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Sedimenting and sheared bidisperse homogeneous suspensions of non-Brownian particles are
investigated by numerical simulations in the limit of vanishing small Reynolds number and
negligible inertia of the particles. The numerical approach is based on the solution of the
three-dimensional Stokes equations forced by the presence of the dispersed phase. Multibody
hydrodynamic interactions are achieved by a low order multipole expansion of the velocity
perturbation. The accuracy of the model is validated on analytic solutions of generic flow
configurations involving a pair of particles. The first part of the paper aims at investigating the
dynamics of monodisperse and bidisperse suspensions embedded in a linear shear flow. The
macroscopic transport properties due to hydrodynamic and nonhydrodynamic interactions (short
range repulsion force) show good agreement with previous theoretical and experimental works on
homogeneous monodisperse particles. Increasing the volumetric concentration of the suspension
leads to an enhancement of particle fluctuations and self-diffusion. The velocity fluctuation tensor
scales linearly up to 15% concentration. Multibody interactions weaken the correlation of velocity
fluctuations and lead to a diffusion-like motion of the particles. Probability density functions show
a clear transition from Gaussian to exponential tails while the concentration decreases. The behavior
of bidisperse suspensions is more complicated, since the respective amount of small and large
particles modifies the overall response of the flow. Our simulations show that, for a given
concentration of both species, when the size ratio \ varies from 1 to 2.5, the fluctuation level of the
small particles is strongly enhanced. A similar trend is observed on the evolution of the shear
induced self-diffusion coefficient. Thus, for a fixed A and total concentration, increasing the
respective volume fraction of large particles can double the velocity fluctuation of small particles.
In the second part of the paper, the sedimentation of a single test particle embedded in a suspension
of monodisperse particles allows the determination of basic hydrodynamic interactions involved in
a bidisperse suspension. Good agreement is achieved when comparing the mean settling velocity
and fluctuation levels of the test sphere with experiments. Two distinct behaviors are observed
depending on the physical properties of the particle. The Lagrangian velocity autocorrelation
function has a negative region when the test particle has a settling velocity twice as large as the
reference velocity of the surrounding suspension. The test particle settles with a zig-zag vertical
trajectory while a strong reduction of horizontal dispersion occurs. Then, several configurations of
bidisperse settling suspensions are investigated. Mean velocity depends on the concentration of both
species, density ratio and size ratio. Results are compared with theoretical predictions at low
concentration and empirical correlations when the assumption of a dilute regime is no longer valid.
For particular configurations, a segregation instability sets in. Columnar patterns tend to collect
particles of the same species and eventually a complete separation of the suspension is observed.
The instability threshold is compared with experiments in the case of suspensions of buoyant and
heavy spheres. The basic features are well reproduced by the simulation model.

I. INTRODUCTION applications, driven both by environmental issues and opti-

The precise understanding of the physics of suspended mization of operating costs. Some industrial processes like

solid particles is assuming greater importance in industrial ~ Water waste treatment, chemical and biorheological pro-
cesses need models to predict the behavior of solid/liquid

suspensions. We focus on two generic configurations of sus-
pension flow: the batch sedimentation of particles in a qui-
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escent fluid, and suspensions where the fluid undergoes a
simple shear. The sedimentation process is basically used for
separating particle-laden fluid and the sheared suspensions
are sites for migration (Ref. 1) and mixing of particles in
various viscometric flows (blood, etc.). Even though such
topics started to be studied at the beginning of the last cen-
tury with experiments for Stokes flows, there are still some
open issues related to the evolution of the microstructure in
sedimentation, to the velocity fluctuations and dispersion of
particles in a shear flow. We give special attention to bidis-
perse suspensions, because most industrial applications deal
with highly nonuniform distributions of particle size or den-
sity and polydisperse suspensions have received much less
attention than monodisperse ones. Our aim is to understand,
in the limit of very small Reynolds and Stokes number, the
microrheological and transport properties of nondilute bidis-
perse suspensions, where long range velocity perturbations
generate intricate multibody interactions (see Ref. 2 for some
illustrative flow configurations of a bidisperse suspension).
We restrict our study to non-Brownian particles as the typical
size is far beyond the colloidal limit. To answer basic ques-
tions that arise from industrial applications, it would be
needed to predict the dynamics of suspensions and the role
of the microstructure on the hydrodynamic interactions from
a macroscopic point-of-view (the mean settling velocity, ve-
locity fluctuations, spreading of interfaces, diffusion, stabil-
ity and rheology of suspensions). This prediction is much
more difficult in heterogeneous suspensions because the
physical parameters that control the interactions are more
numerous.

In the sedimentation case, the prediction of the mean
settling velocity of the particulate phase can be provided by
theoretical analysis (Ref. 3) or by empirical correlations
(Refs. 4 and 5) based on numerous experiments. The agree-
ment and the level of predictability are generally acceptable
for most applications. When the suspension is statistically
homogeneous, theoretical predictions (Refs. 6 and 7) exhibit
a divergent increase of the fluctuation levels with the size of
the vessel. Collective effects enhance the sedimentation ve-
locity of particle clusters. As the width of the container be-
comes larger, the typical size of clusters increases and in-
duces a high level of fluctuations. No experimental evidence
(Ref. 8) supports this proposition and various screening
mechanisms have been proposed (Refs. 9—11). The presence
of walls can promote horizontal or vertical gradients of con-
centration (Refs. 12 and 13) acting as a sink of velocity
fluctuations. Mucha er al.'* provided new insights on the
relation between the fluctuation level and a vertical gradient
of concentration in the settling suspension. All the experi-
ments are undoubtedly not homogenous and weak gradients
of concentration can influence the overall dynamics of the
flow suspension. In simulations, periodic boundaries induce
strict conditions of homogeneity and so fluctuation levels
tend to diverge in Stokes suspensions (Refs. 15-17). In the
simulation of settling suspensions, when the presence of a
bottom wall is imposed, saturation of the fluctuation levels is
recovered as a vertical gradient of concentration develops
(Ref. 18). But the controversy is still open while simulations
with top and bottom walls do not exhibit any gradient of the

particulate concentration in the bulk but confirm that particle
velocity fluctuations are strongly suppressed (Ref. 19). An
important result of the recent work of Nguyen and Ladd" is
that even a weak polydispersity of the particle size distribu-
tion can dramatically damp velocity fluctuations.

A bidisperse suspension can be characterized by four
nondimensional parameters. The size ratio A=a,/a;, the par-
ticulate concentrations of both species ¢;, ¢, (the total con-
centration of the suspension being ¢= ¢, + ¢,), and the ratio
of reduced densities y=Ap,/Ap, (where Ap is the density
difference between the fluid and the particle Ap=p—py). The
index 1 is associated with small particles, and 2 with large
particles. For a suspension settling under gravity, a useful
combination of these parameters defines the ratio of the set-
tling velocities: Rg=V,,/V,;=y\> (V, being the Stokes ve-
locity of a single particle in an unbounded quiescent fluid).

Distinct approaches have been proposed to investigate
the sedimentation in a polydisperse suspension. Theoretical
predictions are based on the analytic solution of interactions
between unequal spheres in the Stokes flow regime (Ref. 20).
With an assumption of a homogeneous suspension, Batchelor
and Wen®' derived analytic expressions of the mean settling
velocity in the dilute regime. A number of experiments (see
Refs. 22-24) have verified that their results match quantita-
tively the theoretical predictions. Away from the dilute re-
gime, most experiments are fitted by empirical relations but
agreement between the results of distinct authors is generally
qualitative. Davis and Gecol® proposed an interesting scal-
ing relation without open parameters using the coefficients
derived in the dilute regime. Peysson and Guazzelli*® have
recently investigated experimentally the evolution of the ve-
locity fluctuations in a bidisperse suspension. Numerical
simulations are also very instructive. Revay and Higdon27
have proposed simulations devoted to concentrated configu-
rations. They are based on the solution of Stokes equations
accounting for lubrication effects for the near-field interac-
tion. They formed averages over different spatial microstruc-
tures achieved by random seeding of the particles. In their
study, particle velocities are related to only static interactions
as the trajectories are not computed. Da Cunha et al.”® have
also proposed some new results on dynamic interactions in
monodisperse and polydisperese particulate Stokes flows.
They compared their results obtained with ordered and ran-
dom particle positions with theories and experiments. They
found good agreement for moderately concentrated suspen-
sions. Nevertheless, simulations on this topic are still very
few and it is still a challenging task to model the dynamic
behavior of complex dispersed two-phase flows.

