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1 Introduction
For a given function f : X × Y → R, the problem of computing maxx miny f(x, y) (referred
to as a max-min problem) arises in various domains. For example, max-min problems are
linked to Nash equilibria in game theory [2]. But it also models complex physics phenomena
such as aerodynamic optimization [3]. However, if f is only Lipschitz-continuous, one can
not use any method relying on gradient computations. As far as we know, no method exists
to solve max-min problems for Lipschitz functions that guarantees a finite-time convergence
property towards a global optimum. We propose to adapt Munos’ Deterministic Optimistic
Optimization (DOO) algorithm [1] to the max-min case.

2 Background
Let f : X → R be a Lipschitz function defined over X ⊂ Rn. DOO solves maxx∈X f(x) for a
given error ε > 0. It creates a non-uniform covering of the space definition with a finite number
of areas where the function is controlled. Such areas, called subdivisions, are defined as balls
of radius ρ > 0 centered in a point x ∈ Rn for a given norm ‖ · ‖. The Lipschitz property of f
allows to upper-bound its value in any ball of radius ρ around a point x̃ by f(x̃) + λ · ρ. The
smaller the radius, the closer the upper-bound is to the values of f .

Let us assume that X is such that (i) there is an analytic way to create a first paving and
(ii) each subdivision can be subdivided again. The algorithm (i-1) starts with the first paving
of X, and (i-2) computes the upper-bound in every subdivision of the paving. Then, each of its
iteration will consist in (ii-1) selecting the most promising subdivision according to the higher
upper-bound value, (ii-2) subdividing it and (ii-3) computing the upper-bound values of each
new subdivision. The algorithm is given in Algorithm 1 and Figure 1 gives an illustration of
an application of DOO.

Algorithm 1: DOO

1 Fct DOO(
[
D → R ; x 7→ f(x)

]
, ε, )

input : f : R→ R is a λ-Lipschitz function
2 Initialize I and (Ri)i∈I s.t. D ⊆ ∪i∈IRi

3 while time ≤ budget do
4 i∗ ← arg maxi∈I f(xi) + ri

5 Subdivide Ri∗ into ∪j∈I∗Rj (⊇ Ri∗) ∀j ∈ I∗, xj ← Center(Rj)
6 I ← [I \ i∗] ∪ I∗

7 return 〈arg & maxxi f(xi)〉



FIG. 1: Example of DOO applied to x 7→ sin(x) on [0, 2π]. The interval is tiled with subdivisions (i.e.
here, intervals) of different size where the function sin is upper-bounded by Lipschitz cones summed
up by an upper-bound constant. The cones along with the upper-bound form the triangle shapes.

As the algorithm iterates, the approximation error shrinks with the radius around the most
promising areas. Thus, Munos was able to bound the difference between the highest value of
f and DOO’s returned value after running out of given budget.

3 Contributions
We are interested in computing maxx∈X miny∈Y f(x, y), where f is Lipschitz with finite time
convergence guarantees. First, we prove that one can derive a finite-time convergent algorithm
from DOO (contrary to bounding the error according to a given budget). The function fx : x 7→
miny f(x, y) is also Lipschitz, so that one can use two nested DOO processes, i.e., (1) an outer
ε1-optimal DOO maximizing the function x 7→ miny f(x, y), using the solution of (2) an inner
ε2-optimal DOO minimizing the function y 7→ f(x, y) for fixed x. We prove the finite-time
convergence of this process towards an ε-optimal (ε = ε1 + ε2) value by adapting Munos’ proof.
Finally, we show that one can analytically subdivide the probability simplex (which corresponds
to mixed strategies in game theory) using n−1-dimensional hypercubes. Such a subdivision is
analytical, which means that an algorithm has an explicit way of subdividing interesting areas
of the simplex. We then derive a full algorithm to solve the Lipschitz optimization problem
and evaluate it experimentally.

4 Conclusion
This papers proposes a method to deal with max-min Lipschitz optimization problems that
require a finite-time convergence towards a global optimum guarantee. We focused on the
optimization over simplexes, derived an algorithm and evaluated it. We hope our method can
be useful whenever such a problem arises in various domains. Finally, let us point out that our
approach can be straightforwardly generalized to any bi-level optimization problem, with any
two different (Lipschitz) criteria f1(x, y) and f2(x, y).
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