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Abstract
The	term	neurovascular	unit	(NVU)	describes	the	structural	and	functional	liai-
son	between	specialized	brain	endothelium,	glial	and	mural	cells,	and	neurons.	
Within	 the	 NVU,	 the	 blood-	brain	 barrier	 (BBB)	 is	 the	 microvascular	 structure	
regulating	neuronal	physiology	and	immune	cross-	talk,	and	its	properties	adapt	
to	brain	aging.	Here,	we	analyze	a	research	framework	where	NVU	dysfunction,	
caused	by	acute	insults	or	disease	progression	in	the	aging	brain,	represents	a	con-
verging	mechanism	underlying	late-	onset	seizures	or	epilepsy	and	neurological	or	
neurodegenerative	sequelae.	Furthermore,	seizure	activity	may	accelerate	brain	
aging	by	sustaining	regional	NVU	dysfunction,	and	a	cerebrovascular	pathology	
may	link	seizures	to	comorbidities.	Next,	we	focus	on	NVU	diagnostic	approaches	
that	could	be	tailored	to	seizure	conditions	in	the	elderly.	We	also	examine	the	
impending	disease-	modifying	strategies	based	on	the	restoration	of	the	NVU	and,	
more	in	general,	the	homeostatic	control	of	anti-		and	pro-	inflammatory	players.	
We	conclude	with	an	outlook	on	current	pre-	clinical	knowledge	gaps	and	clinical	
challenges	pertinent	to	seizure	onset	and	conditions	in	an	aging	population.
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1 	 | 	 INTRODUCTION

Older	adults	account	for	12%	and	20%	of	the	United	States	
and	 Europe	 population,	 respectively.1,2	 By	 2050,	 one	 in	
six	 individuals	 will	 be	 65	 years	 of	 age	 or	 older.3,4	 These	
numbers	are	important	considering	that	the	incidence	of	
seizures	and	epilepsy	increases	from	50 years	of	age,	and	
it	becomes	the	highest	in	subjects	older	than	65	because	
of	epileptogenic	brain	insults	and	diseases.3	This	clinical	
fact,	and	its	limited	understanding,	stirs	discussion	about	
pathological	 mechanisms	 and	 trajectories,	 risk	 of	 cogni-
tive	impairment,	and	the	adequacy	of	available	antiseizure	
medications	for	treating	older	patients.3	From	this	context,	
we	examined	whether	neurovascular	unit	(NVU)	dysfunc-
tion	during	aging	5-	8	could	play	a	role	in	the	onset	of	sei-
zures	 and	 epilepsy.	 We	 searched	 for	 relevant	 literature	
using	PubMed	and	Google	Scholar	databases.	We	focused	
on,	but	did	not	limit	to,	the	past	decade.	We	used	combina-
tions	of	two	or	more	keywords9	(eg,	seizures,	aging,	late-	
onset	 epilepsy,	 neurovascular	 unit,	 blood-	brain	 barrier	
(BBB),	 inflammation,	 glial	 cells,	 stroke,	 traumatic	 brain	
injury,	 neurodegeneration,	 tau-	hyperphosphorylation,	
amyloid	 beta,	 Alzheimer's	 disease,	 and	 vascular	 demen-
tia)	to	retrieve	and	select	pertinent	knowledge,	including	
perspective	 views,	 hypotheses,	 and	 knowledge	 gaps.	 We	
first	summarize	the	structural	and	cellular	elements	of	the	
healthy	NVU.	Next,	we	focus	on	clinical	and	experimental	
examples	 supporting	 the	 involvement	 of	 NVU	 dysfunc-
tion,	 within	 a	 pro-	inflammatory	 environment	 and	 not	
limited	to	BBB	permeability,	in	the	occurrence	of	seizures	
and	epilepsy	during	aging.	Finally,	we	discuss	diagnostic	
and	therapeutic	opportunities	that	could	be	further	stud-
ied	 and	 potentially	 applied	 to	 an	 aging	 population,	 pro-
posing	a	contextualization	to	seizure	conditions.

2 	 | 	 THE NEUROVASCULAR UNIT: 
AN OVERVIEW OF CELLULAR 
COMPONENTS AND FUNCTIONS

The	NVU	 is	unique	 to	 the	brain	and	 is	a	complex	 func-
tional	and	multi-	cellular	anatomic	structure.	The	NVU	in-
cludes	vascular	cells	 (brain	microvessel	endothelial	cells	
[BMECs])	with	mural	cells	(pericytes	and	smooth	muscle	
cells)	that	are	in	close	contact	with	BMECs,	glial	cells	(as-
trocytes,	 microglia,	 and	 oligodendrocytes),	 perivascular	
macrophages,	and	neurons	(Figures	1	and	2).	Within	the	
NVU,	 the	 BBB	 includes	 a	 vast	 system	 of	 capillaries	 and	
postcapillary	venules	regulating	the	passage	of	molecules	
and	cells	 in	and	out	of	 the	brain.	The	BBB	 is	 character-
ized	 by	 a	 highly	 selective	 endothelial-	pericyte-	astrocyte	
layering,	 separating	 the	peripheral	blood	 from	the	brain	

Key points
1.	Neurovascular	unit	(NVU)	dysfunction	is	a	con-

verging	 disease-	associated	 element	 contribut-
ing	to	seizures	during	aging.

2.	Acute	brain	insults	and	disease	progression	pro-
mote	or	intersect	with	seizures	during	aging.

3.	Blood-	brain	 barrier	 dysfunction	 and	 brain	 in-
flammation	 could	 be	 hallmarks	 of	 age-	related	
seizures	and	neurodegenerative	diseases.

4.	Refining	NVU	diagnostics	and	 therapies	 is	 es-
sential	 to	 control	 seizures	 and	 epilepsy	 in	 the	
aging	population.