When the flow is not driven by particles settling under
gravity, particle interactions are due to velocity gradients in
the carrying flow. Less theoretical and experimental works
exist on polydisperse suspensions under shear flow. Batch-
elor and Green® have analytically determined the hydrody-
namic interactions between a pair of particles. More recently,
Drazer et al.” have calculated translational and rotational
velocity fluctuations from low to high concentrated, homo-
geneous monodisperse suspensions. Although the Stokesian
dynamics method they used gives an accurate solution of the
Stokes equations, the authors were limited to simulating the



simultaneous motion of a few hundred particles because of
CPU limitations. They have found that the fluctuations re-
sulting from dynamic interactions in a shear flow are higher
than those resulting from a frozen random microstructure of
the suspension. But in both cases, the fluctuation level fol-
lows the dilute limit estimation based on pairwise interac-
tions up to 15% volume concentration. In a former work,
Drazer et al.’' showed that the probability distribution func-
tion of the velocity fluctuations have an exponential shape at
low concentrations as a signature of long term correlated
structures. They appeared to be Gaussian at high concentra-
tions where hydrodynamic screening is achieved by the ran-
dom multibody interactions. Lagrangian velocity autocorre-
lation functions computed by Marchioro and Acrivos®® and
Drazer et al.”’ decay with time, change over to negative val-
ues starting from a characteristic time scale of order 1/G
(where G is the flow shear rate) then go through a minimum
before approaching zero from below. This scaling shows that
particle trajectories are basically controlled by pair encoun-
ters at low concentration. The velocity fluctuations induce
after a long time a chaotic evolution of the suspension, which
is known to lead to the shear induced self-diffusion of par-
ticles even in the absence of a gradient of concentration and
for uniform shear. The diffusion process exists with only
hydrodynamics, even when Brownian thermal agitation is
negligible (infinite Péclet number and no inertia). Diffusion
coefficients are strongly increasing with the suspension con-
centration. Diffusion in such conditions has been studied in
many works, from the reference work of Leighton and
Acrivos™ to new experimental techniques developed by
Breedveld ef al.*** and numerical simulations of Marchioro
and Acrivos,32 Drazer et al.,3ISier0u and Brady.37 Their re-
sults match only qualitatively because of experimental uncer-
tainties and simulation shortcomings. The statistical behavior
of polydisperse sheared suspensions has not been thoroughly
explored. Chang and Powell®®** have studied the influence
of bimodal particles on the microstructure organization in
nearly close-packing suspensions. They also addressed the
determination of the suspension viscosity as well as the short
time and long time diffusivity.

Sedimentation and shear induced migration may exist
simultaneously when settled particles are exposed to a shear
flow. Nonhomogeneity of the particle distribution and varia-
tion of the effective viscosity induce the particle migration
across the streamlines of the flow. Viscous resuspension has
an important effect on the dynamic response of the suspen-
sion in complex flows. Migration of particles is related to
several mechanisms: gradient of shear, gradient of concen-
tration, and curvature of the streamlines. The behavior of
polydisperse systems is more complex than that observed in
the monodisperse system. Shauly et al.***" have proposed
models extended to polydisperse systems and they were able
to compare their results favorably with experimental steady
profiles of particle concentration.

A fully coupled numerical model allows us to simulate
several configurations of bidisperse settling and sheared sus-
pensions. Under the approximation of Stokes flow, the model
is able to simulate dynamic interactions between thousands
of particles. The paper is organized as follows: First, we

briefly describe the numerical model and reference previous
validations and studies. Then, we proposed validations of the
numerical approach for the special case of unequal particles.
The paper aims at investigating settling suspensions and
shear induced interactions. We address the determination of
statistical quantities of monodispere and bidisperse solid-
liquid sheared suspensions. We have a special interest in the
simple case of a settling test sphere embedded in a monodis-
perse suspension. Finally, we investigate the particular be-
havior of suspensions undergoing a drastic segregation pro-
cess as observed by Weiland et al.** and Batchelor and Van
Rensburg.43

Il. NUMERICAL MODEL AND VALIDATION

The complexity of dispersed two-phase flows is related
to the numerous length scales that have to be resolved simul-
taneously. In the case of Stokes flows, the velocity distur-
bance induced by a single particle falls off very slowly and
then multibody hydrodynamic interactions control the evolu-
tion of the suspension. Stokesian dynamic (Ref. 44) simula-
tions have been extensively used to model the behavior of
colloidal and noncolloidal systems under the low Reynolds
number assumption. They require the inversion of the mobil-
ity matrix and are limited to a few hundred particles. A num-
ber of improvements have been proposed to reduce the com-
putational cost of the initial technique (splitting the
hydrodynamic interactions into a far-field mobility calcula-
tion and a pairwise additive resistance interaction, see Ref.
45). The major step forward is probably the accelerated
Stokesian dynamics proposed by Sierou and Brady.46 It is
now possible to simulate hydrodynamic interactions among
O(10%) particles. Other numerical methods have been suc-
cessfully used outside the Stokes regime (distributed La-
grangian multiplier,47 front tracking method*®).

We propose to use a numerical model, which is able to
simultaneously couple the solution of fluid flow equations
and the Lagrangian tracking of the particles. The force cou-
pling method (FCM) is based on a low order multipole ex-
pansion of the velocity disturbance induced by the presence
of particles. The equations of the fluid motion are solved
directly and the forcing term is modeled by a spatial source
of momentum added to the Stokes equations. The accuracy
of the model increases as we add higher order terms in the
multipole expansion, but solving the equations becomes
more time consuming.

A. Model equations

We consider that the fluid is incompressible [Eq. (1)], we
neglect the inertia of the fluid and assume a constant viscos-
ity u for the carrying fluid flow. The velocity field u(x,7) and
the pressure p(x,f) are solutions of the Stokes equations
[Egs. (1) and (2)],

V-u=0, (1)
0=—Vp+uViu+f(x,1). (2)

The forcing term on the right-hand side of Eq. (2) is a spatial
distribution of momentum which is induced by the presence



of the moving particles. This term is spatially and temporally
evolving while the particles are freely moving under hydro-
dynamic interactions. Its expression is based on the theoret-
ical analysis of low Reynolds number flows. We consider
only two terms [see Eq. (3)] of the multipole expansion,
namely the force monopole (Stokeslet) and the force dipole,

Np
£ix,0) =2 | FPAx=-Y"(1)

n=1

+ G(")—A’ (x - Y(")(z))} (3)

The Njp particles are centered at locations Y"(r) and the
source terms are spread out on the flow field using finite size
envelopes [Eq. (4)]. The width of the Gaussian envelopes
[o for A(x) and ¢’ for A’(x), respectively] are related to the
particle radius a by analytic expressions

(2ma?) "2 e(—r2/202)

The magnitude of the interaction force F* is directly related
to the force acting on the considered particle. It is a combi-
nation of buoyancy, inertia effect, and an external force F,

[Eq. (5)].

Ax) = with 7= [x|. 4)

AVW
Fo = (mP_mF)<g_ d ) +Fg’c)n (5)
G(”) is a tensor which can be split into symmetric and anti-
symmetrlc parts. The symmetric part (namely, the stresslet)
contributes to enforce a solid body rotation within the fluid
occupied by the particle,

(n)

T =—(Ip- Ip)( dﬁt ) + T (6)
Similarly the torque term [Eq. (6)] sets the amplitude of the
antisymmetric part of G , mp (respectively, my) is the mass
of the particle (respectlvely, fluid) volume and I, (respec-
tively, I) is the particle (respectively, fluid) rotational iner-
tia. Throughout the paper, both the translational and rota-
tional inertia of particles will be neglected. The ratios a/o
and a/o’ are set as to match, respectively, the Stokes drag
for an isolated sphere (radius a) and to ensure an average
zero rate of strain [Eq. (7)] within the volume occupied by
the particle,

Sij=lf <%+%)A’(X—Y(”)(I))d3x=0. (7)
2 dx;  ox;
These requirements are fulfilled exactly in the limit of the
Stokes approximation while a/o and a/o’ are_set analytl—
cally for a Gaussian shaped envelope: a/ 0—\77 and a/o’
=(6V 77)1/3 (see details in Refs. 49 and 50).

Our paper aims at investigating two flow configurations
where each term has a special contribution. The sedimenta-
tion process is basically controlled by particles settling under
gravity. Hindrance effects are mostly due to the backflow of
the continuous phase but also to other factors such as the
effective viscosity of the suspension. The FCM includes both
contributions. The force monopole term is dominant driving

the interphase coupling mechanisms for settling suspensions
and the effective viscosity enhancement is also modeled
through the contribution of stresslets. When the suspension is
embedded in a shear flow, the force monopole is negligible
and the stresslet will be the major contribution for nonbuoy-
ant spheres.

