
HAL Id: hal-03595102
https://hal.science/hal-03595102

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizing self-adaptive systems via online reinforcement
learning and feature-model-guided exploration

Andreas Metzger, Clément Quinton, Zoltán Mann, Luciano Baresi, Klaus Pohl

To cite this version:
Andreas Metzger, Clément Quinton, Zoltán Mann, Luciano Baresi, Klaus Pohl. Realizing self-adaptive
systems via online reinforcement learning and feature-model-guided exploration. Computing, 2022,
�10.1007/s00607-022-01052-x�. �hal-03595102�

https://hal.science/hal-03595102
https://hal.archives-ouvertes.fr


Computing
https://doi.org/10.1007/s00607-022-01052-x

SPEC IAL ISSUE ART ICLE

Realizing self-adaptive systems via online reinforcement
learning and feature-model-guided exploration

Andreas Metzger1 · Clément Quinton2 · Zoltán Ádám Mann1 ·
Luciano Baresi3 · Klaus Pohl1

Received: 9 March 2021 / Accepted: 20 December 2021
© The Author(s) 2022

Abstract
A self-adaptive system can automatically maintain its quality requirements in the
presence of dynamic environment changes. Developing a self-adaptive system may
be difficult due to design time uncertainty; e.g., anticipating all potential environment
changes at design time is in most cases infeasible. To realize self-adaptive systems
in the presence of design time uncertainty, online machine learning, i.e., machine
learning at runtime, is increasingly used. In particular, online reinforcement learning
is proposed, which learns suitable adaptation actions through interactions with the
environment at runtime. To learn about its environment, online reinforcement learning
has to select actions that were not selected before, which is known as exploration. How
exploration happens impacts the performance of the learning process. We focus on
two problems related to how adaptation actions are explored. First, existing solutions
randomly explore adaptation actions and thus may exhibit slow learning if there are
many possible adaptation actions. Second, they are unaware of system evolution, and
thus may explore new adaptation actions introduced during evolution rather late. We
propose novel exploration strategies that use feature models (from software product
line engineering) to guide exploration in the presence of many adaptation actions
and system evolution. Experimental results for two realistic self-adaptive systems
indicate an average speed-up of the learning process of 33.7% in the presence of many
adaptation actions, and of 50.6% in the presence of evolution.

Research leading to these results received funding from the EU Horizon 2020 programme under Grant
Agreements Nos. 780351 (ENACT) and 871525 (FogProtect), and ANR-19-CE25-0003-01 KOALA
project.

B Zoltán Ádám Mann
zoltan.mann@gmail.com

1 Paluno, Universität Duisburg-Essen, Essen, Germany

2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

3 Politecnico di Milano, Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01052-x&domain=pdf
http://orcid.org/0000-0001-5741-2709


A. Metzger et al.

Keywords Adaptive system · Reinforcement learning · Feature model · Evolution

Mathematics Subject Classification 68T05 · 68U01 · 68N99

1 Introduction

A self-adaptive system can modify its own structure and behavior at runtime based on
its perception of the environment, of itself and of its requirements [9,24,34]. An exam-
ple is a self-adaptive web service, which faced with a sudden increase in workload,
may reconfigure itself by deactivating optional system features. An online store, for
instance, may deactivate its resource-intensive recommender engine in the presence
of a high workload. By adapting itself at runtime, the web service is able to maintain
its quality requirements (here: performance) under changing workloads.

To develop a self-adaptive system, software engineers have to develop self-adapt-
ation logic that encodes when and how the system should adapt itself. However,
in doing so, software engineers face the challenge of design time uncertainty [6,
45]. Among other concerns, developing the adaptation logic requires anticipating the
potential environment states the system may encounter at runtime to define when the
system should adapt itself. Yet, anticipating all potential environment states is in most
cases infeasible due to incomplete information at design time. As an example, take a
service-oriented system which dynamically binds concrete services at runtime. The
concrete services that will be bound at runtime and thus their quality are typically not
known at design time. As a further concern, the precise effect of an adaptation action
may not be known and thus accurately determining how the system should adapt
itself is difficult. As an example, while software engineers may know in principle
that activating more features will have a negative impact on performance, exactly
determining the performance impact is more challenging [36].
Online reinforcement learning is an emerging approach to realize self-adaptive systems
in the presence of design time uncertainty. Online reinforcement learning means that
machine learning is employed at runtime (see existing solutions discussed in Sect. 7).
The systemcan learn fromactual operational data and thereby can leverage information
only available at runtime. In general, reinforcement learning aims to learn suitable
actions via an agent’s interactions with its environment [37]. The agent receives a
reward for executing an action. The reward expresses how suitable that action was.
The goal of reinforcement learning is to optimize cumulative rewards.

1.1 Problem statement

Reinforcement learning faces the exploration–exploitation dilemma [37]. To optimize
cumulative rewards, actions should be selected that have shown to be suitable, which
is known as exploitation. However, to discover such actions in the first place, actions
that were not selected before should be selected, which is known as exploration. How
exploration happens has an impact on the performance of the learning process [4,13,

123



Self-adaptive systems via online reinforcement learning and FM-guided...

37]. We focus on two problems related to how a system’s set of possible adaptation
actions, i.e., its adaptation space, is explored.

Random exploration: Existing online reinforcement learning solutions for self-
adaptive systems propose randomly selecting adaptation actions for exploration (see
Sect. 7).

The effectiveness of exploration therefore directly depends on the size of the adapta-
tion space, because each adaptation action has an equal chance of being selected. Some
reinforcement learning algorithms can cope with a large space of actions, but require
that the space of actions is continuous in order to generalize over unseen actions [29].
Self-adaptive systems may have large, discrete adaptation spaces. Examples include
service-oriented systems, which may adapt by changing their service compositions
[28], or reconfigurable software systems, which may adapt by changing their active
set of features at runtime [23]. A simple example is a service composition consisting
of eight abstract services that allows dynamically binding two concrete services each.
Assuming no temporal or logical constraints on adaptation, this gives 28 = 256 pos-
sible adaptations. In the presence of such large, discrete adaptation spaces, random
exploration may lead to slow learning at runtime [4,13,37].

Evolution-unaware exploration: Existing online reinforcement learning solutions are
unaware of systemevolution [20]. They do not consider that a self-adaptive system, like
any software system, typically undergoes evolution [15]. In contrast to self-adaptation,
which refers to the automatic modification of the system by itself, evolution refers to
themanualmodification of the system [24]. Due to evolution, the adaptation spacemay
change, e.g., existing adaptation actions may be removed or new adaptation actions
may be added. Some reinforcement learning algorithms can cope with environments
that change over time (non-stationary environments) [29,37]. However, they cannot
cope with changes of the adaptation space. Existing solutions thus explore new adap-
tation actions only with low probability (as all adaptation actions have an equal chance
of being selected), and thusmay take quite long until new adaptation actions have been
explored.

Thus, this paper addresses two problems of exploration in online reinforcement
learning for self-adaptation: (1) coping with large discrete adaptation spaces and (2)
coping with changes of the adaptation space due to evolution.

