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We consider the problem of the identification of Blackwell optimal policies for deterministic finite Markov Decision Processes (d-MDPs). Specifically, we are interested in algorithms that learn reward distributions by querying samples over time, that stop almost surely and return a Blackwell optimal policy with high probability. We provide a characterization of the class of MDPs over which such algorithms exist together with an algorithm identifying Blackwell optimal policies with arbitrarly high probability.

Blackwell Optimality & Identification Algorithms

Blackwell optimality. A deterministic Markov Decision Process (d-MDP) M is given by a state space S, action space A with reward distributions q(x, a) ∈ P([0, 1]) and degenerate transition distributions, that is, ∀(x, a, y) ∈ S × A × S, P (y|s, a) ∈ {0, 1}. In general, given x, y ∈ S, there may be distincts actions a, b such that P (y|x, a) = P (y|x, b) = 1 but up to a state-wise elimination of actions, transitions may be seen as edges of a graph. One can think of P (y|x, a) = 1 as an edge (x, y) and write q(x, y) for q(x, a). The set of edges E := {(x, y) | ∃a, P (y|x, a) = 1} will be called edge space.

Upon choosing an edge (x, y) from a state x, the system changes state to y and produces a reward r ∼ q(x, y). A policy is an application π : S → E that, from each state x ∈ S, selects an outgoing edge π(x) ∈ {(x, y) ∈ E | y ∈ S}. Iterating a policy over time gives a sequence of state-reward pairs (x t , r t ), t ≥ 0. Policies are usually discriminated with respect to the reward they score either at discounted infinite horizon

ν π β (x 0 ) := E M,π x0 [ ∞ t=0 β t r t ] or at undiscounted infinite horizon g π (x 0 ) := E M,π x0 [lim 1 T T -1 t=0 r t ].
The discounted and undiscounted infinite settings are linked by the Laurent Serie Expansion

ν π β (x) = g π (x) 1 -β + h π (x) + ∞ n=1 h (n) π (x)(1 -β) n (1)
when β is close enough to 1, see [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. It is known that as β → 1, the class of discounted optimal policies stabilises onto a single class Π * ∞ (M ), called Blackwell optimal policies. They are policies which maximize the whole vector (g π (x), h π (x), h

(1) π (x), h (2)
π (x), . . .) for the lexicographic order. Namely, they maximize the asymptotical average reward or gain g π (x), but also the transient rewards i.e. the bias h π (x) and all higher order biases h (n) π (x). Blackwell optimality is the last refinement of infinite horizon optimality that merges the discounted and undiscounted cases. When M is given, algorithms that compute Blackwell optimal policies are already known, see [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. Our interest is to figure out if such policies can be learned.

Probably Correct Identification Algorithms. We are interested in the identification of Blackwell optimal policies in the generative model in a similar fashion as best-arm identification algorithms for stochastic bandits [START_REF] Kaufmann | On the complexity of best arm identification in multi-armed bandit models[END_REF]. By generative model, we mean that at each time step, the algorithm is allowed to sample any edge in edge space. An identification algorithm I is made of three components:

• an allocation rule that chooses, according to past observations, the next edge (x t , y t ) to be sampled;

• a stopping rule τ δ to stop the learning phase of the algorithm;

• a recommendation rule to return a policy π A τ δ at the end of the learning phase.

If M is a class of MDP, I is said to be δ-PC on M if when executed on any M ∈ M, it returns a Blackwell optimal policy with probability at least 1-δ. Recent works [START_REF] Marjani | Adaptive sampling for best policy identification in markov decision processes[END_REF] have designed identification algorithms for the discounted setting. The undiscounted setting remained open.

An Identification Algorithm for Blackwell Optimality

The learning of Blackwell optimal policies is limited to a specific class of d-MDP that we denote M, defined as the set of d-MDPs M such that :

(H1) M has a unique optimal cycle i.e. the cycle C * ⊆ E that maximize its average expected reward g(C * ) := 1

|C * |

e∈C * r(e) is unique. (H2) Under H1, writing C * as the sequence of states u 0 , u 1 , . . . , u c-1 , we define the bias of a state

u i ∈ C * as h * (u i ) := 1 c c =1 k=0 [r(u i+k , u i+k+1 ) -g(C * )]
where indices are taken modulo c. Then for all state x 0 , there exists a unique path

(x 0 , x 1 , . . . , x k ) to C * that maximizes h * (x k ) + k-1 i=0 [r(x i , x i+1 ) -g(C * )], x k ∈ C * .
These two assumptions are minimal. Specifically, we can show that if M is a space of d-MDPs such that M ∩ M = ∅, there is no 1 4 S -A -PC identification algorithm on M . Finally, we propose a δ-PC identification algorithm on M for any δ > 0.

Theorem 1 Consider the algorithm I that samples edges uniformly with stopping time

τ δ := inf    t ≥ A : 1 2 log( 2At 2 δ ) t/A 1 2 ≤ min ∆ 0 ( Mt ) 4S , ∆ -1 ( Mt ) 2    ( 2 
)
where Mt is the MDP of empirical observations up to time t and ∆ 0 ( Mt ), ∆ -1 ( Mt ) are MDP dependent parameters and that returns any π I τ δ ∈ Π * ∞ ( Mτ δ ). Then I is δ-PC and stops almost surely. In addition, setting ∆(M ) := min{ 1 8S ∆ 0 (M ), 1 4 ∆ -1 (M )},

P τ δ ≤ 3A max 1, 1 2 log( 2A δ )∆(M ) -2 , 3A∆(M ) -4 ≥ 1 -δ. ( 3 
)
This uniform algorithm can be improved into a faster, non-uniform one. Moreover, these results can be generalized to MDPs with general probabilistic transitions.