Particles move freely in a Lagrangian framework as their
trajectory equations are solved simultaneously. Particle ve-
locities and rotation rates are obtained with a spatial filtering
of the flow velocity field based on the spherical Gaussian
envelops [Egs. (8) and (9)],

V(r) = f u(x,)A(x - Y1) dx, (8)

Q"(7) =J V X u(x,)Ax - Y?(1)d’x. 9)
Then, the trajectory of each particle is computed by integrat-
ing Eq. (10),

dY(”)
dt

=V"(). (10)

Time evolution is performed by means of a fourth order
Adams-Bashforth scheme. Periodic boundary conditions are
imposed on the simulation domain for modeling the evolu-
tion of a random homogeneous suspension. The numerical
scheme used for the solution of the Stokes equations takes
advantage of the periodic boundary conditions by using fast
Fourier transforms. We used a method of domain decompo-
sition to achieve scalable performance on parallel supercom-
puters. The width of the cubic domain L is kept constant and
equal to 2. Various volumetric concentrations of the sus-
pension correspond to the different number of particles in the
domain, typically 3200 particles for a 12% concentration in a
1283 domain. More details on the theoretical background and
an extensive validation of the method are available in Refs.
49-51.

B. Validation tests

Results on both sedimenting and sheared suspensions of
solid particles can be obtained by means of two distinct pro-
cedures because Stokes equations are not time dependent and
the velocity field depends only on the relative positions of
the particles. In a static simulation, particles are randomly
seeded in the domain and the computation of interactions
provides the flow velocity distribution and consequently the
particle velocities. Particle seeding respect the nonoverlap-
ping condition. Averages over several seeding (random mi-
crostructure) are formed to get statistical quantities. The dy-
namic way to form averages accounts for the unsteady
evolution of the suspension. Particles are initially seeded at
random positions. Then, trajectories are computed as a fol-
lowing sequence of fully coupled interactions between the
fluid and the particles. Ensemble averages are formed over
all the particles as time goes on. In the case of settling
spheres in an initially quiescent fluid, the back flow hinders
the mean velocity of the suspension. A uniform upward pres-
sure gradient counterbalances the average forcing term in-



Dynamic simulation

Static simulation

Hindered settling function
Hindered setiling function

FIG. 1. Mean settling velocity of a monodisperse sus-
pension. Left: Richardson and Zaki (Ref. 4) (n=4.7,
solid line), Buscall et al. (Ref. 5) (dashed line), FCM
simulation (circles), Nicolai et al. (Ref. 66) (stars).
Right: Batchelor (Ref. 3) (dotted line), Brady and Dur-
lofsky (Ref. 72) (solid line), Revay and Higdon (Ref.
1 27) (dashed line), FCM simulation (triangles).
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duced by buoyancy forces of settling particles. We compare
the results of the two averaging procedures in Fig. 1 when
the suspension is monodisperse. It is clear that, our simula-
tions with the FCM lies within the error bars of the careful
experiments of Nicolai et al.’* and are well approximated by
classic empirical relations. We observed that both the static
and dynamic simulations are close to other studies. The mean
settling rate of a suspension is not a suitable quantity to
validate the adequacy of the model as error bars of experi-
ments and assumptions of theories restrict the precision of
the results. For more details on the simulation of monodis-
perse settling suspensions, we refer to our former work (Ref.
17) where we focused on inertial screening in low-but-finite
Reynolds number sedimentation.

0.2

concentration

In previous studies, the FCM has been validated only for
particles of equal size. In the present paper, we present care-
ful comparisons with analytic solutions of the flow around
sedimenting particles of unequal size and density (Ref. 53).
In Fig. 2, the relative velocity of particles aligned vertically
or horizontally shows an excellent agreement for the resolu-
tion of the far field flow U}, and V, characterize the relative
velocities of two settling particles aligned vertically and
horizontally. In the reference case of equal spheres, both
quantities are identically equal to zero as particles settle with
the same velocity for any separation distance. Remember
that N\=a,/a, is the size ratio (the index 1 is associated with
the small particle and 2 with the large one) and 7y
=Ap,/Ap, is the reduced density ratio. With the monopole

06 T T T T T T

b FIG. 2. Relative settling velocity of two isolated un-

equal spheres (\=2 and y=1; 1/2; 1/3; 1/4; from top to
bottom). U,,: particles are aligned vertically; V,,: par-
ticles are aligned horizontally. Solid line: analytic solu-

tion (Wacholder and Sather, Ref. 53); dashed line and
circles: FCM monopole; dashed line and stars: FCM
monopole and dipole.




only, the model is clearly less accurate in the configuration of
vertically aligned particles. The flow perturbation induced by
the upper particle has to flow around the other particle. In the
FCM, fluid fills the entire domain and particles do not have a
physical solid-liquid interface. When the gap é=r/a, is
smaller than 2.5 (é=1.5 corresponds to contact for A=2) the
discrepancy becomes important. The multipole decomposi-
tion truncated to the first order (force monopole) is not suf-
ficient when near field interactions have to be accounted for.
Therefore, we have to improve the flow resolution by incre-
menting the order of the multipole decomposition. The pre-
cision of the FCM is increased by adding the force dipole in
the source term. An iterative scheme is used to enforce a zero
rate of strain within the volume occupied by the particles. In
Fig. 2 (top), we point out that including the force dipole
provides a net benefit on the resolution of short range inter-
actions. With a set of particular parameters, unusual closed
trajectories develop (Ref. 53). We obtained the same orbital
trajectories but when particles are close to contact our model
is unable to reproduce lubrication effects within the thin gap.
In the case of sedimenting particles, close contact of particles
are not expected to occur very often and dynamics is related
to collective hydrodynamic interactions.

Particles suspended in a shear flow are driven continu-
ously by the flow and approach each other along the com-
pression axis. In the case of neutrally buoyant particles, the
interaction is driven only by the symmetric force dipole. We
used the FCM for the case of a pair of interacting particles in
a shear flow, and the results were compared to the study of
Batchelor and Green” who have determined analytical ex-
pressions of the relative velocity [Eq. (11)] and rotation rate
[Eq. (12)]. These expressions can be written in terms of three
nondimensional functions (A, B, and C) which depend on the
particle nondimensional separation distance r/a,

ry(BI2 + r%/rz(A -B)),
V(r)=—=G\r (B2 +r3*(A-B)), (11)
riryr3/r*(A = B),

r1r3/r2,
Q(r) == ——\—rrslr?, (12)
(r%—r%)/rz,

r=(r,,ry,r3) is the separation distance between the two par-
ticle centers and G is the shear rate of the flow. The direction
1 is the mean flow direction, 2 is the direction of shear and
direction 3 is normal to the plane of shear (vorticity direc-
tion). The evolutions of A, B, and C are plotted in Figs. 3(a)
and 3(b) for two equal or unequal particles. Precise values of
A and B in the case of unequal particles were obtained by
Pesche.™ Tt is clear that the FCM performs well when the
distances between solid boundaries are sufficiently large, but
it does not capture the local effects of viscous lubrication
forces for small gap widths. To improve the results, Dance
and Maxey55 developed a parameterization of the lubrication
forces to achieve a better accuracy of short-range hydrody-
namic interactions. Their work was based on exact results for
isolated pairs of equal particles, and on careful cross-
checking of results published in the literature. Lubrication

15 2 25 3 35 4 45
(b) &

FIG. 3. A, B, and C vs the separation distance {=r/a,. Solid lines: analyti-
cal solution [(a) Batchelor and Green, Ref. 29 and (b) Pesche, Ref. 54].
Dashed lines: far-field approximation (Batchelor and Green, Ref. 29 in both
figures). Symbols are from this work: (a) A=1: Plus: A, B and C with FCM
alone; open squares and circles: A and B with [FCM + lubrication forces
(6€=2.2)]. (b) N=2: squares: A, circles; B, stars; C, dotted line: far-field
approximation of C.

forces are calculated in a pairwise additive manner. Figure
3(a) shows that the calculation of the interactions between
close particles is significantly improved when the lubrication
forces are added to the FCM. These forces were applied for
dimensionless gap widths between particle surfaces &
=(r/a)-2=0.2, since the force components were deter-
mined using asymptotic expansions.

