in resource-limited settings. PloS one	
130		2021; 16 : e0245290.	
131	6.	Emeraud C, Biez L, Girlich D, et al. Screening of OXA-244 producers, a difficult-	
132		to-detect and emerging OXA-48 variant? J Antimicrob Chemother. 2020; 75: 2120-	
133		2123.	
134	7.	Falgenhauer L, Nordmann P, Imirzalioglu C, et al. Cross-border emergence of	
135		clonal lineages of ST38 Escherichia coli producing the OXA-48-like	

136 carbapenemase OXA-244 in Germany and Switzerland. *Int J Antimicrob Agents*.

137 2020; **56**: 106157.

- Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing
 Enterobacteriaceae. *Emerg infect dis* 2012, 18, 1503-7.
- 140 9. Lombes A, Bonnin RA, Laurent F, et al. High prevalence of OXA-23
- 141 carbapenemase-producing Proteus mirabilis among amoxicillin-clavulanate
- 142 resistant isolates in France. *Antimicrob Agents Chemother*. 2021; Dec
- 143 20:AAC0198321.
- 144 10. Åkerlund A, Jonasson E, Matuschek E, *et al.* EUCAST rapid antimicrobial
- susceptibility testing (RAST) in blood cultures: validation in 55 European
- 146 laboratories. *J Antimicrob Chemother* 2020; **75**: 3230–8.