F I G U R E  1  Schematic	overview	of	the	cerebrovasculature.	The	
brain	receives	blood	supply	from	the	carotid	and	vertebral	arteries,	
which	regulate	blood	flow	via	the	contraction	of	smooth	muscle	
cells.	Arteries	leave	the	subarachnoid	space	to	penetrate	the	brain	
parenchyma,	branching	into	arterioles	and	capillaries.	At	this	site,	
the	endothelium	is	surrounded	by	a	multi-	cellular	assembly	(see	
Figure	2),	forming	the	neurovascular	unit.	Blood	is	collected	in	
venules	and	distributed	via	veins	to	exit	the	brain
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parenchyma	 (Figure	 2;	 see	 Ref.	 10).	 The	 BBB	 is	 a	 gate-
way,	 and	 the	 first	 cell	 type	 encountered	 when	 entering	
the	 brain	 from	 the	 blood	 is	 the	 BMEC.	 These	 cells	 are	
connected	 via	 tight	 and	 adherens	 junctions,	 restricting	
the	paracellular	diffusion	of	 ions	(eg,	Na+,	K+,	and	Cl−),	
macromolecules,	 and	 polar	 solutes,	 but	 allowing	 oxy-
gen/CO2	via	diffusion	(see	Ref.	10	and11).	Tight	junction	
proteins	 have	 a	 size-	selective	 permeability	 to	 uncharged	
molecules	 of	 up	 to	 4  nm,	 suggesting	 that	 larger	 mole-
cules	 can	 passively	 traverse	 only	 when	 the	 permeability	
of	the	BBB	increases	or	via	ad	hoc	transport	or	metabolic	
mechanisms.12–	14	BMECs	produce	a	variety	of	molecules,	
including	 inflammatory	 mediators,	 growth	 factors,	 and	
extracellular	matrix	proteins,	 that	modulate	diverse	mo-
lecular	 pathways	 and	 allow	 adaptations	 during	 physi-
ological	 and	 pathological	 stimuli	 (see15,16).	 BMECS	 are	

encased	by	a	continuous	basement	membrane,	consisting	
of	an	inner	layer	produced	by	BMECs	and	pericytes	and	
a	parenchymal	layer	shaped	by	astrocytes	(Figure	2).17,18	
The	basement	membrane	consists	of	laminin,	collagen	IV,	
nidogen,	and	heparan	sulfate	proteoglycans	that	support	
mutual	interactions	between	BMECs,	pericytes,	and	astro-
cytes.15,18,19	The	basement	membrane	is	a	physical	barrier	
with	an	ideal	location	for	signaling	processes.20	Pericytes	
are	mural	cells	 located	within	 the	basement	membrane,	
where	they	 interact	with	BMECs	and	astrocytic	end-	feet	
to	participate	in	structural	and	homeostatic	BBB	functions	
(Figure	2;	and21,22).	Pericytes	communicate	directly	with	
BMECs	through	gap	junctions	and	adjacent	pericytes	via	
peg-	and-	socket	contacts.22	They	are	essential	for	the	nor-
mal	development	and	function	of	the	brain	arterioles	and	
capillaries,	including	tightness	or	permeability	properties	
and	cerebral	blood	flow	regulation.22,	23	Pericytes	interplay	
with	 immune	 cells24	 25;	 they	 may	 have	 macrophage-	like	
properties26	and	rapidly	relay	inflammatory	signals	from	
the	 periphery.27	 Astrocytes	 ensheath	 with	 their	 endfeet	
perivascular	 pericytes,	 the	 basal	 lamina,	 and	 neuronal	
processes	(Figures	1	and	2).	They	are	centrally	positioned	
between	neurons	and	BMECs.	They	are	essential	for	neu-
rovascular	 coupling,	 the	 dynamic	 control	 of	 local	 blood	
flow	in	response	to	increased	metabolic	needs	due	to	neu-
ral	activity.28–	30	They	express	 ion	channels,	 transporters,	
and	receptors,	enabling	their	critical	roles	in	modulating	
synaptic	activity	via	potassium	buffering,	pH	regulation,	
neurotransmitter	 uptake,	 gliotransmitter	 release,	 and	
maintenance	 of	 neuronal	 homeostasis.30	 Astrocytes	 pro-
duce	 inflammatory	 mediators	 and	 extracellular	 matrix	
proteins,	 with	 either	 BBB-	promoting	 or	 BBB-	disrupting	
effects,	depending	on	the	signals	received	from	neurons,	
microglia,	 and	 endothelial	 cells	 (see15,16,30).	 In	 addition,	
they	are	essential	for	perivascular	clearance	via	the	glym-
phatic	 system.31	 Microglia	 and	 oligodendrocytes	 neigh-
bor	 the	 BBB.	 Microglia	 are	 the	 primary	 brain	 immune	
effector	cells	 that	become	activated	and	undergo	a	mor-
phological	 and	 functional	 transformation	 during	 brain	
injuries	and	diseases	 (see	Ref.	32).	Oligodendrocytes	are	
responsible	 for	 forming	 myelin	 sheets	 that	 provide	 sup-
port	 and	 insulation	 to	 axons	 in	 the	 central	 nervous	 sys-
tem.32	Finally,	perivascular	macrophages	 lie	on,	or	close	
to,	 the	outer	(abluminal)	surface	of	blood	vessels.33	Like	
pericytes,	they	can	regulate	blood	vessel	permeability	and	
immune	functions	by	producing	inflammatory	mediators	
and	performing	phagocytosis.32,33	These	fundamental	de-
scriptions	(comprehensively	reviewed	in	Ref.	20	and	34–	
36)	illustrate	the	cellular	complexity	of	the	BBB	interface	
within	 the	 NVU,	 underpinning	 direct	 liaisons	 between	
regional	 cerebrovascular	 functions	 and	 permeability,	 in-
flammation,	and	neuronal	activity	regulations.	Failure	of	
these	precise	cellular	and	homeostatic	interactions	during	

F I G U R E  2  The	neurovascular	unit	in	the	healthy	and	
aging	brain:	intersections	with	seizure	conditions.	Left:	in	the	
healthy	brain,	endothelial	cells	are	connected	by	tight	junctions	
and	form	the	blood-	brain	barrier	(BBB).	These	endothelial	cells	
are	surrounded	by	pericytes	(and	perivascular	macrophages)	
embedded	in	the	basement	membrane.	Astrocytic	endfeet	cover	
the	basement	membrane	and	enclose	the	blood	vessel,	and	
neighboring	microglia	provide	immune	surveillance.	Changes	
in	local	neuronal	activity	lead	to	subsequent	changes	in	cerebral	
blood	flow,	a	process	that	is	called	neurovascular	coupling.	
Furthermore,	several	transporters	are	active,	for	example,	to	clear	
amyloid	from	the	brain.	Right:	detrimental	processes	during	aging	
can	intersect	with	seizure	pathophysiology.	These	changes	include	
increased	BBB	permeability,	basement	membrane	thickening,	
pericyte	detachment,	astrocytosis	and	microgliosis,	perivascular	
inflammation,	amyloid	and	tau	accumulation,	and	neuronal	death,	
which	may	converge	to	seizure,	epilepsy	and/or	cognitive	decline
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pathological	 conditions	 favors	 abnormal	 neuronal	 firing	
or	seizures.