C. Nonhydrodynamic repulsive force

Obviously, the FCM is only an approximate model since
fluid occupies the whole domain and no-slip boundary con-
ditions on the particle surface are not strictly imposed. Shear
flow drives interacting particles in very close proximity. At
short separation distance, the FCM is supplemented by the
lubrication forces which become dominant. However, for a
fixed time step, the hydrodynamic effects alone are not suf-



ficient to prevent particle numerical overlapping in all cases.
Dratler and Schowalter™® have found that even when the time
step is drastically reduced and when the numerical stability
problems are eliminated, particles still overlap with a mini-
mum of 1 pair over 25 particles for moderate concentrations
(Iess than 20%). The number of overlapping pairs increases
with the concentration. Therefore we used a repulsion bar-
rier. The repulsive force F;, [Eq. (13)] is added to the mono-
pole coupling term when the distance between the particle
centers r is less than a prescribed cutoff separation distance
Rreﬁ

I ref R?ef 7'2 g
F,=—-—| —— | x, 13
b 2a {eref —4a? (13)

F, is enabled at an activation distance corresponding to 10%
of the particle radius when the repulsion barrier is used alone
and 2.5% when it is supplemented to the lubrication forces.
The profile of the force barrier varies smoothly from O to F ¢
at contact. The force scale F, is calibrated to prevent over-
lapping of approaching particles. For any value of F,; higher
than the limit which prevents overlapping or for large varia-
tions of the activation distance (from 0.01 a to 0.1 a) we did
not observe significant variations (less than 10%) on the sus-
pension statistics (velocity fluctuations and probability den-
sity functions) in the case of sheared suspensions. The deter-
mination of self-diffusion coefficients is more critical. This
issue is discussed in Sec. III A. In the case of sedimenting
suspensions, previous studies have also shown that the influ-
ence of the repulsive force on the overall dynamics of the
suspension is not significant (Refs. 57 and 58). This rough
treatment of the near-field hydrodynamics of particles near
contact in both sheared and sedimenting configurations may
restrict the accuracy of the model. Only low to moderately
concentrated suspensions could be investigated (volumetric
concentration lower than 20%).

Although this force is used to fix a numerical inaccuracy
of the model by preventing particles from overlapping, it
could be interpreted in terms of physical considerations.
Even if particles in solid-liquid suspensions are not charged
they generally experience a short range interparticle force
due to electric-double layer repulsion (DLVO-type) when the
gap is shorter than 1072 a. The suspensions that we study
may be considered as stabilized suspensions while a strong
repulsive force prevent the formation of permanent cluster of
particles. Short range attraction forces such as the Van der
Waals potential are screened by the hydrodynamic lubrica-
tion force and the repulsive barrier. The physical analog of
our simulations would be the case where electrostatic repul-
sive forces are overcoming the Van der Waals attraction
force.

We studied the role of the different contributions of
FCM on the relative trajectories of two particles in a shear
flow (Fig. 4). The particles are driven continuously to ap-
proach each other. The limit region of overlapping is mate-
rialized by the thin dashed line located at r=2 a. The par-
ticles overlap when only the monopole and the dipole forces
are applied. When the model is supplemented with the lubri-
cation forces (nondimensional gap width £=0.2), the ap-
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FIG. 4. Relative trajectory of the centers of two equal spheres in a shear
flow [the initial relative position is (r;=x=-3a; r,=y=0.1a)]. Filled circle:
reference particle. Thin dashed circle: r/a=2 (overlapping limit). Bold
dashed line: r/a=2.2 (limit of the lubrication layer). A: FCM alone (mono-
pole + dipole). O: [monopole + dipole + lubrication force (e=0.2)]. [:
[monopole + dipole + repulsion force (¢=0.05) + lubrication force (&
=0.2)]. V: [monopole + dipole + repulsion force (e =0.2)].

proaching particle rolls over the reference particle. The lu-
brication effects between close particles enhance the
repulsive behavior on the approaching side and attraction on
the receding side. In some cases, overlapping does occur and
we need to include the repulsive barrier. Consequently, the
fore-aft symmetry of the trajectory is broken and a finite drift
characterizes the motion of the particles across the stream-
lines. If the repulsion force is used without the lubrication
model, the finite drift is larger.

We point out that most of the results of monodisperse
and bidisperse sheared suspensions were obtained using only
the repulsion force within the FCM. Some specific simula-
tions have been carried out with the lubrication model. In
these cases, the local hydrodynamic interactions are properly
modeled. Quantitative comparisons provide an evaluation of
the accuracy of statistic quantities obtained with the repul-
sion force only.

lll. SUSPENSIONS IN A SIMPLE SHEAR

All the sheared suspensions considered in the present
paper are macroscopically homogeneous, with neutrally
buoyant, non-inertial and non-Brownian particles, in the
limit of vanishing Reynolds number. In order to preserve the
homogeneity of the suspension under shear flow, we impose
periodic boundary conditions in the three directions. The
Stokes equations are linear, so we only solve the perturbation
of the flow induced by the presence of the particles (stresslet
contributions) and superimpose a linear shear flow u;=Gx,
(G is the shear rate) on the particle motions. When a particle
exits the simulation domain from the bottom (respectively,
upper) boundary, it appears on the opposite side, and its ve-
locity must be adjusted by adding (respectively, removing)
the flow velocity GL, where L is the typical width of the



domain (most simulations have been carried out with L/a
=48). This is equivalent to applying the shear in a dynamic
way by means of the Lees-Edwards boundary conditions
(Ref. 59). In a sheared suspension the typical length, time
and velocity scales are a, G7!, and aG, where a is the par-
ticle radius. The trajectories are integrated with a constant
time step 5X 1073 G™!. This corresponds to a decrement of
a/100 of the separation distance between two approaching
particles. Statistical quantities are averaged over long time
series. Typically, we simulate the suspension flow during a
dimensionless time Gt proportional to 100¢~'%, During this
time, a particle is expected to experience enough interactions
with other particles to achieve its steady statistical regime. It
has been clearly pointed out that the determination of self-
diffusion coefficients needs very long time series for reach-
ing the diffusive behavior (Ref. 37).

A. Monodisperse suspensions

Based on the analytic expressions of the relative velocity
of particle pairs in a Stokes shear flow, Batchelor and
Green” have theoretically calculated the particle trajectories
and the pair probability density function [namely, g(r) being
its radial profile]. They showed that closed trajectories exist
and produce a divergent evolution of g(r) at short separation
distances. Stokes equations are linear and reversible. So a
particle follows the same streamline before and after a par-
ticle encounter. Self-diffusion occurs due to an interaction
with a third particle (Ref. 60) and more generally due to
multibody hydrodynamic interactions. Acrivos et al.®" stud-
ied the self-diffusion coefficient parallel to the flow by intro-
ducing a mechanism of an interaction with an additional pair
of particles. A nonhydrodynamic repulsive force (electric
double-layer repulsion, short scale roughness) leads to fore-
aft symmetry breaking and a particle encounter induces a
finite drift of the particles across the streamlines (Ref. 58)
which also contributes to the diffusion of the particles. Using
the analytic work of Batchelor and Green,29 Drazer et al.*’
have predicted theoretically the evolution of the fluctuation
(translation and rotation) tensors [Egs. (14) and (15)] of the
suspension. They used two approximations of the micro-
structure in the dilute limit, a purely random pair probability
density function and the pair probability density function de-
rived by Batchelor and Green® accounting for hydrody-
namic interactions. Following symmetry arguments in a di-
lute suspension, the two diagonal terms 7,; and T, of the
fluctuation tensor are equal. The nondiagonal terms are
strictly zero when the fore-aft symmetry is preserved,

Tij = (<Uin> - <Ui><Uj>)/(Ga)2, (14)

wyy= () = (CXT)/AG). (15)

In Egs. (14) and (15), v (respectively, I') is the translational
(respectively, rotation) particle velocity perturbation (the dif-
ference between the instantaneous velocity of the particle V
and the local nondisturbed fluid velocity u). () stands for
averages in time and over all the particles. We verified that
(v;) and (I';) are vanishingly small when averages are formed
over long time series.
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FIG. 5. Diagonal terms of the velocity fluctuation tensor vs concentration.
Stars: T; filled circles: T,,; filled triangles: Ts3; solid lines: dilute limit
theory based on the pair probability function of Batchelor and Green (Ref.
29). Dashed lines: dilute limit theory assuming a random distribution in a
static simulation (7,=T5,>Tx3).

Figure 5 shows that the diagonal terms of the transla-
tional velocity fluctuation tensor scale linearly with the con-
centration up to 20%. They are highly anisotropic, the fluc-
tuations in the flow and shear directions (7, and T,) are
nearly four times larger than the fluctuations in the spanwise
direction T33. The velocity fluctuations of the particles are
compared to the theoretical prediction of Drazer et al.®® and
show good agreement. A linear scaling was expected to oc-
cur up to moderately concentrated suspension as the velocity
perturbations induced by the stresslet contribution decays
like 1/r2. While the theoretical prediction of the absence of
nondiagonal terms is based on an assumption of fore-aft
symmetry of interactions, it is expected that adding a nonhy-
drodynamic repulsive force may induce a finite value of the
T, term. Figure 6 shows that all the nondiagonal terms are
zero except T, which is negative. Similarly, Drazer et al.
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FIG. 6. Off-diagonal terms of the particle velocity fluctuation tensor vs
concentration. Filled diamonds with solid line: T,; other symbols stand for
T3 and T»s.



found that the magnitude of T, increases with the concen-
tration. The repulsive force depletes the receding side of the
particles and then negative cross-products v v, of the veloc-
ity perturbations are more probable [see Eq. (11)]. Calculat-
ing the pair probability density function indicated that the
radial dependence is not isotropic. The radial evolution
shows a sharp peak at a separation distance near r=2a cor-
responding to contact. We have also noticed that the prob-
ability of finding close particle pairs in a shear suspension is
larger than the peak value due to only excluded volume in a
random static suspension. It suggests that hydrodynamic in-
teractions under a shear flow increase the lifetime of particle
pairs close to contact. Rotational fluctuation levels are not
displayed but their evolution with increasing concentration
followed a similar trend as discussed above. The fluctuations
in the spanwise direction have the largest amplitude and wy,
is positive and increases with the concentration.