1.2 Contributions

We introduce exploration strategies for online reinforcement learning that address
the above two problems. Our exploration strategies use feature models [25] to give
structure to the system’s adaptation space and thereby leverage additional information
to guide exploration. A feature model is a tree or a directed acyclic graph of fea-
tures, organized hierarchically. An adaptation action is represented by a valid feature
combination specifying the target run-time configuration of the system.

Our strategies traverse the system’s feature model to select the next adaptation
action to be explored. By leveraging the structure of the feature model, our strategies
guide the exploration process. In addition, our strategies detect added and removed

123



A. Metzger et al.

adaptation actions by analyzing the differences between the feature models of the
system before and after an evolution step. Adaptation actions removed as a result of
evolution are no longer explored, while added adaptation actions are explored first.

This article has been substantially extended from our earlier conference publication
[26] and provides the following main new contributions:

Broader scope:Weextended the scope to cover self-adaptive software systems, thereby
generalizing from self-adaptive services focused in [26]. This is reflected by provid-
ing a conceptual framework for integrating reinforcement learning into the MAPE-K
reference model of self-adaptive systems, adding an additional subject system from a
different domain, as well as by expanding the discussion of related work.

Additional reinforcement learning algorithm: In addition to integrating our strategies
into the Q-Learning algorithm, we integrate them into the SARSA algorithm. These
two algorithms differ with respect to how the knowledge is updated during the learning
process. Q-Learning updates the knowledge on the basis of the best possible next
action. SARSA updates the knowledge on the basis of the action that the already
learned policy takes [37]. As a result, Q-Learning tends to perform better in the long
run. However, SARSA is better in avoiding expensive adaptations. If, for a given
system, executing “wrong” adaptations is expensive, then SARSA ismore appropriate,
otherwise Q-Learning is preferable. Our strategies work for both algorithms.

Additional subject system: In addition to the adaptive cloud service in [26], we validate
our approach with a reconfigurable data base system. The two systems differ in terms
of their adaptation space, the structure of their feature model, and their quality char-
acteristics (response time instead of energy and virtual machine migrations), thereby
contributing to the external validity of our experiments.

In what follows, Sect. 2 explains fundamentals of feature models and self-adapt-
ation, explains the integration of reinforcement learning into the MAPE-K reference
model, as well as introduces a running example. Section 3 describes our exploration
strategies and how they are integrated with the Q-Learning and SARSA algorithms.
Section 4 presents the design of our experiments, and Sect. 5 presents our experimental
results. Section 6 provides a discussion of current limitations and assumptions. Sec-
tion 7 analyzes related work. Section 8 provides a conclusion and outlook on future
work.

123



Self-adaptive systems via online reinforcement learning and FM-guided...

Fig. 1 Feature model and adaptation of example web service

2 Fundamentals

2.1 Feature models and self-adaptation

A feature model is a tree of features organized hierarchically [25] and describes the
possible and allowed feature combinations. A feature f can be decomposed into
mandatory, optional or alternative sub-features. If feature f is activated, its mandatory
sub-features have to be activated, its optional sub-feature may or may not be activated,
and at least one of its alternative sub-features has to be activated. Additional cross-tree
constraints express inter-feature dependencies. A feature model can be used to define
a self-adaptive system’s adaptation space, where each adaptation action is expressed
in terms of a possible runtime configuration, i.e., feature combination [12,16].

Figure 1 shows the feature model of a self-adaptive web service as a running exam-
ple. The DataLogging feature is mandatory (which means it is always active), while the
ContentDiscovery feature is optional. The DataLogging feature has three alternative sub-
features, i.e., at least one data logging sub-feature must be active: Min, Medium or Max.
The ContentDiscovery feature has two optional sub-features Search and Recommendation.
The cros-tree constraint Recommendation ⇒ Max ∨ Medium specifies that a sufficient
level of data logging is required to collect enough information about the web service’s
users and transactions to make good recommendations.

Let us consider that the above web service should adapt to a changing number of
concurrent users to keep its response time below 500 ms. A software engineer may
express an adaptation rule for the web service such that it turns off some of its features
in the presence of more users, thereby reducing the resource needs of the service.
The right-hand side of Fig. 1 shows a concrete example for such an adaptation. If the
service faces an environment state of more than 1000 concurrent users, the service
self-adapts by deactivating the Search feature.

2.2 Reinforcement learning and self-adaptation

As illustrated in Fig. 2a, reinforcement learning aims to learn an optimal action selec-
tion policy via an agent’s interactions with its environment [37].

123



A. Metzger et al.

Self-Adaptation Logic 
Realized via Reinforcement Learning

Execute

Policy
(Knowledge)

Monitor

Action 
Selection

(Analyze + Plan)

Policy Update

Self-Adaptation Logic

Analyze

Monitor Execute

Plan

Knowledge

(a)

(b)

(c)

Action a

State s

Reward r

Action 
Selection

Next state s’

Agent

Policy

Policy Update

Environment

Adaptation 
Action 
a

State s

Reward r

Next state s’

Fig. 2 Integration of reinforcement learning into the MAPE-K reference model: a basic reinforcement
learning model, b MAPE-K model, c integrated model

At a given time step t , the agent selects an action a (from its adaptation space)
to be executed in environment state s. As a result, the environment transitions to s′
at time step t + 1 and the agent receives a reward r for executing the action. The
reward r together with the information about the next state s′ are used to update
the action selection policy of the agent. The goal of reinforcement learning is to
optimize cumulative rewards.Asmentioned in Sect. 1, a trade-off between exploitation
(using current knowledge) and exploration (gathering new knowledge) must be made.
That is, to optimize rewards, actions should be selected that have shown to be useful
(exploitation), but to discover such actions in the first place, actions that were not
selected before must also be selected (exploration).

A self-adaptive system can conceptually be structured into two main elements
[19,34]: the system logic (aka. themanaged element) and the self-adaptation logic (aka.
the autonomic manager). To understand how reinforcement learning can be leveraged
for realizing the self-adaptation logic, we use the well-establishedMAPE-K reference
model for self-adaptive systems [9,44]. As depicted in Fig. 2b, MAPE-K structures
the self-adaptation logic into four main conceptual activities that rely on a common
knowledge base [17]. These activitiesmonitor the system and its environment, analyze
monitored data to determine adaptation needs, plan adaptation actions, and execute
these adaptation actions at runtime.

Figure 2c depicts how the elements of reinforcement learning are integrated into
the MAPE-K loop.

For a self-adaptive system, “agent” refers to the self-adaptation logic of the system
and “action” refers to an adaptation action [30]. In the integrated model, action selec-
tion of reinforcement learning takes the place of the analyze and plan activities of
MAPE-K. The learned policy takes the place of the self-adaptive system’s knowledge
base. At runtime, the policy is used by the self-adaptation logic to select an adaptation
action a based on the current state s determined by monitoring. The action selected
using the policy may be either to leave the system in the current state (i.e., no need for
adaptation), or a specific adaptation, which is then executed.

123



Self-adaptive systems via online reinforcement learning and FM-guided...

3 Feature-model-guided exploration (FM-guided exploration)

Asmotivated in Sect. 1, our exploration strategies use featuremodels (FM) to guide the
exploration process. We first explain how these FM-guided exploration strategies can
be integrated into existing reinforcement learning algorithms. Thereby,we also provide
a realization of the integrated conceptual model from Sect. 2. We then introduce the
realization of the actual FM-guided exploration strategies.

3.1 Integration into reinforcement learning

We use two well-known reinforcement learning algorithms for integrating our FM-
guided exploration strategies:Q-Learning andSARSA.WechoseQ-Learning, because
it is the most widely used algorithm in the related work (see Sect. 7). We chose
SARSA, as it differs from Q-Learning with respect to how the knowledge is updated
during learning. Q-Learning (an off -policy algorithm) updates the knowledge based
on selecting the next action which has the highest expected reward [37]. SARSA (an
on-policy algorithm) updates the knowledge based on selecting the next action by
following the already learned action selection policy.

Algorithm 1 shows the extended Q-Learning algorithm. A value function Q(s, a)

represents the learned knowledge, which gives the expected cumulative reward when
performing an action a in a state s [37]. There are two hyper-parameters: the learning
rate α, which defines to what extent newly acquired knowledge overwrites old knowl-
edge, and the discount factor γ , which defines the relevance of future rewards. After
the initialization (lines 2–3), the algorithm repeatedly selects the next action (line 5),
performs the action and observes its results (line 6), and updates its learned knowledge
and other variables (lines 7–8). Algorithm 2 shows the extended SARSA algorithm,
which follows a similar logic. However, while Q-Learning updates the knowledge by
selecting the action with the highest Q value (Algorithm 1, line 7), SARSA selects
the action according to the current policy (Algorithm 2, line 8).

Our strategies are integrated into reinforcement learning in the getNextAction

function, which selects the next adaptation action while trading off exploration and
exploitation. We use the ε-greedy strategy as a baseline, as a standard action selection
strategy in reinforcement learning, widely used in the related work (see Sect. 7). With
probability 1 − ε, ε-greedy exploits existing knowledge, while with probability ε, it
selects a random action. In contrast to random exploration, we use our FM-guided
exploration strategies by calling the getNextConfiguration function (Algorithm 1, line
17). To prevent FM-guided exploration from prematurely converging to a local mini-
mum, we follow the literature and use a little randomness [31], i.e., perform random
exploration with probability δ · ε (lines 15, 16). Here, 0 ≤ δ ≤ 1 is the probability for
choosing a random action, given that we have chosen to perform exploration.

To facilitate convergence of the learning process, we use the ε-decay approach. This
is a typical approach in reinforcement learning, which starts at ε = 1 and decreases
it at a predefined rate εd after each time step. We also follow this decay approach for
the FM-guided strategies to incrementally decrease δ with rate δd.

123



A. Metzger et al.

Algorithm 1 Q-Learning with FM-guided Exploration
1: function FMQ- Learning(FeatureModel M ; Double α, γ , εd, δd)
2: Initialize Q(s, a) with lowest possible reward ∀s ∈ S (state space), ∀a ∈ A (adaptation space);
3: Determine current state s; ε ← 1; δ ← 1;
4: repeat
5: Set<Feature> a = getNextAction(M , s); // Action Selection
6: Adapt service to configuration a; Observe reward r ; Observe new state s′;
7: Q(s, a) ← Q(s, a) + α[r + γmaxa′∈AQ(s′, a′) − Q(s, a)]; // Knowledge Update
8: s ← s′; ε ← ε · εd; δ ← δ · δd;
9: until last time step
10: end function
11:
12: function getNextAction(FeatureModel M , State s)
13: Set<Feature> a ← argmaxa Q(s, a); // Exploit existing knowledge
14: InitFMExploration(M , a); // initialize the FM-guided strategies, see Algorithm 3
15: if random() < ε then // Explore new actions
16: if random() < δ then return getRandomConfiguration(M );
17: else return getNextConfiguration(); // see Algorithm 3
18: end if
19: end if
20: return a;
21: end function

Algorithm 2 SARSA with FM-guided Exploration
1: function FMSARSA(FeatureModel M ; Double α, γ , εd, δd)
2: Initialize Q(s, a) with lowest possible reward ∀s ∈ S (state space), ∀a ∈ A (adaptation space);
3: Determine current state s; ε ← 1; δ ← 1;
4: Set<Feature> a = getNextAction(M , s); // Action Selection
5: repeat
6: Adapt service to configuration a; Observe reward r ; Observe new state s′;
7: Set<Feature> a′ = getNextAction(M , s′);
8: Q(s, a) ← Q(s, a) + α[r + γ Q(s′, a′) − Q(s, a)]; // Knowledge Update
9: s ← s′; a ← a′; ε ← ε · εd; δ ← δ · δd;
10: until last time step
11: end function

3.2 Feature–model–structure exploration for large adaptation spaces

To capture large adaptation spaces, we propose the FM-structure exploration strategy,
which takes advantage of the semantics typically encoded in the structure of feature
models. Non-leaf features are typically abstract features used to better structure vari-
ability [40]. Abstract features do not directly impact the implementation, but delegate
their implementation to their sub-features. Sub-features thereby offer different imple-
mentations of their abstract parent feature. As such, the sub-features of a common
parent feature, i.e., sibling features, can be considered semantically connected.

In the example from Sect. 2, the ContentDiscovery feature has two sub-features Search
and Recommendation offering different concrete ways how a user may discover online
content. The idea behind FM-structure exploration is to exploit the information about
these potentially semantically connected sibling features and explore them first before

123



Self-adaptive systems via online reinforcement learning and FM-guided...

Table 1 Example for FM-structure exploration (excerpt)

exploring other features.1 Table 1 shows an excerpt of a typical exploration sequence
of the FM-structure exploration strategy with the step-wise exploration of sibling
features highlighted in gray. Exploration starts with a randomly selected leaf feature,
here: Recommendation. Then all configurations involving this leaf feature are explored
before moving to its sibling feature, here: Search.

FM-structure exploration is realized by Algorithm 3, which starts by randomly
selecting an arbitrary leaf feature f among all leaf features that are part of the current
configuration (lines 5, 6). Then, the set of configurations C f containing feature f is
computed, while the sibling features of feature f are gathered into a dedicated siblings
set (line 7). While C f is non-empty, the strategy explores one randomly selected
configuration from C f and removes the selected configuration from C f (lines 11–
13). If C f is empty, then a new set of configurations containing a sibling feature
of f is randomly explored, provided such sibling feature exists (lines 15–17). If no
configuration containing f or a sibling feature of f is found, the strategy moves on
to the parent feature of f , which is repeated until a configuration is found (line 13) or
the root feature is reached (line 22).

3.3 Feature–model–difference exploration strategy for system evolution

To capture changes in the system’s adaptation space due to system evolution, we
propose the FM-difference exploration strategy, which leverages the differences in
feature models before (M ) and after (M ′) an evolution step. Following the product
line literature, we consider two main types of feature model differences [39]:

Added configurations (feature model generalization). New configurations may be
added to the adaptation space by (i) introducing new features to M ′, or (ii) remov-
ing or relaxing existing constraints (e.g., by changing a sub-feature from mandatory
to optional, or by removing cross-tree constraints). In our running example, a new
sub-feature Optimized might be added to the DataLogging feature, providing a more
resource efficient logging implementation. Thereby, new configurations are added
to the adaptation space, such as {DataLogging, Optimized, ContentDiscovery, Search}. As
another example, the Recommendation implementation may have been improved and
it now can work with the Min logging feature. This removes the cross-tree constraint
shown in Fig. 1, and adds new configurations such as {DataLogging,Min, ContentDiscovery,
Recommendation}.

1 Note that this entails a random selection of the order of sub-features.

123



A. Metzger et al.

Algorithm 3 FM-Structure Exploration Strategy
1: Set<Feature> leaves, configuration, siblings;
2: Set<Set<Feature>> C f ; Feature f ;
3:
4: function InitFMExploration(FeatureModelM , Set<Feature> currentConfiguration)
5: leaves ← getLeaves(currentConfiguration);
6: f ← randomSelect(leaves);
7: C f ← getConfigurationsWithFeature( f ); siblings ← siblings( f );
8: end function
9:
10: function getNextConfiguration()
11: if C f 	= ∅ then
12: configuration ← randomSelect(C f ); C f ← C f \ {configuration};
13: return configuration;
14: else
15: if siblings 	= ∅ then
16: f ← randomSelect(siblings);
17: siblings ← siblings \ { f }; C f ← getConfigurationsWithFeature( f );
18: else
19: if parent( f ) 	= ∅ then
20: f ← parent( f ); siblings ← siblings( f );
21: C f ← getConfigurationsWithFeature( f );
22: else // Root feature reached
23: return ∅;
24: end if
25: end if
26: return getNextConfiguration();
27: end if
28: end function

Removed configurations (feature model specialization). Symmetrical to above, con-
figurations may be removed from the adaptation space by (i) removing features from
M , or (ii) by adding or tightening constraints in M ′.

To determine these changes of featuremodels,we compute a set-theoretic difference
between valid configurations expressed by feature model M and feature model M ′.
Detailed descriptions of feature model differencing as well as efficient tool support
can be found in [1,5]. The featuremodel differences provide us with adaptation actions
added to the adaptation space (M ′ \M ), as well as adaptation actions removed from
the adaptation space (M \ M ′).

Our FM-difference exploration strategies first explore the configurations that were
added to the adaptation space, and then explore the remaining configurations if needed.
The rationale is that added configurations might offer new opportunities for finding
suitable adaptation actions and thus should be explored first. Configurations that were
removed are no longer executed and thus the learning knowledge can be pruned accord-
ingly. In the reinforcement learning realization (Sect. 3.1), we remove all tuples (s, a)

from Q, where a represents a removed configuration.
FM-difference exploration can be combined with FM-structure exploration, but

also with ε-greedy. In both cases, this means that instead of exploring the whole new
adaptation space, exploration is limited to the set of new configurations.

123



Self-adaptive systems via online reinforcement learning and FM-guided...

4 Experiment setup

We experimentally assess our FM-guided exploration strategies and compare them
with ε-greedy as the strategy used in the related work (see Sect. 7). In particular, we
aim to answer the following research questions:

RQ1:Howdoes learning performance and systemquality usingFM-structure explo-
ration (from Sect. 3.2) compare to using ε-greedy?

RQ2: How does learning performance and system quality using FM-difference
exploration (from Sect. 3.3) compare to evolution-unaware exploration?

4.1 Subject systems

Our experiments build on two real-world systems and datasets. The CloudRM system
is an adaptive cloud resource management service offering 63 features, 344 adaptation
actions, and a feature model that is 3 levels deep. The BerkeleyDB-J system is an open
source reconfigurable database written in Java with 26 features, 180 adaptation actions
and 5 levels.

CloudRM System: CloudRM [21] controls the allocation of computational tasks to
virtual machines (VMs) and the allocation of virtual machines to physical machines
in a cloud data center.2 CloudRM can be adapted by reconfiguring it to use different
allocation algorithms, and the algorithms can be adapted by using different sets of
parameters. We implemented a separate adaptation logic for CloudRM by using the
extended learning algorithms as introduced in Sect. 3.1.

We define the reward function as r = −(ρ ·e+(1−ρ)·m), with energy consumption
e and number of VMmanipulationsm (i.e., migrations and launches), each normalized
to be within [0, 1]. We use ρ = 0.8, meaning we give priority to reducing energy
consumption, while still maintaining a low number of VM manipulations.

Our experiments are based on a real-world workload trace with 10,000 tasks, in
total spanning over a time frame of 29 days [22]. The CloudRM algorithms decide on
the placement of new tasks whenever they are entered into the system (as driven by
the workload trace). For RQ2, the same workload was replayed after each evolution
step to ensure consistency among the results.

To emulate system evolution, we use a 3-step evolution scenario.
Starting from a system that offers 26 adaptation actions, these three evolution steps

respectively add 30, 72 and 216 adaptation actions.

BerkeleyDB-J: The BerkeleyDB-J dataset was collected by Siegmund et al [36] and
was used for experimentation with reconfigurable systems to predict their response
times.3 We chose this system because the configurations are expressed as a feature
model and the dataset includes performance measurements for all system configura-
tions, which were measured using standard benchmarks.4 Adaptation actions are the

2 https://sourceforge.net/p/vm-alloc/task_vm_pm.
3 https://www.se.cs.uni-saarland.de/projects/splconqueror/icse2012.php.
4 Other datasets from [36] had feature models with only 1 level, had many configurations associated with
the same response time, or did not include performance measurements for all configurations.

123

https://sourceforge.net/p/vm-alloc/task_vm_pm 
https://www.se.cs.uni-saarland.de/projects/splconqueror/icse2012.php


A. Metzger et al.

possible runtime reconfigurations of the system. We define the reward function as
r = −t , with t being the response time normalized to be within [0, 1].5

Given the smaller size of BerkeleyDB-J’s adaptation space, we use a 2-step evolu-
tion scenario to emulate system evolution. We first randomly change two of the five
optional features into mandatory ones, thereby reducing the size of the adaptation
space. We start from this reduced adaptation space and, randomly change the manda-
tory features back into optional ones. Starting from a system that offers 39 adaptation
actions, these two evolution steps respectively add 20 and 121 adaptation actions.

4.2 Measuring learning performance

We characterize the performance of the learning process by using the following met-
rics from [38]: Asymptotic performance measuring the reward achieved at end of the
learning process. Time to threshold measuring the number of time steps it takes the
learning process to reach a predefined reward threshold (in our case 90% of the differ-
ence between maximum and minimum performance). Total performance measuring
the overall learning performance by computing the area between the reward curve and
the asymptotic reward. In addition, we measure how the different strategies impact on
the quality characteristics of the subject systems.

Given the stochastic nature of the learning strategies (both ε-greedy and to a lesser
degree our strategies involve random decisions), we repeated the measurements 500
times and averaged the results.

4.3 Prototypical realization

The learning algorithms, as well as the ε-greedy and FM-based exploration strategies
were implemented in Java. Feature model management and analysis were performed
using the FeatureIDE framework,6 which we used to efficiently compute possible
feature combinations from a feature model.

4.4 Hyper-parameter optimization

To determine suitable hyper-parameter values (see Sect. 3.1), we performed hyper-
parameter tuning via exhaustive grid search for each of the subject systems and each of
the reinforcement learning algorithms. We measured the learning performance for our
baseline ε-greedy strategy for 11,000 combinations of learning rate α, discount factor
γ , and ε-decay rate. For each of the subject systems and reinforcement learning algo-
rithms we chose the hyper-parameter combination that led to the highest asymptotic
performance. We used these hyper-parameters also for our FM-guided strategies.

5 For CloudRM, the reward function was the opposite of the weighted sum of the metrics to be minimized,
where the sum of the weights is 1. Regarding BerkeleyDB-J, the same logic is applied, but since there is
only one metric to be minimized, the formula becomes simpler.
6 https://featureide.github.io/.

123

https://featureide.github.io/


Self-adaptive systems via online reinforcement learning and FM-guided...

Fig. 3 Learning performance for large adaptation spaces (RQ1)

5 Results

To facilitate reproducibility and replicability, our code, the used data and our experi-
mental results are available online.7

5.1 Results for RQ1 (FM-structure exploration)

Figure 3 visualizes the learning process by showing how rewards develop over time,
while Table 2 quantifies the learning performance using the metrics introduced above.

Across the two systems and learning algorithms, FM-structure exploration performs
better than ε-greedy wrt. total performance (33.7% on average) and time to thresh-
old (25.4%), while performing comparably wrt. asymptotic performance (0.33%). A
higher improvement is visible for CloudRM than forBerkeleyDB-J,whichwe attribute
to themuch larger adaptation space of CloudRM,whereby the effects of systematically
exploring the adaptation space become more pronounced.

For CloudRM, FM-structure exploration consistently leads to less VM manipula-
tions and lower energy consumption. While savings in energy are rather small (0.1%
resp. 0.23%), FM-structure exploration reduces the number of virtual machine manip-
ulations by 7.8% resp. 9.15%. This is due to the placement algorithms of CloudRM
having a small differencewrt. energyoptimization, but amuch larger differencewrt. the

7 https://gitlab.com/cquinton/fmlearning.

123

https://gitlab.com/cquinton/fmlearning


A. Metzger et al.

Table 2 Comparison of exploration strategies for large adaptation spaces (RQ1)

Asymptotic Time to Total Effect on

performance Threshold performance Quality

Q-Learning CloudRM Energy VM Manip.

greedy: -0.6851 286 -8.8023 7084 2281

FM-structure: -0.6854 219 -5.4431 7077 2103

Improvement -0.04 % 23.43 % 38.16 % 0.10 % 7.80 %
SARSA

-0.6885 390 -11.631 10602 3398

FM-structure: -0.6862 200 -4.9673 10578 3087

Improvement 0.33 % 48.72 % 57.29 % 0.23 % 9.15 %

Q-Learning BerkeleyDB-J Avg. Response Time

-0.1834 383 -31.2457 3606

FM-structure: -0.1847 357 -28.0466 3550

Improvement -0.71 % 6.79 % 10.24 % 1.55 %
SARSA

-0.1993 592 -46.8978 3824

FM-structure: -0.1958 457 -33.2211 3666

Improvement 1.76 % 22.80 % 29.16 % 4.13 %

Avg. Improv. Q-Learning -0.38 % 15.1 % 24.2 %
Avg. Improv. SARSA 1.05 % 35.8 % 43.2 %
Total Avg. Improvement 0.33 % 25.4 % 33.7 %

-

greedy:-

greedy:-

greedy:-

number of virtual machine manipulations. For BerkeleyDB-J, we observe an improve-
ment in response times of 1.55% resp. 4.13%. This smaller improvement is consistent
with the smaller improvement in learning performance.

Analyzing the improvement of FM-structure exploration for the different learning
algorithms, we observe an improvement of 24.2% (total performance) resp. 15.1%
(time to threshold) for Q-Learning, and a much higher improvement of 43.2% resp.
35.8% for SARSA. Note, however, that the overall learning performance of SARSA
is much lower than that of Q-Learning. SARSA performs worse wrt. total perfor-
mance (−23% on average), time to threshold (−27.6% on average), and asymptotic
performance (−3.82% on average). In addition, SARSA requires around 19.4% more
episodes than Q-Learning to reach the same asymptotic performance. The reason is
that SARSA is more conservative during exploration [37]. If there is an adaptation
action that leads to a large negative reward which is close to an adaptation action that
leads to the optimal reward, Q-Learning exhibits the risk of choosing the adaptation
action with the large negative reward. In contrast, SARSA will avoid that adaptation
action, but will more slowly learn the optimal adaptation actions. So, in practice one
may choose between Q-Learning and SARSA depending on how expensive it is to
execute “wrong” adaptations.

5.2 Results for RQ2 (FM-difference exploration)

We compare FM-difference exploration combined with ε-greedy and FM-structure
exploration with their respective evolution-unaware counterparts (i.e., the strategies

123



Self-adaptive systems via online reinforcement learning and FM-guided...

Fig. 4 Learning performance across system evolution (RQ2)

used for RQ1). It should be noted that even though we provide the evolution-unaware
strategies with the information about the changed adaptation space (so they can fully
explore it), we have not modified them such as to differentiate between old and new
adaptation actions.

Like for RQ1, Fig. 4 visualizes the learning process, while Table 3 quantifies learn-
ing performance. We computed the metrics separately for each of the evolution steps
and report their averages. After each evolution step, learning proceeds for a given
number of time steps, before moving to the next evolution step.

The FM-difference exploration strategies consistently perform better than their
evolution-unaware counterparts wrt. total performance (50.6% on average) and time
to threshold (47%), and perform comparably wrt. asymptotic performance (1.7%).
Like for RQ1, the improvements are more pronounced for CloudRM, which exhibits
a larger action space than BerkeleyDB-J.

For CloudRM, FM-difference exploration reduces the number of virtual machine
manipulations by 19.8% resp. 30.9%, while keeping energy consumption around the
same as the non-evolution-aware strategies. For BerkeleyDB-J, FM-difference explo-

123



A. Metzger et al.

Table 3 Comparison of exploration strategies across evolution steps (RQ2)

Asymptotic Time to Total Effect on

performance Threshold performance Quality

Q-Learning CloudRM Energy VM Manip.

FM-difference -2.0670 571 -39.1095 32393 10074

Evolution-unaware -2.0688 1147 -84.9052 32147 13745

FM-structure:
FM-difference -2.0697 756 -57.5157 32351 11439

Evolution-unaware -2.0699 866 -59.0660 32273 11798

Avg. Improvement 0.05 % 57.7 % 59.9 % -0.50 % 19.8 %
SARSA

FM-difference -2.1489 607 -39.3645 32566 10374

Evolution-unaware -2.2530 2018 -117.6577 32618 15756

FM-structure:
FM-difference -2.1723 955 -74.8560 32660 12641

Evolution-unaware -2.1834 723 -86.3582 32695 13911

Avg. Improvement 2.68 % 104.1 % 107.1 % 0.13 % 30.9 %

Q-Learning BerkeleyDB-J Avg. Response Time

FM-difference -0.3583 661 -52.7786 3270

Evolution-unaware -0.3582 774 -66.2526 3348

FM-structure:
FM-difference -0.3589 675 -58.2346 3301

Evolution-unaware -0.3588 693 -58.7939 3305

Avg. Improvement -0.02 % 9.88 % 13.2 % 1.24 %

SARSA

FM-difference -0.5111 999 -74.5953 3588

Evolution-unaware -0.5465 1195 -101.2446 3741

FM-structure:
FM-difference -0.4685 726 -61.6969 3514

Evolution-unaware -0.4732 818 -66.8781 3544

Avg. Improvement 3.97 % 16.2 % 22.1 % 2.56 %

Avg. Improv. -greedy         92.5 %2.96 % 94.3 %
Avg. Improv. FM-structure 0.38 % 1.4 % 6.85 %
Total Avg. Improvement 1.67 % 47 % 50.6 %

greedy:-

greedy:-

greedy:-

greedy:-

ration leads a reduction in response time by 1.24% resp. 2.56%. Like for RQ1, this
smaller reduction is consistent with the smaller learning performance.

The improvement of FM-difference exploration is more pronounced for ε-greedy
than for FM-structure exploration; e.g., showing a 94.4% improvement in total perfor-
mance for ε-greedy compared with an improvement of only 6.85% for FM-structure
exploration. This suggests that, during evolution, considering the changes of the adap-
tation space has a much larger effect than considering the structure of the adaptation
space. In addition, we note that due to the way we emulate evolution in our experi-
ments, the number of adaptations introduced after an evolution step is much smaller

123



Self-adaptive systems via online reinforcement learning and FM-guided...

(66 on average) than the size of the whole adaptation space of the subject systems
(262 on average), thus diminishing the effect of FM-structure exploration.

Analyzing the improvement of FM-difference exploration for the different learning
algorithms, we can observe the same effect as for RQ1. While FM-difference explo-
ration shows amuchhigher improvement for SARSA, the overall learningperformance
for SARSA is much lower than for Q-Learning.

5.3 Validity risks

We used two realistic subject systems and employed real-world workload traces and
benchmarks to measure learning performance and the impact of the different explo-
ration strategies on the systems’ quality characteristics. The results reinforce our earlier
findings from [26] and also indicate that the size of the adaptation space may have
an impact on how much improvement may be gained from FM-structure exploration.
As part of our future work, we plan experiments with additional subject systems to
confirm this impact for larger action spaces.

We chose ε-greedy as a baseline, because it was the exploration strategy used
in existing online reinforcement learning approaches for self-adaptive systems (see
Sect. 7). Alternative exploration strategies were proposed in the broader field of
machine learning. Examples include Boltzmann exploration, where actions with a
higher expected reward (e.g., Q value) have a higher chance of being explored, or UCB
action selection,where actions are favored that have been less frequently explored [37].
A comparison among those alternatives is beyond the scope of this article, because a
fair comparison would require the careful variation and analysis of a range of many
additional hyper-parameters. We plan addressing this as part of future work.

6 Limitations and assumptions

Below, we discuss current limitations and assumptions of our approach.

6.1 Completeness of featuremodels

We assume that feature models are complete with respect to the coverage of the adap-
tation space and that during an evolution step they are always consistent and up to
date. A further possible change during service evolution can be the modification of a
feature’s implementation, which is currently not visible in the feature models. Encod-
ing such kind of modification thus could further improve our FM-guided exploration
strategies.

6.2 Structure of feature models

One aspect that impacts FM-structure exploration is how the feature model is struc-
tured. As an example, if a feature model has only few levels (and thus little structure),
FM-structure exploration behaves similar to random exploration, because such a “flat”

123



A. Metzger et al.

feature model does not provide enough structural information. On the other hand, pro-
viding reinforcement learning with too much structural information might hinder the
learning process. As case in point, we realized during our experiments that the alter-
native FM-structure exploration strategy from our earlier work [26] indeed had such
negative effect for the BerkeleyDB-J system. This alternative strategy used the con-
cept of “feature degree”8 to increase the amount of structural information used during
learning.

6.3 Types of features

Our approach currently only supports discrete features in the feature models, and thus
only discrete adaptation actions. Capturing feature cardinalities or allowing numeric
feature values is currently not possible, and thus continuous adaptation actions cannot
be captured.

6.4 Adaptation constraints

When realizing the exploration strategies (both ε-greedy and FM-guided), we assumed
wecan always switch fromaconfiguration to anyother possible configuration.Wewere
not concerned with the technicalities of how to reconfigure the running system (which,
for example, is addressed in [8]). We also did not consider constraints concerning the
order of adaptations. In practice, only certain paths may be permissible to reach a
configuration from the current one. To consider such paths, our strategies may be
enhanced by building on work such as [32].

7 Related work

We first review papers that apply online reinforcement learning to self-adaptive sys-
tems but do not consider large discrete adaptation spaces or system evolution, and then
review papers that do.

7.1 Applying online reinforcement learning to self-adaptive systems

Barrett et al use Q-Learning with ε-greedy for autonomic cloud resource allocation
[3]. They use parallel learning to speed up the learning process. Caporuscio et al use
two-layer hierarchical reinforcement learning for multi-agent service assembly [7].
They observe that by sharing monitoring information, learning happens faster than
when learning in isolation. Arabnejad et al apply fuzzy reinforcement learning with
ε-greedy to learn fuzzy adaptation rules [2]. Moustafa and Zhang use multi-agent Q-
Learning with ε-greedy for adaptive service compositions [28]. To speed up learning,
they use collaborative learning, where multiple systems simultaneously explore the
set of concrete services to be composed. Zhao et al use reinforcement learning (with

8 The feature degree for a given feature f is the number of configurations that contain f .

123



Self-adaptive systems via online reinforcement learning and FM-guided...

ε-greedy) combinedwith case-based reasoning to generate and update adaptation rules
for web applications [46]. Their approach may take as long to converge as learning
from scratch, but may offer higher initial performance. Shaw et al apply reinforcement
learning for the consolidation of virtual machines in cloud data centers [35].

Recently, deep reinforcement learning has gained popularity. In deep reinforcement
learning a deep neural network is used to store the learned knowledge (for example, the
Q function in Deep Q-Learning). Wang et al use Q-learning (using ε-greedy) together
with function approximation. They use neural networks to generalize over unseen envi-
ronment states and thereby facilitate learning in the presence of many environment
states [42]. Yet, they do not address large action spaces. Moustafa and Ito use deep
Q-Networks enhanced with double Q-Learning and prioritized experience replay for
adaptively selecting web services for a service workflow [27]. Wang et al also address
the service composition problem, and apply deep Q-Learning with Recurrent Neural
Network (RNN), which can also handle partially observable states [43]. Restuccia and
Melodia propose an efficient implementation of reinforcement learning using deep Q-
Networks for adaptive radio control in wireless embedded systems [33]. In our earlier
work, we used policy-based reinforcement learning for self-adaptive information sys-
tems [30], where the policy is represented as a neural network. Thereby, we addressed
continuous environment states and adaptation actions. Using deep neural networks,
these approaches can better generalize over environment states and actions. Thereby,
deep reinforcement learning in general may perform better in large adaptation spaces.
However, to be able to generalize, the adaptation space must be continuous [10]. A
continuous space of actions is represented by continuous variables, such as real-valued
variables. Setting a specific angle for a robot arm or changing the set-point of a ther-
mostat are examples for a continuous space of actions [18]. However, as motivated
in Sect. 1, many kinds of self-adaptive systems have a discrete, i.e., non-continuous
space of adaptation actions.

In conclusion, none of the approaches reviewed above addresses the influence of
large discrete adaptation spaces nor that of system evolution on learning performance.
Thus, these approaches may suffer from poor performance over an extended period of
time while the system is performing random exploration of the large adaptation space,
as it may take a long time to find suitable adaptations. In addition, such approaches
may only recognize adaptation possibilities added by evolution late, thereby negatively
impacting on the system’s long-term overall performance.

7.2 Considering large adaptation spaces and evolution

Bu et al explicitly consider large adaptation spaces [4]. They employ Q-Learning
(using ε-greedy) for self-configuring cloud systems. They reduce the size of the adap-
tation space by splitting it into coarse-grained sub-sets for each of which they find a
representative adaptation action using the simplex method. Their experiments indicate
that their approach indeed can speed up learning. Yet, they do not consider service
evolution.

Dutreilh et al explicitly consider service evolution [11]. They use Q-Learning for
autonomic cloud resource management. To speed up learning, they provide good ini-

123



A. Metzger et al.

tial estimates for the Q function, and use statistical estimates about the environment
behavior. They indicate that system evolution may imply a change of system perfor-
mance and sketch an idea on how to detect such drifts in system performance. Yet,
they do not consider that evolution may also introduce or remove adaptation actions.

A different line of work uses supervised machine learning to reduce the size of the
adaptation space. As an example, Van Der Donckt et al use deep learning to deter-
mine a representative and much smaller subset of the adaptation space [41]. However,
supervised learning requires labeled training data representative of the system’s envi-
ronment, which may be challenging to obtain due to design time uncertainty.

Our earlier work made a first attempt to address both large adaptation spaces and
evolution in online reinforcement learning for self-adaptive systems by means of
FM-guided exploration [26]. The present paper extends our earlier work in multi-
ple respects, including a conceptual framework for integrating reinforcement learning
into the MAPE-K reference model of self-adaptive systems, covering a broader range
of subject systems, and integrating our strategies into two different reinforcement
learning algorithms.

8 Conclusion and outlook

We introduced feature-model-guided exploration strategies for online reinforcement
learning that address potentially large adaptation spaces and the change of the adap-
tation space due to system evolution. Experimental results for two adaptive systems
indicate a speed up of learning and an improvement of quality characteristics in turn.

As future work, we plan using extended feature models, which offer a more expres-
sive notation allowing to capture feature cardinality and even numeric feature values
[25]. Thereby, we can express adaptation spaces which combine discrete and contin-
uous adaptation actions. This will require more advanced feature analysis methods
[14] to be used as part of our FM-based exploration strategies. In addition, we aim
to extend our strategies to also consider changes in existing features (and not only
additions and removal of features) during system evolution. This, among others, will
require extending the feature modeling language used. Finally, we plan using deep
reinforcement learning, which represents the policy as a neural network, and thereby
can generalize over environment states and adaptation actions [30].

Acknowledgements We cordially thank Antonio Ruiz-Cortés for inspiring discussions at ICSOC 2020, as
well as Alexander Palm for comments on earlier drafts.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Self-adaptive systems via online reinforcement learning and FM-guided...

References

1. Acher M, Heymans P, Collet P, Quinton C, Lahire P, Merle P (2012) Feature model differences.
In: Proceedings of the 24th international conference on advanced information systems engineering,
CAiSE’12, pp 629–645

2. Arabnejad H, Pahl C, Jamshidi P, Estrada G (2017) A comparison of reinforcement learning techniques
for fuzzy cloud auto-scaling. In: 17th intl symposium on cluster, cloud and grid computing, CCGRID
2017, pp 64–73

3. Barrett E, Howley E, Duggan J (2013) Applying reinforcement learning towards automating resource
allocation and application scalability in the cloud. Concurr Comput Pract Exp 25(12):1656–1674

4. Bu X, Rao J, Xu C (2013) Coordinated self-configuration of virtual machines and appliances using a
model-free learning approach. IEEE Trans Parallel Distrib Syst 24(4):681–690

5. Bürdek J, Kehrer T, Lochau M, Reuling D, Kelter U, Schürr A (2016) Reasoning about product-line
evolution using complex feature model differences. Autom Softw Eng 23(4):687–733

6. Calinescu R, Mirandola R, Perez-Palacin D, Weyns D (2020) Understanding uncertainty in self-
adaptive systems. In: IEEE international conference on autonomic computing and self-organizing
systems, ACSOS 2020, Washington, DC, USA, August 17–21, 2020, pp 242–251. IEEE

7. Caporuscio M, D’Angelo M, Grassi V, Mirandola R (2016) Reinforcement learning techniques for
decentralized self-adaptive service assembly. In: 5th Eur. conference on service-oriented and cloud
computing, ESOCC’16, vol 9846, pp 53–68

8. Chen B, Peng X, Yu Y, Nuseibeh B, Zhao W (2014) Self-adaptation through incremental generative
model transformations at runtime. In: 36th Intl conference on software engineering, ICSE ’14, pp
676–687

9. De Lemos R, et al. (2013) Software engineering for self-adaptive systems: a second research roadmap.
In: Software engineering for self-adaptive systems II. LNCS, vol 7475, pp 1–32. Springer

10. Dulac-Arnold G, Evans R, Sunehag P, Coppin B (2015) Reinforcement learning in large discrete action
spaces. CoRR arXiv:1512.07679

11. Dutreilh X, Kirgizov S, Melekhova O, Malenfant J, Rivierre N, Truck I (2011) Using reinforcement
learning for autonomic resource allocation in clouds: towards a fully automated workflow. In: 7th Intl
conference on autonomic and autonomous systems, ICAS’11, pp 67–74

12. EsfahaniN,ElkhodaryA,MalekS (2013)A learning-based framework for engineering feature-oriented
self-adaptive software systems. IEEE Trans Softw Eng 39(11):1467–1493

13. Filho RVR, Porter B (2017) Defining emergent software using continuous self-assembly, perception,
and learning. TAAS 12(3):16:1–16:25

14. Galindo JA, Benavides D, Trinidad P, Gutiérrez-Fernández AM, Ruiz-Cortés A (2019) Automated
analysis of feature models: Quo vadis? Computing 101(5):387–433

15. Ghezzi C (2017) Of software and change. J Softw Evolut Process 29(9)
16. Hinchey M, Park S, Schmid K (2012) Building dynamic software product lines. IEEE Comput

45(10):22–26
17. de la Iglesia DG, Weyns D (2015) MAPE-K formal templates to rigorously design behaviors for

self-adaptive systems. TAAS 10(3):15:1–15:31
18. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res

4:237–285
19. Kephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50
20. Kinneer C, Coker Z, Wang J, Garlan D, Le Goues C (2018) Managing uncertainty in self-adaptive

systems with plan reuse and stochastic search. In: 13th intl symposium on software engineering for
adaptive and self-managing systems, SEAMS’18, pp 40–50

21. MannZÁ (2016) Interplay of virtualmachine selection andvirtualmachine placement. In: 5thEuropean
conference on service-oriented and cloud computing, ESOCC’16, vol 9846, pp 137–151

22. Mann ZÁ (2018) Resource optimization across the cloud stack. IEEE Trans Parallel Distrib Syst
29(1):169–182

23. Metzger A, Bayer A, Doyle D, Sharifloo AM, Pohl K, Wessling F (2016) Coordinated run-time
adaptation of variability-intensive systems: an application in cloud computing. In: 1st intl workshop
on variability and complexity in software design, VACE@ICSE 2016, pp 5–11. ACM

24. Metzger A, DiNitto E (2012)Addressing highly dynamic changes in service-oriented systems: towards
agile evolution and adaptation. In: Agile and lean service-oriented development: foundations, theory
and practice, pp 33–46

123

http://arxiv.org/abs/1512.07679


A. Metzger et al.

25. Metzger A, Pohl K (2014) Software product line engineering and variability management: achieve-
ments and challenges. In: Future of software engineering, FOSE’14, pp 70–84

26. Metzger A, Quinton C,Mann ZÁ, Baresi L, Pohl K (2020) Feature model-guided online reinforcement
learning for self-adaptive services. In: Intl conference on service-oriented computing (ICSOC 2020),
LNCS, vol 12571, pp 269–286. Springer

27. Moustafa A, Ito T (2018) A deep reinforcement learning approach for large-scale service composition.
In: International conference on principles and practice of multi-agent systems, pp 296–311

28. Moustafa A, ZhangM (2014) Learning efficient compositions for QoS-aware service provisioning. In:
IEEE intl conference on web services, ICWS’14, pp 185–192

29. NachumO, Norouzi M, Xu K, Schuurmans D (2017) Bridging the gap between value and policy based
reinforcement learning. In: Advances in neural information processing systems 12 (NIPS 2017), pp
2772–2782

30. PalmA,MetzgerA,PohlK (2020)Online reinforcement learning for self-adaptive information systems.
In: Yu E, Dustdar S (eds) Int’l conference on advanced information systems engineering, CAiSE’20

31. Plappert M, Houthooft R, Dhariwal P, Sidor S, Chen RY, Chen X, Asfour T, Abbeel P, Andrychowicz
M (2018) Parameter space noise for exploration. In: 6th intl conference on learning representations,
ICLR 2018. OpenReview.net

32. Ramirez AJ, Cheng BHC, McKinley PK, Beckmann BE (2010) Automatically generating adaptive
logic to balance non-functional tradeoffs during reconfiguration. In: 7th international conference on
autonomic computing, ICAC’10, pp 225–234

33. Restuccia F, Melodia T (2020) DeepWiERL: Bringing deep reinforcement learning to the internet of
self-adaptive things. In: IEEE INFOCOM 2020: IEEE conference on computer communications, pp
844–853. IEEE

34. SalehieM, Tahvildari L (2009) Self-adaptive software: Landscape and research challenges. TAAS 4(2)
35. Shaw R, Howley E, Barrett E (2021) Applying reinforcement learning towards automating energy

efficient virtual machine consolidation in cloud data centers. Inf Syst.
36. Siegmund N, Kolesnikov SS, Kästner C, Apel S, Batory D, Rosenmüller M, Saake G (2012) Predicting

performance via automated feature–interaction detection. In: 34th international conference on software
engineering, ICSE’12, pp 167–177

37. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. MIT Press, Cambridge
38. Taylor ME, Stone P (2009) Transfer learning for reinforcement learning domains: a survey. J Mach

Learn Res 10:1633–1685
39. Thüm T, Batory D, Kastner C (2009) Reasoning about edits to feature models. In: 31st Intl conference

on software engineering, ICSE’09, pp 254–264
40. Thüm T, Kästner C, Erdweg S, Siegmund N (2011) Abstract features in feature modeling. In: 15th

international conference on software product lines, SPLC’11, pp 191–200
41. Van Der Donckt J, Weyns D, Quin F, Van Der Donckt J, Michiels S (2020) Applying deep learning

to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: 15th inter-
national symposium on software engineering for adaptive and self-managing systems, SEAMS 2020.
ACM

42. Wang H, Gu M, Yu Q, Fei H, Li J, Tao Y (2017) Large-scale and adaptive service composition using
deep reinforcement learning. In: 15th intl conference on service-oriented computing (ICSOC’17), pp
383–391

43. Wang H, Gu M, Yu Q, Tao Y, Li J, Fei H, Yan J, Zhao W, Hong T (2019) Adaptive and large-scale
service composition based on deep reinforcement learning. Knowl-Based Syst 180:75–90

44. Weyns D (2021) Introduction to self-adaptive systems: a contemporary software engineering perspec-
tive. Wiley

45. Weyns D, et al (2013) Perpetual assurances for self-adaptive systems. In: de Lemos R, Garlan D,
Ghezzi C, Giese H (eds) Software engineering for self-adaptive systems III. Assurances—International
Seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Revised Selected and Invited Papers,
Lecture Notes in Computer Science, vol 9640, pp 31–63. Springer

46. Zhao T, Zhang W, Zhao H, Jin Z (2017) A reinforcement learning-based framework for the generation
and evolution of adaptation rules. In: Intl conference on autonomic computing, ICAC, pp 103–112

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Realizing self-adaptive systems via online reinforcement learning and feature-model-guided exploration
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Contributions

	2 Fundamentals
	2.1 Feature models and self-adaptation
	2.2 Reinforcement learning and self-adaptation

	3 Feature-model-guided exploration (FM-guided exploration)
	3.1 Integration into reinforcement learning
	3.2 Feature–model–structure exploration for large adaptation spaces
	3.3 Feature–model–difference exploration strategy for system evolution

	4 Experiment setup
	4.1 Subject systems
	4.2 Measuring learning performance
	4.3 Prototypical realization
	4.4 Hyper-parameter optimization

	5 Results
	5.1 Results for RQ1 (FM-structure exploration)
	5.2 Results for RQ2 (FM-difference exploration)
	5.3 Validity risks

	6 Limitations and assumptions
	6.1 Completeness of feature models
	6.2 Structure of feature models
	6.3 Types of features
	6.4 Adaptation constraints

	7 Related work
	7.1 Applying online reinforcement learning to self-adaptive systems
	7.2 Considering large adaptation spaces and evolution

	8 Conclusion and outlook
	Acknowledgements
	References