3 	 | 	 NEUROVASCULAR	
DYSFUNCTION	IS	A	RISK	FACTOR	
FOR	SEIZURES	AND	EPILEPSY	
DURING	AGING:	CLINICAL	CLUES .

Particularly	 in	 the	 aging	 population,	 brain	 insults	 or	
diseases	 can	 promote	 seizures	 and	 late-	onset	 epilepsy	
(LOE).37	A	significant	subset	of	LOE	remains	of	uncer-
tain	 origin,38	 and	 clinical	 evidence	 indictates	 that	 cer-
ebrovascular	dysfunction	could	represent	an	underlying	
and	converging	pathological	substrate.6,39	This	is	coher-
ent	with	 the	 fact	 that	an	 increase	 in	BBB	permeability	
favors	 seizure	activity	or	abnormal	neuronal	 transmis-
sion	 by	 homeostatic	 and	 inflammatory	 dysregulations	
(see	Ref.	6,	24,	and	40–	44).	Acute	(eg,	stroke	and	trau-
matic	 brain	 injury)	 and	 long-	term	 (eg,	 neurodegen-
erative	 disorders,	 chronic	 traumatic	 encephalopathy)	
pathologies	can	be	epileptogenic	and	are	associated	with	
an	increased	risk	for	seizures	and	epilepsy	in	the	elderly	
(Figure	 3).3,45	 These	 acute	 and	 chronic	 conditions	 can	
present	 with	 NVU	 dysfunction	 intertwined	 with	 brain	
inflammation.	 Here,	 we	 focus	 on	 cerebrovascular	 dis-
eases,	 traumatic	 brain	 injury,	 and	 neurodegenerative	
disorders.

Cerebrovascular	 diseases	 (subarachnoid	 hemorrhage,	
intracerebral	 hemorrhage,	 occlusion	 and	 stenosis	 of	 ce-
rebral	 arteries,	 transient	 cerebral	 ischemia46)	 are	 known	
risk	factors	for	LOE.47	Post-	stroke	epilepsy	(PSE)	accounts	
for	up	to	50%	of	LOE	cases.45,48	The	risk	for	seizures	and	
PSE	increases	with	age,	estimated	to	be	six	times	higher	
in	patients	>60 years	than	younger	subjects.49	Adult	sub-
jects	with	hypertension	presented	a	2-	fold	risk	of	develop-
ing	epilepsy.	Hypertension	was	proposed	as	a	potentially	
modifiable	 vascular	 risk	 factor.45	 Patients	 with	 hemor-
rhagic	 stroke	 or	 presenting	 hemorrhagic	 transformation	
are	at	higher	risk	of	seizures50	(eg,	within	7	days	from	the	
stroke	episode51).	The	presentation	of	early	seizures	post-	
stroke	 significantly	 increases	 the	 incidence	 of	 delayed	
PSE.	Seizures	are	most	common	when	the	stroke	occurs	at	
the	middle	cerebral	artery	branch,	associated	with	distur-
bances	 in	 the	microcirculation.50–	52	At	 the	cellular	 level,	
an	early	post-	stroke	 seizure	may	 result	 from	 the	 sudden	
increase	of	BBB	permeability,	 leading	to	a	 loss	of	paren-
chymal	 ionic	 and	 neurotransmitter	 homeostasis.	 It	 can	
be	 associated	 with	 local	 pro-	inflammatory	 elements.52	
Proteomic	 studies	 performed	 on	 mechanically	 retrieved	
thrombi	unveiled	the	presence	of	pro-	inflammatory	cyto-
kines,	adhesion	molecules,	and	T	cells,	supporting	the	ex-
istence	of	a	local	inflammation	that	can	negatively	impact	
the	brain	endothelium.53–	55	Cerebrovascular	permeability	
and	inflammation	are	proposed	mechanisms	for	PSE	and	
seizures.34,53

F I G U R E  3  Neurovascular	dysfunction	as	a	converging	risk	factor	for	late-	onset	seizures	or	epilepsy	and	cognitive	decline.	(A)	An	acute	
insult	(e.g.,	stroke,	traumatic	brain	injury,	generalized	status	epilepticus)	or	a	progressive	disease	(e.g.,	cerebral	amyloid	angiopathy,	CAA;	
vascular	dementia,	VaD;	Alzheimer's	disease,	AD)	to	the	aging	brain	can	precipitate	seizures	by	a	mechanism	encompassing	neurovascular	
unit	(NVU)	dysfunction,	including	increased	blood-	brain	barrier	(BBB)	permeability,	within	an	inflammatory	environment.	(B)	Summary	
of	bidirectional	associations	(to	be	demonstrated:	dotted	lines;	likely	or	demonstrated:	solid	lines)	and	the	vicious	cycle	between	seizures,	
neurodegenerative	pathways,	and	cognitive	decline	over	time.	Seizure	activity	may	accelerate	brain	aging	or	promote	markers	of	
neurodegeneration,	and	neurodegenerative	pathologies	present	with	abnormal	neuronal	discharges	or	seizures
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3.1	 |	 Traumatic brain injury