When the numerical model is supplemented with the
short-range lubrication forces, the fluctuation level is slightly
higher (approaching the theoretical prediction in the dilute
limit). Enhancement of velocity fluctuations by lubrication
effects are related to an extended time of interacting particles
in close vicinity.

Normalized probability density functions of the transla-
tional velocity fluctuations in the shear direction are shown
in Fig. 7(a) for four different volume fractions. We obtained
basically the same plots in other directions. The first obser-
vation is that the shape is changing as the concentration in-
creases. Intense velocity fluctuations are more probable than
the Gaussian estimate. For example, in Fig. 7(b) (5% con-
centration), a best fit show of the pdf is composed of a
Gaussian behavior for the weak velocity fluctuations |v/s|
<1 (where s is the standard deviation of velocity fluctua-
tions) and exponential tails for intense fluctuations. Such a
statistical behavior is related to the presence of persistent
small-scale structures, due presumably to the short range hy-
drodynamic interactions of pair of particles at low volume
fraction (Ref. 31). Simulations including the lubrication
forces gave very similar results. Whereas, when the concen-
tration is increased, the probability density function has a
more pronounced Gaussian shape. The mean separation dis-
tance between the particles is reduced leading to multiple
many-body interactions with a weaker overall correlation.

The time required to get uncorrelated velocity fluctua-
tions along the particle trajectories is characterized by the
evolution of the normalized Lagrangian velocity autocorrela-
tion function R,,(7) in the transverse direction. Figure 8 is a
plot of the velocity autocorrelation functions for different
suspension volumetric concentrations up to 20%. It can be
observed that in all cases the velocity fluctuations change
their sign after a typical time of order 1/G suggesting that
pairwise interaction is the major contribution to anticorre-
lated motions. A two particle encounter has a lifetime of
1/G. The negative region is more pronounced at low con-
centration but is still prominent at moderate concentration in
agreement with Marchioro and Acrivos.*® Another important
characteristic time scale is the time required to reach uncor-
related fluctuations. We obtained that fully uncorrelated mo-
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FIG. 7. Normalized PDF of particle velocity fluctuations in the flow direc-
tion (symbols), compared to the Gaussian distribution function (dashed
line). (a) Triangles: ¢=1%; circles: ¢=5%; squares: ¢=10%; stars:
¢=20%. (b) Plus: ¢=5%. Solid line: best fit of the PDF by the stretched
exponential function PDF(v/s) =~2/+2 exp(=1.5v/s)).

tions are achieved around 8/G nondimensional time units
and slightly shorter for more concentrated suspensions.

Finally, the long time uncorrelated fluctuations induce a
stochastic transport of the particles in the shear flow in spite
of the deterministic and linear nature of creeping flows. It is
known that at least three interacting particles are necessary to
lead to long time unpredictability in Stokes flow. This overall
chaotic motion is generally called shear induced self-
diffusion. The transverse diffusion coefficient can be deter-
mined in two ways. According to the first method, it is cal-
culated from the integral of the velocity autocorrelation
function over a long period of time [Eq. (16)],

©

Dy, = Tzzf Roy(1)dt. (16)
0
The self-diffusion is made dimensionless by Ga?®. It is the

product of the fluctuation level times the Lagrangian integral
time scale (convergence of the time integral is displayed in
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FIG. 8. Normalized Lagrangian autocorrelation function R(7) of the velocity
fluctuations and shear induced self-diffusion coefficient D,, calculated
by the integration of R(7): —, ¢=1%; ---., $=5%; ", $=10%;
eoe p=20%.

Fig. 8). It is important to note that we found in our simula-
tions an enhancement of the velocity fluctuations but also an
increase of the integral diffusion time with increasing con-
centration. The second method is based on the long time
behavior of the particle mean-square displacement [Eq.
(17)]. At short time scale the behavior of the mean-square
displacement is not diffusive (> growth rate) and only when
the growth becomes linear, D,, can be computed from half of
the slope,
_ L ad e

Dy = 2Ga2,Ln;dt<(x2(t)_x2( ). (17)
The time evolution of {(x,(f)—x,(0))*)/Ga*> on a log-log
scale (Fig. 9) shows a clear transition from quadratic to lin-
ear growth rate after a nondimensional time 8/G. This char-
acteristic time scale is similar to the time required to get
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FIG. 9. The temporal evolution of particle mean square displacement
{(x,(t)=x,(0))%)/Ga®. The curves from bottom to top correspond, respec-
tively, to the concentrations: ¢={1% ,5% ,10% ,15% ,20%}.
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FIG. 10. Shear induced self-diffusion coefficient D,, vs concentration. [,
experimental work, Leighton and Acrivos (Ref. 33); +, experimental work,
Breedveld er al. (Ref. 36); *, analytic prediction, Acrivos et al. (Ref. 61); O,
Stokesian dynamics, Drazer et al. (Ref. 31); I>, Stokesian dynamics, Mar-
chioro and Acrivos (Ref. 32); ¥, accelerated Stokesian dynamics, Sierou
and Brady (Ref. 37); ¥ with solid line: [FCM + barrier repulsion (&
=0.2)]; A with dashed line: [FCM + lubrication force (¢ =<0.2); + barrier
repulsion (¢ =0.05)].

uncorrelated velocity fluctuations (Fig. 8). Such a behavior is
characteristic of the diffusion regime and the self-diffusion
coefficient may be obtained by half the slope of the linear
growth rate. At low concentration, the suspension particles
need more time to reach the diffusive behavior. Indeed, the
diffusion occurs after each particle encountered multiple in-
teractions with other particles. The time between two con-
secutive interactions scales with ¢! and decreases with in-
creasing concentration. We can notice that both ways of
determining the self-diffusion coefficient lead to the conclu-
sion that long time sequences are necessary to achieve a
diffusive-like behavior of the suspension. Sierou and Brady37
claimed that most experiments were flawed due to this
limitation.

The self-diffusion coefficient is strongly dependent on
the volume fraction of the suspension (Fig. 10). The results
we obtained with the FCM are in the range of the former
studies. Our simulations stand within the scattered results
achieved by theoretical prediction, experimental measure-
ments, and numerical simulations. Indeed, the data in the
literature are scattered due to experimental limitations (short
time used by Breedveld et al.** for the diffusion calculation),
simulation limitations (discussed in Ref. 37) or theoretical
assumptions (Ref. 60). If the diffusion process was con-
trolled by the finite drift induced by the nonhydrodynamic
repulsive force, the transverse self-diffusion coefficient
would have scaled linearly with the concentration. In an ex-
tremely dilute regime, we should recover this linear scaling
but statistics are much longer to converge as particle encoun-
ters become very rare. Thus, we have tested the effect of the
repulsion barrier by varying the amplitude of the force scale
at a constant concentration of the suspension. We obtained a
scattering of less than 30% for large variations of the repul-
sion force. Compared to former numerical studies, the self-
diffusion coefficient computed with the FCM is slightly



overestimated which is essentially related to the inaccurate
representation of the viscous local effects when the lubrica-
tion model is not used. In Sec. I C we have checked the
effect of the lubrication forces on the relative trajectories of
an interacting pair (see comments of Fig. 4). Then, we per-
formed new simulations to achieve the statistical behavior of
the suspension (¢p=5% and ¢=15%). When improving the
local hydrodynamic interactions with the lubrication forces,
the new results showed that the simulations with the simple
repulsion barrier were not misleading. Translational velocity
fluctuations and pdf were correctly evaluated (10% average
underestimation). Actually, this can be easily understood.
The repulsion force has been calibrated to prevent overlap-
ping and then gives correct prediction of perturbation veloc-
ity of interacting particle pairs. The determination of the
shear-induced coefficients is more critical because they de-
pend on multibody interactions but also on the finite drift of
the particles across streamlines at each particle encounter.
When using the lubrication forces, we got a reduction of
35% of the self-diffusion coefficients in the shear and span-
wise directions. The agreement with the recent simulations
of Sierou and Brady37 is fairly good.

We also evaluated the self-diffusion coefficient in the
spanwise direction D33 following the same ways. We found
that it behaves similarly as D,, when the concentration in-
creases with the same qualitative agreement with the previ-
ous works. However, we found that the self-diffusion tensor
at a fixed solid fraction is anisotropic, i.e., D,/D33~ 1.5, in
agreement with the other experimental and numerical inves-
tigations (Refs. 31 and 35).

B. Bidisperse suspensions

Based on the description of the dynamics of monodis-
perse suspension, it is of major interest to investigate bidis-
perse suspensions undergoing shear as most of the practical
applications are concerned with highly polydisperse particle
distributions. Statistical quantities may be scaled by an aver-
age particle diameter with the assumption that the qualitative
behavior does not depend on the size. The analysis of the
results on bidisperse suspensions is more complicated since
it depends simultaneously on many nondimensional param-
eters (see the Introduction). Varying all the parameters re-
quires an enormous amount of independent simulations. To
the best of our knowledge, only two works (Refs. 38 and 39)
have proposed a detailed statistical study of polydisperse
suspensions under shear, but these are limited to simulations
in two dimensions and rather high concentration.

In all the suspensions that we have considered in this
part, the density ratio y=1 and we neglect the effect of buoy-
ancy. The suspension is homogeneous as particles are ini-
tially randomly seeded regardless of their size. We carefully
checked that initial positions and trajectories were not over-
lapping. At low to moderate concentration, homogeneity is
preserved because particle interlocking is not occurring. This
is completely different from the dynamics observed by
Chang and Powell™ at concentrations close to packing. They
found that the formation of clusters of the particle is the
major point that drives the macroscopic behavior of the sus-
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FIG. 11. Velocity fluctuations in the shear direction 7, vs the size ratio \
(p=10%; P,/ ¢, =1). Filled squares with solid line: small particles; empty
circles with dashed line: large particles. Horizontal lines: fluctuation level
for a monodisperse suspension (FCM) (solid line ¢=10%, dashed line
$=5%).

pension. We looked at the suspension microstructure through
the pair probability density functions (g;;, g12, and g»,) and
we have observed that particle pairs of different sizes are
occurring.

First, we fixed a constant total volume fraction of the
suspension to ¢=,+ d;=10% and we studied the effect of
varying either the size ratio \ for a given concentration ratio
¢,/ ¢, (index 2 stands for the large particles) or we varied
the concentration ratio for a given size ratio.

Figure 11 shows the evolution of the translational veloc-
ity fluctuations for ¢,/ ¢;=1. The fluctuation levels of both
species have been scaled with respect to their respective size.
This dimensionless representation eases the analysis as the
comparison with a monodisperse equivalent configuration is
straightforward. On the same plot, we compared the fluctua-
tion levels to the case of a monodisperse suspension having
either a volume fraction of 5% or 10%. The behavior of the
fluctuations is qualitatively different for the two species. As
the size ratio increases, the velocity fluctuations of the small
particles is enhanced compared to a monodisperse case at the
same total concentration. For instance, when A=2.5, the ve-
locity fluctuations of the small particles is almost twice the
monodisperse case. The large particles experience an oppo-
site trend as the presence of small particles seems to hinder
fluctuations of this specie. Velocity fluctuations of the large
particles are eventually lower than if they were alone in the
suspension (monodisperse ¢=5%). The same trend is ob-
tained for fluctuations in other directions, as well as for the
transverse shear induced self-diffusion coefficient (Fig. 12).

Then, for a given size ratio (\=2), Figs. 13 and 14 quan-
tify the impact of varying the concentration ratio (¢,/ ¢;) on
the statistical quantities. The fluctuations as well as the dif-
fusion coefficients for both species increase while the
amount of large particles increases (¢,/ ¢;=1/9 corresponds
to 10% of large particles and ¢,/ ¢; =9 corresponds to 90%).
We compared this with the reference case of a 10% total
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FIG. 12. Shear induced self-diffusion coefficient in the shear direction D,,
vs the size ratio N (¢=10%; ¢,/ ¢,=1). Filled squares with solid line: small
particles; empty circles with dashed line: large particles. Horizontal lines:
diffusion coefficient for a monodisperse suspension (FCM) (solid line
¢=10%; dashed line ¢p=5%).

concentration for a monodisperse suspension. For low (re-
spectively, large) concentration ratio, the fluctuation level
and the self-diffusion coefficient are approaching their
monodisperse value for the small (respectively, large) par-
ticles. The fluctuations of small particles are strongly en-
hanced by the presence of the large particles (velocity fluc-
tuations are almost doubled when the concentration ratio
¢,/ ¢, increases from 1/9 to 9). Chang and Powell*’ found a
similar behavior even when the suspension is relatively con-
centrated (total equivalent volume fraction of 35%). Because
of the interlocking phenomenon in dense suspension, the au-
thors observed a slight minimum in the evolution of the self-
diffusion coefficient with the concentration ratio when the
amount of small spheres becomes dominant. Furthermore,
we plotted in Fig. 14 the self-diffusion coefficients for small
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FIG. 13. Velocity fluctuations in the shear direction 75, vs the concentration
ratio ¢,/ ¢, (p=10%; N=2). Filled squares with solid line: small particles;
empty circles with dashed line: large particles. Horizontal solid line: fluc-
tuation level for a monodisperse suspension ¢=10% (FCM).
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FIG. 14. Shear induced self-diffusion coefficient in the spanwise direction
D5 vs the concentration ratio ¢,/ ¢; (¢=10%; N=2). Filled squares with
solid line: small particles; empty circles with dashed line: large particles.
Triangles: Chang and Powell (Ref. 39); A: small particles; V: large par-
ticles. Horizontal solid line: diffusion coefficient for monodisperse suspen-
sion ¢=10% (FCM).

and large particles obtained by Chang and Powell,” choos-
ing the suspension composition as close as possible to our
simulation conditions (i.e., two-dimensional bidisperse sus-
pension with a 12% total area fraction which is equivalent to
our three-dimensional suspension with a total volume frac-
tion of 8%). We divided their results by 1.5 (anisotropy co-
efficient) to obtain the equivalent self-diffusion coefficients
in the spanwise direction in order to compare with our re-
sults. Then we compared the fluctuations (translational ve-
locity and rotation rate) of the two species in Fig. 15. We
noticed that the ratio of large to small particle fluctuations is
only slightly varying with the concentration ratio. The fluc-
tuations of the large particles are nearly half the fluctuations
of the small ones. The analysis of the pair probability density
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FIG. 15. Ratios of the translational and rotational fluctuations of the large
particles over the small ones vs the concentration ratio ¢,/ ¢, (p=10%;
N=2). Empty triangles with solid line: ws;. Filled circles with dashed
line: T>,.
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FIG. 16. Global shear induced diffusion D, in the shear direction vs the
concentration ratio ¢,/ ¢, (¢=10%). Horizontal solid line: D,, in a mono-
disperse suspension ¢=10%. Filled circles: A=2.5. Filled triangles: \=2.

functions reveals that even a small amount of large particles
(¢2/ py=11/9) could enhance intense fluctuations of the small
particles leading to prominent exponential tails. The opposite
trend was observed for the large particles. A small amount of
small particles (¢,/¢;=9) does not change the Gaussian
shape of the pdf for the large particles which was observed at
moderately concentrated suspension (¢=10%).

Instead of examining the distinct statistics of each spe-
cies, it would also be interesting to quantify the macroscopic
behavior of the suspension as a whole. In experiments, it is
almost impossible to measure distinctly the characteristics of
each species and averages are formed over polydisperse par-
ticles. Krishnan and Leighton62 proposed two definitions of
the self-diffusion coefficient averaged in a bidisperse suspen-
sion. The “global” shear induced diffusion coefficient D, of
all the particles is obtained from the mean-square displace-
ment of all the particles (regardless of their size) and it is
scaled with the particle average radius {(a) [Eq. (18)],

_aip+ardy

b1+ &,

Figure 16 shows that, for a given size ratio and total concen-
tration (¢p=10%) of the suspension, the global diffusion co-
efficient is larger than the monodisperse case at low concen-
tration ratio. Thus, the reduction of the diffusion coefficient
is nearly 50% when ¢,/ ¢, increases from 1/9 to 9. This
suggests that the presence of a small amount of large par-
ticles enhances the diffusion in the whole suspension. But
when large particles are dominant, the trend is opposite as
velocity fluctuations and diffusive phenomenon are reduced.
The data can be plotted versus the size ratio for a constant
¢,/ p=1. In Fig. 17, the relative variation of the global
diffusion coefficient is only 18%. We concluded that D, is
strongly dependent on the concentration ratio but does not
change much with size ratio. It does not seem appropriate to
use it at a unique parameter characterizing a polydisperse
suspension. The other “mean” diffusion coefficient proposed
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FIG. 17. Global shear induced diffusion D, in the shear direction vs the size
ratio N (¢p,/ p;=1; ¢p=10%). Horizontal solid line: D,, in a monodisperse
suspension ¢=10%.

by Krishnan and Leighton® is defined in Eq. (19),

~ Da)*
y=—3 %,

2 2
b+ ¢2D1(¢))a1 ’ b+ ¢2D2(¢)a2

The global diffusion coefficient D,(¢) is scaled by a
weighted average of the diffusion coefficients [D,(¢) and
D,(¢)] for small and large particles at the same total concen-
tration. In their experiments, they determined, respectively,
the diffusion coefficients of the small, the large, and the bid-
isperse particles. In agreement with their results, we found in
Fig. 18 that this mean parameter is not appropriate to col-
lapse the data. Therefore, it has not been possible to resolve
the issue of the appropriate average particle radius to use
while nondimensionalizing the effective diffusivities.
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FIG. 18. Mean diffusion coefficient in the shear direction vs the concentra-
tion ratio ¢,/ ¢, (p=10%). Solid line: monodisperse suspension. Filled
circles: A=2.5. Filled triangles: A=2.
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IV. BIDISPERSE SETTLING SUSPENSIONS

Precise experimental results on the behavior of polydis-
perse suspension are extremely difficult because it is almost
impossible to separate the contribution of each species in the
bulk. Experimental data are often extracted from the settling
velocity of the shock fronts separating the fixed sediment,
the mixture of the two species, a monodisperse suspension
and the supernatant clear fluid. Acoustic techniques (Ref. 63)
or light attenuation measurements provide time dependent
profiles of concentration that lead to the determination of the
settling velocity. Evaluating the bulk velocities from the
front motions suffers severe shortcomings if corrections are
not included at moderate to high concentration (Ref. 63).
Simulations of homogeneous suspensions are then desired to
build composite hindrance functions based on size ratio and
concentration ratio. A recent paper (Ref. 64) investigated the
drag force on fixed arrays of bidisperse spheres. They pro-
posed new improvements of empirical correlations even
valid at a large diameter ratio.

A. Sedimentation of a test particle

The simplest configuration of bidisperse suspension is
related to the settling motion of a single test particle through
a uniform homogeneous suspension of monodisperse par-
ticles. The test particle has physical properties (size and den-
sity) different from the other beads of the suspension. This
configuration is similar to the “falling ball viscometer”
where nonbuoyant particles hinder the settling of a test par-
ticle (Ref. 65). In addition to be an instructive test case of the
dynamics in a simple bidisperse system, important statistic
quantities may be evaluated to feed macroscopic models. A
detailed experimental study (Ref. 66) of the evolution of the
mean settling velocity and the fluctuation level of the test
particle provides a valuable framework to check the response
of our numerical model.

The surrounding homogeneous concentration (20%) is
kept constant throughout all the simulations. Only the physi-
cal properties of the test sphere (ap and App) are varied
according to the experimental configurations. The size ratio
N=ap/ag varies from 1 to 1.6 and the ratio of reduced den-
sities y=App/Apg is constant and equal to 1. The subscript P
is associated with the test particle, and S to the particles of
the suspension. For a suspension settling under gravity, a
useful combination of these parameters defines the ratio of
the settling velocities: Rg=V,p/V,s=y\> (V, being the
Stokes velocity of a single particle in an unbounded quies-
cent fluid). Averages are formed over long time sequences
(more than 400 Stokes time) and different random initial
seeding. Figure 19 shows that the agreement is good between
the experiments and the simulations. The largest discrepancy
occurs with the configuration Rg=2.8. Nicolai et al.®® have
investigated the range Rg=1to Rg=13 and the experimental
point associated with Rg=2.8 is clearly below the mean trend
of their own results. The experimental data are rather scat-
tered around (Vp)/V,p=0.42. They interpreted this result as a
constant effective viscosity of the suspension while particle
volume fraction was kept constant at 20%. The evolution of
the level of vertical and horizontal fluctuations is in very
good agreement with the experimental data. The error bars
have to be carefully interpreted because in simulations they
are related to standard deviation of the mean value. The ve-
locity fluctuations generally have a Gaussian distribution as
it was observed in the experiments and the long-time motion
of the test sphere is diffusive due to many body interactions.

Based on the numerical trajectories, the Lagrangian ve-
locity autocorrelation functions [Fig. 20(a)] indicate that
fluctuating velocities are correlated on time scales of the or-
der of 10-20 Stokes times (ag/V,s). In agreement with the
experiments of Nicolai et al.,66 we found in our simulations
that the test particle settles through the suspension with a



1.2 T T T T T T T

— Vertical velocity
— = Horizontal velocity

1 4

—04 L L 1 1 L 1 1 L L
®) 0 10 20 30 40 50 80 70 80 90 100

FIG. 20. Normalized Lagrangian velocity autocorrelation function of a
single test sphere in a suspension (FCM simulations). Solid line: vertical
velocity; dashed line: horizontal velocity. (a) R;=1.2; (b) R;=2.8.

larger velocity when the autocorrelation function of the hori-
zontal velocity has a negative region [Fig. 20(b)]. In the
simulations, the behavior of the vertical velocity autocorre-
lation is rather unchanged when the transition occurs which
agrees with the experimental observations (Ref. 66). The
negative minimum is located around the dimensionless time
V,st/a=10. The experimental value obtained for the transi-
tion regime is around Rg=5 and the dimensionless time
around 25. The global trend is a decrease of this time scale
with Ry increasing. A simple interpretation of this transition
is related to the modification of the trajectory pattern. When
the Lagrangian autocorrelation function exhibits a negative
region (the function becomes negative and goes through a
minimum before approaching zero from below), a zig-zag
motion of the test sphere induces a reduction of the correla-
tion time of the trajectory (anticorrelated velocity occurs on a
finite time scale). The self-diffusion coefficient of the test
sphere is strongly reduced while it is able to push the other
particles apart. This scenario has been confirmed by analysis
of animated movies of the simultaneous motions of the test
sphere and the suspension particles.
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FIG. 21. Bidisperse suspension, (¢p=6%) vertical snapshot (black: small
particles; gray: large particles) (¢, =3% and ¢,=3%). Size ratio A=2 and
density ratio y=1.

B. Stable configurations of bidisperse suspensions

As it was observed in monodisperse suspensions (Ref.
67), the flow in a bidisperse suspension is composed of
large-scale swirls that tend to collect the particle in clusters
(Fig. 21). Long range interactions (slowly decaying like 1/r)
induce multibody hydrodynamic interactions. It has been
pointed out that collective motion of nearby particles en-
hance the local settling velocity while isolated beads experi-
ence the back fluid flow leading presumably to high level of
fluctuation levels. The presence of two species of different
size may also modify the microstructure and influence the
relative fluctuations of each species (Ref. 26) but investiga-
tion on this topic are almost nonexistent.

In a theoretical analysis of the very dilute regime, Batch-
elor and Wen?' proposed linear relations between the mean
settling velocities and the concentrations assuming that the
suspension is homogenous and that statistics are based on
pairwise interactions. The determination of the numerical co-
efficients is based on the assumption of very dilute systems
and perfect random distribution of the particles. The agree-
ment with this theoretical relation has been extensively vali-
dated by experiments in the very dilute regime (Refs. 22 and
24). We performed simulations with two different size ratios
(A=2 and A=3). The average settling rate of both species
[Figs. 22(a) and 22(b)] accurately agrees with the prediction
of Batchelor and Wen.”' When the total concentration of the
suspension is above 6%, the simulations deviate significantly
from the theoretical predictions. Davis and Gecol” modified
these relations to extend their validity to moderately concen-
trated suspensions. This elegant empirical relation is based
on the coefficients derived by Batchelor and Wen?! and does
not require any fitting parameters. It is clear that the smooth
transition from dilute to moderately concentrated regimes oc-
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FIG. 22. Mean settling velocity vs total concentration. Solid line: Batchelor
and Wen (Ref. 21). Dashed line: Davis and Gecol (Ref. 25). Circles (small
particles) and triangles (large particles): FCM numerical simulations (¢,
=¢,=¢/2). (a) A\=2 and y=1; (b) A\=3 and y=1.

curs around 5% and is correctly reproduced by our numerical
model. Our simulations agree very well with the two sets of
approximation.

We investigated the role of the width of the numerical
domain on the evolution of the statistics (Fig. 23) for fixed
concentration and size ratios. The mean velocity does not
depend on the size of the simulation domain. On the con-
trary, the level of fluctuations is strongly related to the width
of the domain (Ref. 7) and increases with the size of the box.
This response of the flow is classic for a purely homoge-
neous suspension with periodic boundary conditions (Refs.
16 and 68). A scaling of velocity fluctuation levels was pro-
posed by Peysson and Guazzelli.”® They proposed to use two
different length scales to collapse their data and suggested
that the microstructure may be affected by the presence of
large and small particles. Our simulations seem to indicate
that a bidisperse purely homogeneous suspension is subject
to a divergent evolution of the fluctuation levels but further
studies are still required. When periodic boundary conditions
are treated as solid impermeable walls, Nguyen and Ladd"
showed that density fluctuations are finite at all scales lead-
ing a domain size independent behavior of the velocity fluc-
tuation levels even with a small amount of polydispersity. In
this case, stratification due to differential settling is a pos-
sible mechanism for screening hydrodynamic long range
interactions.

While keeping the size ratio N constant, a “bidisperse”
suspension can be achieved with the same particle radius but
various reduced densities. In Figs. 24(a) and 24(b), we com-
pare the FCM results with former theoretical and numerical
predictions. The concentration of the first species is kept con-
stant (¢;=0.02). When the two species are sedimenting
along the direction of gravity (y=2) both settling rates de-
crease with the total concentration. This is in qualitative
agreement with former theoretical predictions of Batchelor
and Wen,21 empirical relation of Davis and Gecol® or nu-
merical simulations of Revay and Higdon.27 When buoyant
and heavy particles are mixed, 7y is negative. In the particular
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FIG. 24. Mean settling velocity of a monodisperse suspension (A=1) with
different density ratios. Total concentration ¢p=0.02+¢,. (a) \=1; y=2).
(b) (\=1; y=-1). Solid line: Batchelor and Wen (Ref. 21). Dotted-dashed
line: Davis and Gecol (Ref. 25). Dashed line: Revay and Higdon (Ref. 27).
Triangles: static FCM simulations. Circles: dynamic FCM simulations.

case of y=—1, the settling and rising velocities of individual
particles have the same magnitude but opposite signs. We
kept constant the concentration of the rising species and in-
crease gradually the total concentration. As the concentration
of the settling phase is increased, the buoyant particles expe-
rience the net upward flux of fluid. Therefore the average
velocity of the light species increases continuously with ¢
[Fig. 24(b)]. Such an enhanced creaming velocity is only
reproduced by the numerical model proposed by Revay and
Higdon27 whereas the prediction of Batchelor and Wen”! has
the wrong trend. We observed that the dynamic simulations
provide a larger rising velocity than the average based on
random static interactions. The cause of such an increase is
probably related to a preferential migration of the light par-
ticles in upstream currents. Simulations of Revay and
Higdon27 were performed with a static procedure (ensemble
averaging on different random seeding) and their results are
surely underestimating the dynamic behavior. We can see
that the agreement is very good with our present static
simulations.

FIG. 25. Stability diagram from the experiments of Batchelor and Van Rens-
burg (Ref. 43) with buoyant and heavy particles of equal size (A=1;
y=-1). The plot is symmetric when interchanging ¢, and ¢,. Large circles:
FCM simulations (gray: stable, black: unstable).

C. Segregation instability

For a suspension composed of heavy and light particles
(A=1, y=-1), when the volume fraction of the two species is
increased beyond a critical concentration (around 15% total),
an instability of the suspension sets in. The particles tend to
segregate and form vertical streams composed of only one
type of particle. This phenomenon has been observed experi-
mentally (Refs. 42 and 43) and some stability analyses (Refs.
43, 69, and 70) are available but the fundamental origin of
this phenomenon is still lacking.

Particles are initially seeded at random positions in the
simulation domain regardless of their density. Then, particles
freely evolve under mutual hydrodynamic interactions. Be-
low the critical value of 15%, the suspension remains stable
(perfectly mixed). Above the threshold, particles migrate lat-
erally during a transient time and eventually a complete seg-
regation occurs. As periodic boundary conditions are im-
posed in the simulation, the two vertical streams grow until
the box is divided in two distinct regions populated, respec-
tively, with light or heavy particles. During the transient evo-
lution of the suspension, the average velocity of the particles
remains nearly constant and suddenly increases as particles
of the same species are gathering. The duration of this tran-
sient depends on the magnitude of the repulsive barrier we
used but the overall dynamics is preserved. The simulated
instability threshold is in agreement with the phase diagram
of the instability summarizing the experimental works of
Weiland et al.** and Batchelor and Van Rensburg43 (see Fig.
25). Considering a local density fluctuation of the suspen-
sion, the flux of particles can be due to the gradient of con-
centration that induces migration of particles. As particles are
settling and rising in the same fluid flow, they will create
local shear layers too, that may be growing and merging. We
investigated the pair probability function of each species to
elucidate the basic segregation phenomenon. The transition
from well mixed to the segregated state is sharp and statistics



were not sufficiently converged to propose a comprehensive
scenario of interaction between disturbance amplification
and microstructure modification. This point will need further
investigations.

V. CONCLUSION

The aim of the paper was to investigate with the FCM
the simulation of homogeneous bidisperse suspensions under
two fundamental situations: linear shear flow and sedimenta-
tion under gravity. Validation on simple analytic test cases
allows a precise evaluation of the accuracy of the model. The
far field hydrodynamic interactions are always correctly
achieved but when particles are close to contact the lubrica-
tion effects are not well reproduced. Such short range inter-
actions can be restored by including lubrication forces as
described in Ref. 55. Therefore, we limited our simulations
to a maximum concentration of 20%. We have shown that
the overall dynamics is in agreement with theories and ex-
periments when the system is moderately concentrated.

The configuration of a monodisperse sheared suspension
under Stokes flow has been well documented recently by
precise computations using the Stokesian dynamics (Refs.
30, 32, and 37). We computed macroscopic properties like
translational and rotational velocity fluctuation tensors and
their probability distribution function, Lagrangian velocity
autocorrelation function, and shear induced self-diffusion co-
efficients. Basically, we showed that, when the suspension
concentration increases, particle velocity fluctuations are
larger, more homogeneous and less correlated. Our numeri-
cal results achieved in general a good agreement with previ-
ous experimental and numerical works. A repulsion force
was used in the simulations to prevent numerical overlapping
and it led to an enhancement of the shear induced self-
diffusion. The role played by a similar force has been dis-
cussed by Da Cunha and Hinch.”® When the local viscous
effects between close interacting particles were properly re-
solved using the lubrication model (Dance and Maxeyss), the
quantitative agreement of statistical quantities was improved
but the overall qualitative behavior of the suspension is simi-
lar to the simplified simulations. Although the self-diffusion
coefficients are slightly overpredicted by the FCM, they still
stand within the range of the available data. The behavior of
sheared suspensions is more intricate when two species are
mixed. We investigated the macroscopic properties of the
suspension by separately varying the size ratio and the re-
spective concentration of each species. For a fixed concen-
tration ratio, we found that an increasing size ratio leads to
an enhancement of the fluctuation level of small particles
whereas the large particles disperse much less. Then, for a
fixed size ratio and total concentration, increasing the rela-
tive amount of large particles induces for all particles an
enhancement of the fluctuations and particle diffusion.

Investigating the response of a single settling test sphere
in a monodisperse suspension is a fundamental issue for the
description of the global behavior of a bidisperse suspension.
A drastic modification of the horizontal velocity autocorrela-
tion function was observed when the Stokes velocity ratio is
above a critical threshold. The test particle tended to settle

with a zig-zag trajectory corresponding to a lower value of
the lateral diffusion coefficient.

When two different species are mixed and settle under
gravity in a very dilute homogeneous suspension, the theo-
retical analysis of Batchelor and Wen?! provides a good pre-
diction of average velocities. In more concentrated media,
the empirical relation of Davis and Gecol® is more appro-
priate. Our simulations matched precisely the transition from
dilute to moderately concentrated suspension. The particular
case of buoyant and heavy particles is a critical configuration
because the buoyant species experiences the upward flux of
fluid displaced by the sedimenting phase and then the rising
velocity increases with the concentration. Above a critical
value of the respective concentrations, the particles segregate
and two distinct vertical currents develop. This instability is
well-known in the literature but no physical scenario has
been proposed. Our simulation model was able to reproduce
the transient behavior of the segregation process and the
phase diagram of stability. To the best of our knowledge, our
results are the first Eulero-Lagrangian simulations of the dy-
namic growth of the segregation instability.

We concluded that the FCM is a good compromise be-
tween flexibility and accuracy of hydrodynamic interactions.
It was able to reproduce some intricate features like shear-
induced diffusion and settling instability. The treatment of
bidisperse or more generally polydisperse suspensions is
straightforward. It is also possible to include finite inertia of
fluid and particles by switching the solution of Stokes equa-
tions to Navier-Stokes equations (Ref. 17). The addition of
interparticle forces based, for example, on magnetic attrac-
tion (Ref. 71) or DLVO theory are easy to implement and
open a wide area of investigation on complex suspensions.
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