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1 Introduction
Research in combinatorial optimization has provided efficient algorithms to solve a large

variety of complex discrete decision problems, providing exact or near-optimal solutions in
reasonable amounts of time. The applications are countless, ranging from logistics (network
design, facility location, . . .) to scheduling, including even important data science applications
such as clustering. Many of these applications amount to select a subset of edges of a graph
G = (V, E) among a family of feasible subsets F and that minimizes its total weight. Among
those, we focus on spatial graphs on a given metric space (M, d), where each vertex i is
assigned a position ui ∈M and the cost of set F ∈ F is given by

∑
{i,j}∈F d(ui, uj), leading to

the combinatorial optimization problem

min
F ∈F

∑
{i,j}∈F

d(ui, uj). (1)

Problem (1) encompasses many applications, such as network design, facility location, and
clustering. These are typically subject to data uncertainty, be it because of the duration of the
decision process, measurement errors, or simply lack of information.

One successful framework that has emerged to address uncertainty is robust optimization [2],
modeling the uncertain parameters with convex sets, such as polytopes, or finite sets of points,
among which combinatorial robust optimization focuses on discrete robust optimization pro-
blems [4]. We enter this framework by considering the model where the positions of the vertices
are subject to uncertainty, therefore impacting the distances among the vertices. The resulting
problem thus seeks to find the feasible subgraph that minimizes its worst-case sum of distances.
Formally, we introduce for each vertex i ∈ V the set of possible locations as the uncertainty
set Ui ⊆ M. Using the notations u = (u1, . . . , u|V |) and U = ×i∈V Ui, the general problem
considered in this paper can be cast as

min
F ∈F

max
u∈U

∑
{i,j}∈F

d(ui, uj). (2)

2 Literature
Traditionally, robust optimization problems with an objective function that is concave in

the uncertain parameters are reformulated as monolithic models using conic duality [2]. These
techniques do not readily extend to function d(ui, uj) as the latter is non-concave in general.
Actually, for Euclidean metric spaces based on the vector space R`, ` ∈ Z+, d(ui, uj) = ‖ui −
uj‖2 is convex in ui and uj . Function ‖ui − uj‖2 is closely related to the second-order cone



(SOC) constraints considered by [5] for robust problems with polyhedral uncertainty sets. The
authors of [5] linearize such robust SOC constraints by introducing adjustable variables, turning
the problem into an adjustable robust optimization problem.

A second work closely related to (2) is [3], which relies on computational geometry techniques
to provide constant-factor approximation algorithms in the special case where F contains
all Hamiltonian cycles of G. They propose in particular to solve a deterministic counterpart
of (2) where the uncertain distances are replaced by the maximum pairwise distances dmax

ij =
maxui∈Ui,uj∈Uj d(ui, uj), for each (i, j) ∈ V 2, i 6= j.

3 Contributions
Our contributions can be summarized as follows :
— We prove that problem (2) is NP-hard even when F consists of all s − t paths and

(M, d) is the one-dimensional Euclidean metric space or when F consists of all spanning
trees of G. These results illustrate how the nature of problem (2) fundamentally differs
from the classical min-max robust problem with cost uncertainty, which is known to be
polynomially solvable whenever the costs lie in independent uncertainty sets [1].

— We provide a general cutting-plane algorithm for problem (2) that relies on integer pro-
gramming formulations for F . We further show that the separation problem c(F ) =
maxu∈U

∑
{i,j}∈F d(ui, uj) is NP-hard and provide two algorithms for computing c(F ).

One is based on integer programming formulations while the other one relies on a dynamic
programming algorithm that involves the threewidth of F .

— We extend the approximation algorithm based on dmax to general sets F and metric
spaces different from the Euclidean one. We study in depth the resulting approximation
ratios, which depend on the structure of F and (M, d).

— We provide a dynamic programming algorithm for the special case where F consists of
all s − t paths, which is turned into a fully-polynomial time approximation scheme by
rounding data appropriately.

— We compare numerically the exact cutting plane algorithm with the approximation algo-
rithm that relies on dmax. The benchmark is composed of two families of instances. The
first family includes Steiner tree instances that illustrate subway network design. The
second one is composed of strategic facility location instances. The former application
relies on two-dimensional Euclidean metric spaces so we can further include the affine
decision rule reformulation from [5] to the comparison.
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