Due	to	reduced	autonomy	and	increased	motor	disabili-
ties,	older	individuals	are	at	high	risk	of	falls56	and	trau-
matic	 brain	 injury	 (TBI).	 The	 latter	 is	 a	 leading	 cause	
of	 subdural	 and	 intracranial	 hemorrhage,	 diffuse	 cer-
ebral	edema,	and	skull	fracture,	all	risk	factors	of	post-	
traumatic	 epilepsy	 (PTE)	 in	 the	 aging	 population.47,57	
Although	 the	 risk	 for	 a	 single	 early	 seizure	 following	
TBI	 is	 higher	 at	 a	 young	 age	 (<5  years),	 PTE	 can	 de-
velop	 in	 older	 individuals.57	 A	 computerized	 tomogra-
phy	 (CT)–	scan	visible	cortical	 insult	 is	associated	with	
a	greater	risk	of	developing	PTE.58	Experimentally	and	
clinically,	 BBB	 dysfunction	 was	 indicated	 as	 one	 early	
event	 post-	TBI,	 potentially	 underpinning	 the	 develop-
ment	 of	 neurological	 defects	 or	 seizures	 over	 time.59,60	
Evidence	 shows	 a	 topographic	 association	 between	
cerebrovascular	 hypoxia,	 rapidly	 occurring	 post-	TBI,	
and	 long-	term	 changes	 of	 gamma	 waves.59	 Repeated	
TBI  during	 early	 ages	 (eg,	 contact	 sports)	 or	 lifespan	
(eg,  military,	 repeated	 accidents)	 can	 lead	 to	 chronic	
traumatic	 encephalopathy	 (CTE),	 a	 condition	 charac-
terized	by	the	accumulation	of	hyperphosphorylated	tau	
(p-	tau),61	with	extensions	 to	Alzheimer's	disease	 (AD).	
Clinically,	CTE	presents	with	impairments	in	cognition,	
behavior,	 mood,	 and	 in	 some	 cases,	 chronic	 headache	
and	 motor	 and	 cerebellar	 dysfunction.61	 Patients	 with	
CTE	 are	 at	 higher	 risk	 of	 developing	 epilepsy,	 with	 a	
suspected	 pathophysiological	 implication	 of	 repeated	
BBB	damage	consequent	to	TBI.62,63

3.2	 |	 Neurodegenerative disorders

AD	 and	 vascular	 dementia	 (VaD)	 present	 with	 cerebro-
vascular	 alterations.64–	67	 AD	 displays	 structural	 or	 per-
meability	 modifications	 of	 the	 BBB,68	 associated	 with	
accumulation	 or	 inadequate	 clearance	 of	 misfolded	
Aβ.64	 Neurovascular	 dysfunction	 can	 precede	 the	 clini-
cal	diagnosis	of	AD.64,66,69	VaD	is	the	result	of	widespread	
microangiopathy-	related	 cerebral	 dysfunction	 (eg,	 vas-
cular	 leukopathy),	 and	 it	 is	 associated	 with	 cardiovas-
cular	 risk	 factors	 (hypertension,	 smoking,	 dyslipidemia,	
overweight).70	Cerebral	amyloid	angiopathy	(CAA),	with	
misfolded	amyloid	beta	at	the	pial	and	cortical	vessels,68	
represents	 a	 risk	 factor	 for	 AD	 and	 hemorrhagic	 stroke,	
with	an	extension	to	seizure	onset.71

Bidirectional	 associations	 between	 seizures,	 AD,	
and	 VaD	 are	 suspected.72	 Poorly	 controlled	 seizures	 are	
a	 risk	 factor	 for	 neurodegenerative	 diseases.	 In	 AD,	 sei-
zures	can	occur	during	early,	or	pre-	symptomatic	disease	
stages.73	The	relative	risk	of	seizures	for	patients	with	AD,	
VaD,	or	no	dementia	 is	5.6/1000,	7.5/1000,	and	0.8/1000	

individuals	 each	 year,	 respectively.74–	77	 Furthermore,	
abnormal	 tau	 phosphorylation	 exists	 in	 temporal	 lobe	
epilepsy	 (TLE)	 brain	 specimens,	 with	 subjects	 present-
ing	 comorbidities	 evocative	 of	 neurodegenerative	 con-
ditions.75,	 76	 Nevertheless,	 the	 prevalence	 of	 p-	tau	 and	
amyloid	plaques	in	human	TLE	remains	debated.78	These	
studies	 provide	 pathological	 elements	 of	 comparison	
and	overlap	between	clinical	TLE,	AD-	like	patterns,	and	
chronic	encephalopathy.73.79,80

BBB	dysfunction,	 specifically	 in	 the	hippocampus,	 is	
associated	 with	 mild	 cognitive	 impairment.81	 A	 recent	
2-	year	 follow-	up	study	performed	 in	patients	with	cere-
bral	small	vessel	disease,	showed	white	and	cortical	gray	
matter	 BBB	 permeability	 associated	 with	 cognitive	 and	
executive	function	decline.82	Hippocampal	capillary	dys-
function	exists	in	individuals	with	early	cognitive	defects,	
irrespective	of	Aβ	and	tau-	related	biomarkers,	suggesting	
BBB	dysfunction	as	an	initial	biomarker	of	disease	.83	In	
addition,	a	transient	EEG	slowing	of	the	cortical	network	
occurs	in	AD	patients,	correlated	with	cognitive	impair-
ment.84	 Collectively,	 this	 clinical	 evidence	 delineates	
a	 context	 where	 acute	 insults	 and	 disease	 progression	
converge	 into	 NVU	 dysfunction	 as	 a	 possible	 unifying	
mechanism	contributing	to	abnormal	neuronal	activities	
(Figure	3).

4 	 | 	 NVU	DYSFUNCTION	IN	THE	
AGING	AND	EPILEPTOGENIC	BRAIN:	
EXPERIMENTAL	EVIDENCE .

Experimentally,	 aging	 and	 seizures	 present	 overlapping	
NVU	cellular	changes	or	adaptations	(Figure	2).	With	age,	
density	and	coverage	of	BMECs	and	pericytes	decrease,85	
resulting	in	BBB	dysfunction,	particularly	in	brain	regions	
vulnerable	to	age-	related	deteriorations,	such	as	the	hip-
pocampus.81,86	Furthermore,	the	expression	of	transport-
ers	located	at	the	luminal	and	abluminal	endothelial	sides	
decreases,7	leading	to	reduced	uptake	of	nutrients	into	the	
brain	 and	 accumulation	 of	 waste	 products.	 In	 addition,	
thickening	of	the	basement	membrane	ensues	with	aging,	
resulting	 in	 stiffening	 of	 the	 vasculature,	 underlined	 by	
increasing	systolic	blood	pressure.7	Although	the	number	
and	 size	 of	 astrocytes	 increase	 during	 aging,87	 a	 decline	
in	 the	 number	 of	 oligodendrocytes	 and	 heterogeneity	 of	
microglia	can	occur,88,89	altogether	leading	to	changes	in	
brain	clearance	via	the	glymphatic	system,	reduced	myeli-
nation,	and	altered	immune	surveillance.	An	inadequate	
response	of	the	aging	cerebrovasculature	to	specific	vaso-
dilators	 has	 been	 shown,	 such	 as	 reduced	 NO-	mediated	
dilatation,	 oxidative	 stress,	 and	 vascular	 inflammation.8	
These	 events	 will	 decrease	 neurovascular	 coupling	 effi-
ciency,	further	aggravated	by	myelin	loss.90
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BBB	dysfunction	during	aging	triggers	the	hyperactiva-
tion	of	transforming	growth	factor	β	(TGFβ)	signaling	in	
astrocytes	and	causes	neural	dysfunction	and	age-	related	
pathology	in	rodents.6	Infusion	of	serum	albumin	into	the	
young	 rodent	 brain	 (mimicking	 BBB	 leakiness)	 induced	
astrocytic	 TGFβ	 signaling	 and	 an	 aged	 brain	 phenotype	
including	 aberrant	 electrocorticographic	 activity,	 vulner-
ability	to	seizures,	and	cognitive	impairment.6	Infusion	of	
albumin	into	the	cerebral	ventricles	of	young	rats	led	to	a	
transient	slowing	of	the	cortical	network.	This	event	was	
also	observed	in	cortical	brain	regions	with	BBB	dysfunc-
tion	in	patients	with	AD	and	epilepsy	and	in	three	rodent	
models.84

Alterations	in	the	composition	of	the	extracellular	ma-
trix	(ECM)	are	evident	during	aging	and	epileptogenesis,	
triggered	 by	 matrix	 metalloproteinases,	 endopeptidases	
that	are	critical	for	tissue	formation,	neuronal	network	re-
modeling,	and	BBB	permeability.91	Higher	matrix	metal-
loproteinase	(MMP)	expression	and	activity	are	associated	
with	BBB	permeability92	via	degradation	of	the	basal	lam-
ina	and	tight	 junction	proteins	and	promote	the	 infiltra-
tion	 of  neutrophils  into	 the	 brain	 parenchyma,93	 which	
can	contribute	to	epileptogenesis.	This	is	corroborated	by	
studies	performed	in	MMP	knockout	mice	in	which	BBB	
dysfunction,	 brain	 inflammation,	 and	 epileptogenesis	
could	be	attenuated	or	decreased	after	an	initial	insult.94,95

Pericytes	 are	 a	 cellular	 entry	 point	 and	 offer	 an	 op-
portunity	 to	study	new	BBB	restorative	pharmacological	
strategies	in	central	nervous	system	(CNS)	diseases.34,96,97	
In	 general,	 the	 perivascular	 deconstruction,	 redistribu-
tion,	and	reactivity	of	pericytes,	in	coordination	with	glial	
cells,	 negatively	 impacts	 BBB	 permeability	 and	 contrib-
utes	 to	 brain	 inflammation.97,98	 Deficiency	 of	 pericytes	
during	 aging	 leads	 to	 brain	 hypoperfusion,	 resulting	
in	 secondary	 neurodegenerative	 changes.99	 Pericyte	
(NG2DsRed)	detachment	 from	the	capillary	occurs	after	
experimental	 status	 epilepticus	 in	 the	 hippocampus	 and	
cortices.24,34,44,100,101	In	this	condition,	pericytes	lose	their	
bump-	on-	a-	long	 appearance	 and	 perivascular	 processes,	
becoming	 hypertrophic	 over	 time.40,44,102	 The	 latter	 is	
qualitatively	 similar	 to	 the	 pericyte	 pathology	 reported	
after	 experimental	 traumatic	 brain	 injury	 or	 neurode-
generative	disease	during	aging.97,103	In	a	model	of	TLE,	
pericytes	 detach	 from	 the	 capillary	 during	 seizure	 pro-
gression.24	 Loss	 of	 pericyte	 coverage	 is	 followed	 by	 the	
formation	of	new	cells	at	the	capillary	level	after	status	ep-
ilepticus,	disclosing	complex	dynamics	and	equilibriums	
of	damage	and	repair	processes.100	At	the	functional	level,	
a	redistribution	of	mural	cells	modifies	vasoreactivity	and	
blood	flow	when	endothelin-	1	or	glutamate	was	applied	in	
vivo	after	status	epilepticus.100	Increased	BBB	permeabil-
ity	 is	preceded	by	capillary	constriction	with	 indications	
of	 pericyte	 damage	 mediating	 loss	 of	 capillary	 integrity,	

with	 involvement	 of	 pericyte	 mitochondrial	 depolariza-
tion.104	 In	 addition	 to	 their	 critical	 structural	 functions,	
pericytes	have	immunological	features,	and	they	can	par-
ticipate	 in	 peripheral	 or	 brain	 inflammation	 (see98,	 105).	
Pericytes	 can	 express	 inflammatory	 mediators	 and	 pres-
ent	 antigens.98	 For	 example,	 during	 experimental	 TLE	
progression,	 pericytes,	 microglia,	 and	 astrocytes	 become	
reactive	 and	 form	 a	 perivascular	 multi-	cellular	 assem-
bly.24,34,106	The	activated	microglial	cells	accumulate	at	the	
outer	BBB	wall,	potentially	eliminating	the	damaged	peri-
cytes.24	 This	 regional	 multi-	cellular	 cluster	 corresponds	
to	areas	with	increased	BBB	permeability.	Similar	events	
occur	in	experimental	autoimmune	encephalopathy107,108	
and	 AD,109,110	 where	 the	 perivascular	 accumulation	 of	
microglial	cells	topographically	overlays	with	the	entry	of	
blood	fibrinogen	or	albumin	into	the	brain	parenchyma.

Along	 with	 the	 perivascular	 multi-	cellular	 assembly	
developing	during	seizure	conditions,	 increased	platelet-	
derived	growth	factor	receptor	beta	(PDGFRβ)	expression	
and	ectopic	collagen	III	and	IV	perivascular	deposits	sug-
gest	the	existence	of	pro-	fibrotic	mechanisms.44,111	A	peri-
vascular	multi-	cellular	activation	 in	response	to	seizures	
could	 promote	 a	 localized	 scarring	 process,	 negatively	
affecting	vascular	tone100	and	neurovascular	coupling.104	
Pro-	inflammatory	cytokines,	such	as	IL-	1β,	can	promote	
pericyte	 damage	 and	 microglia-	pericyte	 assemblies,24	
along	with	BBB	permeability	changes.112–	118

A	pericyte-	endothelial	pathology	also	occurs	in	exper-
imental	and	human	neurodegenerative	disorders,	includ-
ing	AD.83,97	Elegant	studies	revealed	how	the	BBB	directly	
contributes	to,	or	even	precedes,	the	onset	or	the	progres-
sion	 of	 cognitive	 decline	 in	 AD	 patients	 with	 the	 apoli-
poprotein	E	(APOE)	ε4	variant.69,119	Furthermore,	soluble	
PDGFRβ,	 a	 pericyte	 damage	 biomarker,	 was	 elevated	 in	
the	cerebrospinal	fluid	of	AD	APOE	ε4	carriers,	predictive	
of	subsequent	cognitive	decline.	Experimentally,	APOE	ε4	
accelerates	BBB	dysfunction,	reduces	cerebral	blood	flow	
over	time,	and	promotes	behavioral	defects.	This	evidence	
illustrates	 a	 pathological	 neurovascular	 intersection	 be-
tween	aging,	AD,	and	epilepsy,	supporting	the	hypothesis	
that	regional	BBB	breakdown	represents	a	mechanism,	or	
a	risk	factor,	for	developing	or	accelerating	neurodegener-
ative	pathways.72,75,76

Aging	 is	 associated	 with	 gliosis,	 with	 complex	 tran-
scriptome	 adaptations	 over	 time	 (see	 Ref.	 120	 and	 121).	
A	higher	number	of	GFAP+	astrocytes	and	Iba-	1+	microg-
lia	in	the	cortex	of	aging	mice	and	increased	receptor	for	
advanced	 glycation	 end	 products	 were	 also	 reported.122	
These	events	are	involved	in	the	inflammatory	response,	
brain	 entry	 of	 thrombin	 and	 albumin	 in	 hippocampal	
parenchyma,	 and	 indicate	 BBB	 permeability.123	 These	
changes	were	also	observed	in	the	cortex	of	APP/PS1 mice	
(an	AD	model),	followed	by	the	formation	of	Aβ	plaques.	
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In	 the	hippocampus,	 the	appearance	of	Aβ	plaques	pre-
ceded	 these	 alterations.123	 Furthermore,	 at	 the	 peak	 of	
inflammation	 in	 APP/PS1  mice,	 microglial	 cells	 are	 ac-
tivated,	 increasing	 BBB	 permeability.123	 Similarly,	 astro-
gliosis	 and	 microgliosis	 occur	 in	 models	 of	 epilepsy,30	
promoting	epileptogenesis	via	disturbance	of	energy	me-
tabolism	and	gliotransmission,	BBB	permeability,	dysreg-
ulation	of	blood	flow,	and	the	release	of	pro-	inflammatory	
molecules.30	Glial	cells	play	an	essential	role	in	the	elim-
ination	of	Aβ.124	Impaired	amyloid-	beta	efflux	and	clear-
ance,	 diminished	 cerebrospinal	 fluid	 (CSF)	 production,	
decreased	enzymatic	and	metabolic	activities,	augmented	
influx	of	peripheral	Aβ	through	the	BBB,	and	overexpres-
sion	of	amyloid	precursor	protein	contribute	to	cognitive	
decline.99,123

The	role	of	perivascular	macrophages	during	aging	and	
epileptogenesis	is	less	studied.	Of	interest,	the	number	of	
hippocampal	 CD163-	positive	 perivascular	 macrophages	
positevely	 correlates	 with	 BBB	 permeability	 in	 rats	 with	
recurrent	spontaneous	seizures.125	In	addition,	the	expres-
sion	of	CD68-	positive	monocytes/macrophages,	chemok-
ine	(C–	C	motif)	ligand	2,	and	CD163-	positive	perivascular	
macrophages	correlated	with	the	number	of	spontaneous	
seizures,125	 suggesting	 that	 these	 factors	 may	 contribute	
to	 epileptogenesis.	 Collectively,	 these	 data	 illustrate	 the	
multi-	facet	 involvement	 of	 NVU	 cells	 during	 the	 aging	
processes,	with	specific	overlaps	and	contextualization	to	
epilepsies.	This	emerging	knowledge	requires	systematic	
studies	to	define	the	cellular	mechanisms	and	pharmaco-
logical	targets	tailored	to	seizure	conditions	during	aging.

5 	 | 	 OVERVIEW	OF	MODALITIES	
AND	BIOMARKERS	TO	ASSESS	NVU	
DYSFUNCTION:	RELEVANCE	TO	
SEIZURES	AND	AGING .

NUV	dysfunction	is	etiological	to	brain	diseases,	and	it	en-
ables	the	diagnosis	of	neurological	disorders.126	Over	the	
last	decades,	new	imaging	and	molecular	biomarkers	have	
emerged	 to	 track	 NVU	 dysfunction	 during	 age-	related	
pathological	 conditions;	 now	 there	 is	 an	 opportunity	 to	
clinically	and	experimentally	apply	imaging	and	blood	bi-
omarkers	to	late-	onset	seizures	and	epilepsies.	Depending	
on	 the	 required	spatial	and	 temporal	 resolution,	experi-
mental	imaging	tools	vary	from	two-	photon	microscopy,	
laser	speckle	contrast	imaging,	to	intrinsic	optical	imag-
ing;	translational	and	clinical	modalities	include	positron	
emission	 tomographic	 (PET),	 single-	photon	 emission	
computed	 tomography	 (SPECT),	 and	 magnetic	 reso-
nance	imaging	(MRI).127–	130	These	techniques	can	be	ap-
plied	to	study	structural	and	functional	modifications	of	
the	NVU	during	aging	and	epileptogenesis,	such	as	BBB	

permeability,	 cerebral	 blood	 flow	 (CBF)	 alterations,	 in-
flammation,	 neuronal	 and	 axonal	 changes,	 as	 well	 as	
gradual,	 pathological	 processes	 such	 as	 the	 presence	 of	
amyloid	 and	 tau-	related	 markers.6,99,130–	135	 Recent	 de-
velopments	 include	 multi-	photon	 laser	 scanning	 mi-
croscopy	 (MPLSM)	 and	 functional	 ultrasound	 imaging	
(fUSi).128,136	MPLSM	can	be	used	 for	 in	vivo	 imaging	of	
cellular	dynamics	and	morphology,	together	with	CBF.128	
fUSi	is	an	innovative	imaging	modality	based	on	Doppler	
ultrasound,	 capable	 of	 recording	 vascular	 brain	 activity	
over	large	scales	(eg,	tens	of	cubic	millimeters)	at	unprec-
edented	spatial	and	temporal	resolution	for	such	volumes	
(up	 to	10 μm	pixel	 size	at	10 kHz).128	By	merging	 these	
two	technologies,	researchers	may	have	access	to	a	more	
detailed	view	of	the	various	processes	at	the	neurovascu-
lar	 level.128	 Although	 these	 techniques	 were	 developed	
and	tested	in	head-	fixed	animals,	fUSi	is	also	feasible	in	
freely	moving	animals.128

Longitudinal	MRI	studies	in	rats	after	status	epilepticus	
show	that	BBB	dysfunction	 in	 the	piriform	network	 is	a	
sensitive	and	specific	predictor	for	epilepsy,112,137	whereas	
diffused	 pathology	 is	 associated	 with	 a	 lower	 risk.112	 A	
multi-	parametric	 MRI	 combined	 with	 machine-	learning	
analysis	 revealed	 distinct	 pathological	 modifications	 of	
BBB	permeability,	blood	volume	 fractions,	and	apparent	
diffusion	 coefficient	 in	 the	 hippocampal	 epileptogenic	
zone	 and	 seizure-	propagating	 brain	 regions	 devoid	 of	
lesion.40	 In	 a	 TLE	 model,	 these	 imaging	 identifiers	 spa-
tiotemporally	overlapped	with	trajectories	of	brain	inflam-
mation,	 amyloidogenic,	 and	 tau-	hyperphosphorylation	
changes	unfolding	over	time.138	These	results	are	coherent	
with	the	evidence	showing	that	vascular	dysfunction	is	an	
element	 favoring	 neurodegenerative	 modifications	 over	
time,	 advocating	 for	 a	 regional	 cerebrovascular	 link	 be-
tween	seizures	and	associated	comorbidities.97	Significant	
effort	is	currently	devoted	toward	the	prediction	and	risk	
assessment	of	AD	and	the	transition	from	mild	cognitive	
impairment	to	AD,139	as	well	as	in	epilepsy,	to	define	epi-
leptogenic	and	seizure	propagation	regions	based	on	BBB	
measures	in	experimental	TLE.40

Considering	 PET,	 there	 are	 multiple	 imaging	 agents,	
including	small	molecules,	peptides,	affibodies,	aptamers,	
antibodies,	 and	 nanoparticles.130	 Novel	 agents	 are	 being	
developed	or	under	investigation,	which	may	help	identify	
NVU	alterations	at	the	molecular	level.	The	gap	between	
experimental	 models	 and	 patients	 for	 these	 novel	 imag-
ing	modalities	is	significant;	the	field	of	brain	imaging	is	
advancing	 swiftly,	 with	 the	 explicit	 goal	 of	 targeting	 in-
creasingly	larger	volumes	of	tissue	with	high	spatial	and	
temporal	resolution.128

Blood	 or	 peripheral	 fluids	 biomarkers	 of	 NVU	 dys-
function	represent	another	emerging	tool	with	diagnos-
tic	 and	 prognostic	 values.	 In	 conditions	 of	 increased	
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BBB	 permeability,	 a	 panel	 of	 astrocyte,	 neuronal,	 and	
pericyte	proteins	can	exit	 the	brain	 into	 the	peripheral	
blood,	where	they	can	be	detected	(see	Ref.	126	for	re-
view).	Although	blood	biomarkers	of	BBB	permeability	
have	 not	 been	 studied	 in	 the	 specific	 context	 of	 LOE,	
significant	 indications	 exist	 for	 neurodegenerative	
and	 aging	 conditions.72	 In	 blood,	 phosphorylated	 tau	
(p-	tau181,	 p-	tau217)	 represents	 a	 biomarker	 for	 diag-
nosing	or	staging	AD	patients.126	CSF	Aβ42:Aβ40	ratio	
can	 discriminate	 AD	 from	 other	 neurological	 disor-
ders.	 Furthermore,	 blood	 and	 CSF	 neurofilament	 light	
chains	 and	 GFAP	 correlate	 with	 AD	 staging.126	 A	 few	
studies	 focused	 on	 pediatric	 or	 young	 adults	 with	 epi-
lepsies.41,42,44	A	systematic	review	indicated	an	increase	
of	blood	S100B,	a	BBB	permeability	biomarker.140	MRI	
T1	peri-	ictal	imaging	in	drug-	resistant	epileptic	patients	
correlates	with	blood	S100B,	indicating	BBB	permeabil-
ity	during	a	seizure.141	Increased	S100B	blood	levels	 in	
pediatric	 TLE	 were	 reported	 minutes	 after	 a	 complex	
partial	seizure.142	Blood	S100B	levels	were	increased	in	
a	 pediatric	 population	 of	 intractable	 focal	 epilepsy.143	
Furthermore,	 accumulating	 evidence	 outlined	 specific	
blood	microRNAs	(miRNA)	as	biomarkers	of	neurovas-
cular	and	neuroinflammatory	modifications	across	epi-
lepsies	 (see	Ref.	 144–	146	 for	a	 comprehensive	 review).	
These	emerging	approaches	are	essential	for	identifying	
biomarkers	of	NVU	dysfunction,	with	a	prospect	appli-
cation	to	epilepsies	in	the	aging	population.

6 	 | 	 NVU PHARMACOLOGY 
IN EPILEPSY: AVAILABLE 
MOLECULES FOR THE 
HOMEOSTATIC CONTROL OF 
BRAIN INFLAMMATION

Considering	 the	 ramifications	 of	 NVU	 dysfunction	 in	
seizure	 and	 neurodegenerative	 disorders,	 restoring	 cer-
ebrovascular	 integrity	 within	 a	 broader	 control	 of	 brain	
inflammation	could	represent	a	strategy	to	prevent,	curb,	
or	halt	disease	progression.	The	pharmacological	manage-
ment	of	epilepsy	can	be	age-	dependent.	Here,	we	hypoth-
esize	 that	 treatments	 aimed	 at	 restoring	 NVU	 functions	
might	reduce	or	prevent	seizures	during	aging.	Past	stud-
ies	 point	 to	 a	 plethora	 of	 candidate	 molecules,	 novel	 or	
repurposed,	 exerting	 BBB	 protective	 and	 general	 anti-	
inflammatory	effects.	Here,	we	examine	this	existing	evi-
dence	and	the	possible	benefits	of	contemporary	molecules	
in	seizure	disorders,	although	recognizing	that	pre-	clinical	
studies	 performed	 during	 aging	 are	 unavailable.	 Table	
1	 identifies	 four	 categories:	 pro-		 and	 anti-	inflammatory	
equilibrium	 pathways,	 PDGF/TGF	 pathways,	 oxidative	
stress	 pathways,	 and	 matrix	 metalloproteinases.	 BBB	

permeability	and	neuroinflammation	intersect	during	sei-
zures	and	broad-	spectrum	(e.g.,	 corticosteroids147,148),	or	
specific	anti-	inflammatory	molecules	(e.g.,	anakinra/VX-	
765149–	152	 or	 antibodies	 against	 integrins,	 α4	 or	 VCAM-	
1153),	 as	 well	 as	 the	 immunosuppressant	 and	 mTOR	
inhibitor	 rapamycin137,154,155	 can	 ameliorate	 BBB	 integ-
rity,	and	reduce	 ictogenesis	or	epileptogenesis	 in	experi-
mental	models.	Some	promising	results	exist	for	specific	
compounds	in	clinical	studies	with	drug-	resistant	epilep-
sies	(Table	1).	Boosting	the	endogenous	anti-	inflammatory	
mechanisms	represents	an	emerging	approach,	using	pe-
ripheral	T-	regulatory	cells156	or	Annexin-	A1.157–	159	Other	
therapeutic	 approaches	 are	 PDGF/TGF	 targeting	 (using	
PDGF-	BB,100	Imatinib,44	IPW,6	or	losartan,112,160–	165	anti-
oxidant	treatment	vitexin166	or	carveol167),	or	matrix	met-
alloproteinase	inhibition95,168	that	were	shown	to	reduce	
BBB	 permeability	 and	 brain	 inflammation,	 ictogenesis,	
or	epileptogenesis.169	However,	the	efficacy	of	these	mol-
ecules	in	curbing	age-	related	pathological	changes	or	ag-
gravations	remains	to	be	investigated.

7 	 | 	 FUTURE DIRECTIONS AND 
CONCLUSIONS

Although	the	incidence	of	seizures	in	the	aging	population	
increases,	pre-	clinical	studies	on	this	phenomenon	lag	be-
hind.	 A	 caveat	 of	 the	 proposed	 framework	 is	 that	 NVU	
dysfunctions	occur	in	various	pathologies,	not	necessarily	
leading	to	epilepsy,	and	substantial	research	is	needed	to	
fully	understand	how	the	NVU	modifies	during	aging	and	
how	this	can	contribute,	or	not,	to	seizures	or	epileptogen-
esis.	 It	 is	 also	 essential	 to	 develop	 minimally	 invasive,	
clinically	 applicable	 methods	 for	 diagnosing	 the	 extent	
and	localization	of	NVU	dysfunction.	Pre-	clinical	studies	
have	 shown	 that	 detecting	 and	 quantifying	 NVU	 altera-
tions	 is	 feasible.	 Novel	 developments	 are	 being	 imple-
mented	in	the	clinic	(e.g.,	quantitative	contrast-	enhanced	
MRI),	which	may	help	identify	novel	biomarkers	for	epi-
leptogenesis	 or	 treatment	 response	 in	 the	 aging	 popula-
tion.	Existing	and	urgent	questions	are:	whom	should	we	
treat?	 When	 should	 we	 start	 treatment,	 at	 which	 dose,	
and	for	how	long?	Coupling	accurate	diagnosis	to	specific	
therapy	will	allow	tailoring	the	type,	dose,	and	duration	of	
treatment	 to	each	patient,	 increasing	 the	 likelihood	 that	
personalized	medicine	could	become	a	new	approach	for	
the	 prevention	 and	 treatment	 of	 epilepsy	 in	 the	 elderly.	
Essential	 factors	 to	 be	 considered	 are	 lifestyle,	 diet,	 ex-
ercise,	 and	 being	 cognitively	 active.	 The	 latter	 elements	
and	 their	 impact	 on	 the	 NVU	 functions	 and	 age-	related	
pathologies	remain	to	be	fully	studied.

In	conclusion,	we	have	presented	an	overview	of	 the	
pathophysiological	intersections	between	the	NVU,	brain	
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inflammation,	 epilepsy,	 and	 seizures	 during	 aging.	 The	
discovery	of	new	disease	mechanisms	will	pave	the	way	to	
original	opportunities	for	biomarkers	predicting	epilepsy	
onset	and	related	cognitive	dysfunction.	It	 is	essential	to	
develop	novel	therapeutic	strategies	to	curb	or	prevent	sei-
zure	onset	and	epilepsy	in	the	aging	population.

We	confirm	that	we	have	read	the	Journal's	position	on	
issues	involved	in	ethical	publication	and	affirm	that	this	
report	is	consistent	with	those	guidelines.	Neither	of	the	
authors	has	any	conflict	of	interest	to	disclose